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Abstract
Lipids are a major component of the brain, and are involved in structural and neurodevelopmental processes such as neuro-
genesis, synaptogenesis and signaling. Apolipoprotein E (apoE) is the main lipoprotein involved in lipid transport in the brain. 
The apoE isoforms can determine vulnerability to the toxic effects of the pesticide chlorpyrifos (CPF), which can interfere 
with normal neurodevelopment. We aimed to study the effects of postnatal exposure to CPF and of the APOE genotype on 
the lipid composition of the brain at early ages. For it, we used apoE3 and apoE4 targeted-replacement (TR) male mice, as 
well as wild-type C57BL/6. The mice were orally exposed to 1 mg/kg/day of CPF on postnatal days 10–15 and, four hours 
after the treatment, we obtained samples to assess the cerebral lipid composition. Differences between APOE genotypes were 
found in the cerebral lipid profile in the postnatal period. ApoE4-TR mice exhibited higher lipid concentrations compared 
to the other groups in most of the cases. CPF exposure led to a decrease in cholesteryl ester and triglyceride concentrations, 
while modulating the levels of phosphatidylcholine species based on the apoE isoform. Specifically, CPF treatment decreased 
the concentration of some species of this lipid (PC30:0, PC31:0, PC32:2, PC36:5, PC40:4 and PC40:5) in C57BL/6 mice 
exposed to CPF, increased (PC31:0 and PC37:6) in apoE3-TR exposed mice while exposed apoE4-TR mice remained unal-
tered. These results provide further insights into the lipid composition of the brain at early ages, and how it can be modulated 
by environmental and genetic factors.
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Introduction

The brain is an organ that is extremely rich in lipids, which 
play a critical role in neurodevelopment. During the first 
postnatal weeks, important events involving lipids, such as 
myelin sheath formation or membrane maturation, take place 
in the brain. Most lipid families undergo several changes in 
order to play this role, with a rapid increase in their brain 
concentrations after birth. For instance, cholesterol, a key 
component of myelin and involved in synaptogenesis, is 
highly synthesized during the first postnatal weeks while 
sphingomyelin, present in the myelin sheath and cell mem-
branes, undergoes a significant increase during the first years 
of life (Dawson 2015). Any alteration in these processes can 
cause permanent impairments and lead to neurodevelopmen-
tal disorders. In human adults, lipids constitute 50–60% of 
the dry weight of the brain and present considerable struc-
tural diversity. For example, they can differ in the carbon 
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chain length or in the saturation degree. It has been reported 
that different cell types and different regions of the brain 
have their own unique lipid composition. It defines their 
specific functions in the brain: namely, they provide cell 
membranes with structural integrity, store energy or promote 
molecular signaling (Fitzner et al. 2020; Ooi et al. 2021). 
Alterations in the integrity of lipid composition have been 
related with aging and brain dysfunction, including the onset 
of neurodegenerative diseases. These include Alzheimer’s 
disease (AD), Parkinson’s disease and Huntington’s disease, 
among others (Vance and Hayashi 2010). AD, one of the 
most studied, has been associated with abnormal levels of 
cholesterol, sphingolipids, phospholipids and glycerolipids 
in the brain (Wong et al. 2017).

Lipid transport and homeostasis in the brain are regulated 
by lipoproteins, with apolipoprotein E (apoE) being one of 
their primary constituents in the central nervous system 
(CNS). The APOE gene is a polymorphic gene that has three 
main isoforms in humans—apoE2, apoE3 and apoE4—each 
of which has different affinities for lipoproteins. More spe-
cifically, apoE3 binds to small HDL, while apoE4 binds to 
large VLDL and chylomicron remnants (Huang and Mahley 
2014; Mahley 2016). In the CNS, apoE is synthesized 
mostly by astrocytes, provided that liver-synthesized apoE 
cannot cross the blood–brain barrier (BBB) (Liu et al. 2012). 
Indeed, the role of apoE is essential for correct brain func-
tioning. ApoE helps distribute cholesterol and phospholipids 
throughout the brain to cover for neurite outgrowth, neurode-
velopment, and repair and remodeling in case of brain injury 
(Han 2004; Vance and Hayashi 2010). Functional differences 
have been reported between apoE isoforms, which confer 
different vulnerabilities to some diseases (such as AD) or 
environmental toxicants (Roses 1996; Engstrom et al. 2017).

