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Abstract
Due to its unique physical structure and chemical properties, graphene family nanomaterials (GFNs) and derived commodi-
ties have been widely used in commercial products, particularly biomedical applications, which has significantly increased 
the risk of human exposure. There exists significant evidence that GFNs are accumulated in a number of tissues and organs 
through different exposure pathways, and further cause toxicity manifested as lesions or functional impairment. Moreover, 
GFNs can be internalized by varing cell types and induce cytoskeletal disorders, organelle dysfunction, and interact directly 
with biological macromolecules such as DNA, mRNA and proteins, ultimately resulting in greater rates of cell apoptosis, 
necrosis and autophagic cell death. The toxicological effect of GFN is closely related to its lateral size, surface structure, 
functionalization, and propensity to adsorb proteins. Using major data published over the past four years, this review pre-
sents and summarizes state of current understanding of GFN toxicology and identifies current deficiencies and challenges. 
This review aims to help improve evaluation of the biocompatibility of GFNs and provides theoretical guidance for their 
safe application.

Keywords Graphene family nanomaterials · Charateristics · Toxicity · Mechanism of action · Physichemical property · 
Challenges

Introduction

Rapid development of nanotechnologies has led to an 
increasing number of occupational exposure assessments 
for engineered nanomaterials (ENM). However, our under-
standing of environmental exposure is less well understood. 

Introducing these new materials into the work environment 
and consumer products requires a safety assessment to better 
understand any potential influence on human health. Gra-
phene materials, a new allotrope of carbon, are “nanomateri-
als” or “nanoparticles” with transverse dimensions ranging 
from a few nanometers to several hundred nanometers and 
thicknesses ranging from 1 to 10 nm (Han et al. 2016; Shen 
et al. 2012b). Due to their unique structure, large surface 
area and active physicochemical property, the large number 
of applications for graphene-based materials has attracted 
extensive attention from all walks of life since their discov-
ery in 2004. In recent years, biomedical applications of gra-
phene family nanomaterials (GFNs) have received increas-
ing attention, particularly for use in cell imaging (Sun et al. 
2008), drug and gene delivery (Hussien et al. 2018; Yao 
et al. 2017), tissue engineering (Langer and Vacanti 2016; 
Webber et al. 2015) and as biosensors (Muthukumaran et al. 
2016).

As the use of nanomaterials has increased the risk of 
unintentional occupational or environmental exposure to 
GFNs has increased (Pelin et al. 2018). Due to the wide 
range of potential applications of GFNs in biomedicine, 
exposure can occur via a number of pathways including 
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intratracheal instillation, oral gavage, intraperitoneal injec-
tion, intravenous injection, and subcutaneous injection 
(Amrollahi-Sharifabadi et al. 2018; Erf et al. 2017; Mao 
et al. 2016; Park et al. 2017; Xu et al. 2016). In addition, 
GFNs can diffuse across biological barriers such as the 
blood-air, blood–brain, blood-testis and blood-placental 
barrier, accumulate in tissues and organs, and cause acute 
and chronic toxicity (Mendonca et al. 2016a; Mohamed et al. 
2019; Roberts et al. 2016; Sawosz et al. 2014). Furthermore, 
a number of studies have suggested that exposure of aquatic 
organisms in the environment to GFNs can result in effects 
of toxicological concern (Hu et al. 2016; Manjunatha et al. 
2018a; Meng et al. 2019; Zhou and Hu 2017). Because nano-
materials might bioaccumulate in aquatic organisms and can 
be consumed by humans, there is potential risk to human 
health from ingestion of contaminated foods. Currently, a 
number of studies have investigated their mechanisms of tox-
icity action. Graphene and its derivatives have large specific 
surface areas and special hydrophobic properties, and can 
enter cells through a variety of pathways including clathrin-
mediated or caveolae-mediated endocytosis, pinocytosis and 
phagocytosis (Ou et al. 2016), and further induce cytotoxic 
effects such as cytoskeletal injury (Sasidharan et al. 2016; 
Tang et al. 2018), mitochondrial respiratory dysfunction 
(Jaworski et al. 2019; Park et al. 2015), lysosomal overload 
(Feng et al. 2018), oxidative stress (Gurunathan et al. 2019a, 
b; Srikanth et al. 2018), and inflammation (Fujita et al. 2018; 
Vranic et al. 2018). Moreover, evidence suggests that nano-
materials can directly interact with biological macromol-
ecules such as DNA (Xu et al. 2018), proteins (Babadaei 
et al. 2018) and small RNA (Djurisic et al. 2015), and can 
induce apoptosis, necrosis and autophagy cell death (Fahmi 
et al. 2017; Yang et al. 2019). However, although prelimi-
nary progress has been made, there is a need to standardize 
and further investigate the toxicity of these novel materi-
als as data from different laboratories, in vivo models, and 
in vitro experiments differ and are limited (Wu et al. 2018a; 
Yadav et al. 2017).

It is important to review and assess new toxicity infor-
mation and identify potential hazards related to the use 
of new technologies (Shvedova et al. 2016). The current 
review mainly focuses on published toxicological informa-
tion related to GFNs from 2016 to present. By comparing 
toxicity of GFNs and the underlying mechanisms of action 
in vivo and in vitro, this paper aims to provide an overview 
and suggestions for future research. Furthermore, it is hoped 
that with a greater understanding of the toxicity of GFNs, we 
can help improve the biosafety of GFNs and promote their 
wider applications.

Characteristics and applications of GFNs

Graphene and its derivatives mainly include monolayer 
graphene, few layers of graphene (FLG), graphene oxide 
(GO), reduced graphene oxide (rGO), and graphene quan-
tum dots (GQD) (Fig. 1) (Chen et al. 2017; Dasmahapatra 
et al. 2019; Tu et al. 2018). FLG is a flaky stack of 2–10 
graphene layers that was originally a by-product or pre-
cursor of monolayer graphene manufacturing. Sulfates, 
nitrates or other ions are embedded between the layers 
of crystalline graphite and then heated rapidly, resulting 
in increased internal pressure and substantial expansion 
of the graphite lamellar structure. The dry powder pro-
duced by hot stripping may result in occupational exposure 
(Sanchez et al. 2012). The majority of studies have focused 
on GO and rGO because they have better solubility and 
dispersion in water and physiologically relevant conditions 
when compared to other GFNs. GO is a highly oxidized 
chemically modified graphene whose carboxylic acid 
groups provide negative colloidal stability and charged 
surfaces. The surface of GO contains functional groups 
that provide π–π interactions, can adsorb drugs and can be 
used for molecular imaging (Park et al. 2009). RGO is the 
product of GO when subject to reducing conditions, such 
as heat and chemical treatment with hydrazine  (N2H4), or 
other reductants. The RGO process is used to restore elec-
trical conductivity and is characterized by reduced oxygen 
content and increased hydrophobicity (Bagri et al. 2010; 
Park et al. 2009). The novel zero-dimensional graphene 
nanomaterial, GQDs, has a number of advantages when 
compared to conventional organic photosensitizer (PS), 
such as improved biocompatibility, high water solubility 
and light stability, excellent optical properties and sur-
face functionalization (Ko et al. 2017; Tabish et al. 2018). 
Therefore, GQDs have the potential to replace the com-
monly used QDS derived from metal sulfides (Zhao et al. 
2020). In addition, ε-β bonds above and below the atomic 
plane of graphene provide excellent electrical and thermal 
conductivity when compared to conventional semiconduc-
tor quantum dots (Arvand and Hemmati 2017; Zhao et al. 
2017).

