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Abstract
The reliability of any quantitative structure–activity relationship (QSAR) model depends on multiple aspects such as the 
accuracy of the input dataset, selection of significant descriptors, the appropriate splitting process of the dataset, statistical 
tools used, and most notably on the measures of validation. Validation, the most crucial step in QSAR model development, 
confirms the reliability of the developed QSAR models and the acceptability of each step in the model development. The 
present review deals with various validation tools that involve multiple techniques that improve the model quality and robust-
ness. The double cross-validation tool helps in building improved quality models using different combinations of the same 
training set in an inner cross-validation loop. This exhaustive method is also integrated for small datasets (< 40 compounds) 
in another tool, namely the small dataset modeler tool. The main aim of QSAR researchers is to improve prediction quality by 
lowering the prediction errors for the query compounds. ‘Intelligent’ selection of multiple models and consensus predictions 
integrated in the intelligent consensus predictor tool were found to be more externally predictive than individual models. 
Furthermore, another tool called Prediction Reliability Indicator was explained to understand the quality of predictions for 
a true external set. This tool uses a composite scoring technique to identify query compounds as ‘good’ or ‘moderate’ or 
‘bad’ predictions. We have also discussed a quantitative read-across tool which predicts a chemical response based on the 
similarity with structural analogues. The discussed tools are freely available from https:// dtclab. webs. com/ softw are- tools 
or http:// teqip. jdvu. ac. in/ QSAR_ Tools/ DTCLab/ and https:// sites. google. com/ jadav purun ivers ity. in/ dtc- lab- softw are/ home 
(for read-across).

Keywords QSAR · Validation · Double cross-validation · Small dataset modeling · Intelligent consensus prediction · Read 
across

Introduction

A growing number of research have been conducted in 
recent years, wherein computational methods have been 
used to predict the physicochemical properties and biologi-
cal activities of chemical compounds. Quantitative struc-
ture−activity relationship (QSAR) (Dearden 2016) modeling 

is a popular in silico technique performed to find out a quan-
titative correlation between the structural features (known as 
descriptors) and a known response (activity/property/toxic-
ity) for a set of molecules using various chemometric meth-
odologies. QSAR evolves at the crossroads of chemistry, 
statistics, biology, and toxicological studies. The main aim 
is to identify and optimize new leads to shorten the time and 
reduce expenditure for drug discovery (Hsu et al. 2017). The 
fundamental assumption regarding QSAR modeling is that 
a chemical structure possesses unique features (geometric, 
steric, and electronic properties) responsible for its physical, 
chemical, and biological properties.

The European Union (EU) envisaged that QSAR models 
would increasingly be used for hazard and risk assessments 
of chemicals (Commission of the European Communities 
2001). It is also necessary to create and apply QSARs to 
address animal welfare concerns by replacing, reducing, 
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and refining animal testing in toxicological assessments. In 
November 2004, the European Commission and the OECD 
(Organisation for Economic Co-operation and Develop-
ment) member countries adopted principles for valida-
tion of QSAR models for use in regulatory assessment of 
chemical safety (Organisation for Economic Co-operation 
and Development (OECD 2004). According to the agreed 
guidelines of OECD, a QSAR model should be developed 
with

(a) A defined endpoint,
(b) An unambiguous algorithm to guarantee model 
transparency,
(c) A defined domain of applicability,
(d) Proper measures of validation including internal 
performance (as determined by goodness-of-fit and 
robustness) and predictivity (as represented by exter-
nal validation), and
(e) Possible mechanistic interpretation.

Validation is crucial for the development and applica-
tion of any QSAR model. It confirms the reliability of 
the developed model and the acceptability of each step 
through model development. The debate between internal 
versus external validation prevails predominantly among 
QSAR practitioners (Roy 2007). Some QSAR studies 
reported an inconsistency between internal and exter-
nal predictivity (Novellino et al. 1995; Norinder 1996). 
According to researchers, there might be an inconsistency 
between internal and external predictability, i.e., high 
internal predictivity may result in low external predictivity 
and vice versa (Kubinyi 1998). However, external valida-
tion is considered the ‘gold standard’ of checking predic-
tive potential of QSAR models. Some researchers consider 
cross-validation to be more appropriate for checking the 
predictive ability of QSAR models to circumvent the loss 
of information from splitting the dataset into training and 
test sets (Héberger 2017). Several validation metrics (as 
discussed later) are used to check the quality of predictions 
generated by regression-based and classification-based 
QSAR models (Gramatica and Sangion 2016; Todeschini 
et al. 2016).

The present review has discussed several prediction reli-
ability tools exploring various strategies to determine model 
reliability and predictivity. We have discussed the tools that 
engage in the model-building through a double cross-vali-
dation approach on large and small datasets. Furthermore, 
we have explained the utility of intelligent selection of mul-
tiple models and various forms of consensus prediction. 
We have also mentioned a tool that explains a similarity-
based reliability scoring approach to understand the quality 
of predictions for a new query compound and ensure the 
developed models’ reliability. We have further reported a 

similarity-based quantitative read-across tool addressing the 
quality of predictions both quantitatively and qualitatively.

Predictive QSAR model development 
approaches

Modern QSAR methods use multiple descriptors combined 
with the application of both linear and non-linear mode-
ling approaches with a strong emphasis on rigorous model 
validation to afford robust and predictive QSAR models. 
Several types of research along with our understanding of 
QSAR model development and validation led us to establish 
a general outline of QSAR model workflow as described 
in Fig. 1. This figure illustrates the classical QSAR model 
development algorithm which includes: (a) collection of per-
tinent data with a defined endpoint, (b) descriptor calcula-
tion and data pre-treatment, (c) model development through 
analysis of the correlation between input data and descrip-
tors calculated, (d) validation of the model, and (e) design 
and prediction of the activity of new query molecules. The 
QSAR modeling scheme is further described briefly in the 
following section.

 (i) Dataset preparation and data curation: One of the 
most challenging parts of QSAR is dataset collec-
tion with a “defined endpoint” as explained in OECD 
principle 1. The intent is to confirm the transparency 
of the endpoint aimed for prediction models, con-
sidering that a given endpoint could be dependent 
on the experimental protocol and the experimental 
conditions. Data curation is an essential and time-
consuming step in the QSAR model development 
process. Erroneous data (both in chemical structures 
and biological data) retrieved from online sources 
require strict curation to avoid false or non-predictive 
models (Ambure and Cordeiro 2020).

