
Vol.:(0123456789)1 3

Archives of Toxicology (2022) 96:3373–3383 
https://doi.org/10.1007/s00204-022-03377-0

REPRODUCTIVE TOXICOLOGY

Effects of low‑dose bisphenol AF on mammal testis development 
via complex mechanisms: alterations are detectable in both infancy 
and adulthood

Yuanyuan Li1,2 · Yiming Xiong1,2 · Lin Lv1,2 · Xinghong Li1,2 · Zhanfen Qin1,2 

Received: 7 March 2022 / Accepted: 7 September 2022 / Published online: 13 September 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Despite growing concern about adverse effects of bisphenol AF (BPAF) due to its endocrine disrupting properties, there is a 
lack of toxicity data from low-dose studies and direct evidence linking its adverse effects to endocrine disrupting properties. 
Here, we investigated the effects of gestational and postnatal exposure to BPAF through drinking water (0.15–15 μg/mL, 
equivalent to the daily intake of ~ 50 and 5 mg/kg/day) on testis development in mice. We found that like mestranol, 5 mg/
kg/day BPAF resulted in remarkable decreases in multiple male reproductive parameters in adulthood, such as the sperm 
number and serum testosterone level. Notably, 50 μg/kg/day BPAF also caused significant decreases in anogenital distance 
(AGD), the luteinizing hormone level and spermatocyte number, along with declining trends in sperm number and the serum 
levels of testosterone and follicle-stimulating hormone. In line with the adverse outcomes observed in adulthood, on postnatal 
day (PND) 9, we also observed BPAF-caused dose-dependent alterations, including reduced AGD, seminiferous tubule area 
and numbers of total germ cells, spermatocytes and Leydig cells, coupled with down-regulated expression of male-biased 
genes in testes. Even when exposure to 5 mg/kg/day BPAF as well as MES was initiated from PND 0, similar alterations in 
male reproductive parameters were also found on PND 9, along with a decrease in the GnRH content in the hypothalamus; 
moreover, testicular alterations and the reduction in AGD were partly antagonized by the estrogen receptor (ER) antagonist 
ICI 182,780, but the reduction of GnRH production was not done, showing that the effects of BPAF on testis development 
may be partially mediated by ER signaling. In conclusion, all the findings demonstrate that low-dose BPAF can partly disrupt 
mammal testis development and cause adverse testicular outcomes in adulthood, indicating a potential reproductive risk to 
mammals including humans. Importantly, our finding that developmental alterations elicited by BPAF have been detectable 
on PND 9 provides important motivation for the development of effective methods for early detection of adverse effects of 
estrogenic chemicals on testis development.
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Introduction

Bisphenol AF (BPAF) is a chemical commonly used in the 
manufacturing of fluoroelastomers, polyimides, polyamides, 
polyesters, polycarbonate copolymers and other specialty 

polymers (ECHA 2020; NTP 2008). Due to its widespread 
use, BPAF has become ubiquitous in the environment, and 
even parts-per-billion levels of BPAF have been detected 
in water (15.3  μg/L) and indoor dust (739  ng/g) near 
manufacturing plants (Chen et al. 2016; Liu et al. 2021a, 
2017; Song et al. 2012; Yang et al. 2014b). Unfortunately, 
BPAF has been also detected in human urine (up to 0.173 ng/
mL), serum (up to 0.404 ng/mL), breast milk (up to 0.58 ng/
mL) and even cord blood and placenta (Li et  al. 2020; 
Yang et al. 2014a; Zhang et al. 2020). Especially, BPAF 
concentrations in cord plasma seem to be higher than those 
in paired maternal plasma (Pan et al. 2020), which agrees 
with the observations in experimental rodents (Waidyanatha 
et al. 2021). The presence of BPAF in humans has raised 
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great concern about its adverse health effects, especially 
during gestational and lactational periods.