Chlorpyrifos (CPF) is an organophosphate (OP) pesticide 
that has been commonly used for fruit and crop protection. 
In recent decades, some restrictions have been placed on its 
use (Nandi et al. 2022). In general, pesticide use is a public 
health concern because the general population is exposed 
to chronic low-doses of pesticides in the diet. Children, in 
particular, are an important risk group. This is because their 
body weight is lower and they present lower levels of par-
aoxonase 1 (PON1) enzymes, an esterase that can hydrolyze 
the active metabolites of many OP pesticides, such as CPF 
(Costa et al. 2013). CPF exerts its toxicity by inhibiting the 
enzyme Acetylcholinesterase (AChE), thus directly attack-
ing the cholinergic system in the brain (Pope 1999). How-
ever, secondary targets have also been reported, including 
specific lipases involved in lipid homeostasis (Casida et al. 
2008). Developmental exposure to CPF has been widely 
studied because young animals are more sensitive to toxic 
exposure than adults (Pope 1999; Moser 2000). In fact, a sig-
nificant correlation has been reported between developmen-
tal exposure to CPF and postnatal impairments in locomotor 

activity, cognition, social discrimination, anxiety response 
and working memory (Ricceri et al. 2006; De Felice et al. 
2014; Burke et al. 2017).

The present investigation was aimed at assessing the 
effects of postnatal CPF exposure and the influence of APOE 
genetic background on the lipid composition of the brain at 
early ages. Omic technologies have provided new tools for 
studying these effects on lipid composition (Hussain et al. 
2019). This study was conducted in apoE targeted replace-
ment (TR) mice expressing the human isoform for the ε3 and 
ε4 alleles, which were exposed to CPF during the postnatal 
period between days 10 and 15. To the best of our knowl-
edge, this is the first study in which the lipid composition 
of the brain after CPF exposure has been assessed at such 
a young age.

Material and methods

Animals and care

Male apoE3-TR and apoE4-TR mice (Taconic Europe, Lille 
Skensved, Denmark) and wild type C57BL/6 J (Charles 
River, L’Arbresle, France) were used in this study. The apoE-
TR model has a C57BL/6NTac background and presents the 
human ε3 or ε4 alleles instead of the murine gene (Sullivan 
et al. 1997). Mice of the same genotype were mated and then 
we monitored the body weight of females. Pregnant females 
were maintained in individual cages and the day of deliv-
ery was considered postnatal day (PND) 0. All animals had 
access to fresh water and a normal chow diet (SAFE A04 
diet, supplied by Panlab, Barcelona, Spain). They were kept 
under controlled conditions (22 ± 2 °C and 50 ± 10% humid-
ity) on an automatic light/dark cycle every 12 h (lights on 
at 8 am). The use of animals and the experimental protocol 
were approved by the Animal Care and Use Committee of 
the Rovira i Virgili University (Tarragona, Spain) and at all 
times complied with the Spanish Royal Decree 53/2013 on 
the protection of experimental animals, and the European 
Communities Council Directive (2010/63/EU).

Chemical compounds and treatment

CPF [0,0-diethyl O-(3,5,6-trichloropyridin-2-yl) phospho-
rothioate], with a purity of 99.5%, was purchased from 
Sigma-Aldrich Co. LLC. (Madrid, Spain). It was dissolved 
in the vehicle corn oil and adjusted so that 1 mg/kg was 
administered in 1 μL/g of body weight. The animals were 
divided into two groups: the CPF-treated group was orally 
administered the pesticide with a micropipette, whereas the 
control group was administered the vehicle. The treatment 
period lasted from PND 10 to PND 15, both inclusive. A 
total of 36 males were included in the study, distributed in 
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six groups. However, an outlier was detected during data 
processing and, consequently, it was eliminated from the 
statistical analysis. Therefore, the final number of animals 
was 35, distributed as follows: Control C57BL/6 (n = 6), 
CPF-treated C57BL/6 (n = 6), Control apoE3 (n = 6), CPF-
treated apoE3 (n = 6), Control apoE4 (n = 5) and CPF-treated 
apoE4 (n = 6).

Sacrifice and sampling

Mice were euthanized on PND 15, 4 h after exposure to the 
last dose of CPF. Previous studies have revealed an inhibi-
tory effect on AChE activity in plasma but no differences 
in the AChE activity in the forebrain 4 h after exposure to 
CPF (Basaure et al. 2018). The animals were deeply anes-
thetized with isoflurane before being euthanized by decapita-
tion. Brain samples were obtained, immediately snap frozen 
in liquid nitrogen and then stored at – 80 °C for subsequent 
analysis.