Graphene and its derivatives are particularly attrac-
tive because they have unique properties of nanomate-
rial polymers including superior physical and chemical 
properties, electrical and thermal conductivity, and mag-
neto-optical absorption (Lee and Lee 2017; Mahanta and 
Abramson 2012; Suk et al. 2010). For example, graphene 
can increase the mechanical strength and electrical con-
ductivity of composites (Hu et al. 2013), showing promi-
nent advantages for engineered neural tissue technologies 
(Nezakati et al. 2019; Homaeigohar et al. 2019). Simi-
larly, gelatin-functionalized GO (GO-Gel) can be used 
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for biomimetic mineralization of hydroxyapatite, which 
promoted the adhesion, proliferation, and osteogenic dif-
ferentiation of MC3T3-E1 cells (Liu et al. 2014). Cur-
rently, functionalization of GFN carriers has played an 
important role in drug and gene delivery due to improved 
biocompatibility, loading rate and release performance 
(Kundu et al. 2015; Wen et al. 2012; Zhao et al. 2015). 
Note that GFN-based nanocomposites revealed excel-
lent protection against nuclease degradation of DNA and 
siRNA (Joo et al. 2016; Shen et al. 2012a) and better 
cellular permeability than viral vectors (Whitehead et al. 
2009; Yin et al. 2017). Finally, graphene materials can 
also be used to target cancer cells for imaging by tag-
ging them with folate (FA) (Huang et al. 2015; Maji et al. 
2015), hyaluronic acid (Gui et al. 2018), proteins (Guo 
et al. 2016), and peptides (Su et al. 2015). Considering 
there are so much data demonstrating the GFN applica-
tions in biomedicine, their exposure risks to human health 
have increased significantly.

Toxicity in vivo

Exposure pathways and biodistribution

The fate of GFNs in exposed organisms is influenced by 
their physiochemical properties, as well as by the envi-
ronment in which they come into contact with organisms 
(such as biocorona) (Bhattacharya et  al. 2016; Docter 
et al. 2015). Moreover, the pathway of exposure (related 
to occupational, environmental exposure, and biomedical 
applications) can affect GFN metastasis, accumulation, 
degradation, and clearance.

Inhalation exposure

Inadvertent contact with graphene in occupational or 
environmental settings is increasing, and exposure is 

Fig. 1  Schematic illustration of different graphene-based nanomaterials. Reprinted with permission from Ref. (Zhao et  al. 2017). Copyright 
Drug Discov Today
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dependent on the method of production and protective 
measures implemented (Heitbrink et  al. 2015). Previ-
ously, some studies have reported that the maximum 
concentration of graphene in factories during manufac-
turing and processing is 2 × 106 particles/cm3 (Lo et al. 
2011). However, in another study, exposure to graphene 
particles was very limited with particle concentration was 
less than 40,000/cm3 (Lee et al. 2016). Recent subchronic 
inhalation studies have suggested that the safe concentra-
tion for occupational exposure to graphene is 18 μg/m3 
(Lee et al. 2019). A large number of in vivo experiments 
have confirmed that inhaled GFNs are mainly deposited 
in the lungs, and can diffuse across the blood-gas bar-
rier (Ema et al. 2016b; Krajnak et al. 2019; Park et al. 
2017). More specifically, labeled 14C FLG administered 
by intratracheal instillation accumulated in the lung tissues 
of mice, and radioactivity in the lungs, intestine, stomach 
and feces accounted for 85%, 3%, 1.5% and 4.6% of the 
total dose 1 day after exposure, respectively. In addition, 
concentration of FLG in the lungs, intestine and stom-
ach decreased over time, while excreted FLG gradually 
increased in feces. At 28 days after exposure, 46.2% of 
FLG was excreted via feces (Li et al. 2013).

Intravenous injection

After intravenous injection, GO is distributed through-
out the body via blood. How to detect the distribution of 
large molecular weight nanomaterials in vivo is one of the 
research focuses. Common nanomaterials imaging meth-
ods can be divided into two categories. The first is labeling 
methods, such as radioisotope (Georgin et al. 2009) and fluo-
rescent labeling (Huang et al. 2013). This class of methods is 
time consuming and can cause tag separation over time (Liu 
et al. 2008). Distribution in the body can also be monitored 
using the inherent physical/chemical properties of nano-
materials such as via Raman imaging (Syama et al. 2017). 
Traditional observation techniques may be limited by slow 
imaging speeds, weak luminescence signals and strong back-
ground interference. Recent studies have reported a novel 
unlabeled technique, matrix-assisted laser desorption ioni-
zation (MALDI) mass spectrometry imaging (MSI), which 
has a high imaging speed, high sensitivity, and suborgan 
quantitative ability (Chen et al. 2015; Ellis et al. 2014). The 
ability to use suborgan quantitative information augments 
insights into bio-nano interactions and pharmacokinetics of 
chemicals.

Intrapritoneal injection

Wistar rats injected intraperitoneally with GO (doses of 50, 
150 or 500 mg/kg) demonstrated a dose-dependent distri-
bution among the liver, kidney, spleen, lung, intestine, and 

brain (Amrollahi-Sharifabadi et al. 2018). Another report 
provided a more detailed analysis of the biodistribution of 
intraperitoneal injected 125I-GO-PEG. GO-PEG mainly con-
centrated in the liver, spleen and bone 1 h after intraperi-
toneal injection. Note that high levels of radioactivity was 
detected in urine and feces, suggesting that the removal of 
GO-PEG may be through kidney and fecal excretion (Yang 
et al. 2011). However, we believe the decrease of GO-PEG 
in organs might be due to isolation of markers over time. 
In another mice study, intraperitoneally administered PrGO 
was mainly detected in the brain, liver, spleen, kidney and 
bone marrow monitored by Raman spectroscopy. Urinaly-
sis showed a weak PrGO signal, indicating a low rate of 
excretion of PrGO by the kidneys, which is consistent with 
the current understanding that PrGO is excreted primarily 
through the biliary tract and can cause liver damage (Syama 
et al. 2017).

Oral gavage

To study the effects of gastrointestinal exposure, Mao et al. 
(2015) gave male ICR mice FLG via oral gavage (0.1 mg/
mL) for 3 days. After 12 h of exposure, the amount of radia-
tion in the stomach, intestine and feces accounted for 3%, 
6% and 85% of the total dose, respectively. After 48 h of 
exposure, most of the material (> 98%) was excreted through 
feces. No radioactivity was detected outside the blood and 
digestive tract, suggesting that FLG did not diffuse into the 
blood at detectable concentrations through the gastrointes-
tinal tract. In contrast, after the first day of exposure, oral 
administration of 125I labeled rGO was rapidly absorbed in 
the gastrointestinal tract, metabolized by the kidneys and 
then excreted via urine (Zhang et al. 2015). In addition, the 
influence of changes in intestinal flora on host health has 
received extensive attention (Chen et al. 2018; Nakanishi 
et al. 2015; Ormerod et al. 2016). When compared with a 
control group, the relative abundance of Firmicutes in mice 
exposed to FLG decreased by 10 ± 1.2%, while the rela-
tive abundance of bacteroides increased (Mao et al. 2016). 
However it is important to note that ingested graphene may 
be coated with surfactants or biomolecules in the lungs or 
digestive system. Therefore, further studies are needed to 
elucidate the effects of long-term exposure to graphene in 
the digestive system on gut microbes and how this relates 
to organism health.

Dermal exposure

Skin is one of the main barriers between the body and the envi-
ronment. Previous study reported that subcutaneously injected 
rGO and GO induced significant mononuclear cell infiltration 
near the injection site. Furthermore, the more hydrated GO 
had weaker interactions with macrophages, suggesting that 
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the immune response was related to functional groups on the 
surface of the material (Sydlik et al. 2015). Recent studies have 
investigated cellular/tissue damage locally and throughout the 
body by injecting GFNs into the dermis of chicken growth 
feathers (GF) (Erf et al. 2017). Compared with the traditional 
subcutaneous injection, the use of skin derivative GF as a skin 
test site has the advantages of being easier to operate and less 
invasive (Erf and Ramachandran 2016). Seven days after a 
single injection, continuous infiltration of white blood cells 
occurred at the injection site, but no significant abnormality 
in white blood cell spectra of peripheral blood circulation was 
observed (Duch et al. 2011; Wang et al. 2011b). These results 
highlighted the causes of localized immune responses follow-
ing GFN dermal exposure.