BPAF has been demonstrated to possess estrogenic 
activity mediated by estrogen receptors (ERα and ERß), 
with a higher potency than bisphenol A (BPA) (Kitamura 
et al. 2005; Matsushima et al. 2010), while several studies 
suggested its non-genomic estrogenic property mediated 
by G protein-coupled estrogen receptor (GPER) (Cao 
et al. 2017; Liu et al. 2021b; Yang et al. 2020). In addition, 
BPAF was also reported to act as androgen receptor (AR) 
antagonist in in vitro cells and in Hershberger assay (Teng 
et al. 2013; Yamasaki et al. 2003). Meanwhile, there are 
increasing data reporting adverse effects of BPAF on 
both adult and developing mammals (Escriva et al. 2021), 
yet most data are based on high-dose exposure. Take 
reproductive toxicity as an example, relevant data were 
generally from BPAF exposure at higher levels than 2 mg/
kg body weight (bw)/day (Feng et al. 2012; Li et al. 2016; 
Umano et al. 2012; Wu et al. 2019; Yu et al. 2022), which 
is much higher than the human-relevant level. Additionally, 
despite growing data on adverse effects of BPAF, there 
is a lack of direct evidence linking adverse effects to its 
endocrine disrupting properties.

Given the high susceptibility of male reproductive 
development to estrogenic chemicals (Martin et al. 2008; 
Toppari et al. 1996), we aimed to reveal the effects of pre- 
and postnatal exposure to BPAF at nominal doses of ~ 50 
and ~ 5000 μg/kg/day with mestranol (MES) as a positive 
control, on testis development in mammals. According to 
the bioavailability (6%) of BPAF in male mice (Waidyanatha 
et al. 2019), dosing of 50 μg/kg/day was estimated to result 
in a plasma concentration close to the serum concentrations 
reported in humans (Li et al. 2020). Following exposure 
from gestational day (GD) 10.5 to postnatal day (PND) 
56, male mice were examined for testicular alterations 
at multiple levels at the end of exposure. In addition, we 

also dissected the effects of BPAF on testis development 
in infancy (PND 9) to explore the possibility of early 
detecting adverse effects of chemicals on testis development. 
Importantly, we investigated the antagonistic actions of the 
ER antagonist ICI 182,780 on BPAF- and MES-caused 
alternations to determine whether BPAF-caused effects were 
associated with its estrogenic property. This study would 
highlight potential reproductive risk of low-dose BPAF 
to mammals including humans, and establish a direct link 
between its adverse effects and estrogenic activity.

Materials and methods

Animals

Time-bred pregnant CD-1 mice at GD 8.5 obtained from the 
Charles River (Beijing, China) were allowed to acclimatize 
for two days prior to exposure. All animals were housed in a 
temperature-controlled facility with a 12-h light/dark cycle. 
Food and water were available ad libitum. Animal use was 
approved by the Animal Ethics Committee at the Research 
Center for Eco-Environmental Sciences, Chinese Academy 
of Sciences (AEWC-RCEES-2022002).

Exposure method and sample collection

The study design is shown in Fig. 1. For experiment I, 
beginning on GD 10.5 and continuing through postpartum 
day 21, dams (n = 5) were given 0.1% dimethyl sulfoxide 
(DMSO as the solvent control), 0.15  μg/mL or 15  μg/
mL BPAF (Sigma-Aldrich, USA), or 0.15 μg/mL MES 
(APExBIO, USA) in drinking water. Given the rapid 
development of the mammal testis within the first two 
weeks after birth, we anticipate that the effects of BPAF 
are detectable at this early stage, and thereby examined 