Lipidomic profile

The lipidomic profile was determined in an external labora-
tory, the Centre for Omic Sciences (COS) in Reus, Spain. 
Whole brain samples were homogenized, and 5 mg of the 
tissue was extracted with chloroform:methanol. The lower 
phase was recovered after centrifuging with water and NaCl 
(0.9%), and reconstituted with methanol:methyl-tert-butyl 
ether. Analysis was performed by UHPLC-qTOF (model 
6550 of Agilent, USA) in positive electrospray ionization 
mode. Chromatographic gradient elution with a ternary 
mobile phase containing water, methanol and 2-propanol 
with 10 mM ammonium formate and 0.1% formic acid was 
performed using a C18 column (Kinetex EVO C18 Column, 
2.6 μm, 2.1 mm × 100 mm) as a stationary phase, allow-
ing the sequential elution of the more hydrophobic lipids. 
The lipid species were identified by matching their accurate 
mass and tandem mass spectrum to Metlin-PCDL from Agi-
lent and by matching the chromatographic behavior of pure 
standards for each family of lipids. Then, lipids were semi-
quantified depending on their family similarity by internal 
standard calibration curves using pure chemical standards. 
Finally, concentration was calculated by normalization with 
the original tissue weight for each brain sample.

Statistical analysis

Data were analyzed with the SPSS 26.0 software (IBM 
Corp, Chicago, USA). The lipidomic profile for each lipid 
family was plotted as a heatmap with the metabolomics data 
analysis platform MetaboAnalyst. A two-way analysis of 
variance (ANOVA) was used to study the effects of APOE 
and CPF exposure on the concentrations of the various lipid 

species. A one-way ANOVA (group) and a post-hoc Tukey’s 
test of variance were used to analyze differences between 
groups. The variance homogeneity was assessed by a Levene 
test. Statistical significance was set at p < 0.05. Results are 
reported as mean values ± S.E.M.

Results

Lipidomics

Lipid distribution in the brain is reported below for each of 
the lipid families studied. The first number refers to the acyl 
carbon atoms, and the second to the number of unsaturations.

Cholesteryl ester

A total of thirteen cholesteryl ester (ChoE) species were 
analyzed, as depicted in the heatmap in Fig. 1A. A two-
way ANOVA (genotype × treatment) found significant 
effects of the genotype in several ChoE species, includ-
ing: ChoE 20:2 [F(2,29) = 4.300, p = 0.023], ChoE 20:3 
[F(2,29) = 3.332, p = 0.050], ChoE 20:4 [F(2,29) = 4.943, 
p = 0.014], ChoE 20:5 [F(2,29) = 6.347, p = 0.005] and ChoE 
22:4 [F(2,29) = 18.346, p < 0.001]. In order to further inves-
tigate these differences, we performed a one-way ANOVA 
(group). Post-hoc analysis revealed that apoE4-TR mice pre-
sented significantly higher concentrations of ChoE 20:2 and 
ChoE 20:3 than C57BL/6 and apoE3-TR mice, respectively 
(Fig. 1B and C). In turn, C57BL/6 mice showed a higher 
concentration of ChoE 20:4 and ChoE 20:5 than apoE3-TR 
mice (Fig. 1D and F). ApoE4-TR mice presented the high-
est concentrations of ChoE 22:4, and C57BL/6 the lowest, 
both showing significant differences between them, and in 
comparison to apoE3-TR mice (Fig. 1F).

CPF treatment had a significant effect on ChoE 18:3 
[F(1,29) = 4.533, p = 0.042], with the CPF-treated group 
presenting lower concentrations than the control group 
(Fig. 1G). An interaction between genotype and treatment 
was also observed in ChoE 20:2 [F(2,29) = 3.640, p = 0.039] 
and ChoE 22:6 [F(2,29) = 4.506, p = 0.020]. Further analysis 
revealed an increase in the CPF-treated apoE4-TR mice in 
comparison to their control in ChoE 20:2 (p = 0.050), as well 
as a tendency in ChoE 22:6 (p = 0.071). A tendency towards 
a decrease in ChoE 22:6 was observed in the CPF-treated 
apoE3-TR mice, whereas no significant differences were 
observed in the C57BL/6 group (Fig. 2A and B).

