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Abstract
The use of nanomaterials in medicine depends largely on nanotoxicological evaluation in order to ensure safe application on 
living organisms. Artificial intelligence (AI) and machine learning (MI) can be used to analyze and interpret large amounts 
of data in the field of toxicology, such as data from toxicological databases and high-content image-based screening data. 
Physiologically based pharmacokinetic (PBPK) models and nano-quantitative structure–activity relationship (QSAR) models 
can be used to predict the behavior and toxic effects of nanomaterials, respectively. PBPK and Nano-QSAR are prominent 
ML tool for harmful event analysis that is used to understand the mechanisms by which chemical compounds can cause toxic 
effects, while toxicogenomics is the study of the genetic basis of toxic responses in living organisms. Despite the potential 
of these methods, there are still many challenges and uncertainties that need to be addressed in the field. In this review, we 
provide an overview of artificial intelligence (AI) and machine learning (ML) techniques in nanomedicine and nanotoxicol-
ogy to better understand the potential toxic effects of these materials at the nanoscale.

Keywords  Artificial Intelligence (AI) · Nanomedicine · Physiologically based pharmacokinetic (PBPK) models · 
Nanotoxicology · Adverse outcome pathway (AOP) analysis · Machine Learning (ML)

Introduction

The nanomaterials are the most important advancement 
in science and technology worldwide. This invisible small 
size particles between 1 and 100 nm range have unique 
physical, chemical and biological properties which has 
applications in a wide range of fields (Bayda et al. 2019). 
According to a report by MarketsandMarkets, the global 
nanomaterials market is expected to reach $75.64 billion 
by 2025, growing at a compound annual growth rate of 
13.2% from 2020 to 2025. Nanomaterials is widely used 
in everyday life such as sunscreen, cosmetics, food pack-
aging, water filtration, medicine and energy production. 
Nanotechnology and nanomedicines have given world a 
wide range of benefits and will continue to do so but it has 
become highly necessary to address its undesirable effects. 
Nowadays, the world is facing huge number of diseases 
originating from the daily exposure of harmful chemicals 
or materials whose behavior is not known hiding behind 
their application and benefits (Domingues et al. 2022). 
We are exposed to nanomaterials through industries, food 
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additives, processed food, cigarette, cosmetics, packag-
ing materials, forest fires, controlled release medications, 
propellants, paints, etc. These have the potential to pro-
duce risk to human health and cause diseases like Parkin-
son, Alzheimer, asthma, cancer, emphysema, bronchitis, 
arrhythmia, dermatitis, vasculitis, urticaria, crohn’s dis-
ease, hypertension, thrombosis, podoconiosis and many 
more (Fig. 1) (Ahamed 2014; Asati et al. 2021). Hence, 
for a safer and healthier future, there is a need to address 
this issue and do efficient nanotoxicological testing. Since 
the market on nanoparticles is growing rapidly, there are 
huge number of nanoparticles created and are going to 
increase which is little difficult to regulate for its safety 
through in vivo and in vitro tests. With the high speed and 
volume data growing, it is becoming difficult to assess 
chemicals using traditional methods which is even more 

challenging to assess with various number of chemical 
toxicological endpoints (Singh et al. 2020a). Therefore, to 
meet the need to assess/predict the risk of such particles, 
we should opt for computational modeling methods that 
will save time and resources and help build community 
with better health.

AI/ML modeling approaches 
for nanotoxicology related to systems 
biology and bioinformatics

The science of artificial intelligence is evolving in revolu-
tionizing way and has a significant impact on our lives. It 
has the potential to contribute significantly in number of 
fields including healthcare, finance, transportation, and 

Fig. 1   The potential sources (depicted in inner circle) and the health outcomes (depicted in outer square) of nanomaterial exposure (Ahamed 
2014). This figure was made using Biorender.com
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manufacturing as well as resolving challenges like envi-
ronmental protection, disaster response and social issues 
(Fig. 2). The AI is advancing and it has provided significant 
approaches to improve the process of drug discovery and 
development (Fig. 3). Research toward the field of systems 
biology and bioinformatics is focused toward the assess-
ment of the adverse effects of the chemicals. Using bioin-
formatic tools and modeling, we can predict or can explain 
the adverse effects associated with any chemical.

