
Vol.:(0123456789)1 3

Archives of Toxicology (2021) 95:1793–1803 
https://doi.org/10.1007/s00204-021-03013-3

ORGAN TOXICITY AND MECHANISMS

Drug properties and host factors contribute to biochemical 
presentation of drug‑induced liver injury: a prediction model 
from a machine learning approach

Andres Gonzalez‑Jimenez1   · Ayako Suzuki2,3 · Minjun Chen4   · Kristin Ashby4 · Ismael Alvarez‑Alvarez5   · 
Raul J. Andrade5,6   · M. Isabel Lucena5,6,7 

Received: 19 January 2021 / Accepted: 25 February 2021 / Published online: 5 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Drug-induced liver injury (DILI) presentation varies biochemically and histologically. Certain drugs present quite consistent 
injury patterns, i.e., DILI signatures. In contrast, others are manifested as broader types of liver injury. The variety of DILI 
presentations by a single drug suggests that both drugs and host factors may contribute to the phenotype. However, factors 
determining the DILI types have not been yet elucidated. Identifying such factors may help to accurately predict the injury 
types based on drugs and host information and assist the clinical diagnosis of DILI. Using prospective DILI registry datasets, 
we sought to explore and validate the associations of biochemical injury types at the time of DILI recognition with compre-
hensive information on drug properties and host factors. Random forest models identified a set of drug properties and host 
factors that differentiate hepatocellular from cholestatic damage with reasonable accuracy (69–84%). A simplified logistic 
regression model developed for practical use, consisting of patient’s age, drug’s lipoaffinity, and hybridization ratio, achieved 
a fair prediction (68–74%), but suggested potential clinical usability, computing the likelihood of liver injury type based on 
two properties of drugs taken by a patient and patient’s age. In summary, considering both drug and host factors in evaluat-
ing DILI risk and phenotypes open an avenue for future DILI research and aid in the refinement of causality assessment.
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Introduction

Idiosyncratic drug-induced liver injury (DILI) is a signifi-
cant public health issue. Although the occurrence is rela-
tively uncommon, once clinically significant DILI occurs, 
about 10% of the patients may develop life-threatening 

clinical outcomes, such as acute liver failure, with most 
requiring liver transplantation or succumbing to death within 
6 months (Andrade et al. 2019; Garcia-Cortes et al. 2020). 
Without prompt identification and drug cessation, 5.7–18.5% 
of DILI cases may progress to chronic liver disease, and in 
rare cases, to hepatic fibrosis and cirrhosis (Medina-Caliz 
et al. 2016; Hayashi and Björnsson 2018).
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Clinical DILI manifestations are heterogeneous. By 
convention, DILI is classified according to the activity of 
aminotransferases and alkaline phosphatases into hepato-
cellular (HC), cholestatic (CS) and mixed injury at the time 
of recognition (Aithal et al. 2011), which has diagnostic 
and prognostic implications (EASL 2019). Indeed, initial 
biochemical presentation, histologic features, and clinical 
outcomes considerably vary among individuals who develop 
DILI, even when caused by the same agent. DILI could also 
mimic other liver diseases, such as autoimmune hepatitis 
and fatty liver diseases, which makes the clinical DILI diag-
nosis challenging. As a result, DILI is frequently under- or 
misdiagnosed.

We previously proposed a concept of drug–host inter-
play in DILI, theorizing that DILI susceptibility and phe-
notype are defined by drug properties, host responses, and 
their interplay (Chen et al. 2015). To date, very few stud-
ies evaluated DILI phenotypes, considering effects of both 
drug properties and host factors, and their interactions. In 
this study, we aimed to analyze well-characterized DILI 
cases at the Spanish DILI Registry and the information on 
drug properties collected from several established knowl-
edge databases to explore factors associated with initial 
biochemical presentation of the DILI cases, applying a 
machine learning approach. Overall goals of these analyses 
were: (1) to identify drug properties and host factors that are 
associated with biochemical liver injury types at the time of 
DILI recognition and (2) to develop random forest models 
to classify biochemical injury patterns, and explore factors 
(or combinations of factors) that contribute to an accurate 
classification of biochemical liver injury types, i.e., HC vs. 
CS injury. Further, utilizing the knowledge gained from 
the machine learning approach, we developed a prediction 
model for practical use to aid in future causality assessment, 
by providing an estimated likelihood of HC vs. CS injury 
based on drug properties of causal drug and host factors. 
Our analysis demonstrated that both drug properties and host 
factors are associated with initial biochemical presentation 
while interacting each other. A simplified prediction model 
showed a fair performance, suggesting other host factors 
need to be considered in future research.