Diglyceride

Nine species from the diglyceride (DG) lipid fam-
ily were analyzed (Fig. 3A). To study them in greater 
detail we performed a two-way ANOVA (genotype × 
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treatment). Genotype differences were found in the fol-
lowing cases: DG 36:3 [F(2,29) = 8.029, p = 0.002], 
DG 36:4 [F(2,29) = 26.590, p < 0.001] and DG 40:4 
[F(2,29) = 5.729, p = 0.008]. Post-hoc analysis found that 
apoE4-TR mice had higher concentrations of DG 36:3 
and DG 36:4 than the other genotypes (Fig. 3B and C). 
Nonetheless, in DG 36:4, a significant difference between 
C57BL/6 and apoE3-TR mice was also observed. C57BL/6 
mice showed higher DG 40:4 values than apoE3-TR mice 
(Fig. 3D).

Lysophosphocholine

A total of eleven lysophosphocholine (LPC) species were 
included to obtain a general screening of their concen-
tration in the brain (Fig. 4A). A two-way ANOVA (gen-
otype x treatment) found genotype effects in LPC 15:0 
[F(2,29) = 3.375, p = 0.048], LPC 18:2 [F(2,29) = 5.763, 
p = 0.008], LPC 16:0e [F(2,29) = 3.371, p = 0.048] and 
LPC 16:1e [F(2,29) = 5.604, p = 0.009]. Further post-hoc 
analysis found higher concentrations of LPC 15:0 and 18:2 

Fig. 1  Cholesteryl ester (ChoE) profile in mouse brain. Heatmap of 
the brain concentration (pmol/mg tissue) of the ChoE species for 
each experimental group (A). ChoE species presenting significant 
differences between genotypes (B–F) and treatments (G). All groups 

included six animals except for the apoE4-CNT, which included five. 
An asterisk (*) indicates significant differences between groups at 
p < 0.05. Abbreviations: CNT control, CPF chlorpyrifos-treated

Fig. 2  Cholesteryl ester (ChoE) 
species presenting a significant 
interaction between genotype 
and treatment. All groups 
included six animals except for 
the apoE4-CNT, which included 
five. An asterisk (*) indicates 
significant differences between 
groups at p < 0.05. Abbre-
viations: CNT control, CPF 
chlorpyrifos-treated
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in the apoE4-TR group compared to the other genotypes 
(Fig. 4B and C). In turn, the study of LPC 16:1e found 
lower concentrations in apoE3-TR mice than in the other 
groups (Fig. 4E).

Phosphatidylcholine

The brain concentration of forty-seven different phos-
phatidylcholine (PC) species was analyzed (Fig. 5A). A 

Fig. 3  Diglyceride (DG) profile in mouse brain. Heatmap of the brain 
concentration (pmol/mg tissue) of the DG species for each experi-
mental group (A). DG species presenting significant differences 
between genotype (B–D). All groups included six animals except for 

the apoE4-CNT, which included five. An asterisk (*) indicates sig-
nificant differences between groups at p < 0.05. Abbreviations: CNT 
control, CPF chlorpyrifos-treated

Fig. 4  Lysoposphocholine (LPC) profile in mouse brain. Heatmap 
of the brain concentration (pmol/mg tissue) of the LPC species for 
each experimental group (A). LPC species presenting significant dif-
ferences between genotypes (B–E). All groups included six animals 

except for the apoE4-CNT, which included five. An asterisk (*) indi-
cates significant differences between groups at p < 0.05. Abbrevia-
tions: CNT control, CPF chlorpyrifos-treated
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two-way ANOVA (genotype x treatment) indicated geno-
type differences in several PC species, including: PC 30:0 
[F(2,29) = 5.620, p = 0.009], PC 31:0 [F(2,29) = 6.455, 
p = 0.005], PC 32:1 [F(2,29) = 4.070, p = 0.028], PC 32:2 
[F(2,29) = 3.995, p = 0.029], PC 34:0 [F(2,29) = 4.510, 
p = 0.020], PC 34:4 [F(2,29) = 5.285, p = 0.011], PC 36:5 
[F(2,29) = 4.846, p = 0.015], PC 36:4e [F(2,29) = 4.303, 
p = 0.023], PC 37:6 [F(2,29) = 3.993, p = 0.029], PC 38:3e 
[F(2,29) = 9.097, p = 0.001], PC 38:4e [F(2,29) = 3.437, 
p = 0.046] and PC 38:6e [F(2,29) = 4.151, p = 0.026]. Fur-
ther post-hoc analysis found the same tendency towards a 
significantly higher concentration in apoE4-TR mice in com-
parison to the other genotypes, especially C57BL/6, which 
showed the lowest concentrations (Fig. 5B–M).