Fig. 1  Study design. 
Experiment I was designed 
for studying the effects of 
bisphenol AF (BPAF) on testis 
development in male mice 
(n = 5 litters, 3 male mice/litter 
on PNDs 9 and 56). Experiment 
II was designed for investigating 
whether the effects of BPAF 
on the testis development were 
due to its genomic estrogenic 
property (n = 3 litters, 3 male 
mice/litter). LH, luteinizing 
hormone; FSH, follicle-
stimulating hormone
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testicular alterations on PND 9. Three male pups per litter 
(n = 5 litters, 15 pups in total) were killed after euthanasia 
on PND 9. The testes were collected for RNA extraction and 
subsequent RT-qPCR analysis (left testis) or histological and 
immunofluorescence (IF) staining (right testis). Remaining 
male pups were housed five per cage after weaning with a 
follow-up exposure. On PND 56, 15 animals from 5 litters 
were killed for blood collection and anogenital distance 
(AGD) measurement, and then testes and cauda epididymis 
were collected for further analysis. Based on the daily 
dose of water consumption and body weight, the average 
daily intake of BPAF were estimated to be approximately 
53.11 μg/kg/day and 5780 μg/kg/day for dams in 0.15 μg/mL 
and 15 μg/mL groups, with 42.26 μg/kg/d and 3960 μg/kg/
day for weaned pups, respectively. Hereinafter, we defined 
the two BPAF groups as 50 μg/kg/day and 5000 μg/kg/day 
groups according to the doses for dams. According to the 6% 
bioavailability of BPAF in male mice (Waidyanatha et al. 
2019), oral ingestion of 50 μg/kg per day was estimated 
to result in 3 μg/kg (6% × 50 μg/kg) entering in the blood, 
thereby be calculating to a maximum plasma concentration 
of 0.6 μg/kg (ng/ml) (0.2 × 3 μg/kg) based on the BPAF 
toxicokinetics.

Experiment II was conducted to determine whether 
the effects of BPAF on testis development were due to its 
genomic estrogenic property. Newborn male pups (PND 0) 
were divided into six groups by given 0.1% DMSO, 5 mg/
kg/day BPAF, or 50 μg/kg/day MES to their mothers by 
drinking water and injected intraperitoneally with 25 μL of 
olive oil or ICI 182,780 (Meilunbio, Dalian, China) at the 
dose of 0.5 mg/kg/day, referring to the previous study by 
Lee (1998). On PND 9, testes of male pups were collected 
(n = 3 litters including 9 male pups) for further analysis. In 
addition, hypothalamus tissue was also collected for analysis 
for GnRH content and Gnrh expression, given crucial roles 
of GnRH in the production of luteinizing hormone (LH) 
and testosterone and subsequent testicular development and 
spermatogenesis.

RNA extraction and RT‑qPCR

The total RNA was extracted from testes or hypothalamus 
according to methods described in Supporting Information. 
RT-qPCR was conducted to analyze the expression of genes 
we concerned, including hormones or their receptors (Gnrh, 
Ar, Fshr, Esr1, Esr2, and Gper), Leydig cell marker genes 
(Cyp17a1 and 3β-Hsd), germ cell marker genes (Sycp3, 
γH2ax, Dmc1 and Pou5f2), and ovarian marker genes 
(Cyp19a1, Foxl2, and Rspo1).

Histological examination and IF staining

Histological examination and IF staining are described in 
Supporting Information. Based on IF images, the germ cell 
number per seminiferous tubule as well as the numbers 
of spermatocytes and Leydig cells per 200 × field were 
counted using ImageJ software (National Institutes of 
Health, USA; version 1.53c). Based on the images of 
LAMININ1 IF for the lamina of the seminiferous tubule, 
the tubule area was measured. Staging of seminiferous 
epithelium cycle was performed based on PAS-stained 
sections.

Measurement of the testosterone, LH, FSH, 
and GnRH

The content of GnRH (Qisong Bio, QS43291) in the tissue 
homogenate of the hypothalamus on PND 9 and levels of 
serum testosterone (Cayman Chemical, Cat NO. 582701), 
LH (Qisong Bio, QS43318), follicle-stimulating hormone, 
follicle-stimulating hormone (FSH) (Qisong Bio, 
QS43242) on PND 56 were determined by the enzyme-
linked immunosorbent assay (ELISA) according to the 
manufacture’s protocol. All the samples were analyzed in 
the same assay in duplicates.

Sperm analysis

Spermatozoa were squeezed out from the caudal 
epididymis and incubated for 30 min at 37 °C as previous 
reported (Li et al. 2022). The incubated sperm medium 
was then diluted 1:500 and transferred to a hemocytometer 
for counting. Sperm motility evaluation was performed 
by the same person throughout the study by visual 
estimation (100 spermatozoa per animal, in duplicate) 
under a phase-contrast microscope (Carl Zeiss, Germany) 
at 200 × magnification. Then sperm number was counted 
using a hemocytometer.