Materials and methods

Study design

A cross-sectional analysis was conducted using the data 
retrieved from the Spanish DILI Registry. A random deci-
sion forest approach (non-parametric, ensample computer 
learning) was applied to explore factors (or combinations of 
the factors) that contribute to accurate classification of bio-
chemical liver injury types. Further, a simplified model was 

developed to predict HC vs. CS injury at the presentation, 
while considering drug–drug and drug–host interactions. 
The performance of the random forest model and the simpli-
fied prediction model were further validated using independ-
ent, well-characterized DILI cases from the Latin American 
DILI Network. Detailed methods are provided below.

Study population

Among cases enrolled at the Spanish DILI registry, cases 
that (1) met DILI criteria according to the international con-
sensus (Bénichou 1990; Aithal et al. 2011), (2) were adjudi-
cated to a single drug, and (3) were scored definite, probable, 
or possible when applying the CIOMS/RUCAM causality 
assessment scale (Danan and Benichou 1993), were included 
in the analysis. DILI cases attributed to illegal drugs, herbal 
medicines, dietary supplements, biological products, or 
drugs with non-oral routes of administration, and cases with 
pre-existing liver diseases, such as viral hepatitis, cirrho-
sis, cholangitis, alcoholic steatohepatitis and autoimmune 
hepatitis, were excluded, leaving 610 cases for our analysis.

DILI cases at the Latin American DILI Registry that met 
the above inclusion criteria were included in our analysis as 
an independent validation set (N = 308). Detailed methods 
of both registries have been described elsewhere (Andrade 
et al. 2005; Bessone et al. 2016). The study protocols were 
approved by local ethics committees. All patients enrolled in 
the registries gave their written informed consent.

Case categorization based on biochemical 
presentation

The first set of liver enzyme measurements (alanine ami-
notransferase [ALT] and alkaline phosphatase [ALP]) avail-
able at the time or after DILI recognition were used to cal-
culate ALT (fold-increase above ULN)/ALP (fold-increase 
above ULN) ratio (i.e., R-value) (Bénichou 1990). The pat-
tern of liver injury was classified using the R-value as HC 
(R ≥ 5), CS (R ≤ 2) and mixed (2 < R < 5) (Aithal et al. 2011; 
EASL 2019). Culprit drugs were classified according to the 
Anatomical Therapeutic Chemical (ATC) Classification 
by the World Health Organization (WHO) (World Health 
Organization 2018).

Other clinical variables

Patient information on demographics, co-medications, 
comorbidities, and laboratory data at DILI recognition was 
collected from the DILI registry database. Eosinophilia was 
considered when the serum eosinophil value reached > 5% 
of white blood cells. Lymphopenia was defined as a lym-
phocyte counting less than 20% or less than 1.5 × 103 cells.
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Drug categorization based on biochemical injury 
type

To explore drug properties associated with specific biochem-
ical injury types, we classified causal drugs implicated in 
the Spanish DILI Registry based on their dominant injury 
types. Drugs dominantly causing CS injury were arbitrar-
ily defined as presenting CS injury in ≥ 60% cases and HC 
injury in ≤ 25% cases, while drugs causing HC injury were 
defined as presenting HC injury in ≥ 80% cases but no CS 
injury. Drugs implicated as causal in at least three DILI 
cases were included in the classification. The mixed injury 
was not considered in this drug classification, focused on 
HC vs. CS injury. Reports from other prospective DILI reg-
istries, case reports in the literature, and the information 
available at the LiverTox database (https​://liver​tox.nlm.nih.
gov/) were also used to assess/validate the classification of 
the most prevalent type of liver injury.

Drug properties

Drug property information was retrieved from the Liver 
Toxicity Knowledge Base (LTKB) database developed 
and maintained at the US Food and Drug Administration’s 
National Center for Toxicological Research (Chen et al. 
2013; Hong et al. 2016). This knowledge base accumulates 
comprehensive drug property information on US-marketed 
pharmaceuticals. Information on drugs not marketed in 
the United States was obtained from the drug summary of 
product characteristics at the Spanish Medicines Agency (in 
Spanish, Agencia Española de Medicamentos y Productos 
Sanitarios, AEMPS). In the LTKB database, hybridization 
ratio was defined as the ratio between the number of sp3 
and sp2 orbitals in drug molecule. Heterorings were defined 
as the organic rings with no carbons in their main atomic 
substituents (heteroatoms) (e.g., sulfur or halogen atoms). 
Information on specific variables such as enterohepatic cir-
culation and percentage of drug elimination in parent drug 
form was obtained from the DrugBank database (Wishart 
et al. 2006). Drug disposition was categorized according 
to the Biopharmaceutical Drug Disposition Classification 
System (BDDCS) (Benet et al. 2011; Broccatelli et al. 2012). 
Hepatic metabolism was classified in accordance with the 
study done by Lammert et al. (2010). Lipoaffinity was deter-
mined as described by Liu et al. (2001). Compound electron-
egativity was determined using the Pauling electronegativity 
scale to calculate a mean electronegativity value of all atoms 
for each compound. High electronegativity was defined as 
a mean electronegativity value ≥ 1.016 (Matsunaga et al. 
2003). Bile salt export pump (BSEP) inhibition is generally 
reported as a drug’s IC50 value, the drug dose required to 
inhibit 50% of BSEP activity (Warner et al. 2012). Drugs 

with BSEP IC50 < 300 μM were considered BSEP inhibitors 
in the current study.

