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Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health 
and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with 
toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In 
this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity 
studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from 
these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human 
pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-
specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, 
the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized 
drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-
a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these 
cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. 
These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. 
The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the 
way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.

Keywords Drug-induced hepatotoxicity · In vitro human liver model · Omics approaches · Bioinformatics · Graphical 
Gaussian networks · Bayesian networks

Introduction

Despite the contributions of modern drug therapy in improv-
ing human health and in increasing human lifespan, adverse 
drug reactions remain a major challenge for healthcare 
providers, drug developers as well as drug safety regula-
tors. In view of its crucial function in the metabolism of 
xenobiotic compounds, the liver is particularly prone to 
injury caused by drugs and other exogenous compounds 
(Gu and Manautou 2012). Drug-induced liver injury (DILI) 
refers to any insult inflicted on the liver by a pharmaceu-
tical product that leads to impairment of hepatic function 
(Leise et al. 2014). Although the incidence is relatively low, 
DILI is the leading cause of acute liver failure (ALF) in the 
United States and Europe and the most common reason for 
drug disapproval and withdrawal from the market (Kullak-
Ublick et al. 2017). DILI encompasses a spectrum of clinical 
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manifestations and its features may resemble any known 
acute and/or chronic liver disease (such as acute hepatitis, 
hepatic cholestasis and steatosis), or a mixture of different 
injury types, making the distinction between DILI and other 
hepatic disorders difficult (Neuman 2019). Remarkably, only 
a few drugs (e.g. acetaminophen: APAP) are known to cause 
dose-dependent hepatotoxicity. The majority of DILI cases 
are idiosyncratic because of its relatively infrequent occur-
rence and lack of a dose–response. The idiosyncratic nature 
of DILI increases its unpredictability and uncontrollability 
(Raschi and De Ponti 2017), thus posing a major threat to 
public health.

This review is organized in four sections. The introduc-
tion briefly summarizes the current challenges and oppor-
tunities in DILI mechanistic studies. The second section 
provides (1) an update on in vitro human liver models used 
in DILI research, and (2) examples of applying omics tech-
niques to the human in vitro culture platforms and the contri-
butions of the integrated systems to the understanding DILI 
mechanisms. The third section (1) discusses the bioinfor-
matic approaches that are currently used for analyzing the 
omics data, and (2) illustrates the state-of-the-art systems 
biology approaches that can be adopted to investigate drug 
toxicity. Finally, in the fourth section, we will make sug-
gestions for future studies, aiming to reveal the underlying 
mechanisms of DILI.

Drug safety assessment: in vitro human‑relevant 
alternatives to animal testing

To control the risk of DILI, animal studies are frequently 
used to investigate the dose-dependent mechanisms of action 
of new compounds (Lin and Khetani 2016; Vorrink et al. 
2018). The results from such animal tests, however, are 
poorly correlated with human clinical data as a consequence 
of interspecies differences in hepatocellular function, phar-
macokinetics, drug metabolism and toxicity targets. Hence, 
the low concordance between drug-induced hepatotoxicity 
in human and animals results in a low prediction rate (50%) 
(Lin and Khetani 2016; Vorrink et al. 2018).

In the last few decades, a new strategy, using human 
hepatic cell-based in vitro culture systems combined with 
omics-based approaches, is being developed to reduce ani-
mal testing as well as to better predict human DILI and other 
toxic effects of pharmaceuticals (reviewed in (Jiang et al. 
2015b)). Compared to the traditional animal studies, these 
in vitro liver models resemble much better the human physi-
cal conditions and provide more human-specific informa-
tion on drug behavior. In the context of toxicology, omics 
approaches that measure global alterations in genes, tran-
scripts, proteins and metabolites strive to generate a com-
prehensive profile of interactions between genetic variability 
and exposure to exogenous agents (Singh et al. 2010). When 

used in combination with bioinformatics and systems biol-
ogy tools, omics-based strategies provide unique opportuni-
ties for in-depth understanding of molecular mechanisms of 
drug-induced toxicity (Singh et al. 2010). The application 
of omics-based approaches to in vitro human cell-based 
liver models dissects dynamic changes in intracellular 
pathways and networks associated with exposure to drugs, 
thus increasing the chance of identifying more specific and 
reliable molecular fingerprints capable of improving DILI 
diagnosis and predicting human in vivo drug responses to 
new chemicals while generating a plethora of data that can 
be reused in future studies.

Bottlenecks for understanding the mechanisms 
of DILI

Although intensive efforts have been made to understand 
why and how DILI occurs and which individuals may be 
more susceptible, no specific diagnostic and predictive bio-
markers have been identified. Also, the description of pos-
sible mechanisms of DILI (e.g. the formation of reactive 
metabolites, mitochondrial dysfunction, oxidative stress, 
biliary transport inhibition, lipid accumulation and allergic 
reactions) is rather incomplete (Kullak-Ublick et al. 2017).

One concern regarding the current in vitro studies on 
DILI mechanisms is that the exposure time in many human 
cell-based experiments is limited to a few days due to the 
rapid dedifferentiation and deterioration of hepatic functions 
when hepatocytes are cultured in vitro (Jiang et al. 2015b). 
Thus, these prototypic short-term in vitro studies (24–48 h) 
predominantly reflect acute toxicity. The development of 
DILI, however, may take several weeks or months (Tolosa 
et al. 2019). This delay may be related to drug metabolism, 
adaptation to drug intake (development of drug tolerance 
and physical dependence) or chronic liver injury caused by 
deposition of bilirubin (drug-induced cholestasis) or lipids 
(steatosis) (Schuemie et al. 2016). For example, fialuridine, 
an antiviral agent that resulted in 5 deaths and 2 cases of 
liver transplantation in 15 volunteers, only exhibited severe 
hepatotoxicity a few weeks after initiating therapy (Vor-
rink et al. 2018). In fact, in a large prospective study (1257 
enrolled subjects with suspected DILI) conducted by the 
DILI network, 60 of 899 DILI cases (6.7%) had very long 
latency (over one year) (Chalasani et al. 2015). In addition, 
in many studies, cell models are exposed to concentrations 
that are not comparable to relevant therapeutic doses, chal-
lenging the translation of results of these in vitro models 
to the clinic (Atienzar et al. 2016). For instance, APAP, an 
intrinsic hepatotoxin usually causing acute liver injury after 
overdose, also demonstrates hepatotoxicity in healthy adults 
after repeated exposure to therapeutic doses (Mosedale and 
Watkins 2017). Therefore, a stable long-term human cell-
based liver model that allows repeated low-dose exposures 
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and monitoring cellular response to the treatment over time 
is more representative of the clinical setting and aids the 
investigation of mechanisms and pathogenesis of DILI. Fur-
thermore, accumulating evidence indicates an essential role 
of an (idiosyncratic) immune response in the pathogenesis 
of DILI (Bale et al. 2014). Hepatocytes and their interac-
tions with the resident liver immune cells, stellate cells and 
endothelial cells both contribute to the lesion development 
(Bale et al. 2014). Nevertheless, current models, often with 
low heterogeneity at the level of cellular composition, offer 
limited physiologically relevant information.

Application of omics‑based in vitro human liver 
systems to DILI mechanistic studies

To this end, a spectrum of more physiologically relevant 
human liver platforms has been developed. These culture 
systems include, but are not restricted to, micropatterned 
co-cultures, three-dimensional (3D) bio-printed cultures, 3D 
spheroid cultures and microfluidic cultures. These in vitro 
models have improved control of cellular microenviron-
ments, and liver cells growing on these platforms exhibit 
extended metabolic stability and a more in vivo-like phe-
notype, which are unattainable with traditional cell culture 
methods (Proctor et al. 2017). More recently, these in vitro 
models have been applied to several long-term toxicity stud-
ies. After repeated dosing over longer periods of time, these 
cultures show potential for distinguishing DILI-inducing 
from non-DILI-inducing drugs under chronic exposures 
(Proctor et  al. 2017; Tolosa et  al. 2019). For instance, 
when combined with transcriptomic approaches (e.g. deep 
RNA-sequencing technology), these model systems gener-
ate sizable data, depicting longitudinal and genome-wide 
responses to drug exposure. These data may capture long-
term toxic effects of drugs and contain valuable informa-
tion about delayed reactions to drugs and/or cumulative drug 
effects following more relevant therapeutic dosing scenarios. 
Among various layers of omics, transcriptome profiling, 
capturing genome-wide changes in mRNA expressions in 
response to drug exposure, has been widely used to derive 
insight into DILI mechanisms.

Along with the availability of chronic exposure data, bio-
informatic tools have been developed aiming to support the 
analysis of time series data and to infer pathways and gene net-
works from gene expression profiles. These approaches cover a 
broad spectrum of topics, ranging from softwares for identify-
ing differentially expressed genes, time series analyses, clus-
tering methods categorizing time-course gene expression data 
and models analyzing patterns of temporal gene expression. 
Section “Bioinformatic approaches” provides an overview 
of bioinformatic methods that can be used to extract pivotal 
information for the identification of causal mechanisms and 
the interpretation of toxicological processes involved in DILI.

In vitro cell culture systems for omics‑based 
mechanistic investigation of drug‑induced 
liver disease

In an attempt to advance the understanding of the underlying 
mechanisms of human DILI, a spectrum of in vitro human 
liver model systems, ranging from conventionally cultured 
cancerous hepatic cell lines and primary/renewable human 
hepatocytes to engineered liver platforms, such as static 
micropatterned (co-)cultures, bio-printed hepatic models 
and multicellular perfused systems, has been developed. 
These human liver cell-derived in vitro models that closely 
resemble the human physical conditions have moved beyond 
animal toxicological studies and allow us to investigate 
drug disposition and hepatic transporter-related drug–drug 
interactions (Swift et al. 2010). Omics studies, at all levels, 
including transcriptomics, proteomics and metabolomics, 
provide information on the interactions between the genome 
and compounds. In vitro human liver model systems com-
bined with omics-based analyses have great potential for 
revealing the molecular mechanisms of drug-induced toxic-
ity in humans (Afshari et al. 2011; Cui and Paules 2010).

The characteristics of various culture systems and their 
application to omics-based mechanistic studies focusing on 
DILI are discussed below and summarized in Table 1.

Conventional in vitro cultures

Primary human hepatocytes or renewable hepatic cell lines, 
cultured on adsorbed or between two layers of gelled extra-
cellular matrix (ECM) proteins have been widely used in 
assessing drug-associated hepatotoxicity and in investigat-
ing the mechanisms and pathophysiology of DILI. Since the 
characteristics of these culture systems have been reviewed 
extensively (Godoy et al. 2013; Jiang et al. 2015b), we only 
briefly summarize the advantages and limitations of these 
conventional culture systems and instead mainly focus on the 
key findings regarding human DILI mechanisms discovered 
by applying omics approaches to these models.