 (ii) Calculation of molecular descriptors: The molecu-
lar structures applied for QSAR modeling need to 
be translated into numbers, i.e., molecular descrip-
tors. The molecular descriptor is an encoded repre-
sentation of the information about a chemical com-
pound in the form of numerical values based on its 
chemical constitution, allowing the correlation of 
chemical structure with physical properties, chemi-
cal reactions, or biological activity (Consonni and 
Todeschini 2010). In a QSAR model, descriptors of 
a molecule, which describe specific aspects of a mol-
ecule, are predictors (X) of the dependent variable 
(Y). A QSAR study uses a variety of descriptors that 
can be classified into different dimensions or catego-
ries, as shown in Table 1.
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(iii) Dataset division: A predictive model's performance 
must be determined by dividing the dataset into a train-
ing set and a test set. Among all chemicals, only the 
training set molecules are used for developing QSAR 
models, and the external predictivity of the models is 
examined through the use of test set compounds. In 
developing the QSAR model, it is necessary to select a 
training set in a way, such that it encompasses a wide 
chemical domain. The test set compounds must lie 
within the chemical space of the training set. Data-
set division involves different methods including (a) 
Euclidean distance (diversity-based) (Golmohammadi 
et al. 2012), (b) Kennard-Stone (Kennard and Stone 
1969), (c) k-means clustering (Likas et al. 2003), (d) 
sorted response (Roy 2018), etc.

(iv) Feature selection: A feature selection process is a vital 
step that involves identifying important predictor vari-
ables to develop correlations with the response vari-
able. Feature selection helps decrease the model com-
plexity, decreases the risk of overfitting or overtraining, 
and helps select the most critical descriptors among a 
pool of hundreds or thousands. In this way, the dimen-
sionality of input descriptors is minimized without the 
loss of essential information (Goodarzi et al. 2012). 
Finally, these selected descriptors are used to build a 
mathematical model linking to the biological activity 

of the corresponding compounds. According to the 
OECD guidelines, several feature selection techniques 
have been applied using a mechanistic basis includ-
ing, genetic algorithms, genetic function approxima-
tion (GFA), forward selection, backward elimination, 
stepwise regression, simulated annealing, etc.

(v) Model development algorithms: The OECD guideline 
2 explains that a QSAR model should be developed 
using an “unambiguous algorithm” (Directorate 2007). 
The rule focuses on bringing transparency in model-
building, rendering it reproducible to others and mak-
ing it possible to achieve the endpoint estimates. This 
embraces the methods implemented during data pre-
treatment, division of data, feature selection, and model 
development. Linear modeling techniques involve mul-
tiple linear regression (MLR) (Pope and Webster 1972; 
De and Roy 2018), ordinary least squares (OLS), par-
tial least squares (PLS) (Wold et al. 2001), principal 
component analysis (PCA) (Abdi and Williams 2010), 
principal component regression (PCR), etc.

In QSAR, model-building tools can be grouped into two 
major categories: regression-based approach and classifica-
tion-based approach. Regression-based approaches are effec-
tive when both dependent (response variable) and independ-
ent (molecular descriptors) variables are quantitative (Roy 
et al. 2015a; b). In the case of classification-based modeling, 
a relationship between the descriptors and the graded values 

Fig. 1  Schematic representation of QSAR methodology according to OECD guidelines
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of the response variable(s) is established. Here, the response 
is offered in a Boolean form like active/inactive and positive/
negative or categorical (as observed in linear discriminant 
analysis, logistic regression, and cluster analysis).

 (vi) Determination of domain of applicability: One of 
the most essential checkpoints in QSAR modeling 
is determining the applicability domain (AD) of a 
model as explained in OECD principle 3. The appli-
cability domain denotes a physicochemical space 
(both the response and chemical structure space) 
within which a QSAR model can predict with a cer-
tain degree of reliability (Roy et al. 2015a, b). This 
space is defined by the features explained by the 

compounds in the training set and is mandatory to 
examine whether the prediction of test set molecules 
is reliable or not. The concept of AD was used to 
avoid an unjustified extrapolation of property predic-
tions.

 (vii) QSAR model validation: Before interpreting and 
predicting biological responses of untested com-
pounds, any QSAR model needs to be validated. 
Here, the model's predictive power is established, and 
the ability to reproduce the biological activities of 
the untested compounds is measured. In consonance 
with the fourth principle of OECD guidelines, statis-
tical validation of models in terms of goodness-of-fit, 
robustness, and predictivity is an extremely impor-

Table 1  Types of 0D-3D descriptors used in the QSAR study

0D, 1D, and 2D descriptors may be collectively grouped under the broad class of 2D descriptors in general

Dimension 
of descrip-
tors

Parameters Examples

0D Constitutional indices Number of atoms, number of non-H atoms, number of bonds, number of aromatic bonds, sum of 
atomic van der Waals volumes (scaled on carbon atom), etc.

Molecular property
Atom and bond counts

Unsaturation count, unsaturation index, hydrophilic factor, unsaturation index

1D Fragment counts, fingerprints Atom centered fragments (C-001, H-046, O-056, etc.)
2D Topological Wiener index (W), Zagreb group indices, Balaban J index, Randic branching index (χ), Molecular 

connectivity index, subgraph count, Chi indices, etc.
Structural Chiral centers, rotatable bonds, HBond donor, HBond acceptor
Physicochemical parameters 

(thermodynamic param-
eters)

Heat of formation (Hf), Log of the partition coefficient using Ghose and Crippen’s method 
(AlogP), Desolvation free energy (Fh2o, Foct)

Connectivity indices Average connectivity index, valence connectivity index, solvation connectivity index, modified 
Randic index, connectivity topochemical index, perturbation connectivity index

Functional group counts Number of terminal primary C(sp3), number of total secondary C(sp3), number of ring quaternary 
C(sp3), number of carboxylic acids, number of hydroxyl groups, etc.

2D matrix based Balaban-like index from adjacency matrix, logarithmic spectral positive sum from adjacency 
matrix, spectral absolute deviation from adjacency matrix, etc.

2D atom pairs Presence or absence of any two atoms at a particular topological distance (B01[C–C], B09[C-F], 
etc.), frequency of two atoms at a particular topological distance (F01[C-F], F05[O-N]), sum of 
occurrence of two atoms at a particular topological distance (T(N..I), T(O..N))

3D Electronic Dipole moment, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital 
(LUMO), superdelocalizibility

Spatial The radius of gyration, Jurs descriptors, area, density, volume, etc.
Receptor surface
analysis parameters

Hydrophobicity, partial charge, electrostatic (ELE) potential, van der Waals (VDW) potential, and 
hydrogen bonding propensity

Molecular shape analysis Difference volume (DIFFV), Common overlap steric volume (COSV), Common overlap volume 
ratio (Fo), Noncommon overlap steric volume (NCOSV), Root mean square to shape reference 
(ShapeRMS)

Geometric Molecular eccentricity, spherosity, asphericity, aromaticity index, gravitational index
Other 3D descriptors 3D matrix based (Wiener like index, Randic like index, Balaban-like index, etc. all from geomet-

ric matrix, spectral moment,), 3D autocorrelations (3D Topological distance-based descriptors: 
unweighted; weighted by mass, polarizability, van der Waals volume, Sanderson electronegativ-
ity, ionization potential), 3D Morse descriptors, WHIM descriptors, GETAWAY descriptors, 
quantum-chemical descriptors
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tant step during QSAR model development. The vali-
dation of QSAR models is crucial if these models are 
used for virtual screening. Each validation parameter 
aims to judge the accuracy of prediction, i.e., deter-
mining whether the experimental value is close to the 
model-derived value. The model fitness determined 
using the coefficient of determination or correlation 
coefficient from the training set measures the degree 
of achieved correlation between the experimental 
 (Yexp) and calculated  (Ycalc) response values. Data 
fitting does not confirm the predictability of a model 
but instead demonstrates the model’s statistical qual-
ity. Different internal and external validation metrics 
for both regression and classification modeling are 
utilized to check model prediction quality which is 
discussed later in the following section.

