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Abstract

The aim of this study is to provide a systematic review of the known epigenetic alterations caused by cigarette smoke; estab-
lish an evidence-based perspective of their clinical value for screening, diagnosis, and treatment of smoke-related disorders;
and discuss the challenges and ethical concerns associated with epigenetic studies. A well-defined, reproducible search
strategy was employed to identify relevant literature (clinical, cellular, and animal-based) between 2000 and 2019 based on
AMSTAR guidelines. A total of 80 studies were identified that reported alterations in DNA methylation, histone modifica-
tions, and miRNA expression following exposure to cigarette smoke. Changes in DNA methylation were most extensively
documented for genes including AHRR, F2RL3, DAPK, and p16 after exposure to cigarette smoke. Likewise, miR16,
miR21, miR146, and miR222 were identified to be differentially expressed in smokers and exhibit potential as biomarkers
for determining susceptibility to COPD. We also identified 22 studies highlighting the transgenerational effects of maternal
and paternal smoking on offspring. This systematic review lists the epigenetic events/alterations known to occur in response
to cigarette smoke exposure and identifies the major genes and miRNAs that are potential targets for translational research in
associated pathologies. Importantly, the limitations and ethical concerns related to epigenetic studies are also highlighted, as
are the effects on the ability to address specific questions associated with exposure to tobacco/cigarette smoke. In the future,
improved interpretation of epigenetic signatures will lead to their increased use as biomarkers and/or in drug development.

Keywords Systematic review - Epigenetics - Tobacco/cigarette smoking - DNA methylation - Histone modifications -
microRNA - Maternal/paternal smoking - Challenges - Ethics

Introduction health problems and neurocognitive deficits are also widely

associated with second-hand smoke exposure (Heffernan

Cigarette smoking is the most prevalent preventable cause of
death and disease in the world. According to a recent report
by the CDC (Centres for Disease Control and Prevention),
approximately 480,000 adults in the US die due to active or
passive smoking every year (Jamal et al. 2018). While the
effects of active smoking are well documented and include
cardiovascular diseases, respiratory illnesses (pneumo-
nia, influenza, bronchitis, emphysema, and chronic airway
obstruction), and cancer (lungs, mouth, pharynx, larynx,
esophagus, stomach, pancreas, uterine cervix, kidney, ure-
ter, and bladder) (MacKenzie et al. 1994); smoking-related
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2016; Lubick 2011). In fact, as of late special emphasis
is being given to the effect of third-hand smoke exposure,
which refers to the residual tobacco smoke pollutants that
accumulate on surfaces and in dust after tobacco use in
closed environments. It is believed that third-hand smoke
could stay on surfaces for months and may yield secondary
pollutants that are considered to be potential health hazards,
especially to infants and children (Burton 2011; Protano and
Vitali 2011).

The challenge with studying smoke-related diseases is
that not all smokers develop smoke-related disorders, nor
are all non-smokers safe from its effects (Saha et al. 2007,
Terzikhan et al. 2016). Considering this, it is not far-fetched
to consider that smoke-related changes in gene expression
are regulated epigenetically. Epigenetics is the study of the
covalent modifications of DNA, protein, or RNA without
alteration of their primary sequences. These alterations func-
tion to regulate gene expression during development or in
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response to environmental stimulus. As the link between
genes (nature) and environment (nurture), epigenetics is
responsible for normal growth and development in mam-
mals. During the last decade, epigenetics has emerged as an
interdisciplinary field with enormous scientific and thera-
peutic potential. Epigenetic changes have been implicated
in cancer, cardiovascular diseases, behavioral disorders,
inflammation, aging, neurodegenerative diseases, and dia-
betes (Portela and Esteller 2010). Understanding the com-
plexity of the epigenetic signatures associated with cigarette
smoke exposure may provide information about key thera-
peutic targets.

The aim of this systematic review of literature is to: (a)
conduct evidence-based analysis of the role of epigenet-
ics in regulating cellular signaling in response to cigarette
smoke exposure, and (b) determine the clinical value of tar-
geting epigenetic markers for the screening, diagnosis, and
treatment of smoke-related disease risks among humans.
To achieve this, we performed a scoping search using Pub-
Med and ScienceDirect to identify the available literature
between 2000 and 2019 highlighting epigenetic alterations
following smoke exposure in cellular, clinical, and animal-
based models. We identified a total of 80 studies that met
our inclusion/exclusion criteria, out of which 35 investigated
alterations in DNA methylation; 11 identified changes in
histone modifications and chromatin structure, and 12 com-
pared the miRNA profile among smokers and non-smokers.
It should be noted that there are no previously published
systematic reviews that draw together all aspects of epige-
netic changes following smoke exposure, as is the focus of
the current review. Moreover, this review will also include
discussion of the technical challenges and ethical concerns
related to epigenetic studies in smoking-related research. A
careful review and solution to these concerns are necessary
to design improved research strategies to determine the epi-
genetic interplay in smoke-related inflammation/pathologies
and identify better diagnostic biomarkers and therapeutic
targets.