Hepatocellular carcinoma cell lines

Immortalized human cell lines have been widely used 
as cost-effective and sustainable substitutes for primary 
human hepatocytes (PHH) in initial assessment of DILI 
risk of candidate compounds prior to preclinical trials (Lin 
and Khetani 2016). Advantages of using these cancerous 
hepatic cell lines, including high availability, easy handling, 
stable phenotype, well-characterized protein expression 
and long life span (Kuna et al. 2018), have popularized its 
use in high-throughput toxicity studies and in exploration 
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of mechanisms of liver toxicity. Among various human 
hepatocellular carcinoma cell lines (i.e. Hep3B, Huh7 and 
SK-HEP-1), HepG2 and HepaRG constitute routinely used 
models for hepatotoxicity studies.

HepG2, a perpetual hepatocellular cell line, expresses a 
variety of liver-specific enzymes and nuclear transcription 
factors (such as p53 and Nrf2) that play pivotal roles in the 
development of drug-induced toxicity (Jiang et al. 2015b). 
Due to their low cost, high reproducibility and unlimited 
lifespan, HepG2-based in vitro model systems and multiple 
omics approaches have been extensively exploited in a num-
ber of studies for the prediction of drug-induced hepatotox-
icity (Ramirez et al. 2018), the classification of cholestatic 
and necrotic hepatotoxicants (Van den Hof et al. 2014) and 
the discrimination between genotoxicants and non-geno-
toxicants (Magkoufopoulou et al. 2011, 2012) as well as 
to illustrate the corresponding mechanisms. For instance, 
an in vitro study conducted using HepG2 cells showed that 
the transcriptome-based classifiers achieved high accuracies 
(accuracies above 90%) for the discrimination of hepato-
toxicants from nonhepatotoxicants and for the separation 
of cholestatic and non-cholestatic compounds (36-gene and 
12-gene classifiers, respectively) (Van den Hof et al. 2014). 
Aside from the classification power, this in vitro culture sys-
tem revealed that endoplasmic reticulum (ER) stress and the 
unfolded protein response are important cellular responses 
to drug-induced liver toxicity (Van den Hof et al. 2014). 
In 2018, a research team exposed HepG2 cells to 35 com-
pounds and performed metabolome analyses using mass 
spectrometry (MS), aiming to develop robust, standardized 
and reproducible metabolomic systems for prediction of 
liver toxicity in vitro (Ramirez et al. 2018). The study suc-
cessfully discovered dose-dependent and compound-specific 
action modes for the tested hepatotoxins and identified sev-
eral molecular mechanisms (e.g. liver enzyme induction/
inhibition and peroxisome proliferation) responsible for 
their toxicities (Ramirez et al. 2018). The applications of 
transcriptomics, proteomics and metabolomics to HepG2-
based in vitro models also assist with the identification of 
key mechanisms underlying drug-induced hepatic steatosis, 
cholestasis, cytotoxicity and genotoxicity (Chatterjee et al. 
2014; Deferme et al. 2015b; Rieswijk et al. 2014; Smit et al. 
2017; Van den Hof et al. 2015, 2017; Van Summeren et al. 
2011) as well as compounds’ carcinogenicity in humans 
(Briede et al. 2018; Caiment et al. 2015; Jennen et al. 2011; 
Lizarraga et al. 2012; Ruiz-Aracama et al. 2011; Souza et al. 
2016; van Delft et al. 2012).

In 2012, Van Delft et al. demonstrated the benefits of 
RNA sequencing (RNA-seq) over microarray in transcrip-
tome profiling of the benzo[a]pyrene (BaP)-exposed HepG2 
cells (van Delft et al. 2012). Compared to the microar-
ray technique, RNA-seq detected a larger number of dif-
ferentially expressed genes (DEGs) (~ 20% more genes) 

in response to the BaP challenge and the changes of the 
induced DEGs (fold changes) were more robust (~ threefold) 
when using RNA-seq (van Delft et al. 2012). Furthermore, 
the study indicated that RNA-seq enables the investigation 
of alternative isoform expression in the affected genes and 
the allele-specific gene expression changes, as illustrated 
by the identification of BaP-associated alterations in iso-
form expression in several genotoxic response- or oxidative 
stress response-regulating genes (i.e. TP53, BCL2, XPA and 
AKR1B10) (van Delft et al. 2012). Following this research, 
Caiment and co-authors further studied the BaP-induced 
carcinogenic processes in HepG2 cells using RNA-seq and 
small RNA-seq technologies (Caiment et al. 2015). They 
discovered that the exposure-initiated upregulation of the 
miR-181a-1_3p expression and the subsequent inhibition of 
 O6-methylguanine DNA methyltransferase were responsible 
for the BaP-induced carcinogenesis in the liver (Caiment 
et al. 2015).

Deferme et al. also adopted the HepG2 cells for a thor-
ough study of the development of drug-induced oxidative 
stress in toxicological phenomena (Deferme et al. 2013, 
2015b, 2016). Following exposures of HepG2 cells to 
several free radical-releasing agents, the authors analyzed 
the time series multi-omics datasets in combination with 
functional endpoints measuring oxidative cellular damage 
(Deferme et al. 2013, 2015b, 2016). Their studies not only 
elucidate the role of oxidative stress in inducing aberrant 
DNA methylation and DNA hydroxymethylation modifica-
tions, which significantly enhanced the molecular under-
standing of oxidative stress-induced responses in human 
hepatocytes (Deferme et al. 2013, 2016), but also provided 
an oxidative stress-associated gene signature for the predic-
tion of the oxidative stress-inducing ability of a compound, 
which contributes to improving the drug safety (Deferme 
et al. 2013, 2015a).

HepG2 cells, due to their high mitochondrial DNA 
and organelles contents, remain a model of choice for 
the study of compound-induced mitochondrial dysfunc-
tion (Poloznikov et al. 2018). Applied transcriptomic and 
proteomic analyses to this cell model, Jiang et al. (2015a) 
and Paemanee et al. (2017) explained the mechanisms of 
mitochondrial dysfunction associated with APAP and 
nevirapine (NVP) administrations. Using a HepG2-based 
in vitro cytokine synergy model, an attempt has been made 
to investigate the relationship between inflammation and 
drug idiosyncrasy (Jiang et al. 2017). Through comparing 
the differences of the transcriptomic and metabolomic pro-
files of HepG2 cells in response to idiosyncratic and non-
idiosyncratic compounds, the study revealed the interaction 
between inflammatory cytokines and the idiosyncratic drugs 
and illustrated that the dynamic disequilibrium in cera-
mides/sphingolipids balance and its coupled ER stress- and 
JNK-mediated apoptosis could be the common mechanism 
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underlying the inflammation-associated idiosyncratic drug 
hepatotoxicity (Jiang et al. 2017).

Nonetheless, the lack of activity of several drug transport-
ers (e.g. BSEP, NTCP and OCT-1) and phase I/II enzymes 
(e.g. GSTA 1/2 and GSTM1) in HepG2 cells (Poloznikov 
et al. 2018; Van den Hof et al. 2015) challenge the relevance 
of HepG2-based in vitro models in DILI research (Zeilinger 
et al. 2016).

Alternative to HepG2 cells, the highly differentiated 
human hepatoma HepaRG cells have also been used as a 
surrogate for PHH, especially in in vitro drug metabolism 
assessment (Le Vee et al. 2013). Recently, studies have dem-
onstrated that compared to HepG2 cells, the baseline tran-
scriptomic (Hart et al. 2010; Jennen et al. 2010; Jetten et al. 
2013) and proteomic (Sison-Young et al. 2015) profiling of 
differentiated HepaRG cells indicates a higher resemblance 
to PHH. Tascher et al. also showed that the amounts of pro-
teins related to bile acid synthesis, conjugation, detoxifica-
tion and transport expressed by HepaRG are comparable to 
PHH, encouraging the use of these cells in studies of drug 
metabolism, compound-induced liver injury and pathogen-
esis of cholestatic liver diseases in humans (Tascher et al. 
2019). The molecular mechanisms for the hepatic cholestasis 
(Rodrigues et al. 2018), steatosis (Mesnage et al. 2018) and 
cytotoxicity have been studied by means of multi-omics-
based methods after exposure of HepaRG cells to a number 
of compounds (Seeger et al. 2019a; Smith et al. 2018). The 
integrated transcriptomic, proteomic, and metabolomic anal-
yses demonstrated that bosentan-induced cholestatic liver 
injury was associated with transcriptomic and proteomic 
alterations in liver cholestasis-, liver necrosis- and liver 
damage-related pathways and the endogenous metabolite-
related mitochondrial impairment (Rodrigues et al. 2018). 
Using proteomics, Smith et al. revealed that individual or 
combined administrations to mycotoxins [deoxynivalenol 
(DON) and zearalenone (ZEA)] affected the production 
of proteins regulating the cell cycle, cell proliferation and 
development, as well as DNA metabolic processes in Hep-
aRG cells (Smith et al. 2018).

In addition to the well-known HepG2’s low function-
ality and HepaRG’s low predictive power of hepatotoxic-
ity (Asplund et al. 2016), none of these human hepatoma 
cell lines reflect human heterogeneity in response to toxic 
compounds (Benesic and Gerbes 2015; Jetten et al. 2013). 
Although a relatively high degree of similarity in gene 
expression patterns has been found between HepaRG cells 
and PHH, in general, the phenotypes (Bell et al. 2016) and 
the basal gene expression profiles of both cell lines still dif-
fer substantially from PHH (Harris et al. 2004; Hart et al. 
2010). Even though the activity levels of cytochrome oxi-
dase are higher in HepaRG than in HepG2 cells, the levels 
of their cytochrome activities are markedly decreased in 
both cell lines compared to those in PHH (reduced by 60% 

and 90% in HepaRG and HepG2 cells, respectively) (Sison-
Young et al. 2015). At the proteome level, there are detect-
able differences in the proteins regulating cell senescence 
and proliferation between HepaRG and PHH, probably due 
to the transdifferentiation features of HepaRG, reminding 
their similarity to stem cells and liver cancer cells (Tascher 
et al. 2019), which raise concerns about the applicability of 
these in vitro models in DILI studies.