 (viii) Mechanistic interpretation: The fifth OECD prin-
ciple focuses on identifying the features of the vari-
ables that may contribute to a more thorough under-
standing of the response being modeled. Chemicals 
that act specifically using a specific mechanism 
can only be designed and developed with absolute 
certainty using the structural analogues. However, 
it is evident that furnishing mechanistic informa-
tion may not always be feasible. The rule suggests 
that the modeler should report if any such informa-
tion is available, facilitating future research on that 
endpoint. A mechanistic interpretation from the lit-
erature can be added, and therefore, the fifth OECD 
principle encourages the reporting of such informa-
tion to enrich the physicochemical understanding of 
response being modeled.

Regression and classification validation 
metrics

The reliability of a developed QSAR model is confirmed 
through the validation process. The quality of input data, 
dataset diversity, predictability on an external set, applica-
bility domain determination, and mechanistic interpretabil-
ity are also confirmed through various validation metrics. 
QSAR model validation can be classified into two major 
types: (a) internal validation and (b) external validation. 
Internal validation in QSAR modeling involves activity pre-
diction of the molecules/compounds used for generating the 
model. This is followed by estimating metrics for detecting 
the precision of predictions. Internal validation is useful in 
the case of cross-validation approaches (Konovalov et al. 
2008) where the internal data are partitioned into calibration 
(training) and validation (test) subsets. The calibration set 
is used for model-building purposes, and the validation set 
is utilized for model predictivity assessment. Assessment of 

prediction capability and applicability of a QSAR model to 
predict newly designed or untested molecules is done using 
external validation metrics. In most cases, some compounds 
from the original datasets are used for validation purpose 
when true external data points are limited or not available.

Regression‑based validation metrics

One of the main quality metrics to check the goodness-of-fit 
of a regression model is the determination coefficient 

(
R2

)
 

which measures the variation of observed data with the fitted 
ones. The maximum possible value for R2 is 1, which defines 
a perfect correlation.

Adjusted R2 ( R2
adj

 ) is a modified version of the determina-
tion coefficient and is also known as the explained variance. 
The R2

adj
 parameter incorporates the information of the number 

of samples and the independent variables used in the model.
Considering the internal validation for a regression-based 

QSAR model, the leave-one-out cross-validation ( Q2
LOO

 ) met-
ric is calculated. Here, a model is developed by modifying the 
original training set of n compounds by removing one com-
pound. The activity of the omitted compound is then predicted 
using the model developed with n-1 compounds. This cycle 
is repeated until all the training set compounds have been 
eliminated once and the predicted activity data are obtained 
for all the training set compounds. The model predictivity is 
thus measured using the predicted residual sum of squares 
( PRESS ) and cross-validated R2 ( Q2 ) (Table 2). The PRESS 
value is defined as the sum of squared differences between the 
experimental and leave-one-out predicted data. The standard 
deviation of error of predictions ( SDEP ) is calculated from 
the PRESS value (Table 2). A model is considered satisfactory 
if the value of Q2 is higher than the predetermined value of 
0.6. However, numerous evidences suggested that leave-one-
out prediction should neither be considered as the ultimate 
standard for judging the predictive power of models nor for 
model selection (Konovalov et al. 2007; Veerasamy et al. 
2011). There is a chance of overfitting and overestimation in 
LOO due to structural redundancy (Höltje and Sippl 2001). 
Leave-many-out (LMO) or leave-some-out (LSO) might be a 
better alternative where a part of the training data is held out 
((1 ≤ m < n, where n is a sample size) and the remaining data 
are modeled. The model is developed using the remaining 
compounds in each cycle, and the hold-out compounds are 
predicted. This cycle continues till all the compounds are pre-
dicted, and the predicted values are used for the calculation of 
Q2

LMO
 . Therefore, the LMO technique partly reflects external 

validation in the context of internal validation. 
Although, Q2

LOO
 provides a measure of model robustness, 

it may not be sufficient to characterize the performance of the 
model during prediction of new query/test compounds. Fur-
thermore, Q2

LOO
 can provide an overestimation of model 
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Table 2  Validation metrics for regression modeling

Parameters Equation Description

Determination coefficient 
(
R2

)
R2 = 1 −

∑
(Yobs−Ypred)

2

∑�
Yobs−Ytraining

�2

Metric to check the goodness-of-fit of a regression 
model. It measures the variation of observed data 
with the predicted ones. The maximum possible 
value for R2 is 1, which defines a perfect correla-
tion. Yobs denotes the observed response values for 
the training set, and Ypred denotes the calculated 
response values for the training set of compounds. 
Ytraining is the mean observed response of the train-
ing set compounds

Explained variance or adjusted R2 ( R2

adj
) R2

adj
=

{(n−1)XR2}−p
n−p−1

Modified version of the determination coefficient. 
The R2

adj
 parameter incorporates the information of 

the number of samples and the independent vari-
ables used in the model. n is the number of training 
set compounds and p is the number of predictor 
variables

Leave-one-out cross-validation ( Q2

LOO
)

Q2

LOO
= 1 −

∑
(Yobs(training)−Ypred(training))

2

∑�
Yobs(training)−Ytraining

�2

Cross‐validated R2(Q2 ) is checked for internal 
validation. Yobs(training) is the observed response, and 
Ypred(training) is the predicted response of the training 
set molecules based on the leave‐one‐out (LOO) 
technique

Predictive R2 or R2

pred
 or Q2

ext(F1) Q2

ext(F1)
= 1 −

∑
(Yobs(test)−Ypred(test))

2

∑
(Yobs(test)−Ytraining)

2

This metric employed for judging external predic-
tivity. It is a measure of correlation between the 
observed and predicted data of test set. Yobs(test) is 
the observed response, and Ypred(test) is the predicted 
response of the test set molecules. Ytraining denotes 
the mean observed response of the training set

Q2

ext(F2) Q2

ext(F2)
= 1 −

∑
(Yobs(test)−Ypred(test))

2

∑
(Yobs(test)−Ytest )

2

It helps in the judgment of predictivity of a model 
using the test set mean 

(
Ytest

)
.