Statistical analysis

Results are presented as mean ± SD or median [interquartile 
range] (for continuous variables) or percentile (dichotomous 
or ordinal variables). We only considered the variables avail-
able in at least 70% of the drugs/cases in this study. First, 
univariate analyses were performed to study the associa-
tions between the observed injury types with clinical vari-
ables in the DILI cases. We also compared drug proper-
ties between drugs dominantly associated with HC and CS 
injury, as defined above. We used the Student’s t test, Wil-
coxon Rank Sum test, analysis of variance (ANOVA) with 
the post hoc Tukey’s HSD test or Kruskal–Wallis test with 
the Mann–Whitney U test, as appropriate, for continuous 
variables and the Chi-square test for categorical variables. 
Due to the exploratory nature of this study, p values were not 
adjusted for multiple comparisons in the univariate analysis.

Next, a random decision forest approach was applied 
to explore both host and drugs factors which significantly 
contributed to the classification of biochemical liver injury 
types. Mixed cases were excluded from this analysis, leaving 
501 cases for this analysis. We trained a random decision 
forest regression model to identify the best-performing deci-
sion tree to distinguish HC from CS injury, using a combi-
nation of drug/host variables. Through iterative bootstrap 
sampling from the 70% of the original data (training set), 
random forest classification models were developed using 
R software (version 3.6.0), by which 100,000 decision trees 
were generated. The remaining population (30%) was used 
for cross-validation. All models were evaluated based on 
their respective p value (McNemar’s test), accuracy, and 
predictive values. To assess the importance of variables in 
the accuracy of classification, we evaluated the variables in 
all decision tree models using two scales, Mean Decrease 
Accuracy (MDA) and Mean Decrease Gini (MDG). MDA is 
a measure of reduction in general model accuracy from per-
muting values in the feature, i.e., the number or proportion 
of observations that are incorrectly classified by removing 
the feature (values from the feature) in question from the 
model. Thus, the higher MDA (e.g., higher reduction of the 
accuracy when the variable is removed), the more important 
the variable is deemed for classification of the data. MDG 
is a measure of average gain of node purity by splits of a 
given variable, i.e., a measure of how well a variable can 
split mixed labeled nodes into pure nodes. The higher MDG, 
the more important the variable is deemed in gaining node 
purity. The random decision forest analyses were performed 
using three different datasets: the entire cases, amoxicillin/
clavulanate cases, and non-amoxicillin/clavulanate cases, 
as nearly one-fourth of the DILI cases at the Spanish DILI 

https://livertox.nlm.nih.gov/
https://livertox.nlm.nih.gov/
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Registry were attributed to amoxicillin/clavulanate (23%). 
The best-performing model for the entire cases dataset was 
validated using the independent cohort from the Latin Amer-
ican DILI Network.

After a panel of the investigators carefully vetted the 
above results, we developed a prediction model for practical 
use based on the best-performing decision tree in the entire 
cases dataset. We used a binary logistic regression model 
with the biochemical injury type as an outcome (HC vs. CS 
injury) using JMP Pro 14 from SAS Institute Inc., Cary, NC. 
The factors included in the best-performing decision tree 
were considered as predictors. They were further evaluated 
for potential drug–drug, drug–host, and host–host interac-
tions using tabulations and iteratively assessed their contri-
bution to the prediction performance (measured by the area 
under the ROC curve). A final model was selected based on 
the maximum area under the ROC curve while considering 
the simplicity for broader clinical use. Significant factors (p 
value < 0.05 of Wald test, used to evaluate the significance 
of individual coefficients in the model) yet yielding a neg-
ligible contribution to the predictive performance were not 
included in the final model for the simplicity. The developed 
model was also applied in the Latin American DILI Network 
cohort for validation.