Primary human hepatocytes (PHH)

Hepatocytes represent around 60% of the total liver cell 
population (Poloznikov et al. 2018). Due to their physi-
ological relevance, PHH (freshly isolated or stably cryopre-
served) are commonly accepted as the ‘gold standard’ for 
constructing liver models for in vitro drug testing and DILI 
mechanistic research (Gerets et al. 2012). In the early 2000s, 
freshly isolated PHH-derived cell models and transcriptome 
approaches have been used jointly to evaluate and predict 
human drug toxicity in vitro. In 2004, Kier and co-authors 
analyzed the microarray data collected from cultures of PHH 
(n = 6) maintained on the collagen-coated plates and suc-
cessfully distinguished troglitazone, a potent hepatotoxin, 
from its less toxic analogs, rosiglitazone and pioglitazone, 
using a toxicologically relevant gene set generated from rat 
in vivo data (Kier et al. 2004). Their research revealed that 
after 24 h exposure, the hepatotoxic troglitazone, compared 
to its non-hepatotoxic counterparts, uniquely elevated the 
expression of genes in several toxicity pathways (e.g. apop-
tosis and inflammation), but inhibited genes responsible 
for detoxification pathways (e.g. acute phase proteins and 
stress‐responsive proteins) (Kier et al. 2004; Liguori et al. 
2005), demonstrating the practicality of toxicogenomics for 
improved understanding of DILI mechanisms. However, 
PHH maintained in quiescent monolayer cultures rapidly 
dedifferentiate (4–6 h when kept in suspension and 24–48 h 
when cultured on plates), resulting in a loss of morphologi-
cal integrity, liver-specific enzyme activities, hepatic func-
tions and cell viability within days (Bell et al. 2016; Sol-
datow et al. 2013). Thus, when maintained in suspension 
or directly seeded onto (collagen-coated) culture plates, the 
lifespan for PHH is limited and preservation of an in vivo 
like phenotype of these cells is challenging (Poloznikov 
et al. 2018).

The optimized culture conditions, such as the use of liver 
cell co-cultures and sandwich cultures, have been applied 
to improve cell stability of hepatocytes in conventional 
cultures. Compared to monolayer cultures, co-cultures 
of hepatocytes with liver-derived non-parenchymal cells 
(NPCs) have been known to be beneficial for modulating cell 
differentiation and prolonging hepatic functions/functional-
ity (Lin and Khetani 2016). When co-cultured with hepatic 
stellate cells (HSCs), PHH seeded on collagen-coated 
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plates displayed improved hepatic functions in 2-day cul-
tures (Krause et al. 2009). When maintained in a sandwich 
configuration, PHH demonstrate a prolonged lifespan and 
delayed dedifferentiation process. It is reported that the via-
ble culture period of the sandwich-cultured PHH may last 
up to 8 weeks and the cell polarity that enables the develop-
ment of the canalicular network and the production of bile in 
the hepatocytes is better preserved (Poloznikov et al. 2018), 
which favor the use of this model in in vitro investigation of 
human drug-induced hepatotoxicity.

Using the sandwich-cultured PHH and microarray tech-
nology, Kienhuis and Black identified human-specific tran-
scriptome changes in response to 24 h coumarin- (Kienhuis 
et al. 2009) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
(Black et al. 2012) treatments. Through analyzing the tran-
scriptome alterations in PHH after exposure to 158 com-
pounds, a research team found that the changes of a set of 
NRF2-associated genes to a given chemical insult have been 
found to be indicative of toxicity features of such compound 
(Copple et al. 2019). At the end of the study, they pointed 
out that integrating the NRF2 transcriptional network into 
holistic systems toxicology models could benefit the mecha-
nism studies and preclinical prediction of DILI (Copple et al. 
2019).

As a model derived from individuals with different 
genetic backgrounds, the variability observed in PHH 
in vitro could better reflect that of the liver in vivo (Gomez-
Lechon et al. 2007). Jetten et al. investigated the variabil-
ity in response to APAP exposures (24 h) in PHH derived 
from five donors by incorporating multiple omics techniques 
(transcriptomics and metabolomics). The study found that 
the variability in levels of APAP metabolites was corre-
lated with the interindividual differences in the expression 
of genes involved in certain biological processes, such as 
liver regeneration, inflammatory responses and mitochon-
drial stress responses, which provided explanations for the 
observed large variations in susceptibility towards APAP-
induced liver injury among humans (Jetten et al. 2016). Due 
to the physiological relevance of PHH, a research group 
selected PHH sandwich cultures to understand the hepatic 
adverse effects of a recombinant human neuregulin-1β 
(GGF2) observed during a phase I clinical trial (Mosedale 
et al. 2018). The exposures to GGF2 (up to 72 h) induced 
an overall decrease (~ 50%) in the expression of protein-
coding genes responsible for bilirubin transport and bile acid 
conjugating without overt cytotoxicity. The treatments also 
affected genes involved in the acute phase response signal-
ing pathways, mimicing the changes in IL-6 disturbed cells 
(Mosedale et al. 2018). Subsequently, the GGF2 administra-
tions resulted in a dose- and time-dependent reduction of 
total endogenous bile acid content and biliary clearance in 
the treated PHH (n = 5) (Mosedale et al. 2018).

The prolonged stability of PHH attributed to the change 
of culture configuration also enables the assessment of epi-
genetic events in DILI development. Recently, sandwich-cul-
tured PHH have been employed to explore the mechanisms 
of chronic hepatotoxicity following 5-day administrations 
of aflatoxin B1 (AFB1), a liver carcinogen (Rieswijk et al. 
2016), and cyclosporine A (CsA), an inducer of cholestasis 
(Wolters et al. 2016). Facilitated by transcriptomic and epi-
genomic approaches, this in vitro culture system revealed 
interactions between alterations in DNA methylation and 
mRNA expression changes during the development of 
AFB1-induced hepatocellular carcinoma (Rieswijk et al. 
2016) and revealed the persistent changes in gene expres-
sion and microRNA expression in response to CsA-associ-
ated cholestasis (Wolters et al. 2016). Wolters et al. (2017, 
2018) and Van Breda (van Breda et al. 2018) also used the 
sandwich-cultured PHH and multiple omics approaches 
(transcriptomics, epigenomic and proteomics) to examine 
the roles of epigenetic factors in liver steatosis develop-
ment induced by repeated exposures (3–5 days) to valproic 
acid (VPA), a drug to treat epilepsy and bipolar disorders. 
Through the integrative cross-omics analyses, they discov-
ered several treatment-initiated reactions (e.g. the cross-talk 
between nuclear DNA and mitochondrial DNA hypermeth-
ylation (Wolters et al. 2017), the persistent epigenetic and 
transcriptomic alterations in the mitochondrial genome 
coupled with the measurable mitochondrial dysfunction 
(Wolters et al. 2018) and the inhibition of nuclear recep-
tors at DNA methylation and mRNA levels (van Breda et al. 
2018), deepening the understanding of the VPA-induced 
hepatosteatosis.

Yet, the dedifferentiation process in the sandwich-cul-
tured PHH, although delayed, is unavoidable. It is suggested 
that when cultured between two collagen layers, PHH only 
maintain their biotransformation capacity and the ability to 
induce hepatic phase I/II enzymes close to the in vivo situa-
tion for the first 2 weeks (Poloznikov et al. 2018) and sustain 
their hepatic functions to a level comparable to that observed 
in the freshly isolated cells for a few days (Lin and Khetani 
2016). Additionally, a few other disadvantages, such as the 
shortage of donated livers and the lack of tissue heteroge-
neity, limit the potential of 2D or sandwich-cultured PHH 
in investigating mechanisms of drug-induced hepatotoxicity 
(Nagamoto et al. 2012).

Human pluripotent and multipotent stem cells

Recently, human pluripotent and multipotent stem cells 
have gained attention as potentially unlimited cell sources 
of differentiated hepatocytes because of their pluripotency 
and proliferative potential (Glicksman 2018). The stem 
cell-based in vitro liver models carry donor-specific genetic 
information and may have the potential to contribute to 
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personalized medicine (Ware et al. 2015). The multipo-
tent post-natal stem cells, human skin-derived precursors 
(hSKP), exhibit the ability to differentiate into hepatocyte-
like cells (hSKP-HPC) (Rodrigues et al. 2016). These con-
versed cells have been shown to express hepatocyte mark-
ers (e.g. EPCAM, NCAM2, PROM1, SMAD4 and THY1) 
as well as phases I and II drug-metabolizing enzymes (e.g. 
CYP1B1, FMO1, GSTA4, GSTM3, ABCC4, ABCA1, 
SLC2A5), suggesting the acquisition of hepatic progenitor 
cell-like properties in hSKP after differentiation. Never-
theless, only a proportion of the hSKP-HPC express adult 
hepatocyte marker genes or proteins, such as albumin (~ 27% 
albumin-positive cells), indicating that these transformed 
cells still retain the characteristics of immaturity of liver 
progenitor cells (Rodrigues et al. 2014). Microarray-based 
studies illustrate that the responses of the hSKP-HPC to 
the APAP treatment were comparable to the reactions in 
PHH, reflected in the similarity of their functional toxico-
logical analysis results (Rodrigues et al. 2014). Furthermore, 
among other in vitro models (PHH, HepG2 and HepaRG), 
hSKP-HPC showed the highest concordance with the clini-
cal liver samples collected from the patients with APAP-
induced liver failure (n =  3) at the transcriptome level 
(Rodrigues et al. 2016). Yet, HepaRG, instead of the hSKP-
HPC, demonstrated the highest potential for the prediction 
of APAP-induced hepatotoxicity when using a prediction 
diagram consisting of the ‘Damage of Liver’-related genes 
derived from comparing gene expression profiles between 
clinical ALF samples and healthy liver tissues (Rodrigues 
et al. 2016). In contrast, a direct transcriptome comparison 
between APAP-exposed PHH and hSKP-HPC (5 mM, 24 h) 
has been made. The results showed that, at the gene and 
the pathway levels, the treatment-induced alterations in the 
hSKP-HPC did not always correlate with the changes in 
PHH (Rodrigues et al. 2014).