Q2

ext(F3) Q2

ext(F3)
= 1 −

�∑
(Yobs(test)−Ypred(test))

2
�
∕ntest

�
∑�

Yobs(train)−Ytraining

�2
�

∕ntrain

Q2

ext(F3)
 is measured to determine external predictiv-

ity employing both training and test set features. 
Yobs(test) is the observed response, and Ypred(test) is 
the predicted response of the test set molecules. 
Yobs(training) is the observed response and Ytraining 
denotes the mean observed response of the training 
set molecules. The threshold for Q2

ext(F3)
 is 0.5

Concordance correlation coefficient (CCC) CCC = pc =
2
∑n

i=1
(xi−x)(yi−y)

∑n

i=1
(xi−x)

2
+
∑n

i=1
(yi−y)

2
+n(x−y)

The concordance correlation coefficient (CCC) 
measures both precision and accuracy detecting the 
distance of the observations from the fitting line 
and the degree of deviation of the regression line 
from that passing through the origin, respectively. 
‘n’ denotes the number of compounds, and xi and yi 
signify the mean of observed and predicted values, 
respectively

Root mean square error in predictions ( RMSEp)
RMSEp =

�
∑

(Yobs(test)−Ypred(test))
2

ntest

It gives a measure of model external validation. A 
lower value of this parameter is desirable for good 
external predictivity

r2
m
 metrics

r2
m
=

r
2

m
+r�

2

m

2
and Δr2

m
=
|||
r
2

m
− r

�2

m

|||

where r2
m
= r

2 × (1 −

√
r2 − r

2

0
))

r
�2

m
= r

2 ×

(

1 −

√
r2 − r�

2

0

)

r2 is the squared correlation coefficient value between 
observed and predicted response values, and r0

2 
and r′02 are the respective squared correlation coef-
ficients when the regression line is passed through 
the origin by interchanging the axes. For the 
acceptable prediction, the value of all Δr2

m
 metrics 

should preferably be lower than 0.2 provided that 
the value of

r2
m

 is more than 0.5 (Ojha et al. 2011)
Predicted residual sum of squares ( PRESS) PRESS =

∑�
Yobs − Ypred

�2 Sum of squared differences between experimental 
and predicted data. Yobs and Ypred correspond to the 
observed and LOO predicted values
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quality as a result of structural redundancy in the training set 
data. Thus, the performance of a model on an external dataset 
is considered mandatory for the judgment of predictivity. The 
metric employed for judging external predictivity is termed 
as predictive R2 or R2

pred
 or Q2

ext(F1)
 . The Q2

ext(F1)
 metric is char-

acterized by a minimum threshold value of 0.6, i.e., models 
showing a value more than 0.6 are considered to be externally 
predictive with the ideal value being 1.0. Schüürmann and 
co-workers (Schüürmann et al. 2008) defined another external 
validation metric Q2

ext(F2)
 for the judgment of the predictivity 

of a model using the test set. Consonni et al. (2009) introduced 
another external validation metric Q2

ext(F3)
 . This metric meas-

ures the model predictability and is sensitive to the selection 
of training dataset and tends to penalize models fitted to a very 
homogeneous data set even if predictions are close to the 
truth, with a threshold value being 0.6.

Another metric that checks the model reliability is the 
concordance correlation coefficient (CCC) metric (Chirico 
and Gramatica 2011). It measures both precision and accu-
racy, detecting the distance of the observations from the fit-
ting line and the degree of deviation of the regression line 
from that passing through the origin, respectively. Any devi-
ation of the regression line from the concordance line (line 
passing through the origin) gives a value of CCC smaller 
than 1. The desirable threshold value for CCC is 0.85.

The root-mean-square error in predictions 
(
RMSEp

)
 gives 

a measure of model external validation. This metric is com-
paratively simpler and directly depicts the prediction errors 
for the test set observations concerning the total number of 
test set samples. A lower value of this metric is desirable for 
good external predictivity.

The r2
m

 metrics: the training set mean value and the 
distance of the mean from the response values of each 
compound play a decisive role in computing the Q2 val-
ues. The Q2 value increases with the rise in the value 
of the denominator in the expression of Q2. Thus, even 
for a considerable deviation between the predicted and 
observed response values, satisfactory Q2 values may be 
obtained, if the molecules exhibit a considerably broad 
range of response data. Using the concept of regression 
through origin approach, Roy et al. (2012) introduced a 
new metric r2

m
 or modified r2 that penalizes the r2 value of 

a model when there is large deviation between r2 (squared 
correlation coefficient values between the observed (Y 
axis) and predicted (X axis) values of the compounds with 
intercept) and  r0

2 (squared correlation coefficient values 
between the observed (Y axis) and predicted (X axis) val-
ues of the compounds without intercept) values (Table 1).

MAE-based criteria: in a study, Roy et al. (2016) have 
shown that the conventional correlation-based external 
validation metrics ( Q2

ext(F1)
,Q2

ext(F2)
 ) often provide biased 

judgment of model predictivity, since such metrics are 
influenced by factors such as response range and distribu-
tion of data. Here, the authors have defined a set of criteria 
using simple ‘mean absolute error’ (MAE) and the cor-
responding standard deviation (σ) measure of the predicted 
residuals to judge the external predictivity of the models. 
Note that MAE =

1

n
×
∑��

�
Yobs − Ypred

��
�
, where Yobs and Ypred 

are the respective observed and predicted response values 
of the test set comprising n number of compounds. The 
response range of training set compounds has been 
employed here to define the threshold values. Furthermore, 
the authors have proposed the application of the ‘MAE 
based criteria’ on 95% of the test set data by removing 5% 
data with high predicted residual values precluding the 
possibility of biased prediction quality due to any outlier 
prediction. The following criteria for MAE prediction are 
followed:
i. Good predictions: in easier terms, an error of 10% of the 

training set range should be acceptable, while an error 
more than 20% of the training set range should be a very 
high error. Thus, the criterion for good predictions is as 
follows:

Here, σ value indicates the standard deviation of absolute 
errors for the test data. For a normal distribution pattern, 
mean ± 3σ covers 99.7% of the data points.

 ii. Bad predictions: a value of MAE more than 15% of the 
training set range is considered high, while an error 
higher than 25% of the training set range is judged as 
very high. Thus, prediction is considered bad when

MAE ≤ 0.1 × training set range and (MAE + 3�)

≤ 0.2 × training set range.

Table 2  (continued)

Parameters Equation Description

Standard deviation of error of prediction ( SDEP)
SDEP =

√
PRESS

n

The value of standard deviation of error of prediction 
( SDEP ) is calculated from PRESS . n refers to the 
number of observations

Mean absolute error ( MAE) MAE =
1

n
×
∑��

�
Yobs − Ypred

��
�

This is also known as average absolute error (AAE) 
and is considered a better index of errors in the 
context of predictive modeling studies
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Predictions which do not fall under either of the above 
two conditions may be considered as of moderate quality. 
This criterion is applied for judging the quality of test set 
prediction when there are at least 10 data points signifying 
statistical reliability and there is no systemic error in model 
predictions.