AI enables to develop text mining and data mining 
approaches as a complement to more network biology and 
system biology approaches to understand mechanisms of 
diseases and the mechanisms of chemical actions (Kumar 
and Saha 2022). In this section, we explain briefly about 
shortcomings of chemical with respect to (w.r.t) consumer 

safety, currently in why we need approaches from the mod-
eling field to understand that new chemicals entering in 
market can produce an adverse effect. More than 500 years 
ago as said by Paracelsus, “What is there that is not poison? 
All things are poison and nothing is without poison. Solely 
the dose determines that a thing is not a poison” who is in 
fact considered the father of toxicology and this is really 
key today and also current knowledge today that the impor-
tance of the dose of the compound to produce a toxic effect 
(Grandjean 2016).

Later, it was realized that it is not only the dose that 
is important but also the time dynamics and that is why 
it's important that we are able to apply different modeling 
approaches for understanding the mechanisms of chemical 
toxicity. As a background why researches are interested in 

Fig. 2   AI-ML application in wide sectors and their intrinsic worth in shaping human life
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Fig. 3   Artificial intelligence and machine learning in drug discovery and development (Gupta et al. 2021)
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chemical safety, as it is one of the major causes of attrition of 
new chemical during the whole process of chemical discov-
ery and also after the chemical is marketed in context with 
regulatory affairs (Fuelle and Lanctin 2022). That is why the 
adverse reactions of chemicals are a very important concern 
in the clinical setting during the new area of application 
in consumer market and how can we predict these adverse 
chemical reactions? In general, the preclinical animal test-
ing are failing to predict the human adverse chemical reac-
tions, because they are only able to explain or predict this 
in 30% of the cases (Singh et al. 2021c). The main reason 
of that is because we still do not understand what are the 
mechanisms, why and how a chemical produces a chemi-
cal toxic and sub-toxic effect (e.g. genotoxicity, mutagenic-
ity, etc.) and in fact for many chemicals which are there in 
the market, we do not have a detailed understanding of the 
mode of toxicological action and for asymptomatic adverse 
effect that is even worst (Singh et al. 2021b). Henceforth, 
it is important to realize that we are facing in our quest to 
understand the mechanisms of chemical toxicological mode 
of action and in particular chemical toxicity. We are address-
ing a multi-scale problem, because chemicals are in continu-
ity exposed at organism level via different routes ca. dermal, 
ocular, inhalation and oral route (Chandrasekar et al. 2022). 

Subsequently, chemicals exert their action at the molecular 
level via chemical targets such as proteins, peptides, DNA, 
RNA or other molecules at the cell. Later, they translate the 
effect to tissues/organ level via specific cellular mechanisms 
(Singh et al. 2020b). Therefore, we need to cover all these 
scales at the functional level as well as at the temporal level 
to study the mode of action of tracks and also to understand 
the adverse effects.

Quantitative systems toxicology

Looking at history of toxicology, the QST started the test-
ing of the toxic effect of chemicals and also chemical com-
pounds in general in early in the last century when many 
people died from nephrotoxicity i.e. toxicity in the kidney 
due to the use of antibiotic (Petejova et al. 2019) (Fig. 4). 
Therefore, this incident prompted the testing of toxicity of 
compounds by using animal models and this is currently 
current practice in pharmaceutical industry before testing 
these compounds in humans and also from several legisla-
tion to regulate the toxicity of the compounds. A second 
very important event in the 1950s and 1960s was that of 
chemical Thalidomide which was used to relieve morning 

Fig. 4   Development of nanomedicine & toxicology over time using 
AI and ML. Timeline for the evolution of AI, which includes statis-
tical methods, as well as nanoparticles (NPs), commencing with the 
first synthesis and quantum effects discovered by Faraday in 1853. 