Results

Clinical characteristics and the associations 
with biochemical liver injury types

A total of 610 patients with the three types of liver injury: 
HC, CS and mixed (median age and interquartile range: 
59 [43–70] years) were included. Overall, 52% (N = 316) 
were women, and the majority were native-born Spanish. 
Patient characteristics and clinical manifestations at DILI 
recognition among different injury patterns are summarized 
in Table 1. Patients with CS were older than patients with 
HC injury (p value < 0.001, median age and range: HC 56 
[39–68] years vs. CS 66 [53–77] years). Women were more 
prevalent among patients with HC compared to patients 
with CS injury, albeit the difference did not reach statisti-
cal significance (54% vs. 45%, p value = 0.104). Jaundice, 
eosinophilia, and lymphocytopenia were more frequently 
observed among patients with CS and mixed injury while 
positive autoantibodies were more prevalent among patients 
with HC injury (p value = 0.021 for the three-group com-
parison) (Table 1).

Patients with HC injury had a higher prevalence of drug 
allergy history than patients with CS injury (17% vs. 7%, p 
value = 0.026). Prevalence of underlying diseases at the time 
of event was 74% in the entire population and was signifi-
cantly lower in patients with mixed type of liver injury (62%, 

p value = 0.012 for the three-group comparison). Vascular, 
endocrine, cardiac, and renal diseases were more prevalent 
in patients with CS injury while rheumatologic diseases 
were more prevalent in patients with HC injury (Table 1).

Categorization of causal drugs by dominant 
biochemical injury types and the association 
with drug properties

Among the 610 DILI cases, 155 drugs/combination drugs 
were identified as a cause of DILI. Of them, 91 drugs (59%) 
were exclusively presented in this population with HC or CS 
injury, while 64 drugs (41%) were presented with HC and 
CS, depending on the cases. Of the 91 drugs, the majority 
were implicated in one or two DILI cases, thus excluded 
from this analysis. Only 14 of the 91 drugs were associ-
ated with 3 or more DILI cases. From supplementing DILI 
cases retrieved from other resources (see the methods), six 
drugs, i.e., azathioprine (immunosuppressant), captopril 
(ACE inhibitor), chlorpromazine (antipsychotic), cloxacil-
lin (beta-lactamase resistant penicillin), norfloxacin (fluoro-
quinolone), and thiamazole (i.e., methimazole, antithyroid 
drug) were considered as drugs dominantly causing CS 
injury. Nine drugs, i.e., acarbose (alpha glucosidase inhibi-
tor), bentazepam (benzodiazepine), cyproterone (antiandro-
gens and estrogens), ebrotidine (H2 receptor antagonist), 
isoniazid (hydrazide), leflunomide (selective immunosup-
pressant), paracetamol (i.e., acetaminophen, analgesic), ser-
traline (selective serotonin reuptake inhibitor), and trova-
floxacin (fluoroquinolone) were considered as drugs causing 
mainly HC injury.

Properties of drugs dominantly associated with HC vs. 
CS injury are summarized in Table 2. None of the drug 
properties was significantly associated with injury types, 
probably due to the low numbers of drugs that present domi-
nant injury types (6 CS drugs vs. 9 HC drugs). Significant 
hepatic metabolism (≥ 50%) tended to be more prevalent 
among drugs dominantly presenting HC vs. CS injury (89% 
vs. 50%, p value < 0.1).

Random decision forest analysis of drug properties 
and host factors in classifying HC vs. CS injury

We performed random decision forest analysis to identify 
factors associated with specific injury types, HC vs. CS 
injury. To note, mixed cases were excluded in this and the 
following analyses to focus on variables discriminating two 
distinct DILI types, HC and CS injury (N = 501). The top 
18 variables deemed important by MDA and MDG in the 
analysis are shown in Fig. 1. The accuracy of the best-per-
forming model in the entire cases dataset was 0.84 (95% CI 
0.78, 0.88) (Fig. 2). The top-performing models showed the 
best yet equivalent performance, including age, duration of 
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Table 1   Demographics and clinical characteristics of 610 DILI cases classified by the type of liver injury

Underlying diseases groups: vascular diseases includes: aneurysm, peripheral vascular disease, Raynaud’s disease, hypertension, venous insuf-
ficiency, postthrombotic syndrome and deep venous thrombosis; endocrine diseases: goiter, diabetes mellitus, Basedow’s syndrome, hyperthy-
roidism and hypothyroidism; gastrointestinal diseases: colon cancer, lymphocytic colitis, celiac disease, Crohn, esophagitis, gastritis, upper gas-
trointestinal bleeding, inguinal herniorrhaphy, pancreatitis, colon polyps, gastroesophageal reflux and irritable bowel syndrome; cardiac diseases: 
Arrhythmias, ventricular atrial block, endocarditis, atrial fibrillation, acute myocardial infarction, Wolff–Parkinson–White and tachycardia; 
rheumatological diseases: arteritis, connective tissue, Still’s disease, scleroderma, ankylosing spondylitis, lupus, myasthenia gravis, rheumatoid 
arthritis, polyarthritis and Sjögren; renal diseases: diabetic nephropathy, chronic renal failure
BMI body mass index, ANA anti-nuclear antibodies, ASMA anti-smooth-muscle antibodies, AMA anti-mitochondrial antibodies, AST aspartate 

