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Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence 
on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. 
In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, 
with a special focus on drug toxicity.

Research Highlights

•	 Alternative methods can be effectively used to screen for toxic materials/drug dosages.
•	 The main advantages of the 3D cell culture include a high structural complexity, the simulation of cell-to-cell interactions, 

and the physiological behavior of cells in tissues.
•	 Invertebrate animals have been successfully used in scientific experimentation, with some outcomes similar to those 

observed in mammals.

Keywords  3D cell culture · Galleria mellonella larvae · Zebrafish · Brine Shrimp (Artemia salina) · Roundworms 
(Caenorhabditis elegans) · Fruit fly (Drosophila melanogaster)

Introduction

Historically, mammalian models have provided relevant 
evidence on the pathophysiology of numerous diseases 
(Andersen and Winter 2019). Animal experiments have 
been widely used for drug discovery and development by 
providing highly accurate pharmacological and toxicological 
evidence before clinical testing (Freires et al. 2017). Mean-
while, the use of mammalian models for scientific experi-
mentation has been questioned for different reasons, includ-
ing ethical issues, little representativeness of the results due 
to the low reproducibility of human biology, in addition to 
high costs (Meigs et al. 2018).

More recently, there have been great advances in the 
ethical use of laboratory animals with the establishment of 
the 3Rs rule (Refinement, Reduction, and Replacement). 
This approach has substantially changed the methodologi-
cal outlines of scientific research worldwide (Russell and 
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Burch 1959; Robinson et al. 2019). The 3Rs contribute sig-
nificantly to reducing the use of animals for testing while 
encouraging the implementation of alternative animal and 
non-animal models (Fontana et al. 2021) that are as much 
more sophisticated and closer to the in vivo condition (Naka-
mura et al. 2018; Rim 2020; Wang et al. 2021; Khabib et al. 
2022).

In this review, we discuss the progress and promise of 
alternative animal and non-animal methods in biomedical 
research, with a special focus on drug toxicity. We shed 
light on the use of 3D cell culture (organoids) and inver-
tebrate animal models, such as Galleria mellonella larvae, 
zebrafish, Brine Shrimp (Artemia salina), roundworms 
(Caenorhabditis elegans), and Fruit fly (Drosophila mela-
nogaster). Collectively, the evidence gathered herein may 
support the development and/or implementation of innova-
tive alternative methods that can substantially reduce the 
need for mammalian models in biomedical research.

3D cell‑based assays

Generally, 2D and 3D cell culture models are used to screen 
for the pharmacological activity of a novel drug and its pre-
liminary toxicological assessment, as well as for the elu-
cidation of cellular pathology and physiology (Ravi et al. 
2015; Belfiore et al. 2021). Importantly, cell-based assays 
have helped reduce the number of mammals in scientific 
experimentation. The 3D cell culture is more realistic as 
compared to the 2D model and provides evidence closer 
to that generated by in vivo models (Ravi et al. 2015). The 
main advantages of the 3D cell culture include a high struc-
tural complexity, the simulation of cell-to-cell interactions, 
and the physiological behavior of cells in tissues (Moysi-
dou et al. 2021). 3D culture techniques can be sorted into 
scaffold-based and scaffold-free cultures (Souza et al. 2016). 

Scaffold-based 3D cultures are generated using natural or 
synthetic hydrogels that resemble the composition of the 
ECM (extracellular matrix), enabling cell growth, prolif-
eration, cell-to-cell interaction, and transport of nutrients 
in a 3D environment. Therefore, 3D-based cultures pro-
vide a new plethora of possibilities for drug discovery and 
toxicological assessments (Bielecka et al. 2017; Kim 2005; 
Tomas-Bort et al. 2020; Zhang et al. 2020). Natural scaf-
folds are frequently fashioned with fibrinogen, collagen, 
gelatine, Matrigel, or hyaluronic acid, and their synthetic 
counterparts are typically assembled with polyethylene gly-
col (PEG), polylactic acid (PLA), or poly (vinyl acetate) 
(PVA) (Jensen and Teng 2020). The techniques for build-
ing scaffolds have evolved rapidly, from electrospinning, 
freeze-drying, and stereolithography to 3D printing and 
robotic micro-assembly (Lv et al. 2017). As for scaffold-free 
cultures, cells by themselves create their matrix by accu-
mulating multicellular structures called spheroids (Knight 
and Przyborski 2015). This particular formation generates 
hypoxic areas in the center of the spheroids while the pro-
liferative and oxygen-enriched areas on their surface are 
more similar to what is observed in solid tumors. For these 
reasons, scaffold-free culture systems have been extensively 
used in cancer research and drug resistance studies (Knight 
and Przyborski 2015).