When AI was used for tasks like the identification of NP properties or 
interaction partners, the grouping of NPs based on their qualities or 
harmful effects, and the prediction of NP toxicity in 2010, both time-
frames merged



968	 Archives of Toxicology (2023) 97:963–979

1 3

sickness and other types of symptoms in pregnant women 
produced teratogenic effects and more than 10,000 cases 
were reported (Kim and Scialli 2011). It is important to 
note that these toxic effects for Thalidomide could not be 
predicted by the animal studies that were conducted con-
temporarily in rat (Swaters et al. 2022). All these events 
highlighting it for a more systemic approach to do toxicol-
ogy and the other facts that are have all these developments 
are what we already seen but is also current today that there 
is a poor translation from animal experiments to the human 
in vivo scenario. From that, it is obvious that not all the 
animal models are good models or good predictors to what 
clinicians will observe then in patients. That is why we need 
to address this and computational approaches are playing 
important role in modern toxicology (Hemmerich and Ecker 
2020). Also, the cost is determining factor since there is 
a lot of resource investment to approve and develop new 
chemicals risk assessment and also another important issue 
is that currently a lot of animals are used for toxicity testing 
and there is a movement toward decreasing the use of animal 
testing in different types or different kinds of toxicity (3Rs 
principle) (Granath et al. 2014). This is the reason in the last 
decade, the field of quantitative systems toxicology emerged 
and this is the definition that we have that “the goal is to 
provide a quantitative understanding”. That is why we men-
tioned before the importance of those in time in the response 
of the toxic effect of a chemical and in the organisms for 
going from the molecular to the phenotypic observation. It 
is done by integration of computational approaches and dif-
ferent experimental methods. This is a broad approach that 
can be applied to a different kind of chemicals in particular 
can be applied to environmental toxicity testing better will 
focus today to their application for in the field of chemical 
risk assessment (Pérez Santín et al. 2021). In this area, it 
has some particular implications. In this section, we would 
like to summarize a little bit what are the mechanisms of or 
the key events of chemical actions and in how they produce 
adverse effects.

Essential role of PBPK models and ADMET 
profilers in health hazard predictions

The chemical can have a desired effect by acting on vari-
ous targets. It is important to note that some chemicals 
need to be metabolized into active compounds before they 
can act on the targets and produce the desired effect (Yu 
et al. 2018). There is also the potential for the chemical to 
produce other harmful effects. This can be directly caused 
by the action of the chemical or its metabolites on targets. 
Additionally, detoxification processes in the liver, such 
as the ADMET profile, convert the chemical metabolites 
into byproducts, which can be extracted from the body. 

These products can be chemically reactive and lead to 
DNA adducts modifications, mutations, and disruption of 
enzyme reactions. Many current QSAR models, molecu-
lar docking tools and ADMET properties prediction tool 
in silico are available to weigh the toxicity of chemicals 
(Daoud et al. 2021). Table 1 shows the comprehensive 
list of ADMET profiling tools, the parameters one can 
predict with their link adopted with permission from ref-
erences (Shin et al. 2017). ADMET profilers and PBPK 
models are invaluable resources for connecting chemical 
toxicity and exposure data. They are essential for combin-
ing animal, in vitro, and computer-based experiments to 
aid in chemical assessments. Utilizing QSAR metabolic 
simulators, you can investigate if there are any known or 
simulated metabolites or hydrolysis products of the target 
chemical(s) (Yordanova et al. 2019).

In this section, we will discuss the adverse effects of 
chemical metabolites, which include reactive products that 
can form adducts with other molecules. An example of this 
is conjugation with glutathione, which can lead to direct 
damage or deplete the cell's mechanisms of dealing with 
oxidative compounds that can then activate the body's regu-
latory response (Cooper and Hanigan 2018). If this response 
is activated in a homeostatic or small amount, the body can 
successfully cope with these reactive species. However, if 
it is continuously or highly activated, it can lead to cell and 
tissue damage. Additionally, this is the general overview of 
the action of chemicals on their targets. Traditionally, it was 
thought that chemicals act on their intended primary target 
by an effector pathway, leading to therapeutic effects (Yuan 
et al. 2018). Any off-target effects, which occur when the 
chemical acts on another target, activate a different effector 
pathway. However, recent research shows that this is not 
always the case (Cruz-Migoni et al. 2019). Understanding 
the mechanisms of toxicology is key to predicting the risk of 
adverse chemical reactions in patients. For example, when 
it comes to liver toxicity, it is important to be able to gauge 
the concentration of the chemical at the hepatocyte site at 
the liver cell, as well as measure different types of dynamic 
biomarkers such as transaminase in blood samples. Addi-
tionally, the understanding of the dynamics of enzymes in 
the liver can help to predict chemical-induced liver injury 
(Yu et al. 2018). When it comes to the heart, the action of 
chemicals on different ion channels in the cardiomyocyte can 
be assessed, and the dynamic biomarkers, such as changes 
in the acuity of the electrocardiogram or different types of 
depolarizations, can be used to predict arrhythmias. Com-
bining different modeling approaches enables better pre-
dictions for chemical toxicity related with cardiac or lung 
anomalies via liver metabolic profiling of chemicals. For 
example, human ether-à-go-go-related gene (hERG) chan-
nel profiler is included in the toxicological categorization of 
many hERG QSAR models (Seierstad and Agrafiotis 2006). 
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Such profiler are created using boundaries based on repeated 
dose toxicity test data pulled from the Hazard Evaluation 
Support System (HESS) database.