Eye irritation

Studies on the health risks of GO eye exposure are also limited. 
Unilateral eye drop stimulation studies using Sprague–Dawley 
rats administered GO (12.5, 25, 50 or 100 g/mL) demonstrated 
temporal and dose-dependent ocular injury including corneal 
epithelial necrosis shedding and corneal stroma exposure (Wu 
et al. 2016). However, other studies observed that exposure to 
graphene and GO did not result in significant ocular toxicity 
(Lin et al. 2015; Yan et al. 2012). In addition to potential expo-
sure via liquid splashes in occupational settings, exposure via 
gaseous vapors are possible. Although some inhalation stud-
ies have reported toxic effects following exposure to gaseous 
GFNs, ocular toxicity has not been reported (Han et al. 2015; 
Kim et al. 2016; Park et al. 2015). More studies are needed in 
the future to explain the diversities among different studies 
and labs.

Overall, the route of GFN administration affected the 
pharmacokinetics in the body. Intravenous injection of PrGO 
resulted in direct transfer from blood to the liver and spleen, 
while intraperitoneal injection of PrGO resulted in accumula-
tion in the liver (Syama et al. 2017). Oral administration of 
GFNs to mice resulted in minimal absorption and distribu-
tion among organs via the digestive tract, but nanomaterials 
partitioned to the liver and spleen when injected or following 
intratracheal instillation (Mao et al. 2016; Yang et al. 2013). 
Though the inhalation method provides the most realistic 
simulation to real life exposure, instillation is more effective 
method, and GFNs was found that causing longer inflamma-
tion period using instillation than inhalation (Lee et al. 2017; 
Li et al. 2013; Schinwald et al. 2012, 2014).

Systemic toxic behavior

Lung toxicity

Numerous studies have reported the lung toxic effects of 
inhaled GFNs, including alveolus-capillary barrier damage 
(Hu et al. 2015), local inflammatory cell infiltration and 
release of pro-inflammatory cytokines (Duch et al. 2011), 
mitochondrial damage and down-regulation of reactive 
oxygen species (Park et al. 2015, 2017). Toxicity of gra-
phene nanomaterials depends on their different physio-
chemical properties (Huang et al. 2012; Zhang et al. 2013, 
2016). For example, immune and inflammatory responses 
were found to be most significantly increased following 
exposure to the larger graphite nanoplates Gr20 (12 μm) 
and Gr5 (5 μm) in pharyngeal aspirated mice (Roberts 
et al. 2016). Surface structure is another influencing fac-
tor. The toxicity of inhaled GFNs is FLG < GNP (graphite 
nanoplates) < rGO < GO, where the inflammatory effect of 
positively charged GNP was slightly greater than that of 
the negatively charged GNP (Bengtson et al. 2017; Ema 
et al. 2017; Lee et al. 2017; Roberts et al. 2016). Other 
involving factors include oxidation state and surface car-
bon free radical density (Hu et al. 2010; Ji et al. 2010; Li 
et al. 2018b).

Neurotoxicity

At present, a large body of evidence demonstrated that 
GFNs could cross the blood–brain barrier (BBB) and 
resulted in central nervous system (CNS) toxicity (Men-
donca et al. 2016b; Rauti et al. 2016). For example, the 
leakage of Evans blue dye from capillaries in the hip-
pocampus was not detectable on the 7th day after injection 
into the tail vein of rats, suggesting that toxicity of rGO 
was reversible. However, density of the BBB differs among 
the same blood region of the hippocampus further com-
plicating interpretations (Mendonça et al. 2015b; Raleigh 
et al. 2010). Functionalized graphene family materials are 
also reported to be capable of penetrating the BBB (Geor-
gakilas et al. 2016; Reina et al. 2017). Intravenous injected 
rGO-PEG were detected in the hippocampus and thalamus 
of rats, and the BBB was considered to be temporarily 
open following continuous decline of the junction proteins, 
laminin and Cx43 (Mendonca et al. 2015a). The authors 
further indicated that the nervous system toxicity induced 
by rGO-PEG was closely related to high levels of cellular 
reactive oxygen species (ROS) (Mendonca et al. 2016a). 
More importantly, lack of Cx43 expression or Cx43 chan-
nel blockage could aggravate ROS-induced astrocyte death 
(Le et al. 2014). Notably, the aggregation of GFNs in the 
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CNS increased with time, while this cumulative effect was 
infrequent in other organs (Baldrighi et al. 2016). The slow 
accumulation and long-term persistence of GFNs in CNS 
is an advantage as a drug delivery system, but also raises 
concerns about their chronic toxicity.

Reproductive toxicity

The blood-testes and blood-epididymis barriers are among 
the densest blood-tissue barriers in mammals (Mital et al. 
2011). The potential effect of graphene exposure on repro-
duction varied greatly among animal models and materi-
als. Liang et al. (2015) found that GO could not cross the 
blood-testes barrier and did not result in any reproductive 
toxicity, which results were consistent with GQD exposure 
on the reproductive ability of male mice and their offspring 
(Zhang et al. 2019). In contrast, accumulation of GO in the 
testicles has been reported to result in a significant decrease 
in sperm motility in the epididymis, sperm DNA damage 
and an increase in ROS production (Akhavan et al. 2015). 
Although exposure to GO resulted in structural abnormali-
ties in the testis, but a gradual recovery was observed within 
30 days and fertility of the rats was not significantly affected 
(Nirmal et al. 2017). Note that rGO did not alter concentra-
tions of estrogen in the serum of non-pregnant female mice, 
while mice in the late stages of pregnancy exposed to rGO 
resulted in loss of fetus and mother (Xu et al. 2015).

Embryotoxicity of graphene and its derivatives has 
emerged as an important consideration. It has been sug-
gested that rGO is virtually absent in the placenta and fetus 
during the third trimester of pregnancy after intravenous 
administration (Xu et al. 2015; Yang et al. 2012). However, 
other reports have observed transplacental metastasis dur-
ing the third trimester of pregnancy (Huang et al. 2014; Qi 
et al. 2014) Moreover, developmental toxicity of GFNs was 
confirmed by their ability to cross the placental barrier and 
strongly impact the development of embryos (Ema et al. 
2016a; Teng et al. 2020; Warheit et al. 2015; Zhou et al. 
2015). Exposure to GO via oral gavage during lactation led 
to stunted growth in mouse offspring (Fu et al. 2015). How-
ever, results were difficult to interpret as mother mice drank 
less water in the high GO dose group which might have led 
to lesser production of milk, thus retarding offspring growth 
(Fu et al. 2015; Gao and Oba 2014). In zebrafish, similar to 
mammalian models, reproductive toxicity of graphenes with 
differing physicochemical properties significantly differed 
(Gollavelli and Ling 2012; Manjunatha et al. 2018b).

Other visceral toxicities

Nanomaterials such as GO may cause acute inflammatory 
responses and chronic injuries by interfering with normal 
physiological functioning of vital organs (Li et al. 2013; 

Wen et al. 2015). For example, in mice injected with intra-
venous or intraperitoneal PrGO, livers presented with granu-
lar cytoplasms, vacuolization, and denaturation, followed 
by mononuclear infiltration in the kidney and extramedul-
lary hematopoiesis in the spleen (Syama et al. 2017). Oral 
administered GO nanoparticles produced dose-dependent 
liver and brain damage, with histological changes includ-
ing increased apoptosis, necrosis, inflammation, and cellular 
degeneration (Mohamed et al. 2019). Differences in surface 
structure impact observed toxic effects in affected organs. 
Pristine GO exposure resulted in increased  H2O2 concen-
tration in the heart, whereas no significant change were 
detected when exposed to unoxidized graphite nanocrystals 
(Krajnak et al. 2019). Toxicity differences may result from 
the hydrophilic properties of GFN for materials possessing 
oxygen-containing group are more easily absorbed by cells 
(Chatterjee et al. 2014). The formation of protein corona 
can also affect internal organs toxicity. Compared to poly 
(acrylic acid)-functionalized GO (GO-PAA) and GO-PEG, 
intravenous injected GO-PAM with higher level of IgG 
(50–70%) demonstrated the highest liver and lung toxicity.