Next to hSKP-HPC, human pluripotent stem cells 
(hPSCs) also show the ability to differentiate into primary 
hepatic-like cells under culture conditions, providing com-
plementary to PHH for the prediction of drug toxicity and for 
the investigation of mechanisms of DILI (Kuna et al. 2018; 
Nagamoto et al. 2012). Human-induced pluripotent stem 
cells (hiPSCs) and human embryonic stem cells (hESCs) are 
two types of hPSCs. They both display self-renewal in cul-
ture and have the potential to be differentiated into almost all 
somatic cell types in the body (Zhu and Huangfu 2013). In 
2018, Han et al. performed liquid chromatography-tandem 
mass spectrometry (LC–MS/MS) to assess the idarubicin-
induced proteomic changes in basal hiPSCs. After 24 h 
exposure, they identified over 3000 differentially expressed 
proteins and revealed the inhibition of the EIF2 signaling 
pathway and the activation of apoptosis played a key role 
in idarubicin-related toxicity in hiPSC (Han et al. 2018). 
Through directed differentiation, hPSCs produce genetically 

modified cells, tissues and even organoids that mimic the 
human liver (Apati et al. 2019). hiPSC-derived hepatocytes 
(hiPSC-Heps) show closer resemblance with PHH at the 
transcriptome level than the HuH-7, HepG2, and HepG2/
C3A cells (Gao and Liu 2017). Lu et al. demonstrate that 
the genome-wide expression profiles of multiple batches 
of hiPSC-Heps (proprietary protocol) are more similar to 
those from PHH isolated from neonatal (n = 1) and adult 
(n = 4) human livers than those from PHH derived from 
fetal human hepatocytes (n = 2) (Lu et al. 2015). While, 
in another study, the differentiated hiPSC-Heps (a 22-day 
hepatogenic differentiation procedure) expressed high levels 
of fetal isoforms of cytochrome P450 s (CYPs) (CYP3A5 
and CYP3A7) and glutathione S-transferases (GSTP1) as 
well as transporters associated with dedifferentiation during 
carcinogenesis (ABCB1 and ABCG2), indicating a lack of 
maturation of these hiPSC-Heps (Bell et al. 2017). Likewise, 
other studies have reported that the expression patterns of 
phase I/II drug-metabolizing enzymes and transporters in the 
hiPSC- and hESC-differentiated hepatocytes more closely 
resemble those in fetal livers than in adult livers (Scott et al. 
2013). These inconsistent results suggest that the diverse 
reprogramming techniques can cause highly variable func-
tionality within the produced hepatocyte-like cells (Solda-
tow et al. 2013). In addition, the expression levels of xeno-
biotic metabolism-related genes in hiPSC-Heps are still not 
comparable to those found in freshly isolated PHH or liver 
tissues (Si-Tayeb et al. 2010) and the transformed cells may 
lose their liver characteristics and their metabolic activity 
after a few days when maintained in standard culture condi-
tions (Soldatow et al. 2013). To date, few proof-of-principle 
toxicity studies carried out with hiPSC-Heps support the 
concept of using these models for drug toxicity screening 
(Choi et al. 2013; Szkolnicka et al. 2014; Ware et al. 2015), 
whereas none of them provided mechanistic insights into 
the causes and effects of these drugs in liver toxicity at the 
omics level.

A number of improvements, such as further differentia-
tion and cell culture optimization, are required before stem 
cell-derived models can be widely used as in vitro adult 
human liver surrogates for large-scale drug screening or 
DILI mechanism studies (Scott et al. 2013).

Precision‑cut liver slices

Human precision-cut liver slices (hPCLS), often consid-
ered as mini livers, better represent the biological organi-
zation of the liver (Ijssennagger et al. 2016). Unlike PHH, 
the preparation of hPCLS does not require the use of any 
proteolytic enzymes during their preparation, enabling the 
resultant liver slices to maintain a natural tissue microen-
vironment and retain intact cell–cell and cell–matrix inter-
actions (Elferink et al. 2011). hPCLS also reflect the liver 
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cell heterogeneity and better preserve liver histoarchitecture, 
allowing for the interplay between parenchymal and non-
parenchymal liver cells (NPCs) as well as liver infiltrating 
immune cells (Palma et al. 2019). It is reported that, when 
cultured under proper conditions, hPCLS can preserve their 
viability for up to 5 days (Paish et al. 2019; Wu et al. 2018), 
which enhances their utilization for studying the patho-
physiological processes in a variety of hepatic diseases, 
such as alcoholic liver disease, non-alcoholic fatty liver dis-
ease (NAFLD), fibrosis and cirrhosis, cholestasis and DILI 
(Palma et al. 2019). Nowadays, human liver slice-derived 
cultures combined with omics techniques have been used 
to study the mechanisms of drug-induced hepatotoxicity 
(Elferink et al. 2011), steatosis (Ijssennagger et al. 2016) 
and cholestasis (Vatakuti et al. 2017). In 2016, Vatakuti 
et al. exposed hPCLS (n = 6) to a number of necrosis- or 
cholestasis-inducing drugs, aiming to develop a mechanism-
based model for the classification and prediction of drug 
toxicity (Vatakuti et al. 2016). Facilitated with transcriptome 
analyses, researchers discovered several signaling pathways 
and gene sets that were commonly affected in the hPCLS 
treated with the cholestatic drugs and developed a consen-
sus list of marker genes that can be used for hepatotoxicity 
screening (Vatakuti et al. 2016). More recently, Ščupáková 
et al. used hPCLS (n = 23) to investigate the aberrant lipid 
metabolism in NAFLD (Scupakova et al. 2018). Through 
integrating the lipid mass spectrometry imaging data into 
pathway analysis, their study demonstrated the lipid–protein 
interaction networks in nonsteatotic and steatotic regions of 
the patients, providing insights into the biological processes 
that direct regional lipid accumulation in NAFLD (Scupa-
kova et al. 2018). The well-preserved cell type diversity and 
the intercellular interactions also make hPCLS a promis-
ing model to recapitulate idiosyncratic drug-induced liver 
injury (iDILI)-triggering conditions in humans. Vatakuti 
et al. exposed hPCLS (n = 6) to the iDILI-related (clozap-
ine) or non-IDILI-related (olanzapine) agents in the presence 
or absence of lipopolysaccharide (LPS) for 24 h (Vatakuti 
2016). The presence of LPS exacerbated the toxicity of clo-
zapine but not its non-iDILI-inducing comparator. By ana-
lyzing transcriptome changes, they found that co-exposure of 
hPCLS to clozapine and LPS-induced activation of HMGB1, 
p38 MAPK, NFkB and NRF2 signaling pathways and 
upregulated the inflammatory cytokine-coding genes (IFN-
γ, IL1A, IL1B), suggesting that mitochondrial dysfunction 
and inflammation signaling pathways were involved in iDILI 
in the human liver (Vatakuti 2016).

Although hPCLS serves as a valuable tool for the study 
of liver disease, the scarcity of donor organs, especially 
healthy liver materials, is one of the major restrictions that 
limits the use of human liver slices in high-throughput 
drug screening (Roth and Lee 2017). Further to this, PCLS 
maintained in a static culture medium usually display a 

limited lifespan of 24–48 h (Jiang et al. 2015b). Advanced 
culture systems such as microfluidic perfusion systems 
(Khong et al. 2007), bioreactor systems (Paish et al. 2019) 
and air–liquid interface culture systems (Wu et al. 2018) 
have been shown to improve their longevity for 3–15 days, 
while the cultured PCLS still cannot preserve high lev-
els of hepatic function for over 3 days without evident 
fibrogenesis and necrosis/apoptosis in the model (Lin and 
Khetani 2016; Paish et al. 2019).

Three‑dimensional (3D) spheroids and organoids

The behavior of cells is heavily determined by their micro-
environment. Liver cells maintained in the conventional 2D 
cultures often lack the hierarchy and structural components 
of the liver, resulting in poor stability of such models (Bale 
et al. 2014). Due to the enhanced heterotypic cell–cell con-
tacts, 3D cultured human hepatocytes retain their periportal 
and perivenous phenotypes and exhibit superior activity of 
drug-metabolizing enzymes and transporter proteins as com-
pared to 2D monolayer cultured PHH in extended culture 
periods (Foster et al. 2019). Results from transcriptomic, 
proteomic and metabolomic studies have demonstrated that 
the 3D (co-)cultured PHH-derived liver microtissues have 
reached long-term functional, phenotypical and metabolic 
stability (Messner et al. 2018; Vorrink et al. 2017) and 
remain sensitive to chronic hepatotoxin exposures during the 
culture period (up to 5 weeks) (Bell et al. 2016). Moreover, 
the PHH-derived liver spheroids displayed detectable phar-
macokinetic differences among donors, which enable studies 
of interindividual variability in response to drugs and pro-
vide options for the investigation of genotype‐specific mech-
anisms for drug-induced hepatotoxicity in humans (Vorrink 
et al. 2017). When co-cultured with NPCs, the PHH-based 
3D in vitro system further mimics in vivo hepatic histo-
architecture, rationalizing the use of this model in long-term 
(idiosyncratic) DILI research (Bell et al. 2016; Kuna et al. 
2018).

A few studies have applied omics approaches to the PHH/
Kupffer cells (KC) co-cultured 3D liver microtissues, aiming 
at improving the understanding of the mechanisms of acute 
(24 h) and chronic (3–14 days) drug-induced hepatotoxicity 
under normal or inflammatory conditions (Bell et al. 2017; 
Bruderer et al. 2015; Jiang et al. 2019; Sarkar et al. 2017). 
To better understand the pathogenesis of fatty liver disease, 
a research group recently exposed liver spheroids, contain-
ing PHH and detectable amounts of KC and stellate cells, to 
oleic and palmitic acid (Kozyra et al. 2018). High-resolution 
MS was used to analyze the long-term (21 days) metabo-
lomic responses to the disturbances and identified the most 
upregulated lipid classes following the lipid administrations 
(Kozyra et al. 2018).
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In addition to the PHH liver spheroids, hiPSCs have 
been used to create liver organoids. A study showed that 
the human self-aggregated PSCs spheroids exhibited a 
stable hepatic phenotype and remained modest liver func-
tion for over 1 year in culture (Rashidi et al. 2018). The 
whole-genome profiling of hiPSC organoids co-cultured 
with human stromal cells or with human bile duct-derived 
bipotent progenitor cells displayed a close resemblance to 
in vivo liver-bud-derived cells (Takebe et al. 2013) as well as 
chromosome and structural stability of up to 2 months (Huch 
et al. 2015). In another study, researchers used single-cell 
RNA sequencing (scRNA-seq) to decipher the path of hiPS-
Hep lineage progression and discovered that the 3D cultured 
liver organoids were more closely correlated with fetal liver 
cells than with adult hepatocytes (Camp et al. 2017).