IPBPK models are at center stage to explore some of 
the current approaches for predicting the concentration of 
chemicals in different compartments of the body, such as 
the central components of PBPK models (Kuepfer et al. 

2016). PBPK models are used to describe how chemicals 
are absorbed, distributed, metabolized and eliminated. 
Through the use of current or previous knowledge from 
literature, these models capture the underlying physiologi-
cal and mechanistic components, with the ultimate goal of 
predicting the concentration of chemicals in the plasma and 
the site of action (Abouir et al. 2021). A PBPK model looks 

Table 1   List of ADMET profiling tools (Shin et al. 2017)

Endpoints Type Program Service

Absorption
 PAMPA SW MolCode toolbox C
 caco-2 SW preADMET, MolCode toolbox, Discovery Studio, volsurf+, QikProp W

DB the ADME database W
 MDCK SW preADMET, QikProp, ADMETpredictor C

preADMET W
 HIA SW ACD/percepta, preADMET, MolCode toolbox, Discovery Studio, ADMEWORKS Predictor, 

Stardrop
C

PK/DB, admetSAR, preADMET W
DB the ADME database, PK/DB W

 Skin permeability SW preADMET, ADMETpredictor C
preADMET W

 Corneal permeability SW ADMETpredictor C
 BA SW ACD/percepta, Impact-F C

PK/DB W
DB Pact-F C

the ADME database, PK/DB W
Distribution
 BBB SW ACD/percepta, preADMET, MolCode toolbox, Discovery Studio, ADMEWORKS Predictor, 

volsurf+, Stardrop, QikProp, ADMETpredictor
C

PK/DB, admetSAR, preADMET W
DB the ADME database, Chembench, PK/DB W

 VD SW ACD/percepta, volsurf+, ADMETpredictor C
DB PK/DB W

 PPB SW ACD/percepta, preADMET, MolCode toolbox, Discovery Studio, volsurf+, stardrop, QikProp, 
ADMETpredictor

C

PK/DB W
DB Chembench, PK/DB W

 Partition coefficient SW MolCode toolbox, ADMETpredictor C
Metabolism/excretion
 P-gP inhibition SW ACD/percepta, ADMETpredictor C

preADMET, PK/DB, admetSAR W
DB the ADME database W

 P-gP substrates SW ADMEWORKS Predictor C
Chembench, admetSAR W

DB Chembench W
 Regioselectivity phase 1 SW QikProp C

FAME W
 Regioselectivity phase 2 SW MEXAlert C

FAME W
 Phase II substrate/inhibitor SW preMetabo W
 Metabolic stability SW volsurf+ C
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like a main compartment that consists of different blood 
circulation systems coupled to different compartments that 
represent the organs or tissues. Each compartment can be 
further specified and more information can be added in order 
to capture more mechanistic insight.