Methods

For this review, we cross checked our study results against
the ‘assessment tool of multiple systematic reviews’
(AMSTAR) guidelines (Shea et al. 2007). The AMSTAR
tool includes the following 11 items: (1) an a priori state-
ment of research questions and inclusion/exclusion criteria,
(2) duplicate literature searches by two or more co-authors,
(3) use of at least two electronic search engines followed by
a supplemental search of reviews, textbooks and secondary
references with keywords and MESH statements reported in
the “Methods” section, (4) specification of status of publi-
cation (e.g., grey literature, which we define as reports that
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are not published in peer-reviewed journals or scientific
monographs) as an inclusion/exclusion criterion, (5) a list
of studies excluded from the review, (6) a summary of study
characteristics that meet the inclusion criteria, (7) a formal
assessment of strength or limitations of individual studies,
(8) consideration of strength of evidence in drawing conclu-
sions, (9) pooling of study results in a quantitative meta-
analysis accompanied by a test for heterogeneity, if possible,
(10) assessment of publication bias, and (11) a statement
of sources of support (Shea et al. 2007). Except for items 9
and 10, which are contingent on the feasibility of a formal
meta-analysis, the AMSTAR checklist is applicable to this
systematic review. The aim of this review was to identify and
summarize the studies that examine the alterations in epi-
genetic markers (DNA methylation, histone modifications,
and miRNA expression) in response to cigarette smoking.

Study selection

Electronic data sources PubMed and ScienceDirect were
used to conduct the initial literature search. For both the
sources, the following keywords were used as a search
criterion: “epigenetics + smoking”, “smoking + DNA
methylation”, “smoking + histone modifications”, “smok-
ing + chromatin remodelling”, “smoking + miRNA”,
“epigenetic + maternal smoking”, “epigenetic 4 paternal
smoking”, and “transgenerational epigenetics + smoking”.
Secondary references of retrieved articles were reviewed to
identify publications not captured by the electronic search.
The search and selection of relevant studies were conducted
independently by three study authors (GK, RB, and ST) with

all disagreements resolved by consensus.
Inclusion/exclusion criteria

To be included in this review, a study must report an epi-
genetic change caused due to smoke exposure in the form
of alterations in: (i) DNA methylation, (ii) histone modi-
fying marks or, (iii) miRNA profile. The EWAS studies
included in this review generally comprise of clinical data;
however, wherever needed, in vivo and in vitro data have
also been referred to explain the mechanistic implications of
observed epigenetic alterations. The study data included in
this review only relate to pulmonary health outcomes (like
asthma, COPD, emphysema, allergy, etc.), while other health
impacts are excluded. However, for the purpose of pointing
out the transgenerational effects of paternal smoking, refer-
ences showing male infertility have been included.

Data extracted

The data from each study were tabulated, and the result-
ing summary tables were again cross checked with
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disagreements resolved by consensus. Information extracted
from each study for the purposes of this review included the
following:

1. Type of study: clinical, cell-based or animal-based.
Description of the sample: type, size, composition, and
source.

3. Smoke exposure categorization: current, former or never
smokers for human samples or smoke exposure duration
for in vitro and in vivo studies.

4. Endpoints of interest (see inclusion criteria).

5. Results for each study were mentioned in terms of the
number of genes/CpG sites/miRNAs altered on smoking
and its implications. When the result was reported in a
qualitative fashion, the corresponding text was extracted
from the original publication and reproduced verbatim.

Measure of strengths and weaknesses

Epigenome-wide studies were assessed based on the sam-
ple size, the method used for analysis of epigenetic altera-
tions and the statistical method applied to deduce results.
However, since no epigenome-wide data were available for
the studies investigating alterations in the post-translational
modifications at histones, we relied on the cell-based and
animal-based studies in this area.

Fig.1 AMSTAR flow diagram

Results

A total of 1280 studies were retrieved after searching for the
keywords in the two databases. After excluding the dupli-
cates and screening the studies as per the inclusion/exclusion
criteria, a total of 80 studies were included in this review
(Fig. 1). Out of these, 35 studies investigated the DNA
methylation alterations associated with smoking among
human subjects; 11 studies identified the smoking-related
changes in histone modifications and chromatin structure
while 12 compared the miRNA profile among smokers and
non-smokers (Table 1). Interestingly, cigarette smoking was
found to have transgenerational effects on the offspring as
well. To study this effect, the epigenetic changes associated
with paternal and maternal smoking are listed separately. For
the purpose of this review, we have included 7 and 15 studies
associated with paternal and maternal smoking, respectively
(Table 2). In the subsequent sections, the findings from each
of these studies have been summarized in brief.