More recently, bio-printing technology has been applied 
to produce 3D multicellular hepatic spheroids. Compared 
to the randomly distributed heterotypic liver cells in self-
assembled spheroids/organoids, bio-printing enables more 
precise control over the spatial arrangement of different cell 
populations so that sophisticated homotypic and heterotypic 
cell–cell interactions can be further simulated (Underhill and 
Khetani 2018). Kizawa et al. used the bio-printing technol-
ogy to create a 3D liver tissue consisting of PHH and mouse 
fibroblasts and applied microarrays to assess the resulting 
model (Kizawa et al. 2017). Their study demonstrated that 
the 3D bio-printed liver tissue maintained long-term expres-
sion of liver function-related genes (2 weeks) and formed 
bile duct and sinusoid-like structures during an extended cul-
ture period of 50 days (Kizawa et al. 2017). Other research 
groups also reported their successfulness in establishing 
multicellular liver microtissues using PHH (Norona et al. 
2016), HepG2 cells (Jeon et al. 2017) or hiPS-Hep (Ma et al. 
2016) with or without adding the NPCs (such as hepatic 
stellate cells, endothelial cells). These studies also showed 
prolonged cell viability, increased drug sensitivity to meth-
otrexate and thioacetamide and stable liver-specific gene 
expression in the long-term in vitro cultures (21–32 days) 
(Jeon et al. 2017; Ma et al. 2016; Norona et al. 2016). How-
ever, additional studies are still needed to further understand 
the characteristics of these in vitro models at the omics level.

Overall, 3D cultured liver tissues appeared recently as a 
promising way to evaluate human drug toxicity in vitro, yet 
so far the currently available technologies are still unable to 
produce standardized and validated 3D liver models with 
stable readouts. Hence, further studies are urgently needed 
to evaluate the sensitivity and accuracy of these 3D liver 
cultures proposed for detecting DILI. Besides, further adap-
tation is still required for adjusting different 3D culture sys-
tems for high-throughput drug-screening applications.

Micropatterned (co‑)culture systems

In situ, mammalian cells integrate and actively respond to 
mechanical cues of their microenvironment. Under conven-
tional culture conditions, however, uncontrolled parameters, 
such as mechanical and geometrical properties, form arti-
ficial environments for cells to proliferate and differenti-
ate, which affect the architecture, mechanics, polarity and 
function of cells in such cultures (Thery 2010). Combined 
with photolithographic, microfluidic and microgrooving 
techniques, recent advances in cell micropatterning enable 
the establishment of in vitro microenvironments that are 
similar to cells’ in vivo situations, specifically via adjust-
ing surface topographies (Beijer et al. 2017; Leuning et al. 
2018) or chemistries (Hui and Bhatia 2007) of the culture 
materials, leading to an overall improvement of the physi-
ological relevance of the cell models (Thery 2010). Pioneer 
studies on micropatterned human hepatocyte islands stabi-
lized by fibroblasts, stromal cells or primary human liver 
sinusoidal endothelial cells demonstrated that the PHH 
maintained in these co-cultures could preserve their hepatic 
functions for up to 6 weeks, as demonstrated by the stable 
albumin secretion and urea synthesis, active phase I/II drug 
metabolism and canalicular transport (Khetani and Bhatia 
2008; Khetani et al. 2013; Wang et al. 2010; Ware et al. 
2018). To capture the aspects of the processes related to 
immune-mediated drug-induced hepatotoxicity, researchers 
have established micropatterned co-cultures incorporating 
the donor-matched primary rat hepatocytes and rat KC and 
exposed the models to LPS for 48 h (Rose et al. 2016). Fol-
lowing the treatment, they detected amplified inflammatory 
response and increased metabolic rate, represented with the 
elevated cytokine response and increased CYP3A concen-
tration in rat hepatocyte/KC micropatterned co-cultures, but 
not in the hepatocyte monocultures (Rose et al. 2016). Using 
the LPS-sensitized rat micropatterned co-culture system, the 
authors demonstrated that APAP amplified immune-medi-
ated liver toxicity similar to that of trovafloxacin, a known 
iDILI-inducing compound. (Rose et al. 2016). To date, how-
ever, a corresponding micropatterned human cell-based co-
culture system (containing PHH and human KC) has not 
been reported yet.

Nowadays, studies have demonstrated the utility of human 
liver cell-derived micropatterned co-cultures in drug devel-
opment, including DILI assessment (Khetani et al. 2013; 
Trask et al. 2014), yet only few studies have attempted to 
apply omics technologies to these in vitro culture platforms 
(Ware et al. 2017). Using a micropatterned co-culture model 
containing PHH and mouse 3T3-J2 fibroblasts, Ware et al. 
explored the hepatotoxic effects of chronic (up to 14 days) 
and low-dose exposure to several DILI-inducing drugs 
(Ware et al. 2017). The authors found that these hepato-
toxins led to a greater number of DEGs in the co-culture 
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modes compared to their non-liver-toxic analogs. They also 
pointed out the transcriptome changes in fatty acid- and drug 
metabolism-related pathways after troglitazone exposure 
were responsible for its hepatotoxicity (Ware et al. 2017).

More recently, the micropatterning technology has also 
been adapted for long-term cultures of hiPS-Hep (Berger 
et al. 2015; Davidson et al. 2015; Ware et al. 2015), pro-
viding the opportunity for the sustainable evaluation of 
responses of hepatocytes to hepatotoxins with consideration 
of human genetic diversity (Underhill and Khetani 2018). 
Promising evidences regarding the use of these in vitro 
platforms for DILI detection have been described (around 
65–85% sensitivity) (Berger et al. 2015; Davidson et al. 
2015; Ware et al. 2015), though detailed data originating 
from omics studies of these hiPS-Hep-based micropatterned 
co-cultures are still lacking.

Overall, the micropatterning methods have shown the 
importance of geometry of the cellular microenvironment 
in regulating cell physiology. The aforementioned studies 
have demonstrated the feasibility of enhancing the reconsti-
tution of tissue-like conditions for the growth of liver cells 
in vitro and illustrated the use of micropatterned (co-)culture 
models in drug toxicity studies. Nevertheless, to accurately 
simulate liver environment in vitro, these developed (co-)
culture platforms usually require the fabrication of complex 
scaffolds, which may hinder omics data collection from 
these liver cultures. More recently, a surface topography 
that enables simplified long-term maintenance of human 
hepatocytes (up to 30 days) has been reported (Beijer et al. 
2017), yet a mature industrial product using such topogra-
phy is still under development. Therefore, future progresses 
of the micropatterning technologies as well as applications 
of micropatterned (co-)culture models for integrated multi-
omics approaches in drug toxicity studies are anticipated.

Liver‑on‑a‑chip devices

In vivo, cells acquire oxygen, nutrients and hormones as 
well as receive physical/chemical stimulation via blood flow 
(Kimura et al. 2018). Flow shear stress induced by blood or 
other fluids is another feature of the liver microenvironment 
that is essential for organ development and plays important 
roles in both disease and health states (Aziz et al. 2017; 
Kimura et al. 2018). When cultured in a static platform (e.g. 
the conventional 2D cultures), the experimental compounds 
enter the cells only via diffusion, which differs from the 
dynamic in vivo environments (Kimura et al. 2018). In con-
trast, the perfusion culture technique allows precise control 
over architecture, medium PH and flow rate, mass trans-
port, oxygen and nutrient gradients (zonation) as well as cell 
shear stress (Bale et al. 2014; Underhill and Khetani 2018). 
When applied to develop hepatic cellular models, the result-
ing culture systems not only facilitate better nutrient/waste 

exchange but also enable studying effects of hepatic zona-
tion on toxicity exposures, further closing the gap between 
in vivo and in vitro conditions (Kimura et al. 2018). Evolved 
from tissue engineering, organs-on-a-chip models culture 
human cells in tissue-specific 3D settings in attempts to reca-
pitulate the multifaceted (extra)cellular and molecular cues 
to biological function of a given organ system (Ronaldson-
Bouchard and Vunjak-Novakovic 2018). Among various on-
chip systems, liver-on-a-chip platforms that integrate micro-
fluidics and micro-sized human liver spheroids/organoids 
have been actively pursued (Foster et al. 2019).

Liver‑on‑a‑chip

Early attempts at combining cell culture with microfluidics 
led to the precursors of today’s on-chip liver tissue models 
(Ronaldson-Bouchard and Vunjak-Novakovic 2018). Inves-
tigators have pioneered the development of 3D microfab-
ricated bioreactors using primary rat hepatocytes with or 
without rat fibroblasts co-cultures and showed that the liver 
organoids cultured under perfusion conditions maintained 
the metabolic capacities and stable functional viability 
over longer periods (~ 2 weeks), as evidenced by the steady 
albumin and urea production and the formation of the bile 
canaliculi along the hepatic cord-like structures (Nakao et al. 
2011; Powers et al. 2002a, b).

Transcriptomic analyses of HepG2/C3A cells main-
tained in the poly(dimethylsiloxane) (PDMS) microfluidic 
chips coupled with a perfusion system showed upregulated 
Phase I/II enzymes (e.g. CYPs, SULT1A1 and SULT1A2), 
transporters (MDR1 and MRP2), hepatocyte markers (e.g. 
albumin, A1AT, transferrin, and ceruloplasmin), the cyoto-
plasmic filament protein (i.e. cytokeratin 18) and the tight 
junction protein (i.e. ZO-1) at the levels of transcription and 
protein accumulation in long-term cultures (up to 30 days) 
(Bhise et al. 2016; Prot et al. 2011). A comparison between 
biochip- and Petri dish-cultured HepG2/C3A cells was made 
at the transcriptomic and proteomic levels (Cheng et al. 
2012). The study revealed that in the dynamic cultures the 
expression of CYP-coding genes was activated, indicating 
the improved metabolic capacity of the cells (Cheng et al. 
2012). In contrast to the outstanding cancer-specific pro-
files and the perivenous-like phenotype observed in the static 
cultures, the dynamic cultured-hepatocytes demonstrated a 
predominant periportal-like hepatocyte (Cheng et al. 2012). 
In 2016, HepG2/C3A-based microfluidic platform has been 
used to explore the DILI mechanisms (Bavli et al. 2016). 
Bavli et al. real-time monitored the dose-dependent effects 
of troglitazone on metabolic fluxes and quantified the expo-
sure-resulted mitochondrial damage, providing a mechanism 
for the observed idiosyncrasy of the troglitazone-induced 
hepatotoxicity (Bavli et al. 2016), whereas no omics data 
were provided with these treated liver devices. In 2012, 
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Shintu et al. performed the nuclear magnetic resonance 
(NMR)-based metabolomic analyses on the microfluidic bio-
artificial organs derived from monocultured HepG2/C3A 
or co-cultures containing HepG2/C3A and Madin-Darby 
canine kidney tubular epithelial cells (MDCK) (Shintu et al. 
2012). Their study identified the system-specific metabolic 
signatures in response to the same insults and discovered 
that the synergistic metabolic responses to the stressors were 
detected only in the HepG2/C3A-MDCK co-cultures, but 
such findings were not detected in the monocultured liver 
models (Shintu et al. 2012). In the same year, Prot et al. 
integrated transcriptomics, proteomics and metabolomics 
to elaborately investigate the APAP-induced hepatotoxicity 
using a HepG2/C3A cultivated in the microfluidic biochips 
(Prot et al. 2012). Their multi-omics results demonstrated 
that APAP toxicity was associated with alterations in the 
expression of genes involved in the pathways related to DNA 
damage, cell cycle arrest and apoptosis- and necrosis-medi-
ated cell death. Notably, the data from the biochip-cultured 
human hepatocytes allowed the identification of two addi-
tional APAP-affected pathways, namely “lipid metabolism 
and peroxidation” and “calcium homeostasis” and the for-
mation of APAP-GSH adducts, which were not discovered 
in the Petri dish-cultured HepG2/C3A (Prot et al. 2012).