We can identify models associated to different types of 
toxicity, but the location of genes in these networks does 
not necessarily give us more insight into the mechanisms 
of regulation (Cordes et al. 2018). To gain a better under-
standing of the effector pathways, we need to incorporate 
additional data and use approaches such as linear program-
ming algorithms or network-based approaches. We can also 
leverage on the wealth of omics data that has been gener-
ated for human and other organisms in order to construct the 
signaling layer. Mechanistic categorization schemes provide 
an organized way to identify key chemical properties based 
on published or expert knowledge (e.g. DNA binding by 
OASIS), helping to make informed decisions (Neuwoeh-
ner et al. 2008). Modeling chemical responses is of great 
importance, and the incorporating chemicals transformation 
into model has to be a key factor in metabolic modeling. In 
recent years, there has been a surge of research into genome-
scale metabolic networks, which are used to simulate human 
metabolism at various levels, including cell, tissue, and 
organ. These networks are vast, with hundreds of coupled 
ordinary differential equations and thousands of metabolites 
and reactions, as seen in a model of the parasite and the com-
prehensive model of human metabolic (Carey et al. 2022). 
Developing these models requires immense effort, and often 
the collaboration of multiple institutions.

Therefore, how are metabolic models developed? This 
process starts by studying the enzymes and genes involved in 
metabolic reactions, using genomic, transcriptomic, and pro-
teomic data to figure out if a particular protein is expressed 
in the tissue of interest (Wang and Zhang 2014). Then, all 
relevant literature is reviewed to identify the reactions taking 
place. After this information is represented in a set of equa-
tions, the model is simulated by constraint-based approaches 
to check if it matches the data. Since some of the reactions 
lack the necessary parameters, constraint-based approaches 
such as flux balance analysis are used to obtain quantitative 
analysis of metabolic flux at steady state (Dai and Locasale 
2017).

Expanding genome‑scale metabolic network 
(GSMN) with structural information

How can we improve our metabolic model? Currently, there 
is a lot of research being done in this area. For example, 
adding information on protein structure and enzyme confor-
mation can help us understand the impact of genetic vari-
ation. This includes knowledge on pharmacogenomics and 

genomics, which may influence toxic response of a chemical 
(Gu et al. 2019). Additionally, looking at the three-dimen-
sional structure of proteins and incorporating information on 
sequence variations associated with chemical response and 
disease can help build a knowledge base. Finally, molecular 
dynamic simulations can be used to predict the effect of 
mutations in the protein structure (Singh et al. 2022b) and 
its function, particularly its binding to certain chemicals or 
drugs (Hirano and Kameda 2021). In this section, we will 
briefly discuss through the process of combining PBPK 
modeling approaches, genomic scale metabolic network, 
and a model that regulates gene expression of one of the key 
enzymes related to metabolism of a chemical. PBPK model 
can be used to predict the concentration of toxic metabolites 
in the liver in the presence of different perturbations, such as 
chronic stress in people exposed to certain toxic environment 
(Maldonado et al. 2017). Through this approach, one can 
calculate the chemical metabolized in the whole body while 
considering the metabolism in the liver and gene expression 
of key enzymes.

An advantage of QSAR and PBPK approaches is the 
ability to incorporate variability in chemical action into the 
models, though it is not clear how this is done (Knaak et al. 
2012). However, open question remains that should com-
pound toxicologists adjust the models according to individ-
ual patient data, or is the variability already included in the 
models as they are in current state. Structural information of 
a protein can be used to model the variation of its response 
to chemical use. This can be done by different approaches, 
such as building a population of models by changing dif-
ferent parameters (3D state of amino acids, alpha helices, 
beta sheets, etc.). Additionally, it is possible to include food 
interactions and stress in metabolism models by considering 
their effects at the gene regulation level (Yau and Potenza 
2013). For example, an increase in cortisol impacts the syn-
thesis of a particular enzyme, which is explained by a gene 
regulatory network (Simmonds et al. 1984).