Blood toxicity

Most administration routes of nanomaterials can lead to 
increased concentrations in the blood. Mice oropharyngeal 
aspiration after exposure to GO and rGO, the arteries for 
vasoconstriction induced by epinephrine is more sensitive. In 
light of these results, the authors suggested that the observed 
cardiovascular and renal effects might be due to pulmonary 
inflammation and production of ROS following exposure to 
graphene (Krajnak et al. 2019). Furthermore, fragmented 
muscular layers of the small capillary wall (hyalinization) 
and fragmented larger blood vessels (microthrombi forma-
tion and endothelial swelling) were also observed follow-
ing GO intraperitoneal injection (El-Yamany et al. 2017). 
Note that submicron sized GO had the greatest hemolytic 
response, with significant platelet aggregation, while larger 
material had a lesser hemolytic response likely because the 
material tends to aggregate (Li et al. 2014). In addition, 
oxidized graphene has more significant acute effects on the 
vascular and renal systems when compared to non-oxidized 
forms (Krajnak et al. 2019).

Immunotoxicity

Exposure to GFNs might disrupt the immune system and 
result in progression of certain diseases (Luo et al. 2017; 
Rodrigues et  al. 2018; Shurin et  al. 2014). Intravenous 
injected graphene nanosheets (GNS) activated Th2 type 
immune responses via interleukin-33 (IL-33) and ST2 recep-
tors in the lung (Wang et al. 2013a). GNS exposure can also 
induce Th1-shifted immune responses and lung cytoskeleton 
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damage (Park et al. 2017). In addition, evidence suggested 
that macrophages had a size dependent mechanism of GFN 
uptake (Rodrigues et al. 2018; Wang et al. 2013b).

Genotoxicity

The genotoxicity of GO is characterized by various types 
of structural chromosomal aberrations, which are both dose 
and time dependent (Bengtson et al. 2017; Mohamed et al. 
2019). Recent studies revealed that intraperitoneal injected 
GO resulted in mitotic abnormalities, DNA damage (strand 
breakage), chromosome deletion and chromosome fracture 
in lung tissues (El-Yamany et al. 2017). The observed geno-
toxic effects were largely due to nanomaterial-triggered oxi-
dative stress and reduced mitochondrial membrane potential 
(Manke et al. 2013; Patlolla et al. 2016; Wang et al. 2011a) 
and mechanical damage (GO may be inserted between base 
pairs of DNA) (Ren et al. 2010; Stueckle et al. 2016). How-
ever, in vivo studies on genotoxicity of graphene are still 
limited and require further investigation to elucidate their 
genotoxic effects via RNA sequencing (Table 1).

In vitro toxicity

The response of cells to GFN exposure are dependent on 
biological interactions with the plasma membrane, followed 
by possible cellular uptake and potential interactions with 
subcellular structures (Zhang et al. 2016). Toxicity data of 
graphene-based nanomaterials in mammalian cells are sum-
marized in Table 2.

Interactions with plasma membrane

Numerous studies have observed that GO co-cultured with 
different types of cells stick to the cell surface and envel-
oped by the plasma membrane (Feng et al. 2018; Kalman 
et al. 2019; Tang et al. 2018). Interactions of GO with the 
cellular lipid bilayer is largely due to the amphiphilic nature 
of the material, which possesses a hydrophobic planar struc-
ture with hydrophilic edges (Kim et al. 2010). When com-
pared to GO, rGO is more hydrophobic in nature due to a 
decreased number of hydrophilic groups which may be more 
easily internalized by phagocytic uptake (Li et al. 2018b). 
After adhesion to cell membranes, GFNs could diffuse into 
the lipid bilayer or be internalized in the cell via uptake 
mechanisms, thus causing a physical or biological damage 
to the cell membrane. Multilayer graphene nanoflakes were 
found to be capable of extruding phospholipids from the 
bilayer of cells, resulting in lipid consumption and forma-
tion of permeable pores and final cell death (Duan et al. 
2017). The interaction of GFN with the plasma membrane 
differ significantly with GFN type and treatment conditions. 

Pristine GO is capable of triggering lipid peroxidation and 
membrane integrity damage without being internalized by 
cells (Li et al. 2018b). In comparison, when dispersed in cell 
medium, the amount of free radicals (especially carbon free 
radicals) on the surface of GO increases significantly, which 
could interact with cell membranes, leading to adverse 
effects on cell viability (Vranic et al. 2018). Additionally, 
GFNs have been observed to damage the integrity of cell 
membrane structure through regulation of expression levels 
of membrane- and cytoskeleton-associated genes (such as 
Actg2, Myosin, Tubb2a, and Nebuli) (Xu et al. 2016; Lam-
mel et al. 2013; Gurunathan et al. 2013b).

Uptake and intracellular distribution

Biological interactions between GFNs and cytomembranes 
are likely to result in cellular uptake via clathrin-mediated 
or caveolae-mediated endocytosis, pinocytosis and phago-
cytosis (Ou et al. 2016; Seo et al. 2017). Intracellular uptake 
of GFNs is largely influenced by their physiochemical prop-
erties such as: particle size, surface charge, shape as well 
as by cell type (i.e. fibroblast, macrophage and neuronal 
cells) (Adjei et al. 2014; Bramini et al. 2016; Sydlik et al. 
2015). For example, lateral GO flake size effects cellular 
interactions of larger sized GO as their uptake is hindered 
by their size (Ma et al. 2015). Moreover, smaller sized low-
reduced GO particles (LRGO) may be more easily internal-
ized by the myocardial cell line H9c2 and distributed near 
the nucleus, suggesting an endocytic process of internali-
zation (Contreras-Torres et al. 2017). Surface modification 
of functional groups modulates cellular uptake by changing 
surface hydrophobicity/hydrophilicity and charge of GFNs 
(Xu et al. 2016). A series of studies by Xu et al. found that 
AG-QDs can enter rat alveolar macrophages (NR8383) via 
energy-dependent endocytosis, phagocytosis and caveolae-
mediated endocytosis as regulated by the nuclear pore com-
plex (NPC) genes, karyopherin β2 (Kapβ2) and nucleoporin 
98 (Nup98). Additionally, the AG-QDs are localized in the 
cytoplasm and nucleus, and resulted in nuclear membrane 
shrinkage and deformation of nuclear morphology (Xu et al. 
2018, 2019). In comparison, exfoliated graphene (EGr) par-
titioned to the cytoplasm and nucleus following uptake by 
NR8383 cells (Fujita et al. 2018). Differences in shape of 
GFNs appear to result in distinct patterns of localization 
within cells. GO nanosheets may be present within mem-
brane encompassed vesicles and in their free form in the 
cytoplasm, while shorter carbon nanofibers were localized 
in vesicles (Kalman et al. 2019). Interestingly, TEM images 
further demonstrate deformations of intracellular materials, 
indicating that the flexibility of GO sheets impact cellular 
uptake pathways. Currently, evidence also suggested parti-
tioning of GFNs to the cytoplasm of cells, including inside 
endo- and lysosomes next to the Golgi apparatus and in the 
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perinuclear region (Kersting et al. 2019; Peruzynska et al. 
2017).