Hepatocellular
(N = 389)

Cholestatic
(N = 112)

p value Mixed
(N = 109)

p value

Demographics parameters
Age, median (range) 56 (11–88) 66 (16–90) 0.0001 63 (14–88) 0.0001
Women, N (%) 211 (54) 51 (45) 0.1041 54 (50) 0.2332
BMI, mean (range) 25 (17–38) 26 (17–42) 0.4651 26 (17–36) 0.6080
Clinical parameters
Duration of treatment, median day (range) 40 (1–2313) 16 (1–1826) 0.0007 13 (1–1827) 0.0001
Time to onset, median day (range) 30 (1–2313) 20 (1–1828) 0.0023 15 (1–1826) 0.0001
Daily doses, median mg (range) 300 (0.4–6000) 600 (0.15–5625) 0.0004 400 (0.09–4250) 0.0014
Severity, N (%) 0.0001 0.0001
 Mild 147 (39) 22 (20) 29 (26)
 Moderate 180 (48) 79 (73) 76 (70)
 Severe 31 (8.2) 6 (5.6) 4 (3.7)
 Fatal/transplant 20 (5.3) 1 (0.9) –

Jaundice, N (%) 243 (63) 82 (74) 0.0331 82 (75) 0.0137
Rash, N (%) 21 (6) 9 (9) 0.3046 13 (13) 0.0610
Eosinophilia, N (%) 73 (20) 35 (32) 0.0060 37 (34) 0.0011
Lymphopenia, N (%) 57 (18) 30 (31) 0.0059 27 (27) 0.0118
Diabetes, N (%) 44 (11) 19 (17) 0.1118 12 (11) 0.2490
Hypertension, N (%) 66 (24) 33 (40) 0.0055 29 (34) 0.0112
Autoantibodies positivity, N (%) 89 (29) 18 (20) 0.0904 15 (16) 0.0209
 ANA 58 (19) 14 (15) 0.4357 9(9) 0.0891
 ASMA 33 (11) 8 (9) 0.6481 5 (5) 0.2561
 AMA 10 (3) – 0.0871 1 (1) 0.1245

Previous allergic reactions 42 (17) 5 (7) 0.0257 8 (12) 0.0620
Underlying diseases, N (%) 294 (76) 87 (78) 0.6443 68 (62) 0.0123
Underlying diseases groups, N (%)
Vascular 67 (17) 38 (34) 0.0001 29 (27) 0.0004
Endocrine 46 (12) 27 (24) 0.0012 13 (12) 0.0034
Gastrointestinal 47 (12) 20 (18) 0.1136 7 (6.4) 0.0337
Cardiac 34 (8.7) 21 (19) 0.0028 11 (10) 0.0106
Rheumatological 30 (7.7) 3 (2.7) 0.0584 3 (2.8) 0.0420
Kidney 4 (1.0) 8 (7.1) 0.0002 1 (0.9) 0.0003
Concomitant drugs, N (%) 281 (72) 88 (79) 0.1799 78 (72) 0.3711
Therapeutic categories of concomitant drugs, N (%)
B (hematological) 29 (7.4) 17 (15) 0.0126 7 (6.4) 0.0247
C (cardiovascular) 95 (24) 47 (42) 0.0003 35 (32) 0.0011
G (hormonal) 30 (7.7) 8 (7.1) 0.8411 6 (5.5) 0.7331
J (anti-infective) 29 (7.5) 7 (6.2) 0.6635 9 (8.3) 0.8457
Biochemical parameters at onset, ULN median (range)
Total Bilirubin 3.4 (0.16–46) 6.9 (0.14–37) 0.0027 5.25 (0.3–33) 0.0029
AST 14 (0.9–135)* 2.2 (0.6–21) 0.0001 3.75 (1.1–29) 0.0001
ALT 17 (1.7–134)* 2.8 (0.6–39) 0.0001 6.4 (1.5–49) 0.0001
GGT​ 4.6 (0.16–57)* 8.0 (0.24–79) 0.0001 7.1 (0.2–44) 0.0001
ALP 1.1 (0.1–7.1)* 3.1 (1.1–22)* 0.0001 2.2 (1.0–18) 0.0001
PT, median 87 (13–137)* 99 (13–135) 0.0001 100 (49–176) 0.0001
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treatment, daily dose, lipoaffinity index, AlogP, serum half-
life, vascular diseases, and hybridization ratio.