Researchers have coupled the multicellular co-cultures, 
containing human hepatocytes (PHH or HepaRG) and vari-
ous NPCs (e.g. fibroblasts, stellate cells, KCs, endothelial 
cells monocytes and macrophages), with different perfu-
sion apparatuses to create more sophisticated liver chips 
(Esch et al. 2015; Prodanov et al. 2016; Rennert et al. 2015; 
Vernetti et al. 2016), which even reflect zone-specific func-
tions in human liver (Allen et al. 2005; Lee-Montiel et al. 
2017; Lee et al. 2007; Prodanov et al. 2016). Compared to 
the static controls, the established perfused liver organoids 
demonstrated enhanced albumin synthesis and urea excre-
tion, due to the presence of shear forces and the improved 
spatial arrangement of the cells (Esch et al. 2015; Prodanov 
et al. 2016; Rennert et al. 2015) and exhibited potentials to 
study physiologic zonal responses to hepatotoxins, such as 
diclofenac (DCF) and APAP (Allen et al. 2005; Lee-Montiel 
et al. 2017; Lee et al. 2007; Prodanov et al. 2016). Addi-
tionally, the hepatocyte-based liver chips incorporated with 
liver immune cells were able to detect increased trovafloxa-
cin toxicity in the presence of LPS (Vernetti et al. 2016), 
inferring these biomimetic hepatic models are more physi-
ologically accurate and are useful for studying the immune-
mediated drug toxicity. The PHH/KC aggregated liver perfu-
sion models have been reported to maintain long-term (over 
42 weeks) stability of albumin and urea production and con-
sistent bioactivity of IL-6, and yielded reliable in vitro drug 
metabolism data (6 compounds), which were highly cor-
related with the observed in vivo values (Long et al. 2016; 
Tsamandouras et al. 2017). The Tannenbaum group further 

investigated the adverse immune-mediated drug reactions 
using the PHH/KC-generated liver chips at the metabolome 
level (Sarkar et al. 2015, 2017). This co-culture platform 
elaborately depicted the LPS-evoked inflammatory response 
as confirmed by the elevated overall number of acute phase 
proteins and increased release of KC-mediated cytokines 
(e.g. IL-1β, IL-1Ra, IL-6, IL-8 and TNFα), recapitulating 
an in vivo pro-inflammatory response (Sarkar et al. 2015, 
2017). When exposed to DCF, the immunocompetent co-
culture systems successfully captured DCF metabolites and 
identified glycine-conjugated bile acid as a sensitive marker 
indicating the dose-dependent DCF toxicity (Sarkar et al. 
2015, 2017).

Even though the human liver cell-based on-chip liver 
platforms look promising, the difficulty to obtain human 
liver materials limits the potential use of this platform to 
study patient-specific pharmacological and toxicological 
responses. The development of perfusable liver platforms, 
encapsulated hiPSC and NPCs, could provide an unlim-
ited supply of human liver cells with diverse genetic back-
grounds, which would add opportunity to assess patient-
specific drug responses (Schepers et al. 2016). Recently, 
Schepers et al. (2016) described promising results towards 
the establishment of the hiPSC-Heps co-culture microfluidic 
tissue models. These platforms not only showed stable on-
chip functionality as evidenced by robust albumin produc-
tion for 28 days, but also developed a mixed population of 
differentiated cell types resembling hepatocytes and biliary 
cells (Schepers et al. 2016), yet thorough assessment at the 
omics level is still needed to further evaluate these newly 
developed liver microtissues.

Multi‑organs‑on‑a‑chip

The success of the on-chip liver platforms has stimulated 
investigators to achieve a more systemic level of simulat-
ing the physiology of the entire human body in vitro (Bhise 
et al. 2014). The so-called “body-on-a-chip” system aims 
to encompass multiple human organ equivalents within one 
dynamically changing environment, where various cell/tis-
sue culture compartments are connected with an on-chip 
micro-pump (Atac et al. 2013; Bhise et al. 2014). Compared 
to the individual organ-on-a-chip, when wrapped with the 
liver compartments, the multiple organ-on-a-chip systems, 
taking into account the interactions between organs and tis-
sues, could better reflect the complex organ functions and 
would ultimately improve the accuracy for understanding 
and predicting human response to drugs in vivo (Kimura 
et al. 2018).

Early attempts to create organs-on-a-chip devices have 
been made by connecting several single organ-on-a-chip 
platforms. Back to 2004, Lau et al. developed the gut-liver-
on-a-chip models using the Caco-2/PHH indirect co-cultures 
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to investigate the human oral bioavailability of 24 randomly 
chosen marketed drugs (Lau et al. 2004). Based on the 
“wells within a well” concept, Viravaidya et al. (2004) and 
Lau et al. (2004) also built multiple-chamber cell culture 
devices, encapsulating cells derived from liver (PHH or 
HepG2/C3A), kidney (renal proximal tubule cells), lung 
(human small airway epithelial cells or rat lung Type II 
epithelial cells), central nervous system (astrocytes), blood 
vessels (human aortic or vein endothelial cells) as well as 
intestine (primary human jejunal enteroids), and conducted 
proof-of-principle studies in drug toxicity testing. Their 
successes have encouraged other researchers to design the 
liver compartment (built with human hepatic cell lines and 
PHH)-containing multi-organ-chips and to apply the result-
ing platforms in drug toxicity studies (Bauer et al. 2017; 
Choucha-Snouber et al. 2013; Esch et al. 2014; Li et al. 
2012; Ma et al. 2012; Maschmeyer et al. 2015; Materne et al. 
2015a, b; Sung et al. 2010; Vernetti et al. 2017; Wagner 
et al. 2013; Zhang et al. 2009). These biochips have exhib-
ited functional and metabolic stability during long-term 
cultures (up to 28 days), enabling the repeated exposures to 
toxic substances. Besides, these devices have demonstrated 
cross-talk among different cell culture units, making them 
more closely resemble the in vivo situation. In general, 
the application of these multi-organ systems have largely 
accelerated the generation of physiologically relevant data 
regarding drug metabolism pharmacokinetics, and disposi-
tion as well as their organ-specific toxicities in humans. In 
2016, Miller and Shuler (2016) described the development 
of a 13-organ culture platform, consisting of 14 separable 
culture chambers that represent both barrier (lung, skin and 
gastrointestinal tract) and non-barrier tissues (fat, kidney, 
heart, adrenal glands, liver, spleen, pancreas, bone marrow, 
brain, muscle). The long-lasting viability of the five cultured 
human cell lines (including the human hepatocytes, HepG2/
C3A) observed in their study has proved the feasibility of 
constructing a sophisticated in vitro multi-organ platform 
that allows monitoring of liver-specific functions such as 
the CYP450 activities and the albumin and urea production 
(Miller and Shuler 2016). Recently, the multi-organ devices, 
containing hiPSC, have also been developed by assembling 
hiPSC differentiated cardiomyocytes (hiPSC-CM), human 
hepatocytes (HepG2/C3A or PHH organoids) and cells 
from other tissues (e.g. human skeletal myofibers and iPSC-
derived cortical-like neurons) (Oleaga et al. 2016; Zhang 
et al. 2017). Connecting microfluidic channels with gravity-
driven flow, Oleaga et al. (2016) assessed the pharmacologi-
cal activity of five drugs (doxorubicin, atorvastatin, statins, 
VPA, APAP and AMAP) in a cardiac-muscle-neuronal-liver 
platform. Using their four-organ system, the team observed 
multi-organ toxicity responses to the toxic compounds in 
line with the published in vivo human toxicity data, indicat-
ing the possibility of conducting systemic toxicity screening 

in vitro. Nevertheless, none of the abovementioned studies 
have evaluated their models or investigated the drug-asso-
ciated responses with their multi-organ chips at the omics 
level.

Bioinformatic approaches

A cell model and cultivation technique that mimic the 
in vivo toxicity response can be used to gain mechanistic 
insight in DILI. Mechanistic elements can be measured on 
different levels using techniques from proteomics, metabo-
lomics as well as transcriptomics. Since proteomic and 
metabolomic approaches have been reviewed elsewhere, 
we focus on transcriptomics. Moreover, the transcriptomic 
level covers regulatory interactions on a genome scale and 
the technology becomes more and more standardized and 
affordable. Advances have been made to interpret these 
transcriptomic profile changes. This section focuses on the 
interpretation of transcriptomic data and how a toxicity 
mechanism can be derived from it.

Finding compound‑induced transcriptomic changes

The first step in interpreting a transcriptomic profile for 
elucidating a mechanism is selecting the most relevant 
genes. Due to the large variability in gene expression 
measurements, most methods used to identify differen-
tially expressed genes select not only based on the fold 
change, but also on a significance estimate based on a 
distribution specifically selected for microarray data or 
RNA-seq data. These tools compare two conditions, such 
as with and without the presence of a toxic compound.

Different approaches can be taken regarding transcrip-
tomic datasets of similar toxic compounds. Vatakuti et al. 
searched for a mechanism that is common among a range 
of drugs with similar effects. In this case, DEGs were 
selected only when they were differentially expressed for 
at least two out of five cholestasis-causing compounds 
(Vatakuti et  al. 2017). The DEGs have been found by 
performing unpaired moderated t tests using the limma 
R package (Ritchie et al. 2015). On the contrary, to find a 
compound-specific mechanism, the DEGs unique for that 
compound can be used to formulate a specific mechanism. 
Liguori et al. used PHH from four donors and exposed 
them to seven quinolone compounds. Trovafloxacin led to 
the highest number of DEGs in every donor, as found by 
the software Rosetta Resolver (Weng et al. 2006). From 
the set of DEGs uniquely found for trovafloxacin, it was 
deduced which process changes are specific to this expo-
sure, which led to new suggestions for mechanisms (Lig-
uori et al. 2005). Transcriptomic differences can be found 
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that explain interindividual differences in susceptibility to 
APAP. A correlation analysis per gene among individuals 
can be used to find genes with low correlation that explain 
these interindividual differences (Jetten et al. 2016).

