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Abstract
Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neu-
rons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within 
crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human 
dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out 
here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicologi-
cal hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons 
showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) 
while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction 
with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus 
laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on 
the physiologically important human nAChR subtypes α7, α3β4, and α4β2 (high-sensitivity variant) with similar potency 
as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2–3 orders of magnitude lower potency. 
Molecular docking studies, using receptor models for the α7 and α4β2 nAChR subtypes supported an activity of DN-IMI 
similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the 
well-established neurotoxicant nicotine by triggering α7 and several non-α7 nAChRs.
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Abbreviations
ACh	� Acetylcholine
AUC​	� Area under the curve
BMC	� Benchmark concentration
[Ca2+]i	� Intracellular free Ca2+ concentration
cAMP	� N6,2′-0-Dibutyryl 3′,5′-cyclic adenosine 

monophosphate
DN-IMI	� Desnitro-imidacloprid
DNT	� Developmental neurotoxicity
DMSO	� Dimethyl sulfoxide
EC25	� Quarter maximal effective concentration
IMI	� Imidacloprid
IMI-olefin	� Imidacloprid-olefin
LD50	� Median lethal dose
Mec	� Mecamylamine
MIE	� Molecular initiating event
MLA	� Methyllycaconitine
nAChR	� Nicotinic acetylcholine receptor
pEC25	� Negative logarithm of the quarter maximal 

effective concentration
pEC50	� Negative logarithm of the half-maximal 

effective concentration
pIC50	� Negative logarithm of the half-maximal 

inhibitory concentration
PBTK	� Physiology-based toxicokinetic
PLO	� Poly-l-ornithine
PNU	� PNU-120596
Tubo	� Tubocurarine

Introduction

The toxicological assessment of many pesticides is compli-
cated by the fact that there is not only exposure to the origi-
nal substances, but also to their many metabolites formed 
in the environment. This also applies to the neonicotinoids, 
a class of insecticides with long persistence within crops 
(Simon-Delso et al. 2015; Craddock et al. 2019; Thompson 
et al. 2020). They comprise, e.g., imidacloprid (IMI), aceta-
miprid, clothianidin, and thiacloprid. With a global market 
turnover of > 1 billion € (Jeschke et al. 2011; Sparks and 
Nauen 2015), this group of compounds has dominated many 
pesticide application domains and thus has led to widespread 
human exposure (Klarich et al. 2017; Craddock et al. 2019; 
Thompson et al. 2020). The neonicotinoids had a world-
wide market share of the insecticide sales of around 25% 
in 2014–2018 (Bass et al. 2015; Casida 2018; Sparks et al. 
2020). IMI accounted for around one-third of neonicotinoid 
use (Bass et al. 2015). In the US, the use of IMI for crop 
protection was estimated to be roughly around 1000 tons per 
year from 2011 to 2014 (Douglas and Tooker 2015; Crad-
dock et al. 2019; US Geological Survey 2021). The insecti-
cidal mode of action is based on the over-activation of the 

nicotinic acetylcholine receptor (nAChR) of the target spe-
cies. This activity has been assumed to be relatively specific 
for the insect nervous system (Brown et al. 2006; Tan et al. 
2007), as neonicotinoids have been developed to exhibit a 
higher affinity for insect nAChRs compared to vertebrate 
paralogs (Tomizawa et al. 2000; Tomizawa and Casida 2005; 
Casida 2018). However, some studies suggest adverse effects 
of neonicotinoids on mammals (Abou-Donia et al. 2008; 
Duzguner and Erdogan 2012; Burke et al. 2018; Berheim 
et al. 2019). A broad toxicological debate has been trig-
gered by the observation that acetamiprid and IMI activated 
the nAChRs on neonatal rat neurons in the low µM range 
(Kimura-Kuroda et al. 2012). The relevance of this find-
ing for human toxicology is further supported by a recent 
study using cultured human neurons. Clear nAChR signaling 
and also pronounced receptor desensitization were demon-
strated for several neonicotinoids at concentrations that may 
be reached by dietary or accidental exposure (Loser et al. 
2021a).

Food products intended for human consumption have 
high detection rates for IMI (Chen et al. 2014; Craddock 
et al. 2019; Thompson et al. 2020). In addition, several 
metabolites are found. The transformation of the parent 
compounds can arise via abiotic (photolysis, hydrolysis, 
and chlorination) or biological (microbial, fungal, and 
plant) processes (Simon-Delso et al. 2015; Thompson et al. 
2020). One important metabolic step is the reduction of the 
nitro group of IMI to form aminoguanidine derivatives or 
derivatives that entirely lack the nitro group (e.g., DN-IMI) 
(Ford and Casida 2006). Besides cytochrome P450 enzymes, 
especially aldehyde oxidase seems to play an important role 
in this biotransformation (Schulz-Jander and Casida 2002; 
Schulz-Jander et al. 2002; Dick et al. 2005; Swenson and 
Casida 2013; Simon-Delso et al. 2015; Vardavas et al. 2018).

Imidacloprid-olefin (IMI-olefin) has been detected in 
honey (Codling et al. 2016; Thompson et al. 2020), and DN-
IMI is a major IMI degradation product in the environment 
(Anon 2006; Koshlukova 2006). The latter metabolite is pro-
duced abiotically by photodegradation (17% of all IMI), but 
also biotically as the dominant bacterial metabolite, and as 
a major metabolite in many plants (Anon 2006; Koshlukova 
2006). It has, e.g., been found in drinking water (Klarich 
Wong et al. 2019; Wan et al. 2020) and it has been reported 
to be formed in diverse foods such as apples, tomatoes, egg-
plants, and potatoes, where it accounted for around 10–30% 
of IMI degradation products. It reached concentrations in the 
10–30 µg/kg range in apples and potatoes and up to 300 µg/
kg in fodder corn (Anon 2006). The outdoor use of IMI 
has been banned in Europe in 2018 (European Commission 
2018), due to unacceptable toxicity risks for bees (Euro-
pean Food Safety Authority [EFSA] 2016), and in 2020 
the approval of IMI expired (European Commission 2020). 
However, exposure via the diet still occurs via imported food 
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commodities, and until now, several EU countries still grant 
temporary exemptions and notify the EU of these emergency 
authorizations (https://​ec.​europa.​eu/​food/​plant/​pesti​cides/​
eu-​pesti​cides-​datab​ase/​ppp/​pppeas/​screen/​home). The cur-
rent dietary risk assessment on IMI in Europe covers the 
exposure to the parent compound IMI and its metabolites. 
However, there is no specific residue definition for DN-IMI 
(European Food Safety Authority [EFSA] et al. 2019). This 
means that it is assumed that the toxicological potency is 
similar to the parent compound.

DN-IMI has also been detected in mice exposed to IMI. 
This suggests that it can also be produced within mammals 
by endogenous metabolism (Ford and Casida 2006; Swenson 
and Casida 2013). This is consistent with findings of DN-
IMI and IMI-olefin in human urine samples analyzed in a 
recent biomonitoring study (Wang et al. 2020).

The previous knowledge of IMI metabolism shows that 
a shift in the bioactivity spectrum can occur. For instance, 
the metabolite DN-IMI has a strongly reduced potency on 
insect nAChRs, but in turn an increased affinity for mam-
malian nAChRs (Liu et al. 1993; Chao and Casida 1997; 
Tomizawa et al. 2000). This is in line with studies in mice 
that suggested a higher toxicity of DN-IMI, compared to its 
parent compound IMI (Chao and Casida 1997; Tomizawa 
et al. 2000). Furthermore, binding assays using mammalian 
nAChRs have shown that DN-IMI has an affinity similar 
to the high-affinity ligand nicotine (Tomizawa and Casida 
1999; D’Amour and Casida 1999; Tomizawa et al. 2000). 
Nicotine is a well-known neurotoxicant and developmental 
neurotoxicant for vertebrates, including man (Levin et al. 
1993; Slikker Jr et al. 2005; LeSage et al. 2006; Grandjean 
and Landrigan 2006; Dwyer et al. 2009; Slotkin et al. 2016; 
Zahedi et al. 2019). Therefore, IMI metabolites mimicking 
the activity profile of nicotine on human receptors are of 
high toxicological concern.

The activation of ionotropic receptors like nAChRs on 
neurons leads to a depolarization of the cell membrane, and 
thereby, activates voltage-dependent Ca2+ channels. The 
transient influx of Ca2+ into the cell increases the intracellu-
lar free Ca2+ concentration ([Ca2+]i), which can be measured 
by Ca2+-imaging in neuronal cell cultures (Leist and Nico-
tera 1998; Sirenko et al. 2019; Grunwald et al. 2019; Loser 
et al. 2021b). This method is based on the quantifications of 
fluorescence signals of calcium-sensitive dyes introduced 
into the cells, and it is amenable to high-throughput for-
mats (Sirenko et al. 2019; Karreman et al. 2020; Brüll et al. 
2020; Loser et al. 2021b). Alternatively, xenobiotic effects 
on individual nAChR subtypes may be measured directly by 
the recording of the transmembrane currents in Xenopus lae-
vis oocytes that heterologously express human receptors of 
interest. The basis of this method is the injection of mRNA 
coding for human neurotransmitter receptor subunits into the 
cells. It is well known that this experimental system has a 

high efficiency for protein translation and functional inser-
tion of the respective receptors in the cell membrane. The 
large size of the oocytes allows the current flow through the 
cell membrane (triggered by agonists) to be measured by two 
sharp microelectrodes placed inside the cell. The test method 
obtains its specificity from the strong heterologous expres-
sion of the respective receptor. (Bermudez and Moroni 2006; 
Moroni et al. 2006; Jonsson et al. 2006; Carbone et al. 2009; 
Mineur et al. 2009; Mazzaferro et al. 2011; Harpsøe et al. 
2011; Li et al. 2011; Benallegue et al. 2013).