Nano‑quantitative structure activity 
relationship (nano‑QSAR)

There are different methods in computational modeling 
such as quantitative structure activity relationship (QSAR)/
nano-QSAR, read across and data-driven profiling. The 
nano-QSAR or nano-QNTR (where N-nanostructure and 
T-toxicity) or nano-QNAR (where N-nanostructure and 
A-activity) approach can be useful in predicting the toxic 
potential of nanomaterials. The nano-QSAR approach sta-
tistically establish relationship between independent vari-
ables (physicochemical properties) and dependent variables 
(toxic effects) (Singh et al. 2023). In the past 2.1 decades, 
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the research on QSAR and nanoparticles has grown tremen-
dously especially after year 2012 showing the importance 
of computational modeling in field of nanotoxicology. To 
interpret the research trends investigation, four ways can be 
used, namely

•	 Cumulative curve
•	 Density visualization map of co-occurrence of keywords
•	 Thematic map
•	 Conceptual structure map and keyword clusters

The Density Visualization map involves a yel-
low–green–blue color scheme which reflects the hotspots 
of nano-QSAR research (Singh et al. 2019). These color 
schemes are in order of the decreasing item densities like 
yellow color represent hot research area (e.g.: QSAR, vali-
dation, cytotoxicity, etc.), whereas blue color represent the 
opposite. It is done via “VOS viewer” software (VOSviewer 
2022). The Thematic map contains four quadrants namely 
motor theme, basic theme, emerging/declining theme, spe-
cialized/niche theme. The motor theme involve topics that 
have well-developed and important themes. It involves key-
words like drug-delivery, descriptor selection and design 
(Di Cosmo et al. 2021). In basic theme, the topics impor-
tant for research field but not developed are included, such 
as keywords optimal descriptors, cytotoxicity, prediction 
and toxicity. In Conceptual Structure map (Bibliographic 
clustering analysis), the themes are grouped into three clus-
ters represented with red, blue and green colors including 
drug discovery; engineered nanomaterials; and correlation 
and logic (CORAL software), respectively. The clusters 
with large number of topics are considered to be saturated 

with research areas, while the less dense ones require more 
research or has scope for future (Fig. 5).

The nanoscale quantitative structure–activity relation-
ship (nano-QSAR) is a computational technique which 
helps to understand the relationship between physical 
and chemical properties of nanomaterials and their bio-
logical effect on living organisms (Fortino et al. 2022). 
It predicts the biological activity of nanomaterials using 
quantum mechanics and statistical analysis. In nano-QSAR 
modeling, the mathematical relationship between variance 
in molecular properties (descriptors) and the variance in 
biological activity is obtained (Mikolajczyk et al. 2018). In 
nano-QSAR modeling, the primary objective is collection 
of data and data preprocessing.

The databases are obtained from various sources 
such as literature, databases, experiments and integrated 
sources. Under data collection, three main task comes into 
play—database, identify descriptors and endpoint selec-
tion (Singh et al. 2021a). The quality of data used deter-
mines the output of your assessment. Therefore, it is better 
to use various sources (good quality) rather than limited 
information on standardized protocol (poor quality) to get 
a reliable data output. The quality of nanoparticle data can 
be evaluated in several ways. One approach is to assess the 
accuracy and precision of the data, as well as the methods 
used to collect and analyze the data. Another approach is 
to evaluate the relevance and completeness of the data, 
and whether it is sufficient to answer the research ques-
tions at hand. Additionally, it is important to consider the 
credibility of the sources of the data and the expertise of 
the researchers involved in the study (Ballow et al. 1998). 
Ultimately, the quality of nanoparticle data can be deter-
mined by how well it meets the needs of the research and 

Fig. 5   The conceptual structure 
map or bibliographic clustering 
analysis represented in three 
zones—red, blue and green 
cluster (color figure online)
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how well it stands up to scrutiny from other experts in the 
field. To evaluate the quality of obtained nanoparticle data 
referred as ‘Nanosecurity’, the criteria of “FAIR” prin-
ciples should be fulfilled where “FAIR” stands for find-
able, accessible, interoperable and reusable, respectively 
(Ammar et al. 2020).

The typical QSAR/QSPR approach is assumed to be gen-
erated on complete, homogeneous data, which are obtained 
in the same conditions. Unfortunately, when nanomaterial 
characteristics are mostly partial or performed in varied con-
ditions, it is hard to include this information in typical mode-
ling. To overcome this issue, an approach called perturbation 
approach is used that merges different kind of experimental 
data independent of their measurement conditions by iden-
tifying the problem and then adding small variation term to 
predict solution. Hence, a combined nano-QSAR perturba-
tion approach can help predict the toxicity of nanoparticles 
under different experimental conditions with better results 
(Wyrzykowska et al. 2019).