Smoking-mediated alterations in DNA methylation

DNA methylation is the addition of a methyl group at the
fifth carbon atom of cytosine (5mC) in the DNA strand
(Fig. 2a) and is the most extensively studied epigenetic
mechanism. Further, this modification plays a crucial role
in regulating gene expression. Importantly, DNA methyla-
tion marks special sites called CpG islands, which exert
important effects on gene transcription (Lim and Maher
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Table 2 (continued)

Outcome

Exposure characteristic Platform

Data source Sample size Sample type

Publication

Concluded that both genetic variants of

Infinium HumanMeth-

245 females (cur- Peripheral blood leu- ~ Mothers [smokers

Participants from

Patil et al. (2013)

IL13 and DNA methylation changes due
to maternal smoking are responsible

ylation450 BeadChip

(n.s.) and non-smok-

rently ~ 18 years kocytes
ers (n.s.)]

the Isle of Wight

birth cohort

of age) exposed to
maternal smoking

for asthma-related lung function in the

offsprings

Reported 17 differentially methylated

Mothers [smokers (32) Infinium HumanMeth-

Participants from 89 females with self-  Blood (collected twice

Tehranifar et al.

CpGs associated with maternal smok-

ylation450 BeadChip

and non-smokers

(571

at birth through age

reported history of
smoking status of
their mothers

the New York

(2018)

ing; several of these extended to mid-life

independent of the subjects’ own active

smoking status

7 and then in midlife

between 38 and
46 years age)

women’s birth cohort

MSP methylation-specific PCR, CSE cigarette smoke extract; n.s. not specified

Most of the associated CpG sites were hypomethylated and
were found on genes associated with immune and inflam-
matory system pathways, responses to stress and external
stimuli, wound healing, and coagulation cascades. These
findings led the group to conclude that epigenetic changes
might cause COPD (Qiu et al. 2012). On the contrary, de
Vries et al. conducted similar investigations on the whole
blood of 1561 individuals from a Dutch cohort comprising
current and never smokers but found no association between
the DNA methylation and the occurrence of COPD in the
study groups. Few of the reasons described by the authors
for such contradiction were the fact that the study group
associated with the work of Qiu et al. had severe COPD with
an FEV1/FVC ratio less than 0.7. Additionally, the platform
used to study DNA methylation by both the groups varied
and the former did not include confounding factors like age
and sex in their analyses (de Vries et al. 2018b). Such con-
tradictions are not uncommon when reviewing epigenetic
studies and just highlight the highly dynamic nature of DNA
methylation.

Evidence has suggested that various genetic variants
mediate the smoking-associated DNA methylation changes
(Dogan et al. 2017; Gupta et al. 2019; Leng et al. 2015; Sied-
linski et al. 2012). This proves that gene and environment
work at tandem to decide the disease fate in individuals. This
is the reason behind variations observed in smoking-related
methylation changes across populations (Elliott et al. 2014;
Shenker et al. 2013; Dogan et al. 2014; Sun et al. 2013; Lee
et al. 2016; Xu et al. 2010; Zaghlool et al. 2015; Zhu et al.
2016).

Interestingly smoking-related DNA methylation changes
are strongly associated with the smoking habits and time
since smoking cessation (Ambatipudi et al. 2016; Breitling
et al. 2011; Li et al. 2018). Studies have found that there
exists a marked reversibility of methylation changes after
smoking cessation at certain gene loci (Ambatipudi et al.
2016; McCartney et al. 2018; Wan et al. 2012; Wilson et al.
2017), whereas differential DNA methylation for certain
other genomic locations remain unaffected even years (up to
22 years) after smoking cessation (Ambatipudi et al. 2016).
In one of the most extensive studies suggesting the reversion
of DNA methylation marks on smoking cessation, a team
of investigators led by Ambatipudi observed that CpGs that
were hypermethylated in current smokers showed decreased
methylation with increasing time since smoking cessation
and vice versa. In contrast, four CpG sites [cg01940273
(ALPPL2), cg05951221 (ALPPL2), cg11554391 (AHRR),
and cg21566642 (ALPPL2)], were recognized during this
study that did not show any decrease in the methylation lev-
els even 14.1-22 years after smoking cessation (Ambatipudi
et al. 2016). Wan et al. classified the CpG methylations into
two categories— ‘rapidly reversible’ and ‘slowly revers-
ible’—based on their differential methylation following
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Fig.2 Mechanisms of epigenetic regulation. The addition of a methyl
(—CH,;) group to the cytosine residue on the DNA strand is termed as
‘DNA methylation” which is the most widely studied epigenetic regu-
lation. In general, it causes suppression of gene expression by hinder-
ing the binding of regulatory proteins onto the DNA strand (a). The
second level of epigenetic regulation occurs at histone level by addi-
tion of chemical groups such as acetyl (ac), methyl (me), phosphoryl,
ubiquitinyl, etc., to the lysine (K), arginine (R), serine or