The human neuronal precursor cell line LUHMES and the 
neuroblastoma cell line SH-SY5Y can be differentiated into 
post-mitotic neurons (Lopes et al. 2010; Scholz et al. 2011), 
and they are often used as a model system to investigate 
adverse effects on human neurons (Tomizawa and Casida 
1999; Gustafsson et al. 2010; Krug et al. 2013, 2014; Zhang 
et al. 2014; Ring et al. 2015; Lohren et al. 2015; Attoff et al. 
2016, 2020; Smirnova et al. 2016; Harris et al. 2017; Tong 
et al. 2017; Witt et al. 2017; Delp et al. 2018a, b, 2019; Brüll 
et al. 2020). The utility of these cell models for functional 
neurotoxicity testing has been demonstrated for agents that 
affect voltage-dependent sodium channels or ionotropic 
receptors (Loser et al. 2021a, b). Both cell types express 
functional nAChRs and have been used in Ca2+-imaging 
assays to study the effects of several neonicotinoids (Loser 
et al. 2021a).

In this study, we explored whether DN-IMI possesses 
a potential neurotoxicity or developmental neurotoxicity 
hazard, by acting on nAChRs of human neurons. The IMI 
metabolite was chosen for this study, as it may be directly 
ingested by food. However, it is also relevant as it may be 
generated in individuals exposed to IMI. We compared the 
signaling effects of DN-IMI on LUHMES neurons and SH-
SY5Y to that of IMI and nicotine. To determine differences 
in nAChR subtype selectivity of the compounds, we fur-
ther investigated the agonist activity of these compounds 
on human α4β2, α7, and α3β4 nAChR subtypes, expressed 
in Xenopus laevis oocytes, and we developed a molecular 
docking approach explaining these findings. To gather back-
ground information on the persistence and distribution of 
DN-IMI in man, a toxicokinetic model was implemented and 
parameterized by metabolism data from human hepatocytes. 
The broad data set of this study was used for a preliminary 
risk assessment of DN-IMI.

Materials and methods

Materials and chemicals

An overview of experimental tool compounds and toxi-
cants is given in Table S1. Consumables are indicated in 
the specific methods paragraphs. Chemical structures of 

https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/ppp/pppeas/screen/home
https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/ppp/pppeas/screen/home
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imidacloprid (IMI) (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​
compo​und/​86287​518#​secti​on=​2D-​Struc​ture), desnitro-
imidacloprid (DN-IMI) (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​
compo​und/​10130​527#​secti​on=​2D-​Struc​ture) and imidaclo-
prid-olefin (IMI-olefin) (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​
compo​und/​14626​249#​secti​on=​2D-​Struc​ture) were obtained 
from PubChem and visualized in ChemDraw JS (version 
19.0.0-CDJS-19.0.x.9 + da9bec968, PerkinElmer).

LUHMES cell culture

The cultivation of the LUHMES cells was performed as 
described earlier (Scholz et al. 2011; Krug et al. 2013; 
Schildknecht et al. 2013). In brief, LUHMES cells were 
cultured in standard cell culture flasks (Sarstedt) that were 
pre-coated with 50 µg/ml poly-l-ornithine (PLO) and 1 µg/
ml fibronectin (Sigma Aldrich) in H2O overnight at 37 °C. 
The cells were maintained in proliferation medium contain-
ing advanced DMEM/F12 (Gibco) with 2 mM l-glutamine 
(Sigma Aldrich), 1 × N2-supplement (Gibco), and 40 ng/ml 
recombinant human basic fibroblast growth factor (FGF-2, 
R&D Systems). The cells were kept at 37 °C and 5% CO2 
and passaged three times a week when the culture reached a 
confluency of 75–90%. Cells were used until passage 18. For 
differentiation, cells were cultured in differentiation medium 
consisting of advanced DMEM/F12 (Gibco) supplemented 
with 2 mM l-glutamine (Sigma Aldrich), 1 × N2-supplement 
(Gibco), 1 mM N6,2′-0-dibutyryl 3′,5′-cyclic adenosine 
monophosphate (cAMP) (Sigma Aldrich), 1 µg/ml tetracy-
cline (Sigma Aldrich) and 2 ng/ml recombinant human glial 
cell-derived neurotrophic factor (GDNF, R&D Systems).

For Ca2+-imaging, the cells were pre-differentiated for 
48 h in cell culture flasks, detached and plated at a density 
of 20,000 cells and 30,000 cells per well on 0.1% PEI-coated 
384-well and 96-well plates (Greiner Bio-One), respectively, 
for the Ca2+-imaging. The cells were further differentiated 
for another 7 days. 50% of the medium was exchanged every 
2–3 days.

Cell culture of SH‑SY5Y cells

SH-SY5Y cells were cultured as previously described (Att-
off et al. 2016). Briefly, they were cultured in MEM sup-
plemented with 10% fetal bovine serum (Gibco, 31330095), 
1% non-essential amino acid solution (Gibco, 11140035), 
2 mM L-glutamine (Gibco, 25030024), 100 μg/ml strep-
tomycin, and 100 U/ml penicillin (Gibco, 15140122). For 
maintenance culture, SH-SY5Y cells were seeded at 27,000 
cells/cm2 in 75 cm2 cell culture flasks (Corning). The cells 
were passaged once a week using TrypLE Express Enzyme 
(Gibco). SH-SY5Y cells were differentiated into a neuronal-
like phenotype by exchanging the maintenance medium with 
differentiation medium consisting of DMEM/F12 (Gibco, 

31330095) supplemented with 1 mM L-glutamine (Gibco, 
25030024), 100 μg streptomycin/mL, 100 U penicillin/mL, 
1 × N2-supplement (Gibco, 17502048) and 1 µM all-trans 
retinoic acid (RA, Sigma, R2625) 24 h after seeding. The 
cells were incubated in 100% humidity at 37 °C in air with 
5% CO2.

LUHMES Ca2+‑imaging

Ca2+-imaging was performed using HT Functional Drug 
Screening System FDSS/µCELL (Hamamatsu Photonics) at 
nominal 37 °C. The FDSS/µCell system enables the indirect 
recording of changes of [Ca2+]i via a Ca2+-sensitive fluores-
cent dye. The fluorescence signal of a complete 384-well 
plate is acquired at once with a high-speed and high-sensi-
tivity digital ImagEM X2 EM-CCD camera (Electron Mul-
tiplying Charge-Coupled Device, Hamamatsu Photonics), 
but with limited spatial resolution. Therefore, the software 
only determines the mean fluorescence signal of each well 
rather than of individual cells. For compound application, 
the integrated dispenser head with 384 pipette tips was used, 
which can add the test compound to all wells simultaneously. 
Cells were preincubated with Cal-520 AM (AAT Bioquest) 
at a concentration of 1 µM for 1 h at 37 °C. For recording, 
the medium was exchanged by a buffer solution containing 
[mM]: 135 NaCl, 5 KCl, 0.2 MgCl2, 2.5 CaCl2, 10 HEPES, 
and 10 D-glucose, pH 7.4. Test compound application was 
executed after obtaining a 1.5 min baseline recording. Where 
applicable, a second application was executed 4.5 min after 
the first application. The total recording never exceeded 
8 min.

For Ca2+-imaging experiments with a higher resolu-
tion on the single-cell level, the Cell Observer (Carl Zeiss 
Microscopy) was used. The Ca2+-sensitive dye, the cell 
handling before the experiment, and the buffer were the 
same as described above for the experiments with the high-
throughput FDSS/µCELL system. The recordings were per-
formed with 2 × 2 binning and a 42 ms exposure time. The 
compounds were applied after a baseline recording of at 
least 10 s.