DEG analysis can help to fill gaps in a compound’s 
mechanism of action. When a pathway is known to be 
activated by a compound, suggestions for the direct down-
stream targets of this pathway can be generated by finding 
the most highly DEGs. IJssennagger et al. found targets for 
the FXR pathway that were differentially expressed upon 
obeticholic acid exposure in human livers slices using a 
regularized paired t test (Ijssennagger et al. 2016).

Interpreting gene expression changes

The interpretation of gene expression profiles has become 
the key activity in toxicological transcriptomics, now that 
their acquisition, storage and comparison have been greatly 
facilitated. Functional interpretation of the narrowed-down 
group of genes is typically done by checking how many 
genes of a functional gene set are differentially expressed, 
which is referred to as a gene set enrichment analysis. A 
functional gene set constitutes of genes that execute the same 
function or are related to a disease. A function in this sense 
can be a metabolic activity, signaling transduction activ-
ity or any other general function such as apoptosis or cell 
cycle regulation. Such a function is represented by a gene 
set. There are varieties in gene set definitions, but Gene 
Ontology (GO) is the most common (Ashburner et al. 2000; 
The Gene Ontology Consortium 2019). In case the data are 
linked to a certain phenotype or disease, a gene set enrich-
ment analysis is useful (Subramanian et al. 2005). However, 
the genes are not necessarily mechanistically linked to each 
other in a causal way and are, therefore, not always useful 
for finding a toxicity mechanism. Indeed, gene set enrich-
ment analyses are competitive, meaning that the whole gene 
set is considered a good marker of a phenotype, without 
implying that all genes in the set are related as a mechanism 
(Goeman and Buhlmann 2007). An enrichment analysis 
consists of a statistical test that checks for which functions 
the gene expressions are significantly different. Similar to 
DEG analysis, a gene set enrichment analysis can find func-
tions that are likely to be altered after exposure to similar 
toxic compounds. Bell et al. show that the three tested DILI 
compounds cause significantly many genes in the ribosome 
biogenesis, calcium signaling and MAPK signaling gene sets 
to be differentially expressed (Bell et al. 2017). The sta-
tistical testing was done using WebGestalt, which employs 
two-tailed unpaired t tests (Wang et al. 2017). This approach 
can also be used to get an indication of the effect of differ-
ent combinations of exposures. For example, when exposing 
3D multicellular microtissues with APAP, the amount of 

DEGs that have mitochondria-related GO terms is greatly 
increased in the presence of lipopolysaccharides, which sug-
gests an interplay between lipopolysaccharides and APAP in 
mitochondria-related processes (Jiang et al. 2019).

In the identification of a mechanism of toxicity, using 
pathways in an enrichment analysis is much more valuable 
than using gene sets that correlate with a phenotype of toxic-
ity. The causal structure of a pathway helps to interpret the 
transcriptomic effects caused by a toxic compound. Wolters 
et al. generated a hypothesis for the effect of valproic acid 
on mitochondria after the pathway-enrichment analysis from 
ConsensusPathDB highlighted the mitochondria–nucleus 
signaling pathway (Kamburov et al. 2013; Wolters et al. 
2018).

Using pathways in enrichment analyses leads to hypothe-
ses with suggested causal interactions between genes. These 
interactions simplify the design of validation experiments. 
By intervening in pathways that are known to be activated 
by a toxic compound, it can be checked whether a pathway 
is crucial for the toxic phenotype. For example, Fredriksson 
et al. validated whether lysosome rupture causes oxidative 
stress (Fredriksson et al. 2014). Silencing key lysosome rup-
ture genes using RNA interference and checking whether the 
oxidative level changes in the predicted direction validates 
the relevance and direction of the effect of these genes. The 
order of the gene cascade can be validated by silencing the 
upstream gene and measuring the downstream transcript 
expression or protein expression or activity. If the measured 
gene is affected by the silencing, it is downstream of the 
silenced gene. For HepG2 cells, activated PERK was found 
to be upstream of EIF4A1, whereas CHOP was found to be 
downstream (Fredriksson et al. 2014).

Time series can improve the resolution 
of mechanistic findings

Time series gene expression data can be used to put tran-
scriptomic profile changes of different cell models, com-
pounds and compound concentrations into perspective. The 
temporal changes of the transcriptomic profile of a sample 
can be well displayed in a plot following from a Principle 
Component Analysis (PCA). A PCA is a reduction technique 
that searches for a linear combination of, in this case, gene 
expressions that represent the differences between samples. 
Elferink et al. showed the effect of APAP on human liver 
slices, compared with the transcriptomic changes of degrad-
ing liver slices without exposure (Elferink et al. 2011). Such 
an analysis can be a starting point for determining a use-
ful compound concentration for a toxicity study, especially 
when using a degrading cell model. A manual inspection of 
a time series can be performed when a certain process is of 
interest. For example, the gene expression of human drug 
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transporters was stable during APAP exposure (Elferink 
et al. 2011). Unexpected results can be neglected when they 
are negative. A good way to investigate time series data in 
detail is to visualize a pathway that is expected to be changed 
by mapping the data onto it (Elferink et al. 2011; Verheijen 
et al. 2018).

Interpreting transcriptomic data as gene expression pat-
terns is more indicative of the whole toxicity development 
than comparing single time points. Gene expression patterns 
can be used to divide genes into early- and late-responding 
genes. Van Delft et al. have used HepG2 cells to investigate 
the toxicity responses to benzo[a]pyrene on transcriptomic 
level in time series. By clustering the differentially expressed 
gene expression patterns using the tool Short Time-series 
Expression Miner, they were able to categorize genes into 
four groups according to their response time (Ernst et al. 
2005). Subsequent interpretation of these groups of genes 
helped to generate hypotheses regarding the toxicity devel-
opment: DNA adducts form early on and changes in cell 
cycle regulations follow (van Delft et al. 2010). Further anal-
ysis can be done on a significant cluster with an interesting 
pattern, aiming at, for example, finding a process that only 
happens at a certain time point, but seems to be crucial for 
toxicity development. For example, by focusing on one clus-
ter, Caiment et al. found that only around 24 h of benzo[a]
pyrene exposure, many genes related to transmembrane 
transporter activity were upregulated (Caiment et al. 2015).

The selection of time points for RNA collection is crucial 
for the gene expression patterns to provide sufficient extra 
information on the toxicity mechanism. The range of time 
points should preferably cover the primary toxicity response. 
A good way of determining the range of time points is selec-
tion based on phenotypic changes (van Delft et al. 2010; 
Waters et al. 2003). Gene expression patterns not showing 
much alteration typically add little information (Van Delft 
et al. 2010). Even when the time points have been selected 
carefully, it is possible that a time series is not reproduced. 
For this purpose, dynamic time warping has been developed 
for omics data specifically (Cavill et al. 2013). Dynamic 
time warping looks for shifts in the sequence when compar-
ing two time series. The shifts can reveal that time series 
are more similar in respect to the sequence of events, than 
when comparing single time points only. This way, HepG2 
and Caco-2 cells have been found to be dissimilar in the 
sequence of their gene expression in addition to the obvious 
differences per time point (Deferme et al. 2015a).

Time series have the potential of increasing the sensitiv-
ity of DEG finding. Genes that have a slight but consistently 
altered expression pattern can be identified as differentially 
expressed when taking into account several time points. 
For this reason, the tool maSigPro has been developed for 
microarray data (Conesa et al. 2006) and Next maSigPro 
as its adaptation to work with RNA-Seq data (Nueda et al. 

2014). However, this tool has not been used in DILI research 
before. Using this tool, Ishimoto et al. have found a set of 
genes that were consistently upregulated to a small extent 
in a coculture of macrophages and intestinal epithelial cells, 
which probably would not have been found using methods 
that focus on single time points only (Ishimoto et al. 2010). 
The gene TNFR1, which only had a fold change of more 
than 1.5 for 2 of the 5 time points, was suggested to make 
the cells more sensitive to TNF-α. Such a weak effect could 
have been missed in a single cell culture. The sensitization 
is suspected to be a coculturing effect, which is a finding that 
should not be missed due to the use of tools not capable of 
analyzing time series.

Selecting genes using multiple time points can be done 
using linear regression, in which the size of the linear regres-
sion parameters indicates to what extent the gene expres-
sion changes steadily upon compound exposure. maSigPro 
uses this method to filter genes of small expression changes 
(Conesa et al. 2006). Subsequently, it tries to find signifi-
cantly differentially expressed genes using the Lasso regu-
larization method. Its extension to generalized linear mod-
els can be used for discrete gene expression data, allowing 
the analysis of RNA-Seq data (Nueda et al. 2014). Han-
nibal et al. have found the gene SVEP1 to show increasing 
expression over the course of pregnancy using maSigPro 
on RNA-Seq data from 24 samples (Hannibal et al. 2018). 
Gene expression time series therefore have the potential of 
improving the sensitivity of transcriptome analyses to sin-
gle-gene resolution.

Revealing causal toxicity mechanisms

Generating hypotheses for an overarching mechanism is 
facilitated greatly when based on a series of activated path-
ways, compared to using a list of DEGs. However, events 
happening in sequence are not necessarily caused one after 
another. Importantly, a validation in different cell models 
does not validate causality either. Hence, a workflow is 
required to determine the network structure giving rise to 
correlating gene expressions. Time series gene expression 
data allow to focus on parts of the toxicity-causing mecha-
nism separately by proper time point selection. Testing 
mechanisms at different time points can verify mechanistic 
links that are supported by biological or pathway-specific 
knowledge. A method for revealing causal relationships 
between genes requires more than simple correlation. The 
two methods that will be discussed here are graphical Gauss-
ian networks, which are based on calculating partial correla-
tions and Bayesian networks. Although these methods could 
be very useful in finding causal mechanisms of DILI, these 
methods have not been used in DILI studies so far.