In a conventional nano-QSAR model, we could pre-
dict results with only one endpoint and, therefore, have 
to create multiple QSAR equations for each end points. 
What if we could include multiple endpoints in a single 
model equation? It can become more practical, robust, 
reliable and economical. This can be achievable using a 
multitarget or multitasking QSAR approach (mt-QSAR), 
the Box-Jenkins moving average method-based software 
“QSAR-Co” (QSAR-Co 2021) or an advanced python-
based toolkit QSAR-Co-X (Ambure et al. 2019; Halder 
and Dias Soeiro Cordeiro 2021; QSAR-Co-X 2023). It 
uses a single QSAR model equation to predict end points 
with different experimental or theoretical conditions 
and different biological targets. As shown in Fig. 6, the 
upgraded version has advantages like high reproducibility 
of linear modeling; automatically perform the diagnosis of 
inter-collinearity among variables; reduced computation 
time by keeping only random division for dataset divi-
sion; automatically generate validation set and calculate 

Fig. 6   Advantages of different ML algorithms. For example, ANN is 
useful for both small and large datasets. SVM is suited for non-linear 
relationship and avoids overfitting. DT is versatile for transparency, 

empirical and categorical data. RF better fits with non-linear relation-
ship with high accuracy
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its statistical parameters; more number of Box-Jenkins 
operators; availability of Yc randomization to incorporate 
the influence of experimental elements; several non-linear 
modeling tools (kNN, SVM, RF, NB, GB and MLP); com-
parative analysis of multiple machine learning methods; 
hyperparameter tuning options for machine learning meth-
ods; and condition-wise prediction to understand how the 
developed model performs against individual experimental 
conditions, particularly for large datasets (Halder and Dias 
Soeiro Cordeiro 2021).

The applicability domain of a QSAR model is the 
response and chemical structure space in which the model 
makes predictions with a given reliability. According to 
OECD guidelines, applicability domain (AD) reflects the 
fact that QSARs are unavoidably associated with limita-
tions in terms of the types of chemical structures, physico-
chemical properties, and mechanisms of action for which 
the models can generate reliable predictions (Maharjan et al. 
2022). If a new compound exists in the AD of the developed 
model, only then can the developed model predict the com-
pound precisely. It is extremely useful for QSAR developers 
to have information about the AD of the developed model 
to identify interpolation (true predictions) or extrapolation 
(less reliable predictions) (Veerasamy et al. 2011). The 
applicability domain can be defined using different meth-
ods such as the value range of the variables, value ranges 
of principal components of variables, optimal prediction 
space (TPKAT), geometric methods, probabilistic density 
distribution methods, distance-based methods, etc. The most 
common method is distance-based method (DM), defined 
as any numerical measure of the prediction uncertainty for 
a given compound by the model or measures the reliability 
of predictions. According to DM, the model is under AD if 
the distance from the molecule to the distance of the training 
set is lower than a predefined threshold. A new software to 
calculate AD is “Model disturbance index tool” available 
on NanoBRIDGES project website (NanoBridges; Ruiz and 
Gómez-Nieto 2018).

Model interpretation is a way to comprehend and provide 
an explanation for the variables that cause the model to pro-
duce a response function. There are two main approaches in 
model interpretation that is, machine learning (ML)-depend-
ent and ML-agnostic. The ML-dependent model interpreta-
tion uses regression coefficients, rule extraction, layer-wise 
relevance propagation (LRP), CAM and GRAD-CAM. The 
ML-agnostic approach is based on sensitivity analysis, par-
tial derivatives, feature importance by perturbation, inte-
grated gradients and Shapley sampling values (Matveieva 
and Polishchuk 2021).