Ca2+ measurements in SH‑SY5Y

To measure acute changes in the average [Ca2+]i of a popu-
lation, SH-SY5Y cells were examined in the 96-well plate 
fluorescence reader FlexStation II (Molecular Devices) 
using the fluorophore Fura-2AM. SH-SY5Y (35,000 cells/
well; 109,375 cells/cm2) were seeded in maintenance culture 
medium in black 96-well plates with clear bottom (Corn-
ing, #3603). 24 h after seeding, maintenance medium was 
replaced with differentiation medium. After 72 h of differen-
tiation, Fura-2AM dissolved in DMSO and diluted in KRH 
buffer (125 mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 1.2 mM 

https://pubchem.ncbi.nlm.nih.gov/compound/86287518#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/86287518#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/10130527#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/10130527#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/14626249#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/14626249#section=2D-Structure
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KH2PO4, 2.0 mM CaCl2, 6.0 mM D-glucose, and 25 mM 
HEPES (free acid), pH adjusted to 7.4 by 1.0 M NaOH) were 
added to the medium to a final concentration of 4 µM (Gus-
tafsson et al. 2010). The plates were incubated for 30 min 
at 37 °C before cells were washed once with 200 µl KRH 
buffer. 90 µl of KRH buffer without or with 10 µM PNU-
120596 (PNU) and/or 125 µM mecamylamine (Mec) and/
or test chemicals in different concentrations for antagonist 
experiments were added to the Fura-2AM-loaded cells. The 
plate was again incubated for 20 min to allow full hydrolysis 
of the AM group before the experiment. The fluorescence 
was assessed at 37 °C in the fluorescence plate reader (Flex-
Station II; Molecular Devices) at two different excitation 
wavelengths, 340 nm for Ca2+-bound Fura-2 and 380 nm for 
free Fura-2, and at 510 nm emission, every 3.1 s using bot-
tom read settings. After 26–29 s of initial baseline recording 
of the fluorescence intensity, 10 µl of the compound dilution 
(10 times higher than the final concentration to the cells) 
was transferred automatically by the FlexStation II (“Flex 
mode”) to the cell plate wells (five wells per concentration) 
and the fluorescence intensity was monitored for another 
150 s. The ratio of fluorescence intensity at 340/380 nm was 
determined and the mean values from the baseline recording 
before the addition of test compounds was set to zero. The 
acute change in the Ca2+ influx after the addition of the com-
pounds was quantified as the area under the curve (AUC) 
using the SoftMax Pro 4.8 software (Molecular Devices). 
All test compounds were dissolved in DMSO. Compounds 
were diluted in KRH buffer in 1:3 series, with 100 µM as the 
highest concentration. As a negative control, 0.1% DMSO in 
KRH buffer was used. Nicotine (11 µM) and KCl (30 mM) 
in KRH were used as positive controls. The Ca2+ influx 
induced by DN-IMI was normalized to the response trig-
gered by nicotine (11 µM) or KCl (30 mM).

Oocyte recordings

The human α3 (GenBank: U62432.1), α4 (GenBank: 
L35901.1, silent base exchanges to reduce GC content), 
β2 (GenBank: X53179.1), and β4 (GenBank: U48861.1) 
nAChR subunits were synthesized using FragmentGene ser-
vice by Genewiz company and subsequently cloned in the 
pNKS2 vector (Gloor et al. 1995) using Gibson Assembly. 
The human α7 nAChR subunit was cloned in the pCDNA3.1 
vector.

For the generation of the mRNA for injection, the plasmid 
DNAs of α3, α4, β2, and β4 were linearized with the NotI 
restriction endonuclease (New England Biolabs) and the 
plasmid DNA of α7 was linearized with the XbaI restriction 
endonuclease (New England Biolabs). The mRNAs of α3, 
α4, β2, and β4 were generated by in vitro transcription using 
the mMESSAGE mMACHINE SP6 Transcription Kit (Inv-
itrogen). For the generation of α7 mRNA, the mMESSAGE 

mMACHINE T7 Transcription Kit (Invitrogen) was used. 
For the separation of the DNA and mRNA, a phenol–chlo-
roform extraction (Chomczynski and Sacchi 2006) was 
performed. The mRNA was then obtained by ethanol pre-
cipitation from the aqueous phase; for quantification, the 
BioPhotometer (Eppendorf) was used.

The recordings of human α7, α3β4, α4β2, and α4β4 
nAChRs expressed in Xenopus laevis oocytes (EcoCyte 
Bioscience) were performed in two-electrode voltage-clamp 
mode using the Roboocyte2 system and the corresponding 
software (version 1.4.1; Multi Channel Systems MCS). Prior 
to the recordings, the oocytes were maintained at 19 °C in 
modified Barth’s solution containing [mM]: 88 NaCl, 1 KCl, 
0.33 Ca(NO3)2, 0.82 MgSO4, 2.4 NaHCO3, 0.41 CaCl2, 5 
Tris, 100 U/ml penicillin, 100 µg/ml streptomycin, pH 7.4.

To express human α7 nAChR, we injected 50 nl of mRNA 
solution (30 ng mRNA) per oocyte, using the Roboinject 
and the corresponding software (version 1.2.1; Multi Chan-
nel Systems MCS). The subunits of the heteromeric human 
α3β4 nAChRs and high-sensitivity (HS) (α4)2(β2)3 combi-
nation were injected in a ratio of 1:10 (α:β subunit) with an 
mRNA amount of 0.33 ng of α3 and 3.33 ng of β4 for α3β4, 
and 3 ng of α4 and 30 ng of β2 for α4β2. The mRNA for the 
subunits of the low-sensitivity (LS) (α4)3(β2)2 stoichiometry 
was injected in a ratio of 10:1 (α:β subunit) with 10 ng of α4 
and 1 ng of β2. The subunits of the α4β4 nAChR subtype 
were injected in a ratio of 1:1 with 3.33 ng of α4 and 3.33 ng 
of β4. After mRNA injection, the oocytes were maintained 
for 3–6 days before recordings were performed. The experi-
ments were executed in a ND96 buffer solution containing 
[mM]: 96 NaCl, 2 KCl, 1 MgCl2, 1.8 CaCl2, 5 HEPES, pH 
7.4. The oocyte membrane potential was kept at − 50 mV in 
all recordings. In experiments with α7, the compounds were 
applied for 5 s followed by a 60 s wash period. At the end 
of each recording, a reference application of 1 mM nicotine 
was performed. In experiments with heteromeric nAChRs, 
the compound was applied for 3 s, followed by a washout 
of 10 s, and an application of acetylcholine (ACh) for 1 s, 
which was followed by a washout of 60 s. The recordings for 
α3β4, α4β2 (HS), α4β2 (LS) and α4β4 were performed with 
200 µM, 3 µM, 100 µM and 100 µM ACh, respectively. ACh 
was applied as an additional reference for run-down detec-
tion and positive control. Therefore, ACh was applied four 
times before the addition of the first compound concentra-
tion and after the application of each compound concentra-
tion. After the measurement of all compound concentrations, 
the last application was a reference exposure to nicotine with 
1 mM for α3β4, 10 µM for α4β2 (HS), 100 µM for α4β2 (LS) 
and 100 µM for α4β4. The reference response triggered by 
nicotine was used for the normalization of the compound 
effects.

For the antagonist experiments, DN-IMI was applied for 
3 s after a 5 s baseline period. The application of DN-IMI 
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was followed by a wash period of 70 s. At first, four control 
recordings were performed, followed by three recordings in 
the presence of each of the three antagonist concentrations 
in ascending order. Finally, three recordings were executed 
during the washout. DN-IMI was applied at 1 µM in record-
ings with α4β2 (HS) and at 30 µM in recordings with α3β4 
and α7.

Physiologically based toxicokinetic modeling

A physiology-based toxicokinetic (PBTK) model for DN-
IMI was established in the Simcyp Simulator V20 (Cer-
tara) using a previously published approach (Albrecht et al. 
2019). Due to the lack of published human metabolism and 
exposure data for DN-IMI, an analog approach was used 
to inform the PBTK model using a compound, in our case 
atenolol, with known human pharmacokinetics and similar 
physicochemical properties. The input parameters for DN-
IMI and atenolol are given in Table S8 and further details 
are found in Fig. S10.

Data analysis

For the high-throughput Ca2+-imaging data obtained in 
LUHMES cells, an offset correction using the FDSS soft-
ware (version 3.2) was performed. Afterward, the data were 
exported and further analyzed with scripts written in R (ver-
sion 3.6.3) (R Core Team 2020). The concentration–response 
curves were fitted using a log-logistic model described by 
Ritz et al. (2015), utilizing the R package drc with its func-
tion drm() and LL2.2() with the following equation: f(x) = d/
[1 + exp(b(log(x) − ẽ))] (Ritz et al. 2015). The logarithm of 
the half-maximal effective concentration (logEC50) between 
0 and the upper limit (d), which was set to 1, is represented 
by ẽ, x denotes the concentration, and b stands for the slope 
parameter (Ritz et al. 2015). In cases with normalizations to 
responses induced by other compounds, the function LL2.3() 
was used with a variable upper limit (d; Ritz et al. 2015). 
The same equation was used to determine the half-maximal 
inhibitory concentration (logIC50). Then the logEC50 and 
logIC50 values were converted into the pIC50 and pEC50 val-
ues, which are the negative logarithms to base 10.

Concentration–effect responses in the SH-SY5Y [Ca2+]i, 
were analyzed by the GraphPad Prism8.0 software using 
the four-parameter sigmoidal curve fit settings and the con-
centrations giving 50% increase in [Ca2+]i in relation to the 
nicotine response were estimated.

The single-cell Ca2+-imaging recordings were exported 
and analyzed in Fiji ImageJ (version 1.52i) to get the average 
fluorescence signal of each cell. These signals were further 
analyzed in R, where a threshold detection was performed to 
detect responding cells. For this, the offset was corrected by 
subtracting the mean of 20–65% of the fluorescence signal 

of the pre-application period from the recording, to be robust 
against spontaneous activity. The threshold was defined as 
mean + 3 * SD of the negative control recordings, during the 
detection phase of 6.5 s during the application.