On the other hand, an interaction between genotype 
and treatment was observed in PC 30:0 [F(2,29) = 3.385, 
p = 0.048], PC 31:0 [F(2,29) = 5.203, p = 0.012], PC 32:2 
[F(2,29) = 3.967, p = 0.030], PC 36:5 [F(2,29) = 4.322, 
p = 0.023], PC 37:6 [F(2,29) = 6.565, p = 0.004], PC 40:4 
[F(2,29) = 4.010, p = 0.029] and PC 40:5 [F(2,29) = 3.872, 
p = 0.032]. Further analysis revealed that the concentra-
tions of PC 30:0 (p = 0.021), PC 31:0 (p = 0.039), PC 32:2 
(p = 0.022), PC 36:5 (p = 0.010), PC 40:4 (p < 0.001) and PC 

40:5 (p = 0.024) decreased in CPF-treated C57BL/6 mice. 
Moreover, CPF-treated apoE3-TR mice showed higher lev-
els of PC 31:0 (p = 0.045) and PC 37:6 (p = 0.006), whereas 
no significant effect of the treatment was observed on the 
apoE4-TR mice (Fig. 6A–G).

Phosphatidylethanolamines

Five phosphatidylethanolamine (PE) species were analyzed 
in the brain. The heatmap with the concentrations per group 
is shown in Fig. 7. No significant differences were found 
between groups.

Sphingomyelin

A total of twenty-three sphingomyelin (SM) species were 
analyzed in the brain (Fig. 8A). To examine the differences 
between groups, we performed a two-way ANOVA (geno-
type × treatment). Genotype differences were observed 
in SM 35:1 [F(2,29) = 4.181, p = 0.025] and SM 42:3 
[F(2,29) = 5.390, p = 0.010], while concentrations were 
higher in apoE4-TR mice than in C57BL/6 (Fig. 8B) and 
both C57BL/6 and apoE3-TR groups (Fig. 8C).

Fig. 5  Phosphatidylcholine (PC) profile in mouse brain. Heatmap of 
the brain concentration (pmol/mg tissue) of the PC species for each 
experimental group (A). PC species presenting significant differences 
between genotypes (B–M). All groups included six animals except 

for the apoE4-CNT, which included five. An asterisk (*) indicates 
significant differences between groups at p < 0.05. Abbreviations: 
CNT control, CPF chlorpyrifos-treated
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Triglycerides

Twenty-one triglyceride (TG) species were analyzed for 
the different groups (Fig. 9A). A two-way ANOVA (gen-
otype × treatment) found a genotype effect in TG 48:0 

[F(2,29) = 5.445, p = 0.010], TG 50:0 [F(2,29) = 5.599, 
p = 0.009], TG 50:1 [F(2,29) = 3.739, p = 0.036], TG 50:4 
[F(2,29) = 3.353, p = 0.049], TG 52:1 [F(2,29) = 3.629, 
p = 0.039] and TG 54:2 [F(2,29) = 3.539, p = 0.042]. Fur-
ther post-hoc analysis found that apoE4-TR mice had higher 
concentrations of the different TG species than the other 
genotypes (Fig. 9B–G).

Besides, a significant effect of the treatment was 
found in TG 48:0 [F(1,29) = 4.963, p = 0.034], TG 50:0 
[F(1,29) = 4.897, p = 0.035] and TG 52:4 [F(1,29) = 5.443, 
p = 0.027]. Post-hoc analysis found that the CPF-treated 
group had lower concentrations of TG species than the con-
trol group (Fig. 10A–C).