Mechanisms of intracellular toxicity

Destruction of the cytoskeleton

Cellular morphology, motility and ability to adhere are 
closely associated with cytoskeletal alterations (Sasid-
haran and Monteiro-Riviere 2015; Tay et al. 2014).  It 
has been reported that following 24 h-treatment of FLG 
resulted in significant alterations in cytoskeletal archi-
tecture and actin fiber stress in HUVECs cells (Sasid-
haran et al. 2016). Effects on cytoskeleton structure and 
integrity following to GFNs are highly sensitive to length 
of exposure and dose. For instance, short-term expo-
sure of GO over 2–4 h resulted in inflated and riddled 
 K7M2 cells, large numbers of vacuoles in the cytoplasm 
and cells became disordered and loosely adhered to their 
substrates (Tang et al. 2018). Following prolonged expo-
sure of 24 h, cells experienced shrinkage and more irregu-
lar appearance, no longer adhered to the culture plate, 
even became floated in the medium(Gurunathan et al. 
2019b; Srikanth et al. 2018). Similarly, as dose of GO 
increased from 5, 10 to 20 μg/mL, less cells were present 
and they had lesser cellular networking. At concentrations 
of 30 µg/mL or higher, increasing amounts of cell showed 
shrinkage until few viable cells were present (Gies and 
Zou 2017).  When compared to nanometer sized GO, 
micrometer-sized GO induced more actin cytoskeleton 
remodeling in areas of the cell membrane in contact 
with the material, ultimately resulting in increased mem-
brane blebbing and apoptotic cell death  (Vranic et al. 
2018).  Functional graphene materials demonstrated 
similar damages on the cytoskeleton system. Treatment 
of cells with OH-GQD at 25 μg/mL resulted in disorder-
ing of the microtubule system. When the working dose 
increased to 100 μg/mL microtubule structure completely 
disintegrated (Hydroxylated-Graphene Quantum Dots 
Induce DNA Damage and Disrupt Microtubule Structure 
in Human Esophageal Epithelial Cells). These obser-
vations suggest that OH-GQD may participate in the 
dynamic regulation of microtubules. Notably, monitor-
ing mechanical properties of cells has helped elucidate 
potential hazards to the filamentous actin cytoskeleton. 
Following treatment of GO flakes in NIH3T3 fibroblasts 
with 50 µg/mL, atomic force microscopy (AFM) demon-
strated that cell stiffness (Young’s modulus) significantly 
declined in a time-dependent manner, and was closely 
related to a high rate of ROS formation and disruption of 
the F-actin cytoskeleton (Pastrana et al. 2019).

Damage of cellular components

Substantial evidence have suggested that GFN exposure 
resulted in damage to mitochondria, especially on their 
aerobic respiration functions in cancer and non-cancer cell 
lines (Jaworski et al. 2019; Park et al. 2015). For instance, 
GO could result in depolarization of mitochondria in cardiac 
muscle cells, resulting in a reversed proton flux through the 
respiratory chain and excessive production of ROS (Arbo 
et al. 2019). Similarly, exposure of MHS cells to GO dis-
turbed normal mitochondrial respiration by increasing the 
activity of the electron transport complexes I/III and the 
supply of electrons to site I/II, resulting in increased ROS 
formation (Duch et al. 2011). Lysosomes are important 
digestive organoids in cells and help maintain safe levels of 
foreign bodies. At present, evidence indicates that GO may 
enter cells by endocytosis, and accumulate in lysosomes in 
large quantities and further cause lysosome membrane desta-
bilization and degradation disorder (Kalman et al. 2019; 
Wan et al. 2013). Lysosome-based degradation is closely 
related with cell autophagy and is thought to be an adap-
tive response for cell survival. Our previous work confirmed 
that although GO nanosheets can activate autophagosome 
formation through the conversion of LC3-I to LC3-II, the 
degradation of autophagic cargo p62 protein was inhibited 
due to lysosomal alkalization, ultimately leading to cell 
death (Feng et al. 2018). The ubiquitin–proteasome system 
is another pathway involved in intracelluar degradation. GO 
could adsorb 20S proteasome due to its hydrophobicity and 
caused dose-dependent inhibition of proteolytic activity of 
proteasomes, leading to adverse effects on cellular circle 
and survival (Ma et al. 2018). Identification of GO-triggered 
functional disturbance of the 20S proteasome provides a 
potential novel cancer therapy for treatment of cancers with 
abnormal proteasome activities. Additionally, gene ontology 
analysis has demonstrated that GO-PEG-NH2 significantly 
alters ribonucleoprotein complex related gene expression of 
the ribosome and its subunits when compared with other 
cellular components (Wu et al. 2018b). There results are 
consistent with other research in which GO treatment led to 
dysregulation of proteins associated with ribosomal subu-
nit (Yang et al. 2019). Unfortunately, limited works have 
focused on the effect of GFNs on other organelles such as 
the endoplasmic reticulum and the Golgi body, which may 
serve as a valuable research direction in the future.

Oxidative stress

Oxidative stress is a major mechanism of nanomaterial-
induced toxicity in a variety of cell types, including bac-
terial and mammalian cells (Akhavan and Ghaderi 2010; 
Gurunathan et al. 2012, 2015b). Currently a large body of 
evidence exists to support dysregulation of cellular redox 
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balance following exposure to GFNs. For example, Sasid-
haran et al. (2016) found that exposure of human primary 
endothelial cells to FLG significantly increased the concen-
tration of mitochondrial ROS, leading to oxidative degra-
dation of lipids in the cell membrane and dose-dependent 
GSH oxidation. Similarly, naked graphitic platelets cata-
lyzed electron transfer and production of superoxide ions 
and decreased cell viability, and was found to be largely 
size dependent (Zerbi et al. 2017). Functionalized graphene-
based materials, such as PEG-GO-NH2 could also down-
regulate NDUFA7 and NDUFB9, leading to dysfunction of 
mitochondrial complex I and accumulation of mitochondrial 
ROS (Wu et al. 2018b). Oxidative stress related cytotoxic-
ity includes cell membrane damage, initiation of lipid per-
oxidation, covalent chemical modifications of nucleic acids, 
DNA-strand breaks, activation of transcription factors and 
modulation of inflammation (Gurunathan et al. 2019a, b; 
Srikanth et al. 2018). On the other hand, cells have devel-
oped a number of defenses mechanisms to maintain oxida-
tive balances. It has been observed that ROS formation in 
MG-63 cells was suppressed by activation of the antioxida-
tive factor, nuclear factor-E2-related factor-2(Nrf2), which 
translocated from the cytoplasm to the nucleus following GO 
exposure (Tang et al. 2018).

Inflammatory response

Broad activation of inflammatory responses and produc-
tion of cytokines have been observed in a variety of cells 
exposed to GFNs. For example, expression of pro-inflam-
matory cytokines, such as MIP-1α, IL-1β, IL-18 and TNF-α 
significantly increased following exposure of rat alveolar 
macrophage cells NR8383 to exfoliated graphene (EGr) 
(Fujita et al. 2018). Similarly, exposure of human bronchial 
epithelial cell line BEAS-2B to large-sized GO substantially 
upregulated gene expression of IL-6 and IL-8 (Vranic et al. 
2018). Pristine graphene (Zhou et al. 2012) and rGO (Chat-
terjee et al. 2014) were found to activate inflammatory 
response of cells by binding to toll-like receptors (TLRs) and 
activating the NF-κB signaling pathway. However, further 
investigation abundance of IL-6 and IL-8 as determined by 
ELISA indicated an absence of a dose–response relation-
ship (Vranic et al. 2018). Overall, sheets of GO might act as 
nanotraps for cytokine adsorption, or decreased abundances 
of cytokines might be due to post-transcriptional regulation.

Genotoxicity

GFNs are capable of producing indirect or secondary geno-
toxicity. Nano-GO could intercalate the DNA helix between 
base pairs likely due to their planar structure or sharp edges 
(Estimation of genomic instability and mutation induction 
by graphene oxide nanoparticles in mice liver and brain 

tissues). Moreover, the H-bonding and π-π stacking may be 
the dominant forces mediating interactions between AG-
QDs and DNA, leading to the DNA chain cleavage (Xu et al. 
2018). GFNs have been observed to further down-regulate 
genes governing DNA repairment, such as RAD51, ATM, 
PARP1 and base excision repair (BER) signaling pathway 
genes, implying that GFN likely induce genomic instabil-
ity (Lu et al. 2017; Sasidharan et al. 2016). Fragmenta-
tion of DNA is mainly controlled by endogenous cellular 
enzymes known as “apoptotic endonucleases”. There exists 
evidence suggesting that graphene treatment in NRK-52E 
cells leads to increased DNA endonuclease activity through 
activation of heme oxygenase-1, apoptotic endonucleases 
and caspase-3. Moreover, caspase independent pathways are 
involved in DNA fragmentation through elevation of EndoG 
(Fahmi et al. 2017). Breakage of DNA strands generated by 
endonuclease activity occurred during the initial stages of 
cell injury in H9c2 cells after exposure to 60 μg/mL nano-
GO (Arbo et al. 2019). Cell cycle arrest has been observed 
following exposure of lymphocyte cells to GO nanosheets by 
decreasing the number of cells in the G2/M phase (Babadaei 
et al. 2018). Inhibition of proliferation was also detected fol-
lowing exposure of hydroxyl-modified GQDs (OH-GQDs) 
to human esophageal epithelial cell line HET-1 where a sig-
nificant increase in G0/G1 phase arrest occurred (Li et al. 
2018a).