The baseline correction of voltage-clamp oocyte record-
ings was performed with the Roboocyte2 + software (ver-
sion 1.4.3; Multi Channel Systems MCS, Germany). The 
maximal current influx and further analysis were executed 
in scripts written in R. In the antagonist experiments with 
oocytes, the maximal inward current was determined for the 
last response of each period (control, three antagonist con-
centrations, and washout).

The following R packages were utilized for data handling: 
cowplot (Wilke 2019), dplyr (Wickham et al. 2020), drc 
(Ritz et al. 2015), ephys2 (Danker 2018), ggplot2 (Wick-
ham 2016), htmlwidgets (Vaidyanathan et al. 2019), lemon 
(Edwards 2019), magick (Ooms 2020), magrittr (Bache 
and Wickham 2014), matrixStats (Bengtsson 2020), mod-
elr (Wickham 2020), multcomp (Hothorn et al. 2008), plo-
trix (Lemon 2006), proto (Grothendieck et al. 2016), and 
tidyverse (Wickham et al. 2019).

Unless mentioned differently, values are presented as 
means ± SEM. Experiments were usually performed with at 
least three technical replicates per condition. Detailed data 
on pEC50, pIC50, and numbers of experimental repetitions 
are given in supplementary tables. Unless mentioned differ-
ently, statistical significance was defined as P < 0.05 and was 
determined by one-way ANOVA with Dunnett’s post hoc 
test as indicated. To determine benchmark concentrations 
(BMC), and their upper and lower 95% confidence intervals 
(BMCL, BMCU), the BMC online software of UKN was 
used (Krebs et al. 2020).

Results and discussion

Activation, inhibition, and desensitization 
of nAChRs functionally expressed in LUHMES 
and SH‑SY5Y cells

Activation of nAChRs on LUHMES cells by DN‑IMI

LUHMES neurons express functional α7 and non-α7 
nAChRs, and they have proven useful for the characteriza-
tion of different neonicotinoids like IMI by high-throughput 
Ca2+-imaging (Loser et al. 2021a). We used this system here 
for the functional characterization of the two IMI metabo-
lites DN-IMI and IMI-olefin (Fig. 1A). Both metabolites 
produced clear signals (Fig. 1B, C). A quantification of 
[Ca2+]i responses yielded a pEC50 of 6.6 for DN-IMI 
(Fig. 1D). DN-IMI appeared at least as potent as ACh and 
nicotine (pEC50 values of ~ 6.0 in LUHMES neurons) (Loser 
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Fig. 1   Effect of desnitro-imidacloprid (DN-IMI) and imidacloprid-
olefin (IMI-olefin) on LUHMES neurons. A Chemical structures of 
imidacloprid (IMI) and its two metabolites desnitro-imidacloprid 
(DN-IMI) and imidacloprid-olefin (IMI-olefin). B–F LUHMES 
neurons were differentiated for 9 days before they were loaded with 
an [Ca2+]i indicator dye and used for Ca2+-imaging. B, C The cells 
cultivated in 384-well plates were exposed to various concentra-
tions of DN-IMI and IMI-olefin, and exemplary recordings of the 
fluorescence signal from a whole well are shown. D The fluores-
cence data (peak amplitude) of multiple experiments were quanti-
fied and normalized to the maximal response stimulated by DN-IMI 
(means ± SEM are displayed). The significance of the responses trig-
gered by IMI-olefin was determined between control recordings and 

the responses evoked by IMI-olefin (*: p < 0.05). For DN-IMI, a sig-
moid curve was fitted to the data, and a pEC50 value of 6.6 ± 0.03 was 
obtained as a potency estimate. Note the treatment scheme (upper left 
corner), illustrating the experimental design. E, F LUHMES cultures 
in 96-well plates were used to image the [Ca2+]i responses of single 
cells with a fluorescent microscope. Regions of interest were assigned 
for all individual cell bodies in the image section. E Ca2+-imaging 
traces of the responses of individual cell bodies are shown after expo-
sure to DN-IMI (10  µM). F The percentage of cells that responded 
with a clear fluorescence increase (= rise in [Ca2+]i) to different con-
centrations of DN-IMI was determined. Note the treatment scheme 
(upper left corner), illustrating the experimental design. Detailed data 
on n numbers are listed in Tables S6
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et al. 2021a). These signaling data are in line with published 
binding data that suggest a similar affinity of DN-IMI and 
nicotine for mammalian nAChRs (Tomizawa and Casida 
1999; D’Amour and Casida 1999; Tomizawa et al. 2000).

For IMI-olefin, the pEC50 was not reached within the 
measurement range (≤ 100 µM), but a significant response 
(around 15% of the maximal response to DN-IMI) was found 
at 30–100 µM. Thus, the potency of IMI-olefin was similar 
to that of its parent compound IMI (Loser et al. 2021a). Our 
observations on signaling potency are consistent with the 
literature data for differences in binding affinity to mamma-
lian nAChRs (Chao and Casida 1997; Tomizawa and Casida 
1999; D’Amour and Casida 1999; Tomizawa et al. 2000).

The data on DN-IMI were confirmed by a different ana-
lytical method. Instead of the whole-culture-based high-
throughput [Ca2+]i assay, we used traditional time-lapse 
fluorescence microscopy to quantify responses of individual 
cells (Fig. 1E). We found here a percentage of responsive 
cells of ~ 80%. This population was similar in size to that 
measured in a previous study, using nicotine as a stimu-
lus (Loser et al. 2021a). The quantification of single-cell 
responses confirmed the sub-micromolar potency of DN-
IMI and suggested that the majority of all cells responded 
functionally to the IMI metabolite (Fig. 1F).

Activation of α7 and non‑α7 nAChRs on LUHMES 
and SH‑SY5Y cells by DN‑IMI

There is a large variety of nAChR subtypes with distinct 
functions in the nervous system. To get initial information, 
we examined whether the human α7 nAChR is affected by 
DN-IMI. This Ca2+ permeable receptor is widely distributed 
in the central nervous system and involved in the modula-
tion of neurotransmitter release (McGehee et al. 1995; Gray 
et al. 1996; Alkondon et al. 1999; Gotti et al. 2006; Zoli et al. 
2015). We utilized PNU-120596 (PNU), a selective positive 
allosteric modulator of the α7 nAChR, to slow down the α7 
nAChR inactivation and enable thereby the detection of the 
α7 nAChR-mediated response in Ca2+-imaging (Hurst et al. 
2005; Dickinson et al. 2007; Ng et al. 2007; Grønlien et al. 
2007; Papke et al. 2009; Williams et al. 2011; Chatzidaki 
et al. 2015; Larsen et al. 2019). The response of LUHMES 
neurons to DN-IMI was strongly enhanced and prolonged 
in the presence of PNU (Fig. 2A). A quantification at mul-
tiple DN-IMI concentrations showed that this effect is less 
pronounced at sub-maximal receptor stimulation (Fig. 2B). 
The maximal amplitude triggered by DN-IMI was increased 
by PNU by around 40%. This strongly suggests the activa-
tion of α7 nAChRs. These data are fully in line with find-
ings showing the enhancement of neonicotinoid effects by 
PNU in LUHMES neurons (Loser et al. 2021a). The activa-
tion of non-α7 nAChRs at low concentrations of DN-IMI 

(0.03–0.3 µM) is most likely the reason for an absence of 
PNU enhancement in the low concentration range.

To further support these findings, we examined the effect 
of DN-IMI on a second human cell system. SH-SY5Y neu-
roblastoma cells predominantly express the α7 nAChR sub-
type, together with α3-containing receptors (Loser et al. 
2021a). Therefore, they show little response to neonico-
tinoids or nicotine in the absence of PNU, and also DN-
IMI only triggered small responses reaching about 44% 
of the maximal response obtained in the presence of PNU 
(Fig. 2C). In this experimental setup (presence of PNU), 
DN-IMI led to a strong, concentration-dependent [Ca2+]i 
response with half-maximal responses at about 0.3 µM, a 
peak at ~ 3 µM, and declining responses at even higher con-
centrations (Fig. 2C). The maximal response triggered by 
DN-IMI was roughly similar to the one evoked by nicotine. 
The strong signal increase in the presence of PNU is in line 
with our results for LUHMES.

We also examined the effect of IMI-olefin in the absence 
and presence of PNU on [Ca2+]i of LUHMES neurons (Fig. 
S1A), and we observed a strong enhancement of the signal. 
This allowed for the determination of a pEC50 (5.5 in the 
presence of PNU) (Fig. S1B). The significant increase of the 
responses indicates the activation of human α7 nAChRs by 
IMI-olefin, but with a significantly lower potency compared 
to DN-IMI.

Inhibition of DN‑IMI‑evoked responses of LUHMES 
and SH‑SY5Y cells by nAChR antagonists

We used a pharmacological approach to verify that the sign-
aling ([Ca2+]i) effect of DN-IMI is mediated exclusively by 
nAChRs. For this purpose, LUHMES cells were pretreated 
with several well-known nAChR antagonists. Tubocurar-
ine (Tubo) (Jonsson et al. 2006) antagonized the responses 
evoked by DN-IMI with a pIC50 of 5.9 (Fig. 3A, C). Tubo 
completely blocked the response at 100 µM, indicating that 
the entire DN-IMI-evoked Ca2+-signaling was mediated by 
nAChRs. The obtained pIC50 value is comparable to the val-
ues determined for several nAChR agonists in experiments 
with LUHMES (Loser et al. 2021a).