Randomisation of response (Y-scrambling)–Randomisa-
tion is an assessment to ensure the developed QSAR model 
is not due to chance, thereby giving an idea of model robust-
ness (Rücker et al. 2007). In this technique, validation met-
rics are checked by repetitive permutation of the response 
data (Y) of n compounds in the training set with respect to 
the X (descriptor) matrix which is kept unchanged. The cal-
culations are repeated with randomized activities, followed 
by a probabilistic examination of the results. Every run will 
yield approximations of R2 and Q2 , which are recorded. For 
an acceptable QSAR model, the average correlation coeffi-
cient ( Rr ) of randomized models should be less than the 
correlation coefficient ( R ) of a non-random model. The dif-
ference between mean-squared correlation coefficients of the 
randomized ( R2

r
 ) and that of the non-random ( R2 ) models 

MAE > 0.15 × training set range or (MAE + 3𝜎) > 0.25 × training set range.

c a n  b e  o b t a i n e d  t h r o u g h  R2
p
 c a l c u l a t i o n 

( R2
p
= R2 ×

√
R2 − R2

r
 ). A robust QSAR model should have 

R2
p
 value less than 0.5. At the ideal condition, the average 

value of R2 for the randomized models should be zero, i.e., 
R2
r
 should be zero. Consequently, in such a case, the value of 

R2
p
 should be equal to the value of R2 for the developed 

QSAR model. Thus, as proposed by Todeschini, the cor-
rected formula of R2

p
(c

R

2
p
) is c

R

2
p
= R ×

√
R2 − R2

r
 (Todes-

chini 2010).

Classification‑based QSAR validation metrics

In a binary classification model, several validation metrics 
are utilized to evaluate the model's performance in terms of 
accurate qualitative prediction of the dependent variable. 
Classification models are generally assessed using a statisti-
cal method that is based on the Bayesian approach (Ghosh 
et al. 2020). A binary classification model is typically a 
two-class model, i.e., positive and negative, or active and 
inactive. The results obtained can be arranged in a contin-
gency table (also known as confusion matrix) (Table 3). The 

Table 3  Contingency table 
or confusion matrix for 
classification modeling

Experimental Total

Active Inactive

Active True positive (TP) False positive (FP) TP+FP
Predicted Inactive False negative (FN) True negative (TN) FN+TN
Total TP+FN FP+TN N = 

TP+FP+FN+TN

Table 4  Validation metrics for 
classification modeling

P
r
(a) : relative observed agreement between the predicted classification of the model and the known clas-

sification; P
r
(e) : hypothetical probability of chance agreement

Sl No. Classification metric Equation

1 Sensitivity Sensitivity =
TP

TP+FN

2 Specificity Specif icity =
TN

TN+FP

3 Precision Precision =
TP

TP+FP

4 Accuracy Accuracy =
TP+TN

TP+FN+TN+FP

5 F-measure F − measure(%) =
2

1

Precision
+

1

Sensitivity

6 G-means G − means =
√
Specif icityXSensitivity

7 Cohen’s Kappa (κ) Pr(a) =
(TP+TN)

(TP+FP+TN+FN)

P
r
(e) =

{(TP+FP)×(TP+FN)}+{(TN+FP)×(TN+FN)}

(TP+FN+FP+TN)2

Cohen
�

sK =
Pr (a)−Pr (e)

1−Pr (e)

8 Mathews correlation coefficient 
(MCC)

MCC =
(TP×TN)−(FP×FN)

√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
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statistical metrics explaining the quality of a classification 
model are given below and in Table 4. 

In classification QSAR modeling, the compounds are 
classified into four main categories: a) true positives (TP), b) 
true negative (TN), c) false positive (FP), and d) false nega-
tive (FN) (Table 3). Researchers have used a variety of sta-
tistical tests to assess the classifier model performance and 
classification capability. Sensitivity (Sn) is the percentage of 
active compounds correctly predicted and is expressed as the 
ratio of true-positive results to the total number of positive 
data. Specificity (Sp) is the ratio of true-negative results to 
the total number of negative data. Accuracy (Acc) implies 
the fraction of correctly predicted compounds. The precision 
indicates the accuracy of a predicted class (ratio between the 
true positives and total positives) and F-measure refers to 
the harmonic mean of Recall (or Sensitivity) and Precision. 
Higher values for recall and precision give higher values for 
F-measure, thereby implying better classification.

G-means is a combination term that includes Sn and Sp 
into a single parameter merged via the geometric mean. This 
allows an easy assessment of the model’s ability to distin-
guish between active or inactive samples.

Cohen’s kappa (κ) can be utilized to determine the con-
cordance between classification (predicted) models and 
known classifications (Cohen 1960). It is a measure of the 
degree of agreement. It returns value from − 1 (total disa-
greement) to 0 (random classification) to 1 (total agreement).

Mathews correlation coefficient (MCC) measures the 
quality of binary classifications and compares different 
classifiers. In any case, where the number of positive and 
negative compounds is not equal, the terms sensitivity, 
specificity, and accuracy are not reliable. MCC uses all four 
values (TP, TN, FP, and FN) and is directly calculated from 
the confusion matrix to provide a more-balanced prediction 
evaluation. Like Cohen’s kappa, the value for MCC also 
ranges from − 1 to 1.

Prediction reliability detection tools

As discussed earlier, the process of QSAR modeling con-
sists of three important steps: model development, model 
selection, and model interpretation. The model develop-
ment process involves various feature selection practices 
including stepwise-multiple linear regression (S-MLR), 
genetic algorithm, genetic function approximation, etc. 
Model selection is based on the identification of the fin-
est model (based on validation metric values) from a set 
of alternative models. When it comes to the reliability of 
QSAR/QSPR models, validation is essential. After a model 
has been selected, several internal and external validation 
metrics are assessed which help in demonstrating the actual 

predictive performance of the chosen model. Several groups 
of researchers in QSAR suggested external validation to be 
the gold standard in demonstrating the predictive ability of 
a model (Golbraikh and Tropsha 2002; Gramatica and San-
gion 2016; Gramatica 2020). Multiple modeling in consen-
sus form has been introduced to achieve a lower degree of 
predicted residuals for query compounds (Roy et al. 2015b; 
Khan et al. 2019a; Roy et al. 2019). In the following sec-
tions, we will discuss various tools from the DTC Labo-
ratory (https:// sites. google. com/ site/ kunal royin dia/ home/ 
qsar- model- devel opment- tools) that help understand the 
prediction ability of one or more QSAR models.