The random decision forest models were also devel-
oped using amoxicillin/clavulanate cases as well as non-
amoxicillin/clavulanate cases datasets. The accuracy of the 
model was 0.82 (95% CI 0.66, 0.92) for the amoxicillin/
clavulanate cases and 0.83 (95% CI 0.76, 0.88) for the 
non-amoxicillin/clavulanate cases (models are not shown). 
In the model for the amoxicillin/clavulanate cases, the 
combination of older age (≥ 56 years.) and longer latency 
(≥ 10 days) were associated with a higher likelihood (89%) 
of CS injury while younger age (< 56 years) was associ-
ated with a higher likelihood (76%) of HC injury. In the 
model for non-amoxicillin/clavulanate cases, factors con-
tributing to the accurate discrimination were consistent 
with the model of the entire cases dataset, including age, 
duration of treatment, lipoaffinity index, and hybridization 

ratio. A combination of low lipoaffinity (< 2), shorter treat-
ment duration (< 60 days), and low hybridization ratio was 
associated with a higher likelihood (73%) of CS injury, 
while the combination of high lipoaffinity, low hybridiza-
tion ratio, and younger age was associated with a higher 
likelihood (96%) of HC injury.

The performance of the model—based on the best-
performing decision tree—was validated using the Latin 
American DILI Network cohort. The application of the 
model in the whole Latin American cohort showed an 
accuracy of 0.69 (95% CI 0.62, 0.75) (N = 200) (Table 3). 
After excluding amoxicillin cases, the accuracy of 
the model remained similar, 0.72 (95% CI 0.64, 0.78) 
(N = 169).

aminotransferase, ALT alanine aminotransferase, GGT​ gamma-glutamyl transferase, ALP alkaline phosphatase, PT prothrombin time
* Significant difference versus mixed group

Table 1   (continued)

Table 2   Physicochemical, 
pharmacokinetic and 
pharmacodynamics properties 
of drugs causing hepatocellular 
injury vs. drugs causing 
cholestatic injury

BDDCS Biopharmaceutical Drug Disposition and Classification System. This classification divides com-
pounds into four classes based on their permeability and solubility
Drugs causing mainly hepatocellular injury: acarbose, bentazepam, cyproterone acetate, ebrotidine, isonia-
zid, leflunomide, paracetamol, sertraline, and trovafloxacin. Drugs considered dominantly causing choles-
tatic injury: azathioprine, captopril, chlorpromazine, cloxacillin, norfloxacin, and thiamazole

Drug properties Hepatocellular
(N = 9)

Cholestatic
(N = 6)

p value

Physicochemical
Number of rings, mean 3 2.5 0.5256
Index aromatic/total rings, mean 0.77 0.67 0.7767
Heterorings, mean 1.22 1.83 0.3206
Fused rings, mean 0 1 0.8017
Presence sulfur atom, N (%) 0 1 0.3236
Presence halogen atom, N (%) 1 0.5 0.2904
Hybridation ratio, mean 0.33 0.36 0.8354
Lipoaffinity, mean 2.85 1.82 0.7737
Pharmacokinetics
Half-life, median h 6.3 3.2 0.5135
Lipophilicity (LogP), median (range) 0.87 1.18 0.7091
Plasma protein binding (%), median 86 27 0.5199
Hepatic metabolism ≥ 50%, N (%) 8 (89) 3 (50) 0.0952
Enterohepatic circulation, N (%) 3 (37) 1 (17) 0.3992
Reactive metabolite formation, N (%) 5 (62) 3 (50) 0.6400
Mitochondrial liability, N (%) 3 (37) 4 (67) 0.2801
BDDCS 0.2205
 class 1 (↑solub / ↑hep met) 5 (56) 3 (50)
 class 2 (↓solub / ↑hep met) 3 (33) 0
 class 3 (↑solub / ↓hep met) 0 1 (17)
 class 4 (↓solub / ↓hep met) 1 (11) 2 (34)
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Fig. 1   Importance of the variables for the classification of hepatocel-
lular (HC) vs. cholestatic (CS) injury in the random forest models 
using the entire cases dataset. This figure shows the top 18 variables 
deemed important by Mean Decrease Accuracy (MDA) (left panel) 
and Mean Decrease Gini (MDG) (right panel). The two measures 

were computed using the entire cases dataset models in the analysis. 
The higher values in the measures represent the higher importance of 
the variables in accurate classification of the outcomes, HC vs. CS 
injury (see the methods)