To further substantiate this finding, we utilized the 
non-competitive nAChR antagonist mecamylamine (Mec) 
(Papke et al. 2008; Capelli et al. 2011). It blocked the DN-
IMI-induced response in LUHMES neurons with a pIC50 
of 6.8 (Fig. 3B, C), which is in line with the literature 
data of 6.6 for human α3β2 nAChRs (Chavez-Noriega et al. 
2000). We also used Mec in the SH-SY5Y cultures, and 
the [Ca2+]i responses induced by DN-IMI were strongly 
blocked (Fig. 2D). This confirmed that also in this cell 
model, DN-IMI signaling was strictly dependent on 
nAChRs.
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To further investigate the agonism of DN-IMI on 
nAChRs on LUHMES, we researched the effect of the 
antagonist methyllycaconitine (MLA), which is highly 
potent (low nM range) on α7 nAChRs compared to other 
nAChR subtypes (Puchacz et al. 1994; Gopalakrishnan 
et al. 1995; Palma et al. 1996; Buisson et al. 1996; Capelli 
et  al. 2011). MLA inhibited the response to DN-IMI 
with a pIC50 of 6.8 (Fig. 3D, F), which is comparable 
to the value obtained for nicotine with LUHMES (Loser 
et al. 2021a). The pIC50 is similar to the literature data 

for human α4β2 and α6-containing (α6/3β2β3) nAChRs 
(Capelli et al. 2011). This (relatively low) potency of 
MLA in LUHMES indicates the involvement of non-α7 
nAChRs in the [Ca2+]i response evoked by DN-IMI.

Finally, we applied the nAChR antagonist MG 624 
(Gotti et al. 2000; Capelli et al. 2011) on LUHMES neu-
rons. The resulting pIC50 of 6.8 (Fig. 3E, F) is comparable 
to the pIC50 of nicotine obtained with LUHMES neurons 
(Loser et al. 2021a) and previously reported data for α4β2, 
α3β4, α7, and α1β1δε nAChRs (Capelli et al. 2011).

Fig. 2   Activation of human α7 nAChRs on LUHMES and SH-
SY5Y cells by DN-IMI. A, B LUHMES neurons differentiated in 
384-well plates were exposed to various concentrations of DN-IMI 
in the absence and presence of PNU-120596 (PNU, 10 µM), a selec-
tive positive allosteric modulator of α7 nAChRs. A Representative 
recordings of the Ca2+-imaging fluorescence signal from a whole 
well are shown. B The fluorescence data (peak amplitude) of mul-
tiple experiments were quantified and normalized to the maximal 
response triggered by DN-IMI in the presence of PNU (means ± SEM 
are displayed). After sigmoidal curve fitting, the relative half maxi-
mum (turning point) was determined: they were on a -log(M) scale: 
6.8 ± 0.04 in the absence of PNU and 6.5 ± 0.03 in the presence of 
PNU. The upper asymptote was at 53% of the maximal response 
(found in all experiments at all conditions) in the absence of PNU 
and at 93% in the presence of PNU. The significance of the differ-
ence between the effects of DN-IMI (1 µM) in the absence and pres-

ence of PNU was evaluated (*: p < 0.05). Detailed data on n numbers 
are found in Table S6. C, D SH-SY5Y cells were used for automated 
[Ca2+]i monitoring, with the area under the curve (AUC) of the flu-
orescence intensity as assay endpoint. Data were normalized to a 
reference signal (10  µM nicotine in C, 30  mM KCl in D). All data 
are from multiple experiments and are displayed as means ± SEM. 
C Data were obtained for multiple concentrations of DN-IMI in 
the absence and presence of PNU, and the ascending arms of the 
curves were fitted for concentrations < 10  µM. The sigmoidal curve 
fit yielded relative pEC50s of 6.8 ± 0.36 in the absence of PNU (esti-
mated maximum at ~ 0.44, n = 5) and 6.5 ± 0.07 (0.3  µM, estimated 
maximum at ~ 0.93, n = 4) in the presence of PNU. D The [Ca2+]i 
response of SH-SY5Y cells triggered by DN-IMI [in the presence 
of PNU (10 µM)] was measured in the absence and presence of the 
nAChR antagonist mecamylamine (Mec, 125 µM) (n = 5); *: p < 0.05. 
Note the treatment schemes, illustrating the experimental design
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In summary, the antagonist data demonstrate the activa-
tion of nAChRs by DN-IMI and indicate the involvement 
of different nAChR subtypes.

Desensitization of cholinergic responses of LUHMES 
and SH‑SY5Y cells by DN‑IMI

An important feature of nAChRs is desensitization. This 
is the inactivation of the receptor during agonist expo-
sure or upon closely timed repeated agonist applications. 
Thus, even in the presence of an agonist, the receptor can 
stop the signaling and may not be activated again within 
a certain period after an initial stimulation (Fenster et al. 
1997; Quick and Lester 2002; Paradiso and Steinbach 2003; 
Lester 2004; Rollema et al. 2010; Marks et al. 2010; Capelli 

et al. 2011; Papke et al. 2011; Campling et al. 2013; Eaton 
et al. 2014; Arias et al. 2015; Rollema and Hurst 2018). 
The desensitization of a receptor is typically caused by 
an agonist concentration that activates the receptor, but it 
can also occur at low concentrations that are not sufficient 
to activate it (Fenster et al. 1997; Paradiso and Steinbach 
2003; Lester 2004; Rollema et al. 2010; Capelli et al. 2011; 
Arias et al. 2015; Rollema and Hurst 2018). As our previ-
ous results indicate an agonistic effect of both IMI metabo-
lites, we investigated whether they would also desensitize 
the nAChRs on LUHMES neurons. In these experiments, 
the metabolites were pre-applied at various concentrations 
and then the response of LUHMES neurons was triggered 
by the exposure to nicotine and measured by Ca2+-imaging. 
The pretreatment led to a pronounced reduction of the 

Fig. 3   Inhibition of DN-IMI signaling by nAChR antagonists. 
LUHMES neurons differentiated in 384-well plates were pretreated 
with various concentrations of nAChR antagonists before DN-IMI 
(0.5 µM) was applied in Ca2+-imaging experiments. A, B Exemplary 
recordings of the fluorescence signal from a whole well are shown 
for the effects of A tubocurarine (Tubo) and B mecamylamine (Mec) 
on the responses evoked by DN-IMI. C The fluorescence data (peak 
amplitude) of multiple experiments were quantified and normalized 
to control recordings (means ± SEM are displayed). After curve fit-
ting, pIC50 values of 5.9 ± 0.05 for Tubo and 6.8 ± 0.03 for Mec were 
determined for their inhibitory effects on DN-IMI-induced [Ca2+]i 

responses. Note the treatment scheme (upper right corner), illustrat-
ing the experimental design. D, E Exemplary recordings of the flu-
orescence signal from a whole well are shown for the effects of D 
MLA and E MG 624 on the [Ca2+]i responses evoked by DN-IMI. 
F The fluorescence data (peak amplitude) of multiple experiments 
were quantified and normalized to control recordings (means ± SEM 
are displayed). After curve fitting, pIC50s of 6.8 ± 0.03 for MLA and 
6.8 ± 0.03 for MG 624 were determined. Note the treatment scheme 
(upper right corner), illustrating the experimental design. Detailed 
data on n numbers are found in Table S6
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nicotinic signaling (Fig. 4A, B). The corresponding con-
centration–response curves yielded pIC50 values of 6.9 for 
DN-IMI and 4.9 for IMI-olefin (Fig. 4C). The pIC50 of IMI-
olefin is comparable to the effects of its parent compound 
IMI and other neonicotinoids (Loser et al. 2021a). The pIC50 
of DN-IMI is comparable to pIC50 values reported for the 
desensitizing effect of nicotine on human α4β2, α4β4, and 
α3β4 nAChRs (Fenster et al. 1997; Lester 2004; Capelli 
et al. 2011). Thus, DN-IMI was more potent than several 
neonicotinoids (pIC50s of ~ 5.4) (Loser et al. 2021a) and IMI-
olefin at attenuating the response evoked by nicotine. For 
confirmation of the desensitization in a different cell model, 
we used SH-SY5Y cells. In addition, here, pretreatment with 
DN-IMI reduced/abolished the response to nicotine in the 
submicromolar range. This effect was clearly more potent 

than the desensitization observed by IMI and another neo-
nicotinoid pesticide, acetamiprid (Fig. S2). Thus, desensi-
tization by neonicotinoids was confirmed in a second cell 
model, and the particularly high potency of DN-IMI was 
reproduced.