High content image‑based screening data 
and toxicological databases

The high-content image-based screening (HCIBS) is a type 
of phenotypic drug discovery approach where biological 
images are used to analyze cells and tissues specific com-
pounds or information (Singh et al. 2022a). HCIBS data 
typically include images of cells or tissues, as well as 
quantitative data on the various cellular parameters being 
measured (Fig. 7). The data may be collected from cells or 
tissues that have been treated with different compounds or 
conditions, in order to identify changes in cellular phenotype 
or gene expression. HCIBS data can be used to inform the 
development of predictive models to improve the accuracy 
of toxicological predictions (Antoniou et al. 2019). This 
method involves automated imaging techniques that captures 
high-resolution images of the cells and these can be ana-
lyzed using image analysis software to extract quantitative 
data. This includes imaging technique such as fluorescence 
microscopy, confocal microscopy, atomic force microscopy, 
etc. (Chandrasekaran et al. 2021; Lin et al. 2020).

In today’s world of internet, there are many sources 
available to gather an information where data are huge 
and scattered. An effective platform is required to gather 
relevant data at one place and deliver an integrated accu-
rate information. The big data can be characterized by 
attributes like high volume of data (high-content screen-
ing/HCS), speed of data generation (high-throughput 
screening/HTS), different types of data (omics, chemical 
structures), variability (genetic/population variations), 
validity (specific endpoint), visibility (access to data 
sources) and adequacy for specific goal. Although the 
data on toxicology is huge but its concern over sharing, 
accessibility, processing, quality, comparability, interop-
erability, integration and relevancy limits the applicabil-
ity in predictive toxicology (Richarz 2019). It is possi-
ble to combine data from various sources and exposure 
from various media and chemical sectors (for example, 
collected within the framework of various legislations) 
at various times, and then integrate the data to provide 
an overall big data resource that is closer to the diverse 
real-life exposure to chemicals/chemical mixtures and for 
evaluating co-exposures. For a better evaluation of mix-
tures, data can be mined to identify trends and clarify the 
mechanisms underlying chemical interactions. There are 
many toxicological databases available online shown in 
the following table with their use and websites (Table 2) 
(Ji et al. 2021; Pawar et al. 2019).
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Challenges and future perspectives

Nano-QSAR modeling presents several challenges that can 
make it difficult to develop accurate and reliable models. 
Some of these challenges include:

•	 The complex and multi-dimensional nature of nanoma-
terials: The current list of descriptors is not enough to 
accurately predict the toxicity of nanoparticles due to 
high complexity and diversity of nanostructures. Thus, 
we need to find out some nano-specific descriptors that 
are most relevant to the activity of particular nanomate-
rial to get an accurate prediction of nano-toxicity.

•	 The lack of high-quality experimental data: In order to 
develop a reliable QSAR model, it is necessary to have 
a large and diverse dataset of experimental data. How-
ever, experimental data on the activity of nanomaterials 
are often limited, which can make it difficult to develop 
accurate models.

•	 The lack of standardization in the field: There are cur-
rently no widely accepted standards for describing the 
structures of nanomaterials, which can make it difficult 
to compare and evaluate different models.

•	 The potential for overfitting: Overfitting is a common 
problem in machine learning, where a model becomes 
too closely matched to the specific data used to train it, 
and thus performs poorly on new data. Overfitting can be 
a particular concern in nano-QSAR modeling, due to the 
limited availability of experimental data.

•	 The ability of nanoparticles to dynamically interact 
with the exposure conditions and trigger series of bio-
logical effect makes it even more difficult to predict 
the toxic potential of nanoparticle in different envi-
ronment such as change in hydrophobic interactions, 
hydrogen bonding, corona formation with plasma and 
serum components.

However, there are some challenges specific to nano-
QSAR modeling, including the complexity and variabil-
ity of the structural properties of nanomaterials, as well 
as the lack of standardized methods for measuring their 
biological activity. As a result, the development of accu-
rate and reliable nano-QSAR models can be a challenging 
task. To overcome these challenges, it is important to 
carefully select the training dataset and the descriptors 
used to represent the structural properties of the nano-
materials. The use of some new computational strategies 

Fig. 7   a An overview of typical steps in the workflow for generating image-based profiles from biological samples. b Example images from the 
Cell Painting assay often used for image-based profiling (Chandrasekaran et al. 2021)
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to make diverse data more inclusive can help deal with 
shortage of homogenous experimental data. Addition-
ally, the use of advanced machine learning algorithms 
and appropriate validation techniques can also improve 
the accuracy and reliability of nano-QSAR models.
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