Recent improvements in the field of 3D cell culture have 
led to the development of a technology called organoids 
(Fig. 1) (Sato et al. 2009). Organoids are stem cell-derived 
3D cultures fashioned by seeding stem cells in a 3D envi-
ronment in vitro (Bar-Ephraim et al. 2020). Organoids can 
be generated from different tissues and even species, and 
their culture condition recapitulates tissue complexity in 
terms of architecture and cellular composition (Dye et al. 
2015; Huch et al. 2013; Lancaster et al. 2013; Mullenders 
et al. 2019; Tuveson and Clevers 2019). Organoid cultures 
can be generated from pluripotent stem cells (PSC) or adult 

Fig. 1   Organoids derived from primary tissues. A, B Brightfield images of organoids prepared from the small intestine and colon. Images repre-
sent the organoids after 96 h in culture and 3–6 passages, respectively. These images were donated by Dr. David Colón, listed as an author
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stem cells (ASCs) maintaining long-term near-native 3D 
epithelial organization while holding genetic stability and 
high heterogeneity (Tuveson and Clevers 2019). Further-
more, in contrast to the traditional 2D cell culture, which 
cannot mimic endogenous structural and physiological fea-
tures (Jensen and Teng 2020), the versatile feature of orga-
noid cultures, especially patient-derived tumor organoids 
(PDOs), has afforded a reliable platform for high-throughput 
drug-screening procedures and drug toxicity testing (Drie-
huis et al. 2021; Li et al. 2020; Tuveson and Clevers 2019). 
Indeed, compelling evidence validated the use of patient-
derived tumor organoids as a predictive tool for a patient’s 
treatment response whereas normal tissue-derived organoids 
enabled the screening for drug toxicity testing (Boretto et al. 
2019; Driehuis et al. 2021; Fang and Eglen 2017; Huang 
et al. 2015; Richards et al. 2020; Saito et al. 2019; Vlachogi-
annis et al. 2018). Likewise, the in vitro response of patient-
derived tumor organoids is predictive of patient response to 
therapy (Ooft et al. 2019; Vlachogiannis et al. 2018; Yao 
et al. 2020). Remarkably, the organoids technology has 
been used to generate a collection of patient-derived cul-
tures, recently called “living biobanks” (Van de Wetering 
et al. 2015), which have opened avenues to predict patient 
response and embrace great promise for precision and per-
sonalized medicine (Grönholm et al. 2021). Lastly, a new 
dynamic 3D-based culture system, called organ-on-a-chip 
(OOCs), was developed. This system combines microfluidic-
based systems, advanced 3D tissue-engineered constructs 
with cultured human cells that replicate a human organ of 
interest such as nephron, proximal tubules, or liver sinusoid 
(Bhise et al. 2014; Inamdar and Borenstein 2011).

Due to their features to mimic organs, 3D cell-based 
cultures have enabled cutting-edge advances in the field of 
toxicology. Lee et al. (2021) established uniformly sized 
hepatocyte-like cell spheroids (3D-uniHLC-Ss) using 
the microwell culture approach. Newly generated sphe-
roids exhibited a high expression of hepatic gene markers 
(CYP2C9, CYP2C19, CYP3A4, and UGT2B7) and showed 
no significant signs of cell death. With the aid of imaging-
based drug toxicity technology, the authors found that hPSC-
3D-uniHLC-Ss exhibited enhanced sensitivity to various 
hepatotoxicants (tamoxifen, sunitinib malate, troglitazone, 
acetaminophen, cyclosporin A, mefenamic acid, nefazo-
done, sulindac, Rac-perhexiline maleate, and phenformin 
HCl) when compared to hepatocyte-like cells differentiated 
under 2D conditions. These findings indicate that 3D hPSC-
derived liver spheroids could be used as an effective tool for 
high-throughput drug screening that more accurately reflects 
human-specific drug toxicity (Lee et al. 2021). Likewise, 
Bircsak et al. (2021) reported the development and valida-
tion of a high-throughput 3D microfluidic on-a-chip sys-
tem (OrganoPlate LiverTox) for hepatotoxicity screening. 
They tested 159 compound libraries and found that the liver 