Fig. 2   Best-performing decision tree model for classifying hepato-
cellular (HC) vs. cholestatic (CS) injury in the entire cases dataset 
selected by a random forest approach. All the identified variables 
are continuous variables, except for lipoaffinity (< 2, yes/no) and 
the presence of vascular disease (yes/no), both of which are binary 
variables. For continuous variables, the best cutoffs determined 
by the computer are shown underneath each node. Two numbers in 
each node show (1) the number of cases included in the node over 

the number of total cases (%) and (2) the fraction of HC cases in the 
node, ranging from 0 to 1. At the bottom, 12 nodes show the pre-
dicted probability of having hepatocellular injury (0 to 1) and the per-
centage of cases included in the node. Green color represents a higher 
probability of HC vs. CS injury (probability of HC cases > 0.5), while 
blue color represents a lower probability of HC vs. CS injury (prob-
ability of HC cases < 0.5)
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Prediction model for practical use considering drug 
and host factors

Factors significantly contributing to the classification of HC 
vs. CS injury in the random decision forest models were con-
sidered in this prediction model.

The most significant host factor, age, showed a linear asso-
ciation with the injury types for amoxicillin/clavulanate cases, 
but for the rest of the DILI cases (i.e., non-amoxicillin/clavu-
lanate cases), age effect was apparent only after age 30 years 
(Online Resource 1). Thus, a continuous age variable was 
applied only after age 30 in the model. The two key drug prop-
erties, lipoaffinity and hybridization ratio, showed an interac-
tion; a higher hybridization ratio (> 0.5) only increased the 
chance of HC injury when lipoaffinity was low (< 2). Thus, a 
combinatory categorical variable was created for the two drug 
properties. The age variable and the combinatory drug proper-
ties categories yielded an area under the ROC curve of 0.74. 
Drug metabolism, longer half-life, daily recommended dose, 
latency, treatment duration, concomitant use of cardiovascu-
lar drugs, and endocrine comorbidities showed significant 
associations with the biochemical injury types but did not add 
statistically significant contribution to the model prediction. 
Thus, these variables were not included in the final model for 
the simplicity.

The model’s predictive performance was validated in the 
DILI cases from the Latin American DILI Network Registry. 
Both the age variable and the combinatory drug properties 
categories showed significant associations, and the area under 
the ROC curve was 0.68, slightly lower than the performance 
observed in the training set of the Spanish DILI cases.

Discussion

Liver injury presentation is one of the most elusive mani-
festation of idiosyncratic DILI. This study, combining 
comprehensive clinical data from a large database at the 

Spanish DILI Registry and the drug property information, 
demonstrates for the first time that both drug properties 
and host factors contribute to the initial biochemical DILI 
presentation, HC vs. CS injury. Our analysis also suggests 
drug–drug and drug–host interactions play a role in the 
biochemical manifestation, reiterating the importance 
of considering such interactions in future studies/analy-
ses. Using two different measures of variable importance 
(MDA and MDG) from random decision forest, the top 
18 factors contributing to the accurate discrimination of 
injury types were consistent, including age, duration of 
treatment, daily dose, lipoaffinity index, AlogP, serum 
half-life, vascular diseases, and hybridization ratio. This 
model yielded 82–84% accuracy in the original Spanish 
DILI cohort and 69–72% accuracy in the Latin Ameri-
can validation cohort. Our simplified model, developed 
for practical use, consisting of the selected patient’s age, 
drug’s lipoaffinity, and hybridization ratio, showed a fair 
performance in the testing cohort (74%) to predict HC vs. 
CS injury, which suggests further opportunities to improve 
prediction, using a larger, and even more diverse dataset.

Among drug properties, lipoaffinity and hybridization 
ratio were consistently identified as significant contribu-
tors, defining the initial biochemical presentation. Low 
lipoaffinity (< 2) was associated with a higher prevalence 
of CS injury, regardless of age. There was significant 
drug–drug interaction between lipoaffinity and hybridi-
zation ratio; the latter was influential on the biochemi-
cal presentation only when lipoaffinity was low. Other 
drug factors, such as daily recommended dose, half-life, 
latency, drug metabolism, also showed significant associa-
tions with the biochemical presentation, but did not sig-
nificantly contribute to the prediction of HC vs. CS injury, 
showing a marginal effect in the prediction of biochemical 
phenotype.

The most influential host factor affecting the biochemical 
presentation was age, which is consistent with the finding 
of a recent study, showing that age older than 65 years is the 
strongest determinant of CS injury (Weersink et al. 2020). 
Among amoxicillin/clavulanate cases, the prevalence of CS 
injury linearly increased along with aging, although among 
non-amoxicillin/clavulanate cases, the association was only 
linear after age 30. Indeed, our cohort was not optimal to 
investigate adolescents and young adults as they are sparsely 
represented in our registry. Thus, our observation of a seem-
ingly higher likelihood of CS injury among adolescents and 
young adults needs to be further confirmed.

In a recent study, we have observed that some drugs other 
than amoxicillin/clavulanate are associated with a shifting 
injury phenotype when aging, whilst a few other drugs show 
a consistent HC signature regardless age (Weersink et al. 
2020). Interestingly, our developed model supports these 
findings.