Interactions with proteins

The effect of GFNs on structural integrity of proteins is 
a major concern due to their affinity for macromolecules. 
Entrapped biomolecules on the surface of graphene mate-
rials might alter the tertiary structure of proteins (Figure 
S1) (Gu et al. 2019). Previously, effects of nano GO (NGO) 
sheets on the quaternary structure of human hemoglobin 
(Hb) near Tyr residues induced α-helicity of Hb in a dose-
dependent manner (Babadaei et al. 2018). Interactions of 
hepcidin peptide and GFNs resulted in formation of stable 
complexes, resulting in β-sheet structural distortions of 
peptides and loss of normal functionality, including anti-
bacterial and -fungal activity and iron metabolism (Singh 
et al. 2018). Another study found that exposure to graphene 
nanosheets induced blood coagulation, due to resulting 
instability of blood-coagulation proteins (the tissue factor/
FVIIa binary complex) bound to the lipid bilayer mem-
brane (Jo et al. 2017). The hydrophobic property of GO 
quantum dots (GOQD) was found to increase the surface 
charge and decreased surface hydrophobicity of the hen egg 
white lysozymes (HEWL), inhibiting hydrophobic assembly 
and colloidal stability of the protein (Ban et al. 2018). More 
importantly, the hydrophobic properties of GFNs may 
directly interfere with normal functioning of proteins. Gra-
phene nanosheets and GQDs were found to bind calmodulin 
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(CaM), a dynamic  Ca2+ binding protein, and suppressed 
 Ca2+-free CaM dynamics (Feng et al. 2017). Evidence indi-
cates potential negative impact of GFNs on the structure and 
dynamic of key proteins involved in calcium signal transduc-
tion in a range of cells.

Epigenetic changes

Impacts on epigenetic regulatory mechanisms, including 
DNA methylation, histone modification, and small RNA 
regulation have been observed following exposure to nano-
materials (Djurisic et al. 2015; Lu et al. 2016; Qian et al. 
2015). However, limited information is available related to 
the role of GFN materials. Zhan (Zhao et al. 2016) et al. 
reported activation of miRNA-360 following exposure to 
GO and suppression of DNA damage-apoptosis signaling 
cascade through interfering with the component of CEP-
1. Similarly, recent evidence further demonstrates that 
exposure to GO impacts regulation of cox2 (a biomarker 
of inflammation) expression in human embryonic kidney 
cells 293T via triggering physical interactions between the 
downstream enhancer and the cox2 promoter via p65 and 
p300 complex-mediated dynamic chromatin looping (Fig-
ure S2) (Sun et al. 2018). Overall, these findings suggest 
the important role of epigenetic regulation in GFN-based 
nanotoxicity and nano-safety, while more in-depth studies 
are required.

Modulation of cell death

Generally, mechanisms of GFN toxicity do not occur singly, 
but in complex and interrelated way ultimately impacting 
cell survival and normal functioning. To date, mechanisms 
of cellular death following exposure to GFN include apop-
tosis, necrosis and autophagy. Previously, graphene treat-
ment of NRK-52E cells for 24 h resulted in upregulation 
of DNase I and caspase-activated DNase expression, while 
inhibition of its activity effectively alleviated occurrence of 
apoptosis (Fahmi et al. 2017). Additional apoptosis mecha-
nisms may be mediated by upregulation of pro-apoptotic 
genes (p53, p21, Bax, Bak, caspase-3) and downregulation 
of anti-apoptotic genes (Bcl-2) and the consequent reduc-
tion of MMP (Gurunathan et al. 2019b). In comparison, 
necrotic cell death has been observed following exposure 
to GO manifested as cell membrane breakage and increased 
abundances of cytoplasmic vacuoles and nucleolysis (Yang 
et al. 2019). Evidence also indicated that apoptosis and 
necrosis could mutually occur at the same time following 
exposure to GFNs. For instance, increased concentrations 
of  Ca2+ in FLG treated cells led to depolarization of the 
mitochondrial membrane and further induced apoptosis and 
necrosis in HUVEC cells (Sasidharan et al. 2016). Following 
laser exposure, GO-Ag induced dose-dependent necrosis/

apoptosis in MCF-7 cells and increased intracellular oxi-
dative stress, including release of singlet  oxygen 1O2 and 
hydroxyl radicals (OH·) (Shaheen et al. 2017). Interestingly, 
in the osteosarcoma (OSA) cancer cell line MG-63, GO 
inhibited cell growth by disturbing autophagy (Tang et al. 
2018). Further evidence supported that the ROS-NRF2-
P62 pathway participated in GO-induced autophagy (Yang 
et al. 2019). In a previous study conducted by our lab, GO 
triggered p62-dependent apoptosis through impairment 
of autophagic flux and lysosomal dysfunction in PC12 
cells (Feng et al. 2018). These finding suggest a crosslink 
between different types of programmed cell death caused by 
GO nanomaterials.

Cytotoxicity of GFNs have varied mechanisms of toxic-
ity ranging from physical damage, organelle dysfunction to 
interactions with biomolecules including DNA, RNA and 
proteins (Fig. 2). Other evidence also suggested impacts on 
cytoplasmic  Ca2+ (Sasidharan et al. 2016), and extracellular 
iron deficiency (Yu et al. 2017). Currently, the literature is 
insufficient to draw conclusions about the potential hazards 
of GFNs considering results differ greatly among studies 
and labs.

Gaps in GFN data

Dose and time dependent toxicity

Treatment dose and length of exposure are primary factors 
influencing toxicity of nanomaterials. Currently, substantial 
evidence is available which supports dose-dependent toxic 
effects of GFNs in a variety of cells, including cancer and 
non-cancer cells (Gurunathan et al. 2013a, 2015a; Yuan et al. 
2017). In general, higher doses of nanomaterials resulted in 
greater toxicity. Treatment with graphite nanoparticles at 
30 μg/mL resulted in significant proliferation inhibition of 
macrophages, meanwhile cell morphology was abnormal. 
When dosed with 100 μg/mL, cells demonstrated the great-
est percentage of necrosis (Liao et al. 2017). This finding 
was further confirmed following exposure to GO (Srikanth 
et al. 2018) or functionalized GO (such as AG-QDs) (Xu 
et al. 2018). In comparison, the effect of incubation time 
on GNF cytotoxicity remain controversial. Some studies 
demonstrated time-dependent graphene toxicity (Lahiani 
et al. 2017; Nasirzadeh et al. 2019), while other evidence 
hold the opposite idea (Duan et al. 2017). Note that interac-
tions between cells and GNFs might be modulated by time 
and exposure in combination. Although high concentrations 
of GQDs significantly inhibited proliferation of the mac-
rophage NR8383, the downward trend of cell activity was 
decreasing when the incubation time was extended to 48 h 
since the cellular uptake of nanoparticles mainly occurred 
within 24 h after exposure (Xu et al. 2018). These findings 
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suggested that cytotoxic effects of GFNs have a critical win-
dow of exposure. Based on the above-mentioned studies, 
cells are resistant to GFN toxicity below thresholds of toxi-
cological concern, further supporting their use in biomedical 
applications.