on-a-chip system was sufficiently robust to identify puta-
tive hepatotoxins in a high-throughput manner (Bircsak 
et al. 2021). Furthermore, Suter-Dick et al. (2018) recently 
fashioned an organotypic culture of human conditionally 
immortalized proximal tubule epithelial cells overexpressing 
the organic anion transporter 1 (ciPTEC-OAT1) in a three-
channel OrganoPlate under microfluidic conditions. The 
authors exposed the cultures to four well-known nephrotoxi-
cants (cisplatin, tenofovir, cyclosporine A, and tobramycin), 
and the NAG release (N-acetyl-beta- D-glucosaminidase). 
Moreover, a novel panel of four miRNAs (mir-21, mir-29a, 
mir-34a, and mir-192) was assessed as potential biomarkers 
of proximal tubule damage. Remarkably, the detection of 
kidney damage biomarkers and miRNA levels in the cul-
ture medium rendered this method very effective for in vitro 
nephrotoxicity assessments (Suter-Dick et al. 2018). Ishi-
kawa and Ito (2017) demonstrated in a 3D co-culture model 
of human bronchial epithelium that repeated exposure to 
cigarette smoke (CS) decreased the number of ciliated cells 
and goblet cell differentiation. These findings were consist-
ent with a significant increase in pro-inflammatory cytokines 
such as IL-8, IL-1β, and GM-CSF. Remarkably, the pro-
duction of these inflammatory mediators was boosted with 
the repetition of cigarette smoke exposure (Ishikawa and Ito 
2017), suggesting that this in vitro 3D model can be useful 
for toxicity assays.

Table 1 lists studies in which organoids derived from 
various human tissues were used in toxicological research. 
In detail, Sgodda et al. (2017) established scalable ESC-
derived 3D hepatic organoids which were more sensitive 
to acetaminophen-induced toxicity than the conventional 
2D-cultured ESC-derived hepatic cells. Moreover, Shino-
zawa et al. (2021) reported the development and validation 
of a high-fidelity drug-induced liver injury screening sys-
tem using human pluripotent stem cell-derived organoids. 
Using this organoid system, they tested 238 marketed drugs 
at 4 different concentrations. Bile acid production, viabil-
ity, cholestatic, and mitochondrial toxicity were assessed as 
readouts. The results revealed high predictivity, with 88.7% 
sensitivity and 88.9% specificity. Additionally, they demon-
strated that liver organoid-based toxicity positively predicts 
genomic predisposition (CYP2C9 ∗ 2) for bosentan-induced 
cholestasis, indicating that susceptibilities based on the 
polymorphism or SNPs can be addressed using organoids 
(Shinozawa et al. 2021). Furthermore, Archer et al. (2018) 
created a 3D human cardiac microtissue using suspensions 
of human-induced pluripotent stem cell-derived cardio-
myocytes (hiPS-CM), cardiac endothelial cells (hCMEC), 
and cardiac fibroblasts (hCF) to assess changes in cardiac 
pathology. The authors evaluated several FDA-approved 
structural cardiotoxins and non-structural cardiotoxins. They 
demonstrated that 3D human cardiac microtissues were able 
to detect changes in cardiac structure at clinically relevant 
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concentrations, even with greater accuracy than 2D-cultured 
human iPSCs (Archer et al. 2018). Likewise, using a similar 
cardiac organoid system, Richards et al. (2020) demonstrated 
that produced organoids can mimic several pathological hall-
marks of myocardial infarction (in particular, pathological 
metabolic shifts, fibrosis, and calcium handling) and can 
also recapitulate enhanced doxorubicin cardiotoxicity. Intes-
tinal organoids are also used in toxicology studies. Belair 
et al. (2020) demonstrated that 3D spherical ileal organoids 
can recapitulate the different degrees of clinical incidence 
of diarrhea induced by 31 diarrheagenic marketed drugs, 
using cell viability as a toxicity readout. Interestingly, Peters 
et al. (2019) demonstrated in a 3D human gastrointestinal 
microtissue system, that 3D cultures not only are suitable for 
addressing classical cytotoxicity endpoints, such as ATP and 
LDH, which are often used in toxicity studies, but can also 
be used in gut barrier toxicity assays. This 3D system was 
successfully used as a predictor of drug-induced diarrhea. 
Furthermore, Freedman et al. (2015) and Morizane et al. 
(2015) examined the effectiveness of human kidney orga-
noids for toxicity assessment under cisplatin and gentamicin 
treatment. They observed that kidney organoids were reac-
tive to cisplatin and gentamicin. Nephrotoxic chemical inju-
ries were confirmed by the upregulation of the kidney injury 
molecule-1 (Kim-1). Similarly, using a 3D proximal tubule 
tissue culture containing a combination of renal fibroblasts, 
endothelial cells, and human kidney proximal tubule epithe-
lial cells (PTECs), King et al. (2017) recapitulated key hall-
marks of nephrotoxicity after cisplatin treatment, suggesting 
that 3D kidney organoids provide valuable information for 
the prediction of drug-induced kidney toxicity in humans.