To confirm that the desensitizing effect was not specific 
for nicotine stimulation, we used the endogenous nAChR 
agonist ACh and the selective non-α7 nAChR agonist 
ABT 594 for stimulation (Donnelly-Roberts et al. 1998; 
Michelmore et al. 2002) (Fig. 4D, E). Here, we observed 
pIC50 values of ~ 7.4 for the desensitization (Fig. 4F). This 
high potency is in agreement with other observations that 
desensitization of nAChR can occur at lower concentra-
tions than required for activation (Fenster et al. 1997; 
Paradiso and Steinbach 2003; Lester 2004; Rollema et al. 

Fig. 4   Desensitizing effects of DN-IMI and IMI-olefin on nAChRs. 
LUHMES neurons differentiated in 384-well plates were pretreated 
with various concentrations of DN-IMI or IMI-olefin for 4.5  min 
before different nAChR agonists were applied and [Ca2+]i signals 
were recorded. A, B Exemplary traces of the fluorescence signal from 
a whole well are shown for the desensitizing effects of different con-
centrations of A DN-IMI and B IMI-olefin on the [Ca2+]i responses 
evoked by nicotine. C The fluorescence data (peak amplitude of 3 µM 
nicotine) of multiple experiments were quantified and normalized 
to control recordings (means ± SEM are displayed). After curve fit-
ting, pIC50 values of 6.9 ± 0.03 for DN-IMI and 4.9 ± 0.03 for IMI-

olefin were determined. Note the treatment scheme (upper right cor-
ner), illustrating the experimental design. D, E Exemplary traces of 
the fluorescence signal are shown for the effects of DN-IMI on the 
responses evoked by D 30  nM ABT 594 and E 3  µM ACh. F The 
fluorescence data (peak amplitude of the agonist stimulus) of mul-
tiple experiments were quantified and normalized to control record-
ings (means ± SEM are displayed). After curve fitting, pIC50 values 
of 7.4 ± 0.03 (ABT 594) and 7.4 ± 0.03 (ACh) were determined. Note 
the treatment scheme (upper right corner), illustrating the experimen-
tal design. Detailed data on n numbers are found in Table S6



3706	 Archives of Toxicology (2021) 95:3695–3716

1 3

2010; Capelli et al. 2011; Arias et al. 2015; Rollema and 
Hurst 2018). The large difference in potency of DN-IMI 
and its parent compound IMI and other neonicotinoids is 
consistent with the literature data for potency differences 
in binding assays with mammalian nAChRs (Chao and 
Casida 1997; Tomizawa and Casida 1999; D’Amour and 
Casida 1999; Tomizawa et al. 2000).

In summary, DN-IMI desensitized nAChRs in the nM 
range, and this may be of toxicological significance, as 
nAChR signaling plays an important role in the central 

nervous system (Alkondon et al. 1999; Champtiaux et al. 
2003; Levin et al. 2006; Gotti et al. 2006; Zoli et al. 2015).

Activation of human α4β2, α7, and α3β4 nAChRs 
by DN‑IMI

To verify an agonistic effect of DN-IMI on the physiologically 
important neuronal nAChR subtypes α4β2, α7, and α3β4, we 
expressed each of them in Xenopus laevis oocytes and per-
formed two-electrode voltage-clamp recordings (Fig. 5A).
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First, we focused our experiments on the α4β2 recep-
tor, which can assemble in two different stoichiometries. 
The high-sensitivity (HS) variant (two α4 subunits and 
three β2 subunits) has been reported to have a pEC50(ACh) 
of ~ 5.7 in the Xenopus laevis oocyte expression system, 
while the low-sensitivity variant (three α4 subunits and 
two β2 subunits) had a pEC50(ACh) of ~ 4.1 (Bermudez 
and Moroni 2006; Moroni et al. 2006; Jonsson et al. 2006; 
Carbone et al. 2009; Mineur et al. 2009; Mazzaferro et al. 
2011; Harpsøe et al. 2011; Li et al. 2011; Benallegue et al. 

2013). In our system, we found for the α4β2 (HS) recep-
tor a pEC50(ACh) of ~ 5.7 (Fig. S3A, B). For nicotine, 
we found a pEC50 of 6.3, in line with the literature data 
(Moroni et al. 2006). DN-IMI yielded a relative pEC50 
of 6.3 (Fig. 5B, C). The data show a high potency for 
this nAChR subtype; our data suggest that DN-IMI has 
a similar potency but slightly lower efficacy (64% of full 
stimulation) than nicotine (Fig. S3C, D). Its parent com-
pound IMI did not trigger a concentration-dependent acti-
vation of the receptor in the tested concentration range 
(≤ 100 µM). For control purposes, we applied DN-IMI 
(30 µM) to Xenopus laevis oocytes without additional 
receptor expression (injection of water without mRNA). 
In this experimental setup, we did not detect any current 
responses (n = 5, data not shown). These findings show 
that DN-IMI only triggered inward currents via the activa-
tion of the heterologously expressed human nAChRs. This 
was further confirmed by antagonist experiments, where 
the response of the human α4β2 (HS) receptor to DN-IMI 
was concentration-dependently and reversibly blocked by 
the non-competitive nAChR antagonist Mec (Fig. S4).

To verify an agonistic effect of DN-IMI and IMI-olefin 
on human α7 nAChRs, we expressed this nAChR subtype 
in Xenopus laevis oocytes and performed two-electrode 
voltage-clamp recordings (Figs. 5D and S5). DN-IMI had 
a relative pEC50 of 4.5 with a lower efficacy than nicotine 
(Figs. 5D and S5A, D). Compared to nicotine, DN-IMI 
thus showed a slightly higher potency and a partial ago-
nistic effect (estimated maximum at ~ 81% of the maximal 
response to nicotine) on human α7 nAChRs, well in line 
with our Ca2+-imaging data (Fig. 2B, C). IMI-olefin and 
its parent compound IMI also stimulated significant inward 
currents but with a lower potency and efficacy than DN-IMI 
(Figs. 5D and S5B, D). The results for IMI match our previ-
ous findings with LUHMES and SH-SY5Y neurons (Loser 
et al. 2021a). The application of nicotine yielded a pEC50 
of 3.9 (Figs. 5D and S5C, D), which is comparable to the 
literature data (Briggs et al. 1995). As an internal consist-
ency check, we performed antagonist experiments, where 
the DN-IMI-triggered response of the human α7 nAChR 
was concentration-dependently and reversibly blocked by 
the selective α7 receptor antagonist MLA (Fig. S4).

As a third approach, we investigated the effects of DN-
IMI on human α3β4 nAChRs expressed by Xenopus laevis 
oocytes. The application of nicotine and ACh resulted in 
pEC50s of 4.0 and 3.8 (Figs. 5E and S6A, B, D), respec-
tively, which are both comparable to the literature data 
(Wang et al. 1996; Nelson et al. 2001; Jonsson et al. 2006). 
The addition of DN-IMI to oocytes expressing human α3β4 
nAChR yielded a relative pEC50 of 4.9 (Figs. 5E and S6C, 
D). IMI evoked small but significant inward currents in a 
concentration-dependent manner (Figs. 5E and S6D–F). 
Responses of the human α3β4 nAChR triggered by DN-IMI 

Fig. 5   Effects of DN-IMI on human nAChR subtypes heterologously 
expressed by Xenopus laevis oocytes. A The basic principle of the 
experiments with human nAChRs heterologously expressed by Xeno-
pus laevis oocytes is presented. (1) The genetic information (mRNA) 
of the respective nAChR subunits, in this example α4 (red) and β2 
(orange), is injected at the desired ratio [here: 1 (α4):10 (β2)] into the 
oocytes. (2) The oocytes are incubated for a few days to allow protein 
expression and membrane integration as functional nAChRs. (3) The 
experiments were performed in two-electrode voltage-clamp record-
ing mode. The agonist-evoked inward current through the nAChRs 
was measured by the current electrode, while the membrane poten-
tial of the oocyte was kept constant (VH = − 50 mV) by a regulated 
voltage electrode and its reference electrode in the bath solution. B 
Increasing concentrations of DN-IMI were added to the bath solu-
tion, with washout phases between the recordings. Exemplary inward 
currents through human α4β2 (HS) nAChRs are shown. Note that an 
excess of β2 subunits was used here to generate pentameric receptors 
with two α subunits (designated here as high-sensitivity (HS) vari-
ant, compared to receptors with > 2 α subunits). C The inward cur-
rent data (amplitude) of human α4β2 (HS) nAChRs heterologously 
expressed by Xenopus laevis oocytes of multiple experiments were 
quantified (means ± SEM are displayed). After curve fitting, relative 
pEC50 values (curve inflection point) of 6.3 ± 0.04 (estimated maxi-
mum amplitude at 64% of nicotine’s) for DN-IMI and 6.3 ± 0.04 for 
nicotine were determined. The significance of the responses trig-
gered by IMI was evaluated between the lowest concentration (3 µM) 
and the other concentrations (*: p < 0.05; n.s., not significant). The 
inward current amplitudes were normalized to the response induced 
by nicotine (10 µM). Exemplary current traces of DN-IMI and nico-
tine are shown in Fig. S3C and S3D, respectively. D The inward cur-
rent data (amplitude) of human α7 nAChRs heterologously expressed 
by Xenopus laevis oocytes of multiple experiments were quanti-
fied (means ± SEM are displayed), and after curve fitting relative 
pEC50 values of 4.5 ± 0.09 (estimated maximum of 83%) for DN-IMI 
and 3.9 ± 0.04 for nicotine were obtained. The significance of the 
responses triggered by IMI-olefin and IMI was evaluated between 
the lowest concentration (3  µM) and the other concentrations (*: 
p < 0.05). The current amplitudes were normalized to the response 
induced by nicotine (100 µM). Exemplary current traces of DN-IMI, 
IMI-olefin, and nicotine and the complete concentration–response 
curve for nicotine are shown in Fig. S5. E The inward current data 
(amplitude) of human α3β4 nAChRs heterologously expressed by 
Xenopus laevis oocytes of multiple experiments were quantified 
(means ± SEM are displayed), and after curve fitting relative pEC50 
values of 4.9 ± 0.03 for DN-IMI and 4.0 ± 0.01 for nicotine were 
determined. The significance of the responses triggered by IMI was 
determined between the lowest concentration (1  µM) and the other 
concentrations (*: p < 0.05). The current amplitudes were normal-
ized to the response induced by nicotine (100 µM). Exemplary cur-
rent traces of DN-IMI, IMI, and the complete concentration–response 
curve for nicotine are shown in Fig. S6C–F. Detailed data on n num-
bers are found in Table S6

◂
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were concentration-dependently and reversibly blocked by 
the nAChR antagonist Tubo (Fig. S4).