Particle size

Currently, most studies demonstrated that GFNs of smaller 
particle size induced greater levels of cytotoxicity. For exam-
ple, smaller graphene nanomaterials were more easily inter-
nalized and consumed greater amounts of intracellular ATP, 
and produced greater cytotoxicity in caco-2 cells (Saha et al. 
2016). At higher doses (50 and 100 µg/mL), 1 layer GO-PEG 
nanoflake activated greater ROS formation when compared 
to 4 layer materials, possibly due to greater aggregation of 
the thinner layer GO-PEG in culture medium (Peruzyn-
ska et al. 2017). It should be noted that 1-layer GO-PEG 
induced greater concentrations of ROS in cell-free medium, 
indicating potential spontaneous oxidation of medium com-
ponents which can be eliminated by intracellular catalase 

(Gies and Zou 2017). However, another study also indicated 
that large-sized GO led to more obvious cellular detach-
ment, and greater production of ROS and levels of apop-
tosis when compared to treatment with smaller-sized GO 
(s-GO) (Vranic et al. 2018). It is difficult to determine the 
effect of degree of dispersion and differences in shape on 
toxicity of GFNs, thus contradictory conclusions may still 
be drawn from the same cell line treated in different labora-
tories. The effect of size on GNF toxicity has frequently been 
investigated in non-phagocytes and adherent cells such as 
fibroblasts or epithelial cells (An et al. 2018; Lasocka et al. 
2018; Saliev et al. 2019; Wu et al. 2018b). Note that the size 
dependent toxicity of GO flakes might not be applicable to 
phagocytes, and non-phagocytic suspension cells (Gies and 
Zou 2017; Yue et al. 2012).

Surface structure

Graphene-based materials have differing surface oxidation 
states. GO tends to be more easily internalized by cells due 
to hydrophilicity, while rGO has greater hydrophobicity 

Fig. 2  A schematic diagram revealed the major toxic mechanisms of 
GFNs to mammal cells. GFNs are internalized into cells via differ-
ent pathways, further induces varying adverse effects to cell viabillity, 
including induction of cell membrane damage and ROS formation, 

triggering oxidative stress, inflammation and the injury of different 
cellular components, subsequently leading to apoptosis, necrosis and 
autophagic cell death
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as demonstrated by adsorption and aggregation at the cell 
surface with limited internalization (Chatterjee et al. 2014). 
Further evidence indicated that the oxygen content and pres-
ence of oxygen containing functional groups were involved 
in GFN-induced cytotoxicity, showing greater toxicity with 
lesser C:O ratios (Das et al. 2013). Carbon radical content is 
another contributing factor to the hazard of GFNs. Hydrated 
GO (hGO) possessing greater carbon radical density caused 
greater cell death via lipid peroxidation of surface mem-
branes and inducing membrane lysis compared with pris-
tine GO and rGO (Li et al. 2018b). However, a recent study 
revealed that GO was the least toxic to other graphene-based 
materials, which was attributed to its smoother edges and 
regular structure whereas rGO and graphene have more 
sharp edges and irregularities in shape  (Gies and Zou 
2017). This apparent discrepancy in GFN toxicity, may be a 
result of differences in experimental materials and applica-
tion methods. Note that structural defects in nanomaterials 
can exert potential impact on their biological effects. When 
compared to ideal graphene, defective graphene triggered 
more severe protein denaturation due to stronger attractions 
of surface residues of HP35 from defect edges (Gu et al. 
2019).

Functionalization

Surface modifications have been widely used in modulat-
ing the chemical properties (such as functional groups, car-
bon/oxygen ratio, and hydrophobicity) of GFNs, which are 
crucial determinants of their biocompatibility. It has been 
reported that PEGylated GO (PEG-GO) had lesser cytotox-
icity when compared to pristine GO after 24 h exposure in 
A549 cells (Duan et al. 2017). On the other hand, PEG-
GO nanosheets with greater levels of oxidation had greater 
cytotoxicity when compared to those with lower levels of 
oxidation, further highlighting the important role of oxida-
tion groups related to GNF toxicity (Wu et al. 2018b). Inter-
estingly, PEGylated rGO was detected to cause more severe 
effect and rates of cellular death caused by oxidative stress 
in cells of the blood–brain barrier, including astrocytes and 
RBEC cells when compared to pristine rGO (Mendonca 
et al. 2016a). These findings further highlight the varying 
roles of functional group modification in different types of 
GFNs.

Discrepancies of surface chemistries also participated in 
controlling GFN toxicity. Compared to surface-modified GO 
by the PAA polymer showing minimal effects on chromatin 
structure, aminated GO (GO-NH2) dynamically altered chro-
matin architecture by mediating epigenetic changes at the 
cox2 locus (Sun et al. 2018). Under the same treatment dose 
(100 μg/mL) of COOH-GQDs and  NH2-GQDs, OH-GQDs 
resulted in the greatest rate of cell apoptosis. Analyse of 
protein expressions demonstrated that all GQDs participated 

in regulation of MAPK and Akt pathways, but the expression 
of p-ERK1/2 and p-JNK varied greatly among nanomate-
rials (Xie et al. 2019). Additionally, diverse compositions 
of the protein corona, especially immunoglobulin G (IgG) 
formed on their surfaces may be responsible for biocom-
patibility diversity. IgG within the protein corona could be 
readily recognized by immune cells such as macrophages, 
further determining biological behaviors of pristine GO and 
its derivatives, especially on interactions with cell mem-
brane and cellular uptake, leading to thrombus formation in 
blood (Xu et al. 2016).

Protein adsorption

Based on their high surface free energy, nanomaterials are 
rapidly coated by proteins in biological matrices to form 
a so-called “protein corona”. An important constituent of 
protein coronas, opsonin (such as immunoglobulin G), may 
help identification of nanomaterials by immune cells and 
uptake by the reticuloendothelial system (RES) (Aggarwal 
et al. 2009). Reorganization of protein coronas can impact 
biological behavior of nanomaterials. Hydrophilic interac-
tions of GO in culture medium results in formation of hard 
protein coronas (enriched in FBS proteins) involved in reg-
ulation of multiple biological pathways including cellular 
development/structure, lipid metabolic processes, and signal 
transduction (Franqui et al. 2019). Additionally, nontoxic 
PEG-GO become more toxic when exposed to heme-con-
taining proteins, including lactoferrin, transferrin and fer-
ritin due to enhanced peroxidase-like activity (Zhang et al. 
2017). A recent study also indicated that large sized-GO 
(l-GO) triggered greater cytotoxicity following incubation in 
the presence (w/FBS) of 10% FBS when compared to those 
without FBS (w/o FBS). In contrast, FBS treatment on small 
sized-GO (s-GO) demonstrated the opposite effect on cell 
monolayer. (Vranic et al. 2018). Additional evidence also 
highlighted the protective role of protein coatings against 
GO-induced cytotoxicity (Duan et al. 2015; Vranic et al. 
2017).

Protein adsorption by GFNs is linked to their dimen-
sionality. Generally, 2D nanomaterials, such as graphene 
and graphene oxide flakes, may provide a better surface 
for anchoring protein residues, thus facilitating the adsorp-
tion of proteins and maintaining their structure. Planar 
graphene oxide flakes have higher capabilities to sequester 
and adsorb proteins in comparison with cylindrical shaped 
MWCNT  (Pastrana et  al. 2019).  This observation was 
confirmed by the molecular dynamics simulation, which 
observed reduced π–π stacking with aromatic residues of 
proteins in cylindrical nanostructures and limited adsorp-
tion (Gu et al. 2015). Whether GFNs can be internalized 
into cells is controversial, thus a lower availability of media 
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protein can be considered as a major cause of cell toxicity 
induced by these nanomaterials.

Impurities and mixture effects

Intracellular uptake of graphene by macrophages may 
increase in the presence of endotoxin. It was detected that 
response of cells to graphene exposure resulted in different 
expression of genes in the Toll-like receptor pathway, NOD-
like receptor pathway and downstream signaling molecules 
when treated with endotoxin (Lahiani et al. 2017). Thus 
it is reasonable to conclude that the removal of endotoxin 
or other bacterial contaminants is essential for biosafety 
evaluations of nanomaterials (Li et al. 2017; Mukherjee 
et al. 2016). Moreover, mixture of nanomaterials with other 
chemical components might affect their biological interac-
tions. Traditionally prepared GO materials often include 
high concentrations of  Fe2+ and  Mn2+, which exhibit high 
mutagenicity to cells (Ou et al. 2016; Peng et al. 2015). 
Additionally, pristine GO and GO-Ag nanocomposites under 
the same dose demonstrated different immunotoxicities after 
24 h exposure in J774 macrophages, where GO-Ag induced 
a greater proportion of macrophages to undergo late apop-
tosis/necrosis while pristine GO mainly induced early apop-
tosis (de Luna et al. 2019).