Discussion

The present study was designed to determine the impact 
of APOE genotype and postnatal exposure to CPF on early 
differences in the brain lipid profile of mice. The concentra-
tion of the different lipid species was studied on PND 15, 
4 h after exposure to CPF. Almost all the groups analyzed 
showed differences related to the genetic background, and 
CPF exposure had effects in both apoE-TR and C57BL/6 
mice, yet sometimes in the opposite direction. Therefore, 
the current results showed a complex regulation of the lipid 

Fig. 6  Phosphatidylcholine (PC) species presenting a significant 
interaction between genotype and treatment. All groups included six 
animals except for the apoE4-CNT, which included five. An aster-

isk (*) indicates significant differences between groups at p < 0.05. 
Abbreviations: CNT control, CPF chlorpyrifos-treated

Fig. 7  Phosphatidylethanolamine (PE) profiles in mouse brain. Heat-
map of the brain concentration (pmol/mg tissue) of the PE species for 
each experimental group. All groups included six animals except for 
the apoE4-CNT, which included five. Abbreviations: CNT control, 
CPF chlorpyrifos-treated



2470 Archives of Toxicology (2023) 97:2463–2475

1 3

profile in the brain, influenced by APOE genotype and post-
natal CPF exposure, as well as the interaction between them.

In our laboratory, we have extensively investigated the dif-
ferences between APOE genotypes, including differences in 
learning and memory (Basaure et al. 2019; Guardia-Escote 
et al. 2019), attention and inhibitory control (Reverte et al. 
2016), metabolism (Peris-Sampedro et al. 2018), gut micro-
biota composition (Guardia-Escote et al. 2020) and epige-
netic regulation (Guardia-Escote et al. 2021). The role of 
apoE in lipid metabolism and transport in the brain is well-
characterized, as is the isoform-dependent binding affinity 
for the various lipoproteins (Raber et al. 2002; Huang and 
Mahley 2014). Our results showed a significant effect of the 

APOE genotype on the concentrations of several lipid spe-
cies from almost all the studied families: namely, ChoE, DG, 
LPC, PC, SM and TG. A previous study including  apoE+/+, 
 apoE−/− and human apoE-TR mice at 12 months of age 
found no differences in lipid content in different regions of 
the brain, except for sulfatide levels (Han et al. 2003). Simi-
larly, Sharman et al. (2010) found only minor differences in 
PE, SM, TG and cholesterol levels when assessing the total 
brain lipid levels in mice homozygous for ε2, ε3 and ε4 
alleles. However, it must be taken into account that most of 
these slight differences were observed in 1-year-old mice but 
not in 2-months-old mice, which were also included in the 
study. Considering that we focused on differences in early 

Fig. 8  Sphingomyelin (SM) profile in mouse brain. Heatmap of the 
brain concentration (pmol/mg tissue) of the SM species for each 
experimental group (A). SM species presenting significant differences 
between genotypes (B–C). All groups included six animals except for 

the apoE4-CNT, which included five. An asterisk (*) indicates sig-
nificant differences between groups at p < 0.05. Abbreviations: CNT 
control, CPF chlorpyrifos-treated
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life while the other two studies focused on the adult period, 
we hypothesize that the required lipid input during devel-
opment may be increasing the differences between groups. 
Nevertheless, once this period is over, the lipid levels may 
stabilize until other challenging situations requiring regen-
eration such as trauma or infection appear.

Taking into account that this study focuses on the devel-
opmental period, a different maturation pattern might be 
contributing to the observed differences between genotypes, 
suggesting an earlier maturation of apoE4-TR mice. Pre-
vious studies found apoE3-TR mice presenting a delayed 

eye opening during the developmental period compared to 
apoE4-TR mice and a different expression of cholinergic 
elements in the brain (Basaure et al. 2018). Furthermore, 
a higher presence of age-related species in apoE4-TR mice 
microbiota were observed during the postnatal period (Guar-
dia-Escote et al. 2020). An earlier onset of development was 
also found in young children carrying the ɛ4 allele, sug-
gesting they have a cognitive advantage over non-carriers 
(Remer et al. 2020). Chen et al. (2021) observed that the 
metabolomic signature was different in the neonatal and 
adult brain in mice. More specifically, PC and TAG were 

Fig. 9  Triglyceride (TG) profiles in mouse brain. Heatmap of the 
brain concentration (pmol/mg tissue) of the TG species for each 
experimental group (A). TG species presenting significant differences 
between genotypes (B–G). All groups included six animals except for 

the apoE4-CNT, which included five. An asterisk (*) indicates sig-
nificant differences between groups at p < 0.05. Abbreviations: CNT 
control, CPF chlorpyrifos-treated

Fig. 10  Triglyceride (TG) 
species presenting significant 
differences between treatments. 
All groups included six animals 
except for the apoE4-CNT, 
which included five. An asterisk 
(*) indicates significant dif-
ferences between groups at 
p < 0.05
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found at higher levels in adult brains (Chen et al. 2021). 
These findings are in line with the results of the current 
study, which show higher concentrations of these lipid fami-
lies in the brains of apoE4-TR mice compared to the other 
groups.