Statistical analysis

Data are shown as mean ± standard deviation (SD). Data 
were analyzed by SPSS (version 16.0) or GraphPad 
Prism 8 software. If homogeneity, data were analyzed 
by independent t test (between two groups) or one-
way ANOVA (treatment groups relative to the control 
group) followed by Duncan (equal variances assumed) 
and Dennett’s T3 (equal variances not assumed). When 
samples were heterogeneous, nonparametric analysis of 
variance was applied. Testis weight was analyzed using 
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analysis of covariance with the body weight as a covariate. 
A p < 0.05 was considered statistically significant.

Results

Effects of BPAF on testis development in male mice 
on PND 9

Given rapid testis development within the first two weeks 
after birth, we examined testicular changes of treated pups 
on PND 9. No difference in body weight was observed 
between BPAF-treated animals and controls, while the 
MES-treated pups showed slighter body weights compared 
to controls (Fig. 2A). Pups in the 5000 μg/kg/day BPAF 
group displayed higher liver weights compared to controls, 
with a decrease in the MES group (Fig. 2A). Expectedly, 
MES treatment resulted in reduced AGD in male pups; 
similarly, the 5000 μg/kg/day BPAF group also exhibited 
smaller AGD than the control group (p < 0.05, Fig. 2A). 
The cross-sectional area of the seminiferous tubule was 
significantly smaller in all BPAF and MES groups than 
that in the control group (p < 0.05, Fig. 2B, F). While 
MES-treated males exhibited fewer total germ cells 
(marked by DAZL IF), spermatocytes (marked by SYCP3 
IF), and Leydig cells (marked by 3β-HSD IF) compared 
to controls, similar alterations were also observed in 
the 5000 μg/kg/day BPAF group (p < 0.05, Fig. 2C–F). 
Remarkably, AGD, the seminiferous tubule area and the 
spermatocyte number per tubule in the 50 μg/kg/day BPAF 
group were also significantly decreased compared to the 
control group (p < 0.05, Fig. 2D, F).

In agreement with IF results, RT-qPCR analysis revealed 
that MES treatment led to lower expression of spermatocyte 
marker genes (Sycp3, γH2ax, Dmc1, and Pou5f2), Leydig 
cell marker genes (3β-Hsd and Cyp17a1) and hormone 
receptors (Ar and Fshr), along with higher expression of 

female-biased genes (Cyp19a1, Rspo1, Foxl2 and Esr2) 
compared to the control group (p < 0.05, Fig.  3A–C). 
Similarly, significant alterations in these endpoints were 
also observed in the 5000 μg/kg/day BPAF-treated animals. 
In addition, Cyp19a1 expression in the 50 μg/kg/day BPAF 
group was significantly lower than that in the control group 
(p < 0.05, Fig. 3C).

Taken together, these alterations in molecular, cellular, 
histological and morphological parameters demonstrate that 
gestational and lactational exposure to BPAF even at 50 μg/
kg/day, like MES, affected testis development. In addition, 
up-regulated expression of female-biased genes indicates 
that BPAF exposure caused ovary-like characteristics in 
mouse testes to some degree.

Effects of BPAF on testis development in male mice 
on PND 56

When exposure continued to adulthood, MES-treated mice 
displayed reduced AGD, testis weight, sperm number in 
cauda epididymis and serum levels of testosterone, FSH and 
LH as well as lower body weight and liver weight compared 
with controls (p < 0.05, Fig. 4A). Decreases in body weight, 
AGD, sperm number and hormone levels were also observed 
in BPAF-treated mice, despite the lack of significant 
differences in the sperm number, testosterone level (reduced 
by nearly 1/2; p = 0.06), and FSH (p = 0.06) between the 
50  μg/kg/day group and the control group (Fig.  4A). 
Correspondingly, we observed significant decreases in 
the percentage of stage VII-VIII seminiferous tubules, 
spermatocytes  (SYCP3+) per 200 × field, and expression 
of Sycp3 in the 5000 μg/kg/day BPAF group as well as 
the MES group compared to the control group (p < 0.05, 
Fig. 4B–E). Importantly, 50 μg/kg/day BPAF also caused 
significant decreases in spermatocyte number and Sycp3 
expression, along with a declining trend in the percentage 
of stage VII–VIII seminiferous tubules (Fig. 4B–E). All 
alterations in conventional reproductive endpoints and the 
spermatocyte number show that like MES, BPAF even at 
50 μg/kg/day affected testis development and caused adverse 
testicular outcomes in adulthood.