Alternative animals

Invertebrate animals have been successfully used in scien-
tific experimentation, with some outcomes similar to those 
observed in mammals (Table 2).  In the following sections, 
we describe some of the most relevant invertebrate models 
and their application in biomedical research.

Galleria mellonella larvae

Galleria mellonella, also known as honeycomb moth or wax 
moth, is part of the order Lepidoptera, family Pyralidae and 
subfamily Galleriinae (Kwadha et al. 2017). It is described 
worldwide where beekeeping is practiced and lives naturally 
in hives where it feeds on wax and pollen, causing bee gal-
leriosis (Singkum et al. 2019). G. mellonella is used for tox-
icity studies of new biologically active agents as it is a low-
cost, ethical, and reliable method, that provides preliminary 
evidence of the toxicological profile of new molecules or 
natural products before conducting pharmacological studies Ta
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in other animal models, such as rats or mice (Freires et al. 
2017). Larval death is determined based on high melaniza-
tion or the absence of movement upon touch. The adminis-
tration of the test compounds is performed into the hemo-
coel of each larva via the last left leg using a micro syringe 
(Fig. 2) (Lazarini et al. 2020).

Among the examples of studies that used the G. mel-
lonella model for toxicity assessment, Nani et al. (2022) 
found that two natural plant hormones (Gibberellin A4 and 
A7) did not show toxicity at the tested doses during the 72-h 
experimental period. The authors pointed out that the doses 
injected into G. mellonella larvae were extremely high and 
not consumable by humans, suggesting that consumption 
of the two natural plant hormones is probably non-toxic to 
mammals. In another study, Lazarini et al. (2022) evaluated 
the toxicity of a purified subfraction (S8) of Eugenia selloi 
in G. mellonella larvae and demonstrated that the natural 
product had no toxic effect at the tested doses. These results 
were essential to further study the anti-inflammatory effects 
of the subfraction (S8) of Eugenia selloi on mice at non-
toxic doses. The G. mellonella can be also used for marine 
toxins investigation as demonstrated by Coates et al. (2019). 
The authors evaluated the relative toxicity of okadaic acid 
(using physiologically relevant doses) in G. mellonella. Oka-
daic acid is a polyether toxin that causes diarrhetic shellfish 
poisoning in humans. The results showed that okadaic acid 
at concentrations ≥ 75 ng/larva reduced larval survival and 
circulating hemocyte (blood cell) numbers within 24 h post-
inoculation. Okadaic acid also reduced hemocyte viability 
and increased phenoloxidase and superoxide dismutase 
activity and malondialdehyde (i.e., lipid peroxidation) lev-
els. Emery et al. (2019) also used the G. mellonella model 
in toxicology experimentation to establish the conditions 
under which indomethacin (0.5–7.5 μg/larva) induced gut 