(i) Double cross-validation (version 2.0) tool

The most common scheme of external validation is by 
introducing the hold-out method. Here, the original dataset 
is divided into training and test sets, where the training set is 
used for model-building purposes followed by model selec-
tion based on internal validation metrics, and the test set is 
used for model validation through external validation met-
rics. This approach ensures that the test set is never applied 
during the model-building procedure and it remains unseen 
by the developed model. However, a single training set does 
not confirm feature optimization, since a fixed training set 
composition leads to a bias in feature selection. This issue is 
more apparent in the case of MLR models than partial least-
squares (PLS) or principal component regression (PCR) 
models which are more robust and generalized methods. 
Baumann and Baumann (Baumann and Baumann 2014) dis-
cussed the concept of double cross-validation (DCV) which 
Roy and Ambure implemented in a tool (Roy and Ambure 
2016) where the training set is further divided into ‘n’ num-
ber of calibration and validation sets. The tool is freely avail-
able from http:// dtclab. webs. com/ softw are- tools and http:// 
teqip. jdvu. ac. in/ QSAR_ Tools/ DTCLab/. The algorithm 
comprises two nested cross-validation loops (Bates et al. 
2021), namely, the outer loop and the inner loop (Fig. 2). 
The outer loop consists of data points that are split arbitrarily 
into disjoint subsets known as training set compounds and 
test set compounds. The training set is utilized in the inner 
loop for model development and model selection, and the 
test set is used exclusively for checking model predictiv-
ity. The training set in the inner loop is further split into k 
number of calibration and validation sets in the inner loop 
by applying the k-fold cross-validation technique (Wainer 
and Cawley 2021). In the k-fold cross-validation method, 
the training data are initially segregated into k subsets fol-
lowed by preparing k-iterations of calibration and validation 
sets. At each reiteration, different subset of data is excluded 
and used as validation set, while the remaining k-1 subsets 
are used as calibration sets. The data are passed through a 
stratification process, i.e., data rearrangement which helps 

https://sites.google.com/site/kunalroyindia/home/qsar-model-development-tools
https://sites.google.com/site/kunalroyindia/home/qsar-model-development-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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maintain data uniformity (each fold is representative of the 
whole dataset). Each k-fold calibration set is then used to 
develop multiple linear regression (MLR) models, while the 
respective validation sets are applied to find the prediction 
errors. The tool provides two methods of feature selection: 
stepwise-multiple linear regression (S-MLR) (Maleki et al. 
2014; Ojha and Roy 2018) and genetic algorithm-MLR (GA-
MLR) (Leardi 2001). The prediction error is checked using 
mean absolute error  (MAE95%) (Roy et al. 2016). There is 
also a provision for the generation of PLS models in the tool. 
Furthermore, the models in the inner loop are selected based 
on three major criteria as follows:

i) The models with the lowest MAE value (on the valida-
tion set) are selected.

ii) Consensus predictions of the top model are selected 
based on the MAE value of the validation set.

iii) Searching out the best descriptor combination from the 
top models.

Researchers found the DCV approach to be reliant and 
useful and thus successfully employed in various applica-
tions, for example, quantitative structure–property relation-
ship (QSPR) modeling for sweetness potency of organic 
chemicals (Ojha and Roy 2018), developing nano-QSAR 
models for  TiO2-based photocatalysts (Mikolajczyk et al. 
2018), inhalational toxicity modeling (Nath et al. 2022), 
modeling of diagnostic agents (De et al. 2019; De et al. 
2020, 2022; De and Roy 2020, 2021), etc.

 (ii) Intelligent consensus predictor tool

A well-validated QSAR model engages different classes 
of descriptors, which accentuate many features of molecular 
structures. Individual QSAR models may exaggerate a few 

important features, undervalue other features, and overlook 
some significant characteristics features. Roy et al. (2018b) 
proposed an “intelligent” selection of multiple models that 
would enhance the quality of predictions of query com-
pounds (Roy et al. 2018b). This software helps judge the 
performance of consensus predictions compared to their 
quality obtained from the individual MLR models based 
on the MAE-based criteria (95%). The tool “Intelligent 
Consensus Prediction” is available from http:// dtclab. webs. 
com/ softw are- tools and http:// teqip. jdvu. ac. in/ QSAR_ Tools/ 
DTCLab/. The tool takes multiple individual models (M1, 
M2, M3, etc.) as input derived using a different combination 
of descriptors from the training set. There are four ways of 
consensus prediction explained in the work:

(i) Consensus model 0 (CM0): it provides a simple aver-
age of predictions from all input individual models.
(ii) Consensus model 1 (CM1): it is the average of predic-
tions from all individual qualified models. It is calculated 
from the arithmetic average of predicted response values 
attained from the ‘n’ qualified models for test compounds 
rather than from all existing individual models.
(iii) Consensus model 2 (CM2): it is the weighted aver-
age prediction (WAP) from all qualified individual mod-
els. In CM2, the average is evaluated by giving a proper 
weightage to the qualified models for a particular test set 
compound.
(iv) Consensus model 3 (CM3): compound-wise best 
selection of predictions from qualified individual mod-
els. The best model for a particular test compound is 
selected based on its cross-validated mean absolute error 
( MAECV) . A model with the lowest value MAECV is the 
best for a particular test set compound.

Fig. 2  Schematic diagram of 
double cross-validation algo-
rithm (colour figure online)

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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The tool further provides additional selection criteria 
which include:

(a) Euclidean distance cut-off: this is used to find a fitting 
model to predict the test set compound, where 10 most 
similar compounds are selected based on Euclidean 
Distance score. The user can set a Euclidean cut-off 
ranging from 0 to 1 to restrict the selection of only 
those training set compounds with a Euclidean distance 
score less than or equal to the set cut‐off value.

(b) Applicability domain: AD helps to check whether the 
test/query compound is in the chemical space of the 
model or not. A simple standardization approach is 
used for AD determination.

(c) Dixon Q test: this test can be employed to spot and 
remove a response outlier out of selected similar train-
ing set compound.

The complete calculation method is demonstrated in the 
published article by Roy et al. and the methodology is given 
in Fig. 3. The ICP method has found good application in the 
prediction of pharmaceuticals (Khan et al. 2019a), organic 
chemicals and dyes (Roy et al. 2019; Khan and Roy 2019; 
Ghosh and Roy 2019; Ojha et al. 2020), determining aquatic 
toxicity (Hossain and Roy 2018), inhalational toxicity (Nath 
et al. 2022), polymer properties (Khan et al. 2018), etc.

 (iii) Prediction Reliability Indicator tool

A QSAR model is developed based on the physicochemi-
cal features of an appropriately designed training set having 
experimentally derived response data. In contrast, the model 
is validated using one or more test set(s) for which the exper-
imental response data are available. The suitability of this 
model for a completely new data set (true external set) for 
providing a reliable prediction is quite an interesting study. 