Link between adverse effects of BPAF on testis 
development and its estrogenic activity

In line with the results of exposure from GD 10.5, postnatal 
exposure to MES during PND 0–9 also led to lower body 
weight and AGD, and fewer spermatocytes and Leydig cells 
compared with the control group. Similarly, decreased AGD, 
spermatocyte number, and Leydig cell number were also 
observed in the 5000 μg/kg/day BPAF-treated mice on PND 
9 (Fig. 5A–D). While ICI 182,780 by itself had no effects 
on these endpoints, it antagonized BPAF- and MES-caused 

Fig. 2  Effects of prenatal and postnatal exposure to bisphenol AF 
(BPAF) on testis development in male mice on postnatal day 9 (n = 5 
litters, 3 male mice/litter). A The body weight, liver weight and ano-
genital distance of male mice. B The seminiferous tubule marked by 
immunostaining for LAMININ1. C Germ cells marked by immu-
nostaining for DAZL. D Spermatocytes marked by immunostaining 
for SYCP3. E Leydig cells marked by immunostaining for 3β-HSD. 
F the seminiferous tubule area, germ cell number per tubule, number 
of spermatocytes and Leydig cells in the 200 × field. For seminifer-
ous tubule area and germ cell number per tubule, at least 100 semi-
niferous tubule cross sections per testis and 5 litters per group were 
used for statistical analysis. For spermatocyte number and Leydig cell 
number, at least three 200 × field per testis and five litters per group 
were used for statistical analysis. Asterisk (*) indicates significant dif-
ference from control (p < 0.05). CON, control; BPAF-50, 50  μg/kg/
day BPAF; BPAF-5000, 5000 μg/kg/day BPAF; MES, 50 μg/kg/day 
mestranol as positive control

◂



3378 Archives of Toxicology (2022) 96:3373–3383

1 3

decreases in AGD (Fig. 5A–D). IF staining showed that ICI 
182,780 seemed not to significantly rescue BPAF- and MES-
caused reductions in the spermatocyte number and Leydig 
cell number, but an antagonistic trend was observable. 
Notably, RT-qPCR analysis revealed significant antagonistic 
effects of ICI 182,780 on expression of their marker genes 
(γH2ax and 3β-Hsd) (Fig. 5D). In the hypothalamus, both 
the GnRH content and its gene expression were lower in 
both BPAF and MES groups than those in the control group, 
but these effects were not abolished by co-exposure with 
ICI 182,780. By further expression analysis, we observed 
a high level of Gper expression in the hypothalamus and 
its up-regulation in MES treatment compared with the 
control group, while expression of Esr1 and Esr2 was non-
detectable (Fig. 5A). These observations show that BPAF, 
like MES, exerted its effects on testis development partially 
through the ER-mediated signaling pathway.

Discussion

Here, we for the first time reported that prenatal and 
postnatal exposure to BPAF disrupted testis development 
and caused adverse testicular outcomes in adulthood 
to a certain extent. Like MES, 5000  μg/kg/day BPAF 

significantly reduced AGD, sperm number, percentage 
of stage VII–VIII seminiferous tubules, the spermatocyte 
number, and serum levels of testosterone, FSH and LH 
in male mice on PND 56. Strikingly, 50 μg/kg/day BPAF 
also caused significant decreases in AGD, LH level 
and spermatocyte number, along with a declining trend 
in sperm number, the serum levels of testosterone, and 
FSH. In fact, evidence from both animal experiments and 
epidemiological observations has shown that reduced 
AGD is correlated with low testosterone level, sperm 
count, and genital size (Dean and Sharpe 2013), and 
AGD is believed to be a marker for the development of the 
male reproductive system in clinical diagnosis (Schwartz 
et  al. 2019). In terms of reduced AGD, LH level and 
spermatocyte number combined with the declining trend of 
the sperm number and serum testosterone level, therefore, 
the effects of 50 μg/kg/day BPAF on testis development 
are meaningful and should not be ignored. Especially, 
oral ingestion of 50 μg/kg/day BPAF was estimated to 
result in a maximum plasma concentration of 0.6  ng/
ml, which is comparable to the reported concentrations 
of BPAF in human serum (Waidyanatha et al. 2019; Li 
et al. 2020), meaning that the dose we used is human-
relevant. Previously, the effective doses leading to male 
reproductive damages were generally higher than 5 mg/kg/