damage. Higher levels of gut leakiness were detected by 
tracking fluorescent microspheres in the feces and hemo-
lymph (blood equivalent) after 4 to 24 h. Moreover, tissue 
damage was observed in histological sections of the insect 
midgut, including epithelial sloughing and cell necrosis. 
Degeneration of the midgut and a significant increase in 
detoxification-associated activity (superoxide dismutase 
and glutathione-S-transferase) were also described. Lastly, 
the G. mellonella model was also used for nanoparticle 
(NP) toxicity assessment. Silver, selenium, and functional-
ized gold nanoparticles were synthesized and evaluated in 
G. mellonella larvae by Moya-Andérico et al. (2021). The 
study showed that the toxic effects produced by the NP were 
efficiently measured by larval indicators including LD50 cal-
culation, hemocyte proliferation, NP distribution, behavioral 
changes, and histological alterations, confirming the effi-
ciency of G. mellonella as a nanotoxicological model.

Zebrafish

Zebrafish (Danio rerio) is a small (3–5 cm long) tropical 
freshwater fish, native to northern India, northern Pakistan, 
and some regions of southern Asia, that was discovered in 
the rivers of the northern Himalayas (India). It has distinct 
linear pigmented stripes which resemble those of the zebra 
(Katoch and Patial 2021). Zebrafish has been proposed as 
a potential biological model because it exhibits complex 
behavioral interactions, ease of genetic manipulation, low 
maintenance cost, and high yield (Kalue 2017). The use of 
zebrafish offers several advantages for developmental neu-
rotoxicity testing (DNT) studies (Nishimura et al. 2015), 
for instance, a range of simple and complex neurobehav-
iors, such as spontaneous swimming, startle responses, and 
learning (Farrell et al. 2011; Ingebretson and Masino 2013). 
Zebrafish can absorb a wide range of chemicals from the 
environment in which they swim (Diekmann and Hill 2013). 
Because it is prolific and small, DNT using the zebrafish 
model can be performed in 96-well plates, which makes it 
possible to evaluate detailed dose–response relationships 
over a large number of samples. This increases the statisti-
cal power and detects subtle yet significant changes in the 
fish exposed to low concentrations of neurotoxicants affect-
ing their development (Nishimura et al. 2015). Several DNT 
assays using zebrafish have been developed, including the 
assessment of disturbances in gene expression, neurobehav-
ioral profile, and neural morphogenesis through Abagyan.

The modulation of gene expression by exposure to 
chemicals at subtoxic concentrations can be detected in 
zebrafish without observable phenotypic changes (Sukardi 
et al. 2010). Therefore, defining a set of markers related to 
developmental neurotoxicity and quantifying the expression 
of these markers may be a rapid and sensitive means of 
performing DNTs (Nishimura et al. 2015). Umamaheswari 

Fig. 2   Administration of a drug into the hemocoel of a G. mellonella 
larva in the last left-side proleg (A) using a microsyringe (B). These 
images were donated by Dr Masaharu Ikegaki (UNIFAL/MG)
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et al. (2021) evaluated the effect of polystyrene microplastics 
(PS-MPs) at different concentrations (10 and 100 μg L−1) 
in zebrafish. The results showed that PS-MPs at different 
concentrations induced reactive oxygen species (ROS) 
generation and significantly inhibited neurotransmission in 
zebrafish. In addition, antioxidant genes (cat, sod1, gpx1a, 
and gstp1) were altered significantly, and p53, gadd45ba, 
and casp3b gene expression were upregulated, resulting in 
apoptosis. The PS-MPs also significantly upregulated TNF 
and ptgs2a expression which are essential gene markers in 
the inflammatory mechanism. Park et al. (2021) evaluated 
the effects of an industrial chemical called acrylamide (10, 
30, 100, or 300 mg/L) on the neurotoxicity, developmental, 
and behavioral toxicity of zebrafish embryos. The study 
showed that acrylamide caused developmental toxicity 
characterized by scoliosis, curvature of the body, yolk 
retention, and swim bladder deficiency. The compound also 
reduced locomotor activity, measured as swimming speed 
and distance traveled. Moreover, 100 mg/L acrylamide 
shortened the brain and spinal cord width, demonstrating 
neuronal toxicity.