Fig. 3  “Intelligent Consensus 
Prediction” algorithm

Fig. 4  Methodology applied for scoring test/query compounds in “Prediction Reliability Indicator” tool
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Roy et al. (2018a, b) have developed a new scheme (Fig. 4) 
to define the reliability of predictions from QSAR models 
for new query compounds and implemented the method in 
a new tool called “Prediction Reliability Indicator” freely 
available from http:// dtclab. webs. com/ softw are- tools and 
http:// teqip. jdvu. ac. in/ QSAR_ Tools/ DTCLab/. This tool is 
applicable for predictions from MLR and PLS models. The 
work aimed at formulating a set of rules/criteria that will 
ultimately empower the user to estimate the quality of pre-
dictions for individual test (external) compounds. Prediction 
of test/external sets can have varying quality. It might not 
be good predictions in all cases, while the model can show 
moderate to bad/unreliable predictions for some of the exter-
nal set compounds. By keeping the variation of prediction 
quality, the authors have hypothesized three rules/criteria 
which might assist in classifying the quality of predictions 
for individual test/external set compounds into good, moder-
ate, and poor/unreliable ones. We have now discussed the 
three rules briefly in the following segment:

(a) Rule/criterion 1: the scoring is based on the quality 
of leave-one-out predictions of the closest 10 training 
compounds to a test/external compound. Here, 10 most 
similar compounds are identified for each test/query 
compound (based on Euclidean distance similarity), 
followed by which mean of absolute LOO prediction 
error ( MAELOO ) is calculated for the selected clos-
est 10 compounds. For a test/query compound whose 
MAELOO is lowest corresponding to its closest train-
ing compounds is predicted well and gets the highest 
prediction score (Prediction Score = 3). Test/query 
compounds that have medium MAELOO values with 
corresponding close training compounds should get a 
moderate score (Prediction Score = 2), and those test 
compounds with corresponding close training com-
pounds having high MAELOO values should get the 
least score (Prediction Score = 1). The MAE-based 
criteria (Roy et al. 2016) are applied here for scoring 
the compounds which involve MAELOO and standard 
deviation ( �LOO ) of the absolute prediction error values.

(b) Rule/criterion 2: scoring based on the similarity-based 
AD using standardization method. The applicability 
domain (AD) of a model plays an important role in 
identifying uncertainty in the prediction of a specific 
chemical (test/query) by that model. This is based on 
how similar is the test/query compound with those in 
the training set. When a test/query compound is similar 
to a small fraction or none of the training compounds, 
the prediction is considered unreliable or fails to fall 
under the training set AD. Here, a simple AD based on 
the standardization approach (Roy et al. 2015a, b) is 
employed.

(c) Rule/Criterion 3: scoring based on the proximity of 
predictions to the training set observed/experimental 
response mean. Earlier, the quality of fit or prediction 
of compounds is better when compounds possess 
experimental response values (training and test com-
pounds) close to the training set observed response 
mean. Thus, in rule/criterion 3, the authors have pro-
posed to assess the prediction quality of a test com-
pound based on the closeness of predicted response 
value to the training set observed/experimental 
response mean. The predicted response value ( Y test

pred
 ) of 

each test compound is first measured using the training 
set model, and then, this Y test

pred
 value is compared with 

the training set experimental response mean ( Y train
mean

 ) and 
the corresponding standard deviation ( �train ). The scor-
ing is based on the following manner:

(i) A test compound with Y test
pred

 value falling within the 
range inside Y train

mean
± 2�train , that is, (Y train

mean
+ 2�train) ≥ 

Y test
pred

  ≥ (Y train
mean

− 2�train ), can be assumed to be well (good) 
predicted by the model and thus have a score 3.

(ii) A test compound with Y test
pred

 value falling within the 
range (Y train

mean
+ 3�train) ≥ Y test

pred
  ≥ (Y train

mean
− 3�train ) and 

(Y train
mean

+ 2�train) < Y test
pred

  < (Y train
mean

− 2�train ) can be presumed 
to be predicted moderately by the model and thus gets a 
score 2.

(iii) A test compound with Y test
pred

 value falling within the 
range (Y train

mean
+ 3�train) < Y test

pred
  < (Y train

mean
− 3�train ) can be 

assumed to be predicted poorly by the model and thus gets 
a score 1.

Furthermore, after these three criteria are checked, a 
weighting scheme is employed to compute a composite score 
for judging the prediction quality of each test compound 
using all three individual scores. The composite score is 
defined as follows:

Here, scorerule1, scorerule2 , and scorerule3 represent the 
scores obtained after applying respective rules, whereas W1

,W2 , W3 indicate the weightage (automatic or user-provided) 
given to each of the three individual scores. The PRI tool 
offers a unique composite score which can act as a marker of 
prediction quality of true external test compound. This tool 
has found application for the prediction of external set/query 
compounds in many areas, viz., endocrine disruptor chemi-
cals (Khan et al. 2019b), metal oxide nanoparticles (De et al. 
2018), organic chemicals (Khan and Roy 2019; Khan et al. 
2019c; De et al. 2020; 2022; Nath et al. 2022), etc.

Composite score =W1 × scorerule1

+W2 × scorerule2

+W3 × scorerule3.

http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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 (iv) Small dataset modeler (version 1.0.0) tool

Various specialized datasets involving nanomaterials, 
properties of catalysts, radiosensitizer molecules, etc. have 
smaller number of data points where the division of data 
into training and test sets may not produce robust and pre-
dictive models. A small dataset with 25–50 compounds 
cannot be used for conventional double cross-validation 
as dividing the data set into training and test sets and fur-
ther into calibration and validation sets is not possible. 
Ambure et al. have developed a new tool called the Small 
Dataset Modeler, version 1.0.0 (http:// dtclab. webs. com/ 
softw are- tools and http:// teqip. jdvu. ac. in/ QSAR_ Tools/ 
DTCLab/) solely for small datasets which includes a dou-
ble cross-validation approach to develop a model for a 
small number of data points without training and test sets 
division of the dataset (Ambure et al. 2019) (Fig. 5). Here, 
the whole input set (containing n number of compounds) 
goes into a loop where it is repeatedly split up into calibra-
tion and validation sets (same as in the inner loop of 
DCV). The best possible combinations (k) are tried to 
obtain using validation sets of r compounds and calibra-
tion sets of n–r compounds. The tool asks for the number 
of compounds (i.e., r) in the validation set from the user 
based on which all probable combinations of calibration 
and validation sets are produced. The Multiple Linear 
Regression (MLR) models are generated using the calibra-
t ion  se t  compounds  employ ing  the  Genet ic 

Algorithm-Multiple Linear Regression (GA-MLR) method 
(Devillers 1996; Venkatasubramanian and Sundaram 
2002) of variable selection, while the validation sets are 
employed to judge the predictive ability of the models. 
Numerous important internal ( R2,R2

adj
,Q2

LMO
,MAELOO,

r
2

m
(LOO) metrics) and external ( Q2

F1
,Q2

F2
, r2

m
(test),CCC,

MAEtest ) validation metrics are measured in the exhaustive 
DCV method for all the chosen models. The tool is 
designed in such a way that it also develops Partial Least 
Squares Regression (PLS-R) models based on the descrip-
tors selected in MLR models. The final top model selec-
tion can be done in any five of the following recommended 
ways:

(i) Any model (MLR/PLS) with the smallest MAE (95%) 
in the validation set is chosen.
(ii) Any model (MLR/PLS) with the smallest MAE (95%) 
in the modeling set is chosen.
(iii) Any model (MLR/PLS) with the lowest 
Q2

Leave−Many−Out
 (modeling set) is chosen.