A graphical Gaussian network can be a representation 
of causal links between genes (Bühlmann et al. 2014). 
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In this context, genes are believed to have a regulatory 
connection when their partial correlation is nonzero. The 
partial correlation is the correlation between the expres-
sion levels of two genes after removing effects of other 
genes. By removing the effect of other genes, some cor-
relations are explained through indirect effects (Fig. 1, left 
boxes). In practice, the estimation of the partial correla-
tions becomes less reliable when the number of samples 
is much lower than the number of genes. Therefore, it is 
advised to construct a graphical Gaussian network from 
a small subset of genes. In addition, the partial correla-
tions will have to be estimated by analyzing subsets of 
three genes at once. For example, Wille et al. focused on 
two isoprenoid pathways in Arabidopsis thaliana and con-
structed a graphical Gaussian network to find cross-talk 
between the pathways (Wille et al. 2004). The network 
suggested regulatory mechanisms on the single gene level. 
Therefore, graphical Gaussian networks can be used to 
identify regulatory mechanisms between pathways, result-
ing in a more complete picture of the pathways involved in 
mechanism causing toxicity.

A graphical Gaussian network can therefore hint towards 
interaction between pathways. The interactions between 
pathways that were found using graphical Gaussian networks 
can be validated by silencing the effectors of the one path-
way and measuring the effect on the other and vice versa 
(Fredriksson et al. 2014). For example, the protective effect 
of Nrf2 in the HepG2 diclofenac toxicity mechanism has 

been found not to interact with the PERK-CHOP apoptosis 
pathway, but these mechanisms appear to be different (Fre-
driksson et al. 2014).

Next to verifying hypotheses, a graphical Gaussian net-
work can also be used to generate hypotheses. Ma et al. dem-
onstrated how a graphical Gaussian network can be used to 
link pathways to previously unassociated genes (Ma et al. 
2007). Their aim was to construct a genome-scale graphical 
Gaussian network of the A. thaliana transcriptome. They 
circumvented the network size limitation by constructing 
many networks of size 2000 and combining them by picking 
the lowest partial correlation values per gene pair. Genes 
without functional annotation were linked to transcription 
factors in the plant’s cold response (Ma et al. 2007). These 
findings open new leads for a causal mechanism. It should 
be noted that the results emerging from graphical Gaussian 
networks are more reliable as compared to simple correla-
tion. These genes are found not only to act in a similar or 
closely associated process, but also directly impose (or are 
imposed by) a regulatory effect. A striking example for this 
network is genes encoding ribosomal proteins, which are 
among the genes with the highest Pearson correlation (Ma 
et al. 2007). However, the regulatory effect on the genes they 
are correlated with is doubtful. The partial correlations for 
these genes were much lower and, therefore, more in accord-
ance with what is expected. Partial correlation is a more 
reliable measure of functional and mechanistic relatedness 
than simple correlation.

Fig. 1  Visualizations of networks that can be used in revealing toxicity mechanisms. The correlation network can be constructed by calculating 
the correlation between the time series of different genes and picking a threshold. The other networks are explained in the text
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Bayesian networks depict directed causal relation-
ships between genes. More precisely, a Bayesian network 
describes the probabilistic relation between gene expres-
sions (Fig. 1, top right). An optimization procedure is com-
monly employed to find a network that fits the data. During 
the optimization, it is determined which genes affect which 
genes and what the parameters of the distributions are. To 
restrict the number of possible networks and distributions, 
a small number of genes is selected to construct the net-
work and a maximum number of incoming edges for a node 
is set (Husmeier 2003). Still, finding the optimal network 
is ambiguous, since different networks could generate the 
same data. Generating an ensemble of networks and check-
ing for consistency in the gene interactions poses a rem-
edy for this problem. Gendelman et al. have used such an 
ensemble of networks to find which gene in the model has 
the largest impact on the phenotype. It was found that in 
silico up- or downregulation of TRIB1 led to the most sig-
nificant change in the G1-S phase transition. They had found 
that TRIB1 affects the MEK/ERK pathway via NFκB (Gen-
delman et al. 2017). In brief, performing simulations with 
optimized Bayesian networks can help to find pathway regu-
lators important for phenotype development. A prediction 
regarding the importance of a gene for a phenotype can be 
validated using RNA interference. Genes found to cause the 
toxic effect can be silenced to check how important they are 
for the toxic phenotype. By performing a silencing experi-
ment for every important gene in the mechanism, the TRIB1 
gene was confirmed to cause an increase in the amount of 
cells in the G1 state (Gendelman et al. 2017). The Bayesian 
network had been able to simulate and predict the silencing 
effect successfully.

Dynamic Bayesian networks can be used to disentangle 
the genetic interactions among a set of genes in a pathway 
using the whole time series at once (Fig. 1, bottom right). It 
describes how the elements in a network influence the same 
elements at the next time point. This way, the network is 
allowed to have cycles, whereas static Bayesian networks do 
not. Fröhlich et al. have optimized a dynamic Bayesian net-
work with protein and gene expression data to find the inter-
actions between and within the MEK/ERK and Hedgehog 
pathway (Fröhlich et al. 2015). The MEK/ERK edges found 
in the literature have been confirmed with high accuracy. 
For the Hedgehog pathway, it remained unclear whether it is 
activated via HHIP or PTCH1. The optimized network after 
robustness check suggested that a mechanism via HHIP is 
more probable (Fröhlich et al. 2015). This approach can be 
used to select one hypothesis over the other.

A Bayesian network can be constructed to find genes 
that are likely to be directly affected by a compound, 
which can be considered the start of the mechanism. Jen-
nen et al. have optimized a Bayesian network by search-
ing for links between blood cotinine levels and leukocytes 

gene expression (Jennen et al. 2015). Blood cotinine levels 
are a proxy for cigarette smoke exposure. The network was 
created using the expression of all differentially expressed 
genes and used to determine which genes are most directly 
affected by the cotinine level. Genes found to interact with 
cotinine form the so-called Markov blanket around coti-
nine. The genes in the Markov blanket were shown to fit 
in the mechanistic framework for understanding the effects 
of smoking (Jennen et al. 2015). Investigating the genes in 
the Markov blanket of the toxic compound in a Bayesian 
network can help finding the initial responding pathways 
upon exposure. In brief, causality-inferring methods such 
as graphical Gaussian networks and Bayesian networks are 
useful in assessing causality.

Conclusions and future perspectives

DILI is the most prominent cause of ALF (around 50% of 
the ALF cases) in the United States and Western Europe 
(Biolato et al. 2017). Also, it is a primary reason for drug 
regulatory actions and market withdrawal (Davern et al. 
2011). Over the past 50 years, compound-induced hepato-
toxicity caused 15 of the 47 drugs (32%) withdrawn from 
the market (Onakpoya et al. 2018), making DILI a major 
problem for both patient health and drug development in 
pharmaceutical industry (Regev 2014).

In the past 2 decades, human toxicogenomics-based 
in vitro assays have been developed as an alternative to ani-
mal testing for assessing chemical toxicity. In this review, we 
have discussed the in vitro human liver models derived from 
immortal cell lines (HepG2 and HepaRG), PHH and hSKP- 
or iPSC-derived hepatocyte-like cells, and their applica-
tions in omics-based drug-induced hepatotoxicity studies. 
Additionally, we have introduced the available bioinformatic 
approaches that have the potential for analyzing the toxicog-
enomic data collected from these in vitro liver models and 
their contributions to the understanding of mechanisms of 
DILI at the omics level.

The significant progress in the development of human 
liver cell-based in vitro models in combination with appli-
cations of omics and bioinformatics tools deepen our 
understanding of molecular mechanisms of human DILI. 
In comparison to human hepatocellular carcinoma cell 
lines, PHH are considered as the ‘gold standard’ for drug 
toxicity studies (Gerets et al. 2012). The PHH-derived 
in vitro liver models are capable of detecting interindi-
vidual differences in the sensitivity towards DILI out-
comes due to the heterogeneous genetic makeup of human 
population (Lin and Khetani 2016). As an alternative to 
PHH, hiPSC-Heps, derived from different donors, also 
capture the genetic background of individuals, and there-
fore, reflect interindividual variability in susceptibility to 
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drugs (Lin and Khetani 2016) without raising ethical con-
cerns as do the hESC-Heps (Volarevic et al. 2018). Thus, 
when properly induced, the iPSC-Hep-based liver models 
seem to hold a great potential for advancing the study of 
individual-specific toxicological responses (Matsa et al. 
2016). Compared to the monocultures, in vitro human 
liver systems that incorporate human hepatocytes with 
NPCs replicate human immunity-associated variances in 
drug responsiveness, facilitating the study of immune-
mediated drug hypersensitivity or idiosyncrasy. In con-
trast to conventional 2D cultures, sophisticated engineer-
ing techniques, such as micropatterning, bio-printing and 
microfluidic devices, allow more precise control over the 
spatial arrangement and the microenvironment of liver 
cells, leading to stabilized hepatic functions over longer 
time periods and enabling the long-term chronic toxic-
ity studies in vitro (Underhill and Khetani 2018). Recent 
advances in the development of organs-on-a-chip devices, 
assembling multiple functionally activated tissue models 
in vitro, further improve accuracy of simulating the com-
plexities of the human body by taking into account the 
interactions between organs and tissues (Kimura et al. 
2018). Since multiple factors are involved in the onset 
and the development of (idiosyncratic) DILI in humans, 
further progress in the organs-on-chip platforms and iPSC 
technology are anticipated for the development of highly 
biomimetic in vitro culture systems that allow us to use 
toxicogenomic analysis to investigate DILI mechanisms in 
physiologically relevant conditions, moving us closer to 
bridge the in vitro–in vivo gap and helping to accelerate 
personalized drug toxicology studies.

Transcriptomic data analysis has made successful use of 
gene expression interpretation tools such as pathway enrich-
ment analysis and GO term enrichment analysis. However, 
when the aim is to find a mechanism, such as a non-acute 
toxicity mechanism, tools are required to find causality 
between biological events, such as pathway activation or 
between differentially expressed genes. Two tools that serve 
this purpose are graphical Gaussian network and (dynamic) 
Bayesian networks. Graphical Gaussian networks can be 
used to remove correlation that arises from indirect interac-
tions between genes and Bayesian networks aim at finding 
a directed network that would depict dependencies between 
genes. Ideas have been presented to extend upon functional 
enrichment analyses using these causality-revealing tools to 
find pathway cross-talk, direct compound effects, toxicity 
effectors and hypothesis selection.

The discovery and development of new cell models and 
cultivation techniques can improve the lifespan and in vivo 
resemblance, allowing for more relevant toxicity studies. 
As omics analysis methods become more widely avail-
able, opportunities arise for mechanistic toxicity studies. A 
proper understanding of toxicity mechanisms will strengthen 

in vitro approaches aiming at predicting and preventing com-
pound-induced hepatotoxicity, drug-induced liver failure, 
and more specifically, acute liver failure.
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