Another advantage is the use of zebrafish for the evalu-
ation of developmental disturbances by neuroimaging due 
to the translucent nature of the eggs and embryos. This 
allows the investigation of changes during various stages of 
development (Hill et al. 2005). Zebrafish remain transparent 
from fertilization until 2 dpf (O'Malley et al. 2004), in addi-
tion to the existence of zebrafish mutants lacking pigment 
(Nishimura et al. 2013). These resources allow researchers 
to evaluate morphological changes in the central and periph-
eral nervous system induced by chemical exposure using 
fluorescence technology (Nishimura et al. 2015). Further-
more, transgenic strains expressing fluorescent proteins in 
specific neuronal subpopulations have been developed (Si 
2008). Kanungo et al. (2011) developed a transgenic lin-
eage of zebrafish that expresses green fluorescent protein 
(GFP) associated with the hb9 transcription factor (selec-
tively expressed in developing motor neurons in zebrafish). 
In this protocol, motor neurons were visualized in vivo by 
neuro-specific expression of GFP under the control of the 
regulatory sequence of the hb9 gene. After exposure of 
the transgenic fish to ethanol during development, axon 
length reduction was observed in a dose-dependent manner. 
Similarly, early exposure to ethanol is also consistent with 
impaired motor coordination in humans (Driscoll et al. 1990; 
Kalberg et al. 2006).

Zebrafish have also been used in pesticide research (Gon-
calves et al. 2020). As reviewed by Goncalves et al. (2020), 
the development of accurate and rapid tests to assess the 
toxicity of thousands of commercial chemicals is urgent in 
the face of government decisions around the indiscriminate 
use of pesticides in countries that depend on the export of 
agricultural products. In this context, zebrafish have been 

used at various stages (embryo, larva, adult, cells, tissues, 
and organs) to evaluate pesticides of different classes (e.g., 
triazine, organophosphate, pyrethroid), use types (e.g., her-
bicide, insecticide), and environmental contaminants, either 
in their form or in combination (Goncalves et al. 2020). Fur-
thermore, the adverse effects commonly evaluated are devel-
opmental toxicity, oxidative stress, neurotoxicity, endocrine 
disruption, behavioral changes, embryotoxicity, and organ 
toxicity. Secondarily, parameters such as energy metabo-
lism, reproductive toxicity, immunotoxicity, genotoxicity, 
teratogenicity, and cytotoxicity are also described in the 
literature reviewed by Goncalves et al. (2020). Thus, this 
diversity of parameters evaluated consolidates the impor-
tance of zebrafish as a versatile model to assess the multi-
tude of effects of pesticides and other toxic substances (Hill 
et al. 2005).

Brine shrimp (Artemia salina L.)

Brine Shrimp (Artemia Sp.) are invertebrate, branchiopod 
crustaceans found in a variety of saltwater ecosystems 
(Darbyshire et al. 2019). They play an important role in the 
energy flow of the food chain, being one of the most popular 
sources of nutrition for many fish and aquatic invertebrates 
(Sanchez-Fortun et al. 1995). In addition, Artemia Sp. has 
increasingly become a more popular and efficient model for 
toxicity testing, particularly in acute toxicity testing of toxic 
materials such as heavy metals and pesticides, as well as 
nanoparticles, bioactive molecules, and plant-derived natu-
ral extracts (Banti and Hadjikakou 2021; Chan et al. 2021; 
Logarto Parra et al. 2001).