For the further characterization of DN-IMI on individual 
receptors, we investigated the effects of DN-IMI and IMI 
on the low-sensitivity variant of α4β2 (LS) and on α4β4 
nAChRs. DN-IMI yielded pEC50s of 5.3 for α4β2 (LS) and 
5.5 for α4β4 (Fig. S7). IMI did not trigger a concentration-
dependent activation of these two nAChR subtypes in the 
tested concentration range (≤ 100 µM).

Having obtained data on nicotine and DN-IMI for nAChR 
subtypes, we used them for a comparison of their potencies. 
For this purpose, we determined the absolute EC25 values 
(Fig. 6A). These data suggest that DN-IMI and nicotine 
were about equipotent on the α4β2 (HS) nAChR (less than 
half a log-step difference). On the other receptors, DN-IMI 
appeared slightly more potent than nicotine (about 0.6 log-
steps). To understand differences between experimental 
systems or possibly to predict toxicological consequences 
for brain areas with different receptor expression patterns, 
it was interesting to compare apparent (functional) receptor 
affinities: this showed that both ligands were more potent on 
the α4β2 (HS) nAChR than on other subtypes (> 1 log-step 
for DN-IMI; > 2 log-steps for nicotine), while there was no 
difference between, e.g., α7 and α3β4 (Fig. 6B). This might 
explain mixed responses, e.g., on LUHMES cultures that 
express all these receptor types, and it provides an expla-
nation for differences between, e.g., SH-SY5Y cells and 
LUHMES (the former cells predominantly express α7 recep-
tors but also α3-containing receptors (Loser et al. 2021a)).

In summary, the metabolite DN-IMI exhibits significantly 
higher potency and efficacy on the human nAChR subtypes 

than its parent compound IMI. We performed extensive 
molecular docking studies of nicotine, IMI, DN-IMI, and 
IMI-olefin to further substantiate the experimental findings 
from oocytes and to provide a molecular explanation. The 
modeling results suggest a positioning of DN-IMI similar to 
that of nicotine at the binding sites of two nAChR subtypes. 
In contrast, IMI and IMI-olefin tend to adopt inverted and 
less favorable binding poses (Figs. S8 and S9). The docking 
studies thus provide a potential explanation for the lower 
signaling potency of these two compounds compared to 
DN-IMI.

Exposure considerations and in vitro‑to‑in vivo 
comparisons

While the above approaches inform on potential hazards by 
DN-IMI, the interpretation of the data and their use for risk 
assessment requires some understanding of concentrations 
to be reached in human tissues/body fluids. Due to the lack 
of more direct human data, we built a physiology-based 
toxicokinetic (PBTK) model to predict the plasma con-
centrations of DN-IMI. Because of the limited availability 
of human metabolism and exposure data for DN-IMI, the 
model construction was based on data from atenolol, a com-
pound with similar physicochemical properties, and with 
well-known human pharmacokinetics. As DN-IMI-specific 
parametrization of the model, we used metabolic turnover 
data from human primary hepatocytes and physicochemical 
properties of DN-IMI as predictors for passive membrane 
permeability and protein binding (Table S8). As input (oral 
exposure), we used 0.016 mg DN-IMI/kg body weight. This 

Fig. 6   Comparative display of agonist potencies at nAChRs. Oocyte 
recordings were performed, and data for nicotine and DN-IMI stimu-
lations are normalized as in Fig. 5. From the curve-fitted concentra-
tion–response data, EC25 values were determined. A The absolute 
EC25 values are shown for the effects on α7 (7.6  µM by DN-IMI 
and 30.2  µM by nicotine), α3β4 (5.2  µM by DN-IMI and 27.5  µM 
by nicotine), and α4β2 (HS) (0.33 µM for DN-IMI and 0.17 µM for 

nicotine) nAChRs. Note that the latter data set is shown as insert, 
because of the altered y-axis. B The ratios of the absolute EC25 values 
between the nAChR subtypes α7, α3β4, and α4β2 (HS) are displayed 
for the effects of DN-IMI and nicotine. HS = high-sensitivity vari-
ant of the receptor (two α4 subunits per receptor); note the different 
y-axis of the insert
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amount corresponds to 10% of the value used earlier for IMI 
PBTK modeling (Loser et al. 2021a). Our rationale was that 
DN-IMI can reach about 10% of the IMI content in fruits, 
vegetables, and cereals (see the introduction for reference).

Under these conditions, the model predicted average 
plasma concentrations of around 50 nM and peak concen-
trations in a subfraction of the human population of at least 
100 nM (Fig. S10A). The plasma concentrations predicted 
for atenolol from our PBTK model were in good agreement 
with measured data found in the literature (Fig. S10B). We 
see this as an indication of a good predictive capacity of 
our model. As the central nervous system is a main target 
tissue of DN-IMI, we also predicted brain concentrations. 
They were even slightly higher than the plasma concentra-
tions (Fig. S10C). It is likely that the free diffusion of the 
compound through the blood–brain barrier also predicts a 
free distribution into the fetus. It is, therefore, reasonable to 
assume that also fetal brains would be exposed to DN-IMI 
at concentrations up to the three-digit nM range.

BMC modeling of our [Ca2+]i signaling and single 
nAChR data showed 20% response (in different systems) at 
about 100–300 nM of DN-IMI (Tables S9 and S10). Such 
concentrations are close to the ones reachable in some sub-
jects by dietary exposure. While such concentrations may 
not be reached for the average of the population, the gap 
between realistic internal exposure levels and the minimal 
effect concentration is less than tenfold. This marginal safety 
buffer is eliminated, if receptor desensitization is consid-
ered as an effect parameter: the BMC for this endpoint was 
at ~ 17 nM (Table S11, for a 20% effect). Such concentrations 
may be reached by the consumption of food derived from 
crops treated with IMI. Notably, the desensitizing effect may 
be equally problematic for normal brain function and neu-
ronal development, as the direct activation of the nAChRs.

To conclude these preliminary risk assessment consid-
erations, it is important to consider that exposure to DN-
IMI may also occur through the metabolism of IMI after 
it has been ingested. From rodent experiments, it is clear 
that DN-IMI is generated after exposure to IMI, and that 
the endogenous metabolite DN-IMI distributes to the brain 
(Chao and Casida 1997; Ford and Casida 2006). In addition, 
goat data suggest that IMI is converted to DN-IMI (about 
25% of the IMI dose recovered in the liver) (Anon 2006). In 
rabbits, DN-IMI was excreted in the urine after exposure to 
IMI (Vardavas et al. 2018), and this agrees well with human 
biomonitoring data that identified high (several fold higher 
than IMI) levels of DN-IMI in urine (Wang et al. 2020).

If one assumes that 10% of ingested IMI is converted 
to DN-IMI, then the endogenously formed metabolite may 
reach levels of a similar magnitude as those generated 
from direct ingestion of the metabolite (assuming that the 
intake of IMI is 10 times higher than that of DN-IMI (input 
parameter of our PBTK model, based on food consumption 

data)). Therefore, a mixed exposure to IMI, DN-IMI, but 
also other metabolites, either produced endogenously (see 
PBTK model) or exogenously (see introduction), seems to 
be realistic and may lead to the summation of their adverse 
effects on the organism.

Even though such considerations of potential internal 
exposure are consistent with the literature data, they need to 
be considered as very preliminary. There is still considerable 
uncertainty on the human metabolism. It is not known which 
percentage of IMI is metabolized to DN-IMI within the liver 
and whether other tissues also contribute to the metabolism. 
The situation is complex, as several competing enzymes may 
oxidize or reduce IMI. Besides cytochrome P450 enzymes, 
there is evidence for the contribution of cytosolic aldehyde 
oxidases (Dick et al. 2005; Swenson and Casida 2013; Var-
davas et al. 2018). These enzymes show high species varia-
tion in their expression and activity (Dick et al. 2005; Pryde 
et al. 2010). Considering that humans express relatively high 
levels of aldehyde oxidase, data from animals cannot be eas-
ily translated to humans, and experiments are ongoing to bet-
ter quantify IMI metabolism by different cell compartments.