Fig. 3  Effects of prenatal and postnatal exposure to bisphenol AF 
(BPAF) on relative expression of spermatocyte marker genes (A), 
Leydig cell marker genes and hormone receptors (B), and ovarian 
biased genes (C) on postnatal day 9 (n = 5 litters, 3 male mice/litter). 

Data are shown as mean ± standard deviation (n = 5). Asterisk (*) 
indicates significant difference from control (p < 0.05). CON, control; 
BPAF-50, 50 μg/kg/day BPAF; BPAF-5000, 5000 μg/kg/day BPAF; 
MES, 50 μg/kg/day mestranol as positive control
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day (Feng et al. 2012; Li et al. 2016; Umano et al. 2012; 
Yu et al. 2022). Our study, for the first time, uncovers 
the adverse effects of BPAF at as low as 50 μg/kg/day on 

testis development, highlighting its potential reproductive 
risks to mammals including humans. Certainly, whether 
the effects of low-dose BPAF would lead to reproductive 

Fig. 4  Alterations in testicular and relevant parameters in adult mice 
following prenatal and postnatal exposure to bisphenol AF (BPAF) 
(n = 5 litters, 3 male mice/litter). A Conventional reproductive end-
points including anogenital distance, testis weight, sperm number in 
cauda epididymis, and serum hormones. B Testicular histology. C 
Spermatocytes marked by immunostaining for SYCP3. D Seminifer-
ous epithelium cycle. E Spermatocyte number in the 200 × field and 
relative expression of spermatocyte marker gene (Sycp3). For semi-

niferous epithelium cycle, at least 100 seminiferous tubule cross-sec-
tions per testis and five litters male mice per group were used for sta-
tistical analysis. For spermatocyte number, at least three 200 × field 
per testis and five litters male mice per treatment group were used 
for statistical analysis. CON, control; BPAF-50, 50 μg/kg/day BPAF; 
BPAF-5000, 5000 μg/kg/day BPAF; MES, 50 μg/kg/day mestranol as 
positive control
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Fig. 5  Effects of the ER antagonist, ICI 182,780, on bisphenol AF 
(BPAF)-caused impairment of testis development (n = 3 litters, 3 
male mice/litter). A The body weight, anogenital distance and liver 
weight of male mice. B Spermatocytes marked by immunostaining 
for SYCP3, its number in the 200 × field, and expression of a sper-
matocyte marker gene (γH2ax). C Leydig cells marked by immu-
nostaining for 3β-HSD, its number in the 200 × field, and expression 
of a Leydig cell marker gene (3β-Hsd). D GnRH level and relative 

expression of Gnrh and Gper in hypothalamus. For spermatocyte 
number and Leydig cell number, at least three 200 × field per testis 
and three litters per group were used for statistical analysis. Data are 
shown as mean ± standard deviation. Asterisk (*) indicates significant 
difference from control (p < 0.05). CON, control; BPAF, 5000 μg/kg/
day BPAF; MES, 50 μg/kg/day mestranol as positive control
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dysfunction or increased susceptibility to other 
reproductive toxicants needs further studies.