In general, the genus Artemia contains six species (El-
Magsodi et al. 2005), with Artemia salina, Artemia francis-
cana, and Artemia urmiana being the most commonly used 
species as a model for studying biological and cytotoxicity 
activities (Ntungwe et al. 2020). Furthermore, their short life 
cycle, ease of culture, high pupal production, commercial 
availability of their cysts, and low cost are additional advan-
tages of using the present model (Adamski et al. 2019; Banti 
and Hadjikakou 2021; Doke and Dhawale 2015; Ntungwe 
et al. 2020).

Toxicity studies primarily explore the nauplii stage 
(planktonic larval stage) of Artemia. During this life stage 
of the crustacean, nauplii exhibit greater sensitivity to toxic 
agents compared to adult Artemia (Trompeta et al. 2019). 
Thus, determining toxicity by estimating the mean lethal 
concentration (LC50) can be useful as a rapid and simple 
test to predict the toxicity of plant extracts and guide their 
phytochemical fractioning (Lewan et al. 1992; Logarto Parra 
et al. 2001; Massele and Nshimo 1995). The method is com-
monly used as a safe approach when studying the antitumor 
and cytotoxicity activity of natural or synthetic compounds 
(Zhu et al. 2018). Moreover, among other animal model 
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assays, the Artemia lethality assay is the most user-friendly 
and efficient (Banti and Hadjikakou 2021; Meyer et al. 1982; 
Živković et al. 2016), making it a simple and suitable model 
system (Trompeta et al. 2019). Okumu et al. (2020) deter-
mined the enzymatic and toxic activity of Naja ashei venom 
and the capacity of antivenoms manufactured in different 
countries. The toxicity profiles of the venom and antivenoms 
were evaluated in a lethality assay with Artemia. Fivefold 
determinations and the surviving larvae were counted after 
24, 48, and 72 h. Thus, the LC50 of the samples indicated 
that intermediate and high doses of the venom exhibited 
similar mortality rates and the test sera were generally non-
toxic. Hong et al. (2021) evaluated the toxicity and antitu-
mor activity of different compounds synthesized for cancer 
treatment. The authors indicate that like Fan et al. (2013), 
the chosen model has been important for different toxic-
ity tests and LC50 estimation, which can be extrapolated to 
more complex animal models with greater safety. Similarly, 
Ates et al. (2015) used the test model in investigating the 
toxicity of aluminum oxide nanoparticles (Al2O3 NPs) on 
marine microorganisms. As Artemia are non-selective filter-
ing crustaceans, they can easily ingest fine particles smaller 
than 50 μm (Hund-Rinke et al. 2006), highlighting Artemia 
also as a robust test model to study the ecological risks of 
nanomaterials in marine ecosystems. Thus, the main objec-
tive of using this aquatic invertebrate and other alternative 
models applies precisely in the preliminary evaluation of 
toxicity that can be translated to organisms of greater com-
plexity, such as vertebrates (Freires et al. 2017). Further, 
studies indicate a correlation between dose–response and 
LC50 for mice and rats, which enables the future execution 
of applied toxicity tests with more safety and fewer animals 
involved (Logarto Parra et al. 2001; Naidu et al. 2014).

Roundworms (Caenorhabditis elegans)

Nemathelminths are non-segmented roundworms. As one 
of the most abundant groups of metazoans, they live in 
terrestrial or aquatic environments, sediments, and water 
columns (Bhadury et al. 2006). Caenorhabditis elegans is a 
free-living soil nematode. By becoming a model experimental 
organism over 20 years ago, C. elegans has contributed to 
the study of biological processes such as apoptosis, gene 
regulation by RNAi, and the function of microRNAs; being 
the first metazoan with a sequenced genome (Blaxter 2011; 
Hunt 2017; Kiontke and Fitch 2013). In addition to studies 
related to biological and genetic development, the model also 
shows promise in toxicity studies, with the determination of 
EC50 and LD50 (Cole et al. 2004; Lanzerstorfer et al. 2021; 
Leung et al. 2008). Lanzerstorfer et al. (2021) evaluated the 
toxicological properties of different essential oils used in 
the pharmaceutical and food industries. For this purpose, a 