(iv) Implementing consensus predictions using the best 
models that are chosen depending on the MAE (95%) 
in the validation sets. Consensus predictions can be of 
two types: (a) Using a simple arithmetic average of pre-
dictions of the best models. (b) Using a weighted aver-
age of predictions (WAP) by assigning proper weights 
to the top chosen models depending on the mean abso-

Fig. 5  Methodology behind 
the “Small Dataset Modeler” 
(version 1.0.0) tool to perform 
QSAR modeling for a small set 
of data points

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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lute error obtained from leave-one-out cross-valida-
tion,MAEcv(95%).
(v) A pool of exclusive descriptors from the best models 
with the smallest MAE(95%) obtained from the valida-
tion set is again employed to build models. In the case of 
MLR, the best descriptor combinations are put through 
the Best Subset Selection method. However, in the case 
of a PLS model, descriptors nominated in the top models 
are pooled together for a PLS run.

The method proposed in the “Small Dataset Modeler” 
tool confirms internal divisions of small datasets within the 
DCV technique without taking any test set into account. The 
approach of “Small Dataset Modeler” tool integrates data 
curation, exhaustive DCV technique, and ideal modeling 
techniques entailing consensus predictions to develop mod-
els, principally for a small set of data points. The methodol-
ogy behind the “Small Dataset Modeler” tool is schemati-
cally presented in Fig. 5. Small dataset modeling has found 
use in environmental toxicity modeling including acute 
toxicity of antifungal agents toward fish species (Nath et al. 
2021) and soil ecotoxicity (Lavado et al. 2022), radiosensi-
tization modeling (De and Roy 2020), modeling of Hepatitis 
C virus inhibitor protein (Ejeh et al. 2021), and modeling 
anesthetics causing GABA inhibition (Stošić et al. 2020).

(v) Read-Across-v3.1 tool

The read-across methodology has gained immense atten-
tion in recent years, because it is a non-testing approach 

that can be utilized for data-gap filling. The basic aim of 
the read-across technique is to predict endpoint information 
for one or more chemicals (i.e., the target chemicals) using 
data from the same endpoint from another substance (the 
source chemicals) using the similarity principle. The method 
is widely used as an alternative tool for hazard assessment to 
fill data gaps (ECHA 2011). Read-across based predictions 
seem to be more fitting for small data sets (limited source 
compounds). Hence, it has provided promising results in 
nanosafety assessment possessing limited data. Chatterjee 
and co-workers (2022) developed a new prediction-oriented 
quantitative read-across approach based on certain similarity 
principles. The reported work verifies the efficiency of the 
newly developed read-across algorithm in filling nanosafety 
data gaps. A tool has been developed to facilitate the imple-
mentation of the approach (Fig. 6) for quantitative read-
across which is available from https:// sites. google. com/ jadav 
purun ivers ity. in/ dtc- lab- softw are/ home. The tool allows 
the users to optimize different hyperparameters includ-
ing similarity kernel functions and distance and similarity 
thresholds to get the best quality of quantitative predictions. 
Mainly, three types of similarity estimation techniques were 
introduced involving Euclidean distance, Gaussian kernel 
function, and Laplacian kernel function. The algorithm 
developed in this study was optimized using three small 
nanotoxicity datasets (n ≤ 20). The algorithm is based on 
two basic steps: (a) finding the 10 most similar training 
compounds for each query or test compound; (b) calculat-
ing the weighted average prediction of test set compounds 
from the most similar training set compounds. Different 

Fig. 6  Quantitative read-across algorithm

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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hyperparameters like sigma and gamma values in Gauss-
ian and Laplacian kernel functions have been optimized. 
The effect of the number of close training compounds on 
the prediction quality has been evaluated; 2–5 close training 
compounds can efficiently predict the toxicity of query com-
pounds. Another feature incorporation in the tool involves 
a distance threshold for the Euclidean distance similarity 
estimation and a similarity threshold for the Gaussian and 
Laplacian kernel function similarity estimations. This gen-
erated better prediction at the distance threshold of 0.4–0.5 
and a similarity threshold of 0.00–0.05. This algorithm is 
easy to use, proficient, and an expert independent alternative 
method for the nanoparticle toxicity prediction which can 
further assist in data-gap filling and prioritization. Version 
3.1 of this tool also computes classification-based validation 
metrics and generates receiver operating curve (ROC) for 
predictions which can be used to estimate the uncertainty of 
predictions. The tool is also applicable for several endpoints 
other than nanotoxicity, for example activity/toxicity/prop-
erty of organic compounds in general.

Future perspectives

Over the past few decades, the QSAR methodology has 
received both praise and criticism in connection to its reli-
ability, limitations, successes, and failures. The above dis-
cussion of the aforementioned tools from the DTC Labora-
tory provides methods and information relating to QSAR 
model development and validation, pointing out current 
trends, unresolved problems, and persistent challenges asso-
ciated with evolution of QSAR. Furthermore, there are few 
scopes of further refining the present tools like inclusion 
of computation of Golbraikh and Tropsha’s (Golbraikh and 
Tropsha 2002) criteria in the Double Cross Validation tool 
and computation of leave-many-out cross-validation ( Q2

LMO
 ) 

criteria for both the Double Cross Validation tool and Small 
Dataset Modeler tool (PLS version), etc. Additionally, there 
is an opportunity to incorporate an uncertainty measure of 
predictions in the read-across tool which will improve the 
reliability for quantitative predictions of untested molecules.

Conclusion

The QSAR domain has been expanded substantially in 
the past few years as databases and their applications have 
grown. As the field of QSAR evolves through decades, it is 
necessary to evaluate the effectiveness of the QSAR models 
in predicting the behavior of new molecules. A QSAR model 
stands on the pillars of various validation metrics used to 
assess the quality of a predictive model that portrays the true 

picture of the prediction errors. The present review explains 
various internal and external validation metrics necessary for 
model predictivity assessment. Furthermore, a brief explana-
tion of various innovative QSAR modeling tools developed 
by Drug Theoretics and Cheminformatics (DTC) laboratory 
(https:// sites. google. com/ site/ kunal royin dia/ home/ qsar- 
model- devel opment- tools) is given for better selection and 
development of models. These tools are aimed at addressing 
various features like selection of training set, model develop-
ment methodology, model selection techniques, the use of 
multiple models, scoring of query compounds, etc. These 
improvisations helped in enhancing the quality of predictions 
of QSAR models. The tools highly assist in the reliability 
estimation of untested chemicals when experimental data are 
unavailable. However, most of these tools cannot be used for 
classification-based/graded data, but are well suited for quan-
titative models like MLR and PLS regression. Furthermore, 
the tools have a major role in different fields for predicting 
chemicals associated with the pharmaceutical industry, cos-
meceuticals, polymer chemistry, diagnostic agents, dyes, 
nano-chemistry, food chemistry, etc.
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