Importantly, we found that in line with the adverse 
testicular outcomes observed in adulthood following 
pre- and postnatal exposure to BPAF, some alterations in 
testicular and associated parameters have already been 
detectable in developing testes on PND 9. These alterations 
included reduced seminiferous tubule area and decreased 
numbers of total germ cells, spermatocytes and Leydig cells, 
coupled with down-regulated expression of male-biased 
genes. Particularly, a noteworthy alteration is reduced AGD 
by 50 μg/kg/day BPAF, indicating the high responsiveness of 
this parameter to BPAF. In the literature, similar alterations 
in male reproductive parameters have been detected in 
developing animals treated with estrogenic chemicals 
(Ikeda et  al. 2008). Typically, gestational exposure to 
diethylstilbestrol (DES) was showed to reduce intratesticular 
testosterone level and seminiferous tubule diameter in fetal 
or infancy rodents, along with down-regulated expression 
of steroidogenesis-associated genes (Guyot et  al. 2004; 
Ikeda et al. 2008; Sharpe et al. 1998). In the present study, 
we found that even if exposure began from PND 0, both 
BPAF and MES still reduced AGD and the populations of 
spermatocytes and Leydig cells in mouse testes on PND 
9. Therefore, we conclude that the effects of estrogenic 
chemicals on testis development have been detectable as 
early as the first 2 weeks after birth, meaning a possibility 
of early detection of potential adverse effects of estrogenic 
chemicals on testis development, instead of the conventional 
detection in adulthood. This conclusion is of significance for 
developing effective methods for early detection of adverse 
effects of chemicals on testis development.

In the present study, we found that BPAF-caused 
alterations in testicular and associated parameters are 
in line with MES-caused changes on both PND 9 and 
PND 56, suggesting that BPAF may disrupt testicular 
development by estrogen-like mechanisms, genomic and/or 
nongenomic estrogenic pathways. Further findings that the 
ER-specific antagonist ICI 182,780 antagonized 5000 μg/
kg/day BPAF-caused decreases in AGD, the numbers of 
spermatocytes and Leydig cells and expression of some 
marker genes to different degree support the involvement 
of the ER-mediated pathway in BPAF-caused alterations 
in testicular development (Fig.  6). However, given the 
observations that ICI 182,780 did not significantly 
antagonize all the BPAF-caused alterations, we assume 
that BPAF could exert its effects possibly through certain 
non-ER-mediated mechanism(s), in addition to the 
ER-mediated signaling pathway. As anticipated, we found 
that postnatal exposure to BPAF as well as MES reduced 
the GnRH content and its expression in the hypothalamus 
on PND 9, agreeing with the reductions in serum LH and 
testosterone levels in adult mice following exposure from 

GD 10.5. These observations indicate that BPAF as well 
as MES could disrupt testis development by reducing the 
production of GnRH (Fig. 6). This result is in consistence 
with previous reports that estrogens can negatively regulate 
the hypothalamus and thereby lead to testicular dysplasia 
or dysfunction in rodents and fish (D'Souza et al. 2005; Qin 
et al. 2014). In the literature, several studies reported that 
BPA and its analogues disrupted the HPG axis, but their 
results have remained inconsistent and even contradictory 
(Shamhari et al. 2021). Our study provides a support that 
bisphenols may negatively regulate the HPG axis and 
elicit adverse effects on the male reproductive system. 
Importantly, we found that ICI 182,780 had no effects on 
BPAF- and MES-caused decreases in the GnRH content 
and its gene expression in the hypothalamus. Considering 
our findings of high Gper expression and non-detectable 
Esr1 and Esr2 expression in the hypothalamus, together 
with relevant reports (Chimento et al. 2014; Shamhari et al. 
2021), we propose that BPAF and MES could act on the 
hypothalamus possibly via a non-ER mediated pathway. In 
fact, there are several studies supporting the involvement of 
GPER in estrogen regulation on the hypothalamus in males 
despite this question being under investigation (Chimento 
et al. 2014). Collectedly, these observations indicate that 

Fig. 6  The proposed mechanism by which bisphenol AF (BPAF) 
disrupts testis development and function. The figure was created in 
BioRender.com
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the adverse effects of BPAF on mammal testis development 
could be partly mediated by the ER signaling pathway, 
coupled with the involvement of the hypothalamus possibly 
via GPER.

In conclusion, all the findings demonstrate that BPAF 
even at 50  μg/kg/day can partly disrupt mouse testis 
development and cause adverse testicular outcomes in 
adulthood, indicating a potential reproductive risk to 
mammals including humans. Our study also has provided 
evidence that adverse effects of BPAF mechanistically may 
be mediated via the ER (Fig. 6). Importantly, our finding 
that developmental alterations elicited by BPAF have been 
detectable on PND 9 provides important motivation for 
the development of effective methods for early detection 
of adverse effects of estrogenic chemicals on testis 
development.
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