robust investigation was conducted with a combination of 
in vitro (cell culture) and in vivo (C. elegans) analyses. Gene 
expression by RT-PCR, LC50, and LD50 determination, and 
other investigations were sufficient to prove the presence of 
toxic properties of the essential oils investigated. Furthermore, 
a recent study by Lu et al. (2020) reported the risks and 
concerns regarding an emerging heavy metal pollutant, 
depleted uranium. Using C. elegans as an alternative animal 
model for toxicity tests, the authors chronically exposed 
the worms to the pollutant and described inhibition of the 
expression of antioxidant genes, degeneration of dopaminergic 
neurons, and promotion of α-synuclein aggregation, besides 
dopaminergic neurotoxicity. According to the authors, the 
findings may raise public concern, since this pollutant could 
be considered an etiologic agent of Parkinson’s disease, as 
shown by its potential neurotoxicity.

Fruit fly (Drosophila melanogaster)

Drosophila melanogaster is one of the most studied eukaryotic 
organisms in different areas of biological research. Drosophila 
has a short life span of about 10 days and produces a large 
number of offspring. They are small, have low experimental 
costs, and are easy to manipulate under standard laboratory 
conditions (Moraes and Montagne 2021; Tennessen et al. 
2014). Although the body constitution of the insect is simpler 
than that of mammals, the anatomy of Drosophila includes 
organ systems with functions equivalent to the mammalian 
brain and peripheral nervous system—heart, intestine, gonads, 
lung (trachea system in the fly), kidney (Malpighi tubules in 
the fly), and liver (fat body in the fly) (Calap-Quintana et al. 
2017; Ong et al. 2015; Pandey and Nichols 2011). Drosoph-
ila also constitutes a practical model for conducting toxicity 
studies, particularly the analysis of metal accumulation by the 
organism (Affleck and Walker 2019; Chifiriuc et al. 2016). 
This model can also be used to investigate cell cycle altera-
tions, circadian rhythms, enzyme pathways, impairment in 
DNA repair, and genotoxicity (Demir 2020). De Nobrega 
et al. (2017) also demonstrated how Drosophila proved to be 
a valuable model for studies of aging, the circadian clock, and 
alcohol neurobiology. The study lays a foundation for future 
research on the cellular and physiological mechanisms by 
which the circadian clock and aging influence alcohol-induced 
toxicity in the body. Similarly, dos Santos et al. (2022) evalu-
ated the mechanisms involved in the in vivo toxicity of the 
mannose/glucose-binding lectin from Canavalia ensiformis 
seeds, a medicinal plant explored in mitogenic and antitu-
moral activity. In this study, Drosophila was used to assess 
the toxicity and genotoxicity of different concentrations of 
the plant extract. The authors reported locomotor impairment 
and death, which occurred in parallel with oxidative stress and 
reduced cell viability. In this context, this animal model proved 
suitable and safe, pointing to the importance of toxicological 
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evaluations of substances extracted from plants with therapeu-
tic potential before their pharmacological use. In general, the 
possibility of conducting studies with the present model also 
encompasses toxicogenomics, carcinogenesis, and radiation 
biology tests (Freires et al. 2017), including somatic mutation 
assessments and recombinant tests, comet assay, aberrant crypt 
foci assay, as well as LD50 determination (Augustyniak and 
Gladysz 2016).

Conclusion

Novel animal and non-animal models have been developed 
and validated as a result of technological advances and finan-
cial investments in the field. Alternative methods (e.g., 3D 
cell-based culture and non-mammalian animals) should pref-
erably be considered as a preliminary or substitute approach 
to in vivo models based on their effectiveness and simplicity 
of predicting toxicity in humans. In addition, these methods 
can also be effectively used to screen for toxic materials/drug 
dosages. The use of in vivo models to test products that are 
not commercially feasible should be avoided. Researchers 
should be familiar with the overall characteristics of each 
model, and their specificities, to choose the adequate alterna-
tive model according to the study purpose. Yet, experimen-
tation in mammals continues to be essential in science due 
to the greater complexity of the organisms and biological 
responses. Further research is needed to standardize and 
validate new/optimized alternative models for scientific 
experimentation.
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