This hypothesis could also explain the differences 
observed between treatments. More specifically, the treat-
ment with CPF was observed to have a significant effect on 
ChoE 18:3 and several TG species, being CPF-treated group 
the one showing a lower concentration of lipids compared 
to control mice. It has been previously reported that post-
natal CPF exposure delays physical maturation and alters 
the expression of cholinergic elements in the brain such as 
choline acetyltransferase, the α4-subunit and the α7 nico-
tinic acetylcholine receptors (nAChR) (Basaure et al. 2018). 
It should also be taken into account that development is a 
vulnerable period for toxic exposure, since the levels of the 
detoxification enzyme PON1 are lower at birth (Marsillach 
et al. 2016). Additionally, studies have reported that CPF 
exposure can decrease PON1 levels in both plasma and the 
brain, presumably due to associated liver damage, thereby 
leading to alterations in the plasma lipid profile (Deveci and 
Karapehlivan 2018). Consistent with these findings, a sys-
tematic review also highlighted liver damage as a significant 
factor contributing to the observed association between CPF 
exposure and changes in the blood lipid profile in rats and 
fish (Farkhondeh et al. 2022).

ChoE is a metabolite of cholesterol generated by leci-
thin–cholesterol acyltransferase (LCAT) in response to the 
excess of cholesterol in the brain. The local synthesis of 
cholesterol in the brain undergoes a rapid increase within the 
first three postnatal weeks, along with a transitory increase 
in ChoE, which will subsequently decrease over time (Kin-
ney et al. 1994; Dietschy 2009; Phillips et al. 2020). Cho-
lesterol and ChoE also conform lipid rafts, cholesterol-rich 
membrane domains involved in such functions as membrane 
signaling or axonal development, the disruption of which has 
been considered to be an early marker for neurodegenera-
tive diseases (Ooi et al. 2021). The finding of higher ChoE 
levels in apoE4-TR mice suggests brain maturation is faster 
in those groups than in apoE3-TR mice. However, it has been 
reported that the APOE4 genotype presents lower levels of 
LCAT (Mahley 2016), which would imply a higher basal 
level of cholesterol. In fact, a recent study in vitro found that 
the synthesis of cholesterol by astrocytes in the APOE4 gen-
otype was higher than in APOE3 (Lee et al. 2021). Despite 
the fact that the higher levels of ChoE were observed early 
in life, it must be taken into account that if maintained over 
time, high levels of ChoE can alter neuronal function, and 
they have been associated with conditions such as AD, mul-
tiple sclerosis and brain injury (van der Kant et al. 2019; 
Phillips et al. 2020). On the other hand, CPF was able to 
modulate ChoE levels, and apoE4-TR mice responded 

differently to the pesticide compared to their counterparts. 
Further investigations are required to unravel the underlying 
mechanism.

DG is a second messenger with many functions in the 
cells. Its hydrolysis by DG lipase results in 2-arachidonoyl-
glycerol, a molecule involved in endocannabinoid signaling 
(Reisenberg et al. 2012). We observed that DG levels were 
higher in apoE4-TR and C57BL/6 mice than in apoE3-TR 
mice. In turn, a recent study described differences in the lev-
els of DG in the brain in 14 to 15-month-old apoE-TR mice: 
apoE4-TR mice presented lower DG levels than apoE3-TR 
mice in the entorhinal cortex and the primary visual cortex 
(Miranda et al. 2022). This finding and our results support 
the importance of age for this important signaling lipid, and 
suggest potential alterations in the brain of aged apoɛ4 car-
rier’s. We also found that apoE4-TR mice had high levels 
of LPC, a phospholipid linked to such neurodegenerative 
diseases as AD. Indeed, LPC has been related to inflamma-
tion, demyelination in the CNS and alterations in the micro-
vasculature of the brain, which enhance pathways leading 
to apoptosis (Sun et al. 2009; Plemel et al. 2018; Liu et al. 
2021). Even though the present study focuses on early-age 
mice and further studies are required to assess whether these 
observations are maintained over time, we cannot dismiss 
the potential link between higher LPC levels and apoɛ4 
carriers.