Table 3   The performance of the best model in the Spanish DILI and 
the Latin American DILI registries, a validation cohort

PPV positive predictive value, NPV negative predictive value

Best model performance

Spanish DILI Registry
(N = 501)

Latin American 
DILI Registry
(N = 200)

Accuracy 0.835 0.692
Sensitivity 0.873 0.743
Specificity 0.690 0.486
PPV 0.914 0.853
NPV 0.591 0.321
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The consistent association of CS injury with increasing 
age illustrates the complexity of host factors influencing 
phenotypic presentation, as older patients significantly have 
more comorbidities and receive a higher number of drugs 
(Lucena et al. 2020). Not surprisingly, vascular diseases 
showed a significant association toward CS injury. Besides, 
diabetes and endocrine diseases were also found as impor-
tant factors to classify patients according to the type of liver 
injury. Indeed, the net contribution of underlying diseases in 
addition to co-medications to CS injury remains to be eluci-
dated and may explain the further opportunities to improve 
the performance of the simplified model in the prediction of 
this phenotype. Host factors, with special attention to age, 
are the cornerstone to be considered in a complex context 
to define CS injury pattern. Other host factors, such as race/
ethnicity, genetic/epigenetic factors, and reproductive status, 
may modulate individuals’ response to injury stimuli and 
influence the initial biochemical presentation of DILI. These 
factors were not assessed in this analysis and are warranted 
to be considered in future investigation.

Our simple prediction model for practical use yielded 
a reasonable performance in the original dataset with a 
slightly lower performance in the validation set, suggest-
ing the initial biochemical presentation may not be fully 
predictable using a simplified model. Indeed, differences in 
prescription patterns, culprit drugs, the overrepresentation 
of female sex in the validation cohort, and other genetic, 
epigenetic and environmental factors might explain the dif-
ferences in the performance in the two DILI cohorts. None-
theless, initial biochemical presentation is influenced by the 
pattern of elevation of liver enzymes; the biochemical pres-
entation (R-value) changes over time after the injury insult 
due to (1) differences in enzymes half-life t1/2 (longer in ALP 
compared with ALT), and (2) different timing in ALT eleva-
tion vs. ALP elevation after acute liver injury, shorter for 
ALT (Kim et al. 2008; Lowe et al. 2020). Despite the limita-
tions, when the model was applied to the overall population 
(including mixed injury), none of the cases with a computed 
probability of HC injury > 95% had CS injury (93% HC, 7% 
mixed), while in cases with a high computed probability 
(> 60%) of CS injury, 52% actually had CS injury (24% HC, 
24% mixed) (data not shown). Considering mixed injury is 
intermediate, the predicted probability may have clinical 
implication, providing additional information (i.e., prob-
ability of HC vs. CS injury, based on drug and host factors), 
which can be useful in the causality assessment.

This study has several limitations. It did not include 
broader racial populations (mainly Caucasian); thus, 
whether the findings can be extrapolated to other racial/
ethnic populations deserves further investigation. Fur-
thermore, the study populations did not include a suffi-
cient number of pediatric patients, which precluded from 

addressing the effect of age on DILI type throughout 
the lifecycle. In non-amoxicillin/clavulanate cases, we 
observed non-linear age effect with a higher proportion of 
CS cases in younger age groups (< 30 years). Thus, bio-
logical significance of this observation remains uncertain. 
The impact of concomitant medication use was not thor-
oughly investigated in this study. Concomitant medications 
have been associated with the severity of DILI and the 
reporting frequency of liver events in large spontaneous 
adverse event reporting systems (Suzuki et al. 2009,2015), 
suggesting that co-administered medications may contrib-
ute to DILI risk via drug–drug, drug–host interactions and 
may also contribute to biochemical injury patters as well, 
which is warranted for further investigation.

In summary, our machine learning analysis and subse-
quent prediction modeling demonstrated that initial bio-
chemical presentation at DILI recognition is associated 
with both drug and host factors and their interactions. The 
simplified model showed a fair performance, yet provides 
some clinical implication, supplementing the informa-
tion on the predicted biochemical presentation based on 
the patient’s age and drug properties. As discussed in the 
concept paper (Chen et al. 2015), DILI manifestations are 
determined by not just drug but also how the host responds 
to the injury insult. We believe that considering both drug 
and host factors in evaluating DILI risk and phenotypes 
while critically assessing data independence in the analy-
sis open an avenue for future DILI research and would aid 
in the causality assessment.

Lastly, including diverse populations and drugs in the 
modeling approach is the key to developing a broadly 
applicable model. Further international collaboration is 
encouraged.
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