Conclusions and outlook

The present study shows that the IMI metabolite DN-IMI 
potently (at sub-micromolar concentrations) affects human 
nAChRs. This was found both in neuronal cultures and in 
defined individual receptor subtypes expressed in Xeno-
pus laevis oocytes. The evidence from all systems clearly 
indicates a much higher potency of DN-IMI relative to its 
parent compound IMI. The comparative data show that the 
desnitro metabolite is equipotent to nicotine, while another 
IMI metabolite, IMI-olefin, rather was equipotent to IMI. 
The study on DN-IMI showcases the role of metabolism for 
human neurotoxicology, as it demonstrates that a particular 
metabolite can be several orders of magnitude more potent 
as a neuronal signaling disrupter (desensitization) than its 
parent compound. This may have consequences for the risk 
assessment of the parent compound and for the need of addi-
tional data on metabolite generation in the environment and 
in man. Our preliminary modeling suggests that bioactive, 
potentially toxic DN-IMI concentrations may be reached 
by nutritional exposure in the normal (not professionally 
exposed) population.

Median lethal dose (LD50) studies with mice showed that 
DN-IMI (LD50: 6–24 mg/kg) is more toxic than its parent 
compound IMI (LD50: 35–50 mg/kg) (Chao and Casida 
1997; Tomizawa et al. 2000, 2001) and IMI-olefin (no lethal-
ity at the highest tested dose of 50 mg/kg) (Chao and Casida 
1997). Little information is available on more subtle forms 
of neurotoxicity, and to our knowledge, no data are available 
on the potential developmental neurotoxicity of DN-IMI. 
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The latter is important, considering that nicotine is an estab-
lished developmental neurotoxicant (Levin et al. 1993; LeS-
age et al. 2006; Aschner et al. 2017). The former is relevant, 
as different nAChR subtypes are present on, e.g., dopamin-
ergic neurons and play an important role in the modula-
tion of the electrical activity and neurotransmitter release 
(Rapier et al. 1988; Grady et al. 1992; Quik and Kulak 2002; 
Mameli-Engvall et al. 2006; Quik and Wonnacott 2011; de 
Kloet et al. 2015). Thus, substance-induced disturbances of 
nicotinic signaling can have an impact on the functioning, 
plasticity, and development of the nervous system (Wheeler 
and Cooper 2004; Welsby et al. 2006; Slotkin et al. 2006; 
Ziviani et al. 2011; Lozada et al. 2012; de Kloet et al. 2015; 
Romoli et al. 2019).

Several studies reported that the binding affinity of DN-
IMI to mammalian or chicken nAChRs was similar to the 
affinity of nicotine and clearly higher than the one of its 
parent compound IMI (Chao and Casida 1997; Tomizawa 
and Casida 1999, 2000; D’Amour and Casida 1999; Tomi-
zawa et al. 2000). Our functional data using a physiological 
signaling response in human neurons are in line with these 
observations. DN-IMI triggered [Ca2+]i responses at con-
centrations ≥ 100 nM, i.e., it was at least two orders of mag-
nitude more potent than its parent compound (Loser et al. 
2021a). These findings were further supported by oocyte 
recordings, which showed an agonistic effect of DN-IMI on 
human α7 and several non-α7 nAChRs. DN-IMI activated 
α4β2 (HS) receptors at 20-fold lower concentrations than α7 
and α3β4 nAChRs. This potency difference on α7 and α3β4 
vs α4β2 (HS) is also seen for nicotine. Such relative recep-
tor preferences may be responsible for a selective toxicity 
on certain brain regions or neuronal functions, and future 
studies should also include assays on non-neuronal nAChR.

In desensitization experiments with LUHMES, the pre-
treatment with DN-IMI inhibited the subsequent activa-
tion of the nAChRs at concentrations ≥ 10 nM (BMR10, 
Table S11), which is ~ 70 times more potent compared to 
the effects of IMI (Loser et al. 2021a). The more potent 
desensitization effect of DN-IMI in comparison with IMI 
was confirmed in SH-SY5Y neurons (Fig. S2). After pro-
longed agonist exposure, nicotinic receptors desensitize by 
adopting a high-affinity and agonist-bound, non-conduct-
ing conformation (Nemecz et al. 2016; Morales-Perez et al. 
2016). This may adversely affect normal neuronal function 
and neurodevelopment.

For adverse outcome pathways (AOPs), it is important 
to understand the molecular initiating events (MIEs) both 
for parent compounds and also for the relevant metabolites 
formed (Leist et al. 2017). Until now, few such cases have 
been fully resolved, as the focus in neurotoxicology has 
either been on toxicants acting independent of metabo-
lism, e.g., rotenone or vinca alkaloids (Delp et al. 2018b, 

2021), or on compounds that act by a single toxic metab-
olite, without any effect of the parent, such as methyl-
phenylpyridinium (Schildknecht et al. 2015; Terron et al. 
2018) or methylmercury (Aschner et al. 2017). In many 
other cases, the target is little defined (e.g., for solvents or 
acrylamide). In this context, mechanistic studies on neoni-
cotinoids and their metabolites should eventually provide 
an explanation for different potencies and activity spectra 
of all metabolites on various nAChRs. While we provide 
here evidence for the stimulation of nAChRs and on the 
attenuation of signaling (by desensitization) as MIEs, it 
is not possible to predict the most relevant adverse out-
come. The reason for this is that nicotinic receptors are 
widespread throughout the central nervous systems and 
they are crucial for a large panel of higher order nervous 
system functions (Levin et al. 2006; Gotti et al. 2006; Zoli 
et al. 2015; Terry and Callahan 2019).

Concerning the understanding of the MIE, we used 
molecular docking studies to provide a rationale for the 
experimental findings. The availability of several X-ray 
structures with co-crystallized neonicotinoids has facilitated 
the establishment of a robust docking model (Ihara et al. 
2008, 2014; Loser et al. 2021a). In the present work, we 
focused on the overlap of the pesticide N-heteroaromatic 
ring with the pyridine ring of nicotine. The comparison 
with published studies showed good accuracy of our model. 
Structural alignments of these complexes and docking stud-
ies at human nAChRs demonstrate that the electronegative 
moiety in IMI can contribute to a flip of the imidazolidine 
ring in the binding pocket. We demonstrate here that this is 
less likely to happen with DN-IMI. This feature may explain 
its higher affinity/potency. Our binding hypothesis is sup-
ported by ranking via different docking scores, binding free 
energy approximates, and comparisons of nicotinoids and 
neonicotinoids bound to homologous proteins. This gives 
a rationale for the functional differences of neonicotinoids 
and nicotine that were reported for cell experiments with 
LUHMES and SH-SY5Y cells (Loser et al. 2021a). These 
studies are still mainly qualitative, and their applicability 
domain is most likely narrow (applying only to the com-
pounds of this study). However, our approach forms the 
basis for the development of a more powerful and refined 
model in the future. Eventually, this might then be able to 
quantitatively predict MIEs for the dozens of neonicotinoid 
metabolites found in food. Such a model might distinguish, 
e.g., high- vs. low-affinity ligands or discriminate between 
agonists and antagonists.

Further research is also needed to elucidate whether the 
signaling disturbances revealed here have lasting effects on 
neuronal function. It has been reported that other nAChR 
agonists (including nicotine) may affect nervous system 
plasticity and development (Levin et al. 1993; Wheeler 
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and Cooper 2004; Welsby et al. 2006; Slotkin et al. 2006; 
Ziviani et al. 2011; Lozada et al. 2012; Romoli et al. 2019). 
Epidemiological studies are quite scarce, but some general 
developmental/neurological effects have been reported for 
neonicotinoids used in agriculture or anti-tick sprays (Cim-
ino et al. 2017).

Some other compounds that evoke disturbances of neu-
ronal network activity without causing structural changes 
have been reported to induce developmental neurotoxicity 
(DNT). Examples are 3,4-methylenedioxymethamphetamine 
(MDMA, ecstasy), heroin, or nicotine (Levin et al. 1993; 
Slikker Jr et al. 2005; LeSage et al. 2006; Dwyer et al. 2009; 
Slotkin et al. 2016; Aschner et al. 2017). Moreover, com-
pounds for example methylmercury and lead can have severe 
effects on the developing brain, although they have a low 
neurotoxicity for adults (Grandjean and Landrigan 2014). 
These examples make it conceivable that neonicotinoids and 
their metabolites such as DN-IMI may exhibit a DNT risk. 
However, a transfer of knowledge from one compound (e.g., 
nicotine) to others (e.g., DN-IMI) holds the risk of uncer-
tainties (Rovida et al. 2020). Therefore, further mechanis-
tic studies are needed to address the difficult question of a 
DNT hazard of DN-IMI and other neonicotinoid metabolites 
like a descyano metabolite of thiacloprid, which has also 
been reported to exhibit a higher affinity for mammalian and 
chicken nAChRs than its parent compound (Tomizawa and 
Casida 2000; Tomizawa et al. 2000).
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