Likewise, higher levels of PC and SM, both mem-
brane choline-containing phospholipids, were observed 
in apoE4-TR mice. Choline is also the precursor of the 
neurotransmitter acetylcholine (ACh), a key element of 
the cholinergic system. Since differences in the cholinergic 
system have been previously described between apoɛ3 and 
apoɛ4 carriers (Basaure et al. 2018), it is not surprising 
to find that the genotype has a significant effect in this 
regard. More specifically, Basaure et al. (2018) reported 
differences in the gene expression of vesicular acetylcho-
line transporter (VAChT), α7 nAChR, acetylcholinester-
ase-S (AChE-S) and acetylcholinesterase-R (AChE-R) in 
the forebrain between apoE3- and apoE4-TR mice dur-
ing development. Particularly, apoE3-TR mice showed 
higher levels of VAChT and AChE-S, whereas apoE4-TR 
mice presented higher levels of α7 nAChR and AChE-R 
(Basaure et al. 2018). All in all, and considering that SM 
increases during the first years of life in humans (Daw-
son 2015), we can yet again relate higher levels of SM 
with enhanced brain maturation in apoE4-TR mice. On 
the other hand, it should be highlighted that the genetic 
background can lead to differences in PC levels after 
postnatal CPF exposure. Unquestionably, C57BL/6 mice 
are the most sensitive to CPF effects, which triggered a 
decrease in the PC concentrations in the brain. Neverthe-
less, whereas apoE3-TR mice present an increase in two 
different PC species after exposure to the pesticide, the 
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concentrations in apoE4-TR mice remained unaltered. 
These results clearly show that vulnerabilities to the pes-
ticide depend on the APOE genotype. Interestingly, this 
has also been observed in 15-days-old mice exposed to 
CPF for the same period. The levels of some short-chain 
fatty acids (SCFA), in particular isovaleric and 4-meth-
ylvaleric acid, in the brain were altered in all genotypes 
except APOE4 (Guardia-Escote et al. 2020).

Lastly, apoE4-TR mice presented higher levels of TG in 
the brain than those found in the other groups. Previous stud-
ies in human iPSC-derived astrocytes showed that the ones 
expressing APOE4 can accumulate higher levels of TG than 
the ones expressing APOE3 (Sienski et al. 2021). These can 
alter the lipid balance in the brain and modify the levels of 
hypothalamic feeding hormones, such as leptin, insulin or 
ghrelin. More specifically, TGs are involved in transporting 
these hormones through the BBB and, therefore, regulat-
ing feeding behavior (Rhea and Banks 2021). High levels 
of TG would inhibit leptin transport through the BBB and 
increase the appetite. However, apoE3-TR mice usually 
present higher body weight compared to apoE4-TR mice 
(Huebbe et al. 2015). Along the same lines, the decrease in 
the TG levels after exposure to CPF would not correlate with 
the obesogenic effects previously observed in preadipocytes 
in vitro (Blanco et al. 2020) or in vivo (Fang et al. 2018), 
suggesting that other modulatory factors are involved.

One of the limitations of this study is that it focuses only 
on males although the literature shows the importance of 
including both males and females. Moreover, in a previ-
ous study we found that sex plays an important role in the 
response to toxic insults due to differences in metabolic reg-
ulation between sexes and the isoforms of APOE (Guardia-
Escote et al. 2021). Another limitation worth mentioning is 
that the brain samples were obtained 4 h after exposure to 
the pesticide, so the observed changes may be permanent or 
transitory. Also, we studied the whole brain whereas it has 
been shown that different brain areas have different lipid 
compositions when studied independently (Zhang et al. 
1996). Hence, further follow–up investigations are required 
on both male and female mice at different time-points.

To sum up, the current results provide information about 
the lipid profile in the brain of male mice in the late postna-
tal period, and the potential neurotoxic effects of postnatal 
exposure to CPF and its interaction with the APOE genetic 
background. The APOE genotype plays an important role 
in the regulation of lipid composition, with apoE4-TR mice 
showing a different profile in most cases. These differences 
can be explained by a different maturation pattern between 
genotypes. Similarly, exposure to CPF can also modulate 
several lipid species by decreasing their concentration in the 
brain. The interactions between the genotype and the treat-
ment clearly show different vulnerabilities to the neurotoxic 
effect of CPF depending on the apoE isoform. Altogether, 

these results show significant differences early in life, with 
potential implications for neurodevelopment and cognitive 
functioning.
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