Perspectives and challenges

Currently, the evidence is insufficient to draw conclusions 
about potential hazards of GFNs. Inconsistencies in toxi-
cological data of GFNs are likely due to different physico-
chemical properties (Gies and Zou 2017; Li et al. 2018b), 
assay (Dziewięcka et al. 2017; Lee et al. 2019; Petibone 
et al. 2017; Syama et al. 2017; Tang et al. 2018), and varying 
experimental conditions (Gurunathan et al. 2015a; Sasid-
haran et al. 2016; Yuan et al. 2017). Based on existing evi-
dence, we believe special attention should be paid to the 
sections outlined below and would help improve biocompat-
ibility assessments.

Manufacturing technology

Currently there is consensus that physicochemical proper-
ties of nanomaterials (such as size, chemical composition, 
surface functionalization and hydrophobicity) impact how 
they interact with the biological environment. Thus, accu-
rate characterization of GFN physicochemical properties 
is indispensable in all future toxicity studies. Although, 
a growing number of studies have revealed relatively 
detailed characterization, remarkable discrepancies still 
exist which may result from differing manufacturing 

techniques leading to significant differences in GFN prop-
erties (Gurunathan et al. 2019a; Li et al. 2018b; Nasirza-
deh et al. 2019). In the majority of studies, experimental 
materials are prepared in-house, which can further compli-
cate the comparison of results. Thus, a universal method is 
required to facilitate better comparison of data among labs.

Conditions of dispersion

When compared to the experimental conditions of dose, 
time, and particle size of GFNs, degree of dispersion of 
nanomaterials is more difficult to control. For instance, 
AG-QDs are uniform particles, corresponding to a single 
layer of oxidized graphene with an average lateral size 
of 4.1 nm and thickness of 0.72 nm. After incubation in 
culture medium for 24 h, both lateral size and thickness 
of individual AG-QDs increased to nearly 10 nm, indicat-
ing substantial adsorption of medium components such as 
FBS (Xu et al. 2018). The observed aggregation behavior 
in biological matrices also occurs as GFN tends to form 
large aggregates rather than individual units in liquids. 
Although the thickness of these nanomaterials is gener-
ally at the nanoscale range, the lateral size of graphene 
sheets can range from several nanometers to micrometers 
following formation of agglomerates in liquids (Hinzmann 
et al. 2014). The stability and dispersal of nanomateri-
als impacts their observed toxicity. When aggregation of 
GFNs occurs, the surface area and are available for contact 
is significantly reduced (Pavlin and Bregar 2012). There-
fore nanomaterials should be used quickly to ensure uni-
form dispersion and to prevent excessive agglomeration in 
liquids. Currently, for carbon-based nanomaterials, includ-
ing GFNs, ultrasonic mechanical energy is commonly used 
with the addition of organic dispersants to obtain homoge-
neous dispersion (Maktedar et al. 2017; Pattammattel et al. 
2017; Zhang et al. 2018). Nevertheless, strong mechanical 
forces may alter the physical properties of nanomateri-
als, by inducing fragmentation and resulting in defects on 
the material surface or edges, consequently altering their 
interactions with biological systems (Gies and Zou 2017). 
Moreover, the stability of ultrasonically dispersed nano-
materials is poor. As a result, proper control of experi-
mental conditions to facilitate improved comparisons has 
become a topic of interest. A recent study demonstrated a 
more efficient method to ensure consistency among experi-
ments using rapid (ultra-turrax, UT) mixing to regulate the 
formation of protein corona and reduce GO agglomera-
tion in the presence of proteins, which allows for more 
efficient cellular uptake with limited cytotoxicity (Reina 
et al. 2019). We believe that the use of UT protocol will 
promote the preparation of next-generation GO-based 
drug-delivery platforms.
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Detection methods

Different detection methods, including observation cri-
teria, parameters, and selection of testing methods may 
generate large inter-laboratory differentiations (Ema et al. 
2012, 2014). Evaluation of GFN exposure is a key step in 
developing a better understanding of their cytotoxicity and 
underlying mechanisms. The most commonly used detection 
methods include direct observation of localization of nano-
materials in cells by TEM (Contreras-Torres et al. 2017), or 
quantitative analysis of nanomaterials by fluorescent or radi-
oactive labeling (Li et al. 2018b; Ma et al. 2015). Addition-
ally, changes in side-scatter (SSC) and forward scatter (FSC) 
characteristics via flow cytometry might correlate with 
particle uptake since intracellular density increases when 
NPs enter the cell (Babadaei et al. 2018; Contreras-Torres 
et al. 2017; Xu et al. 2019). However, traditional methods 
of detection have shortcomings such as low observation effi-
ciency, large error of quantitative results, and can have harm-
ful effects on nanoparticles. A recent study in 2019 reported 
a novel gel-electrophoresis based method which could be 
used for accurate quantification of GO in cell samples, with 
a detection limit of 84.1 ng and which is applicable in a 
number of different cell types (Xin and Wan 2019).

Another important consideration is the potential for 
interference between nanomaterials and cytotoxicity test 
reagents. It has been demonstrated that results of the MTT 
test may not be suitable for assessment of cell viability since 
GFNs endocytosis or cell membrane adhesion by living 
cells would interfere with absorbance readings (Gies and 
Zou 2017). In comparison, the WST-8 assay has more repro-
ducible and reliable results, and does not require intensive 
sample preparation especially for treatments receiving high 
concentrations of GO. Similar findings have been observed 
when applying the AB and Neutral Red assays due to fluo-
rescence quenching or direct interferences (Monasterio et al. 
2017; Srikanth et al. 2018; Talukdar et al. 2014). Due to 
limitations of traditional cell viability assays, results should 
be carefully interpreted.

Resistance and biodegradation

Upon exposure to GNFs, cells could develop resistance to 
these harmful stimulus by reducing the uptake of nanomate-
rials (Xu et al. 2018), or excreting internalized nanomaterials 
via lysosome secretion, vesicle-related secretion, and non-
vesicle-related secretion (Gurunathan et al. 2019b). Once 
nanomaterials are inside the cells, how effectively they can 
be degraded or excreted becomes critical. Existing evidence 
support that carbon-based nanomaterials are degradable/
biodegradable through the photo-Fenton reaction, which 
was able to oxidize GO flakes into individual pieces known 
as GQDs (Bai et al. 2014; Kotchey et al. 2011). Another 

in vivo study also suggested the possible biodegradation of 
graphene and highlighted the important role of macrophages 
during the degradation process. (Girish et al. 2013). Moreo-
ver, Kurapati et al. (2015) discovered the important roles 
of hydrophilicity, surface charge, and colloidal stability of 
the aqueous GO in their biodegradation by myeloperoxi-
dase catalysis, which was derived from human neutrophils. 
Note that intracellular autophagosomes and lysosomes are 
effective approaches for the degradation of foreign bodies. 
However, these defense mechanisms may aggravate cell 
damage through blockage of autophagy flows and lysosome 
membrane permeabilization (LMP) due to the special physi-
ochemical properties of GFNs (Feng et al. 2018; Kalman 
et al. 2019). Collectively, we believe further studies should 
pay more attention to the detailed mechanism of GFN deg-
radation and the methods for enhanced degradation effects.

Summary

This review has summarized recent progress towards an 
understanding of the biological and environmental hazards 
posed by GFNs. The first step is to “know the materials” 
with a detailed description of the characteristics of GFNs 
and their biomedical applications. Secondly, both their 
in vivo and in vitro activity and mechanisms of action con-
tributing to the observed adverse effects need to collected 
and analyzed. Moreover, influencing factors and data gaps 
are equally important in improving risk assessments. How-
ever, current biosafety assessments of nanomaterials can-
not reach a comprehensive conclusion due to the lack of 
reliable experimental models, effective detection techniques 
and recognized evaluation standards. We hope the current 
literature survey can serve as an important step to system-
atically collect biosafety data of GFNs and further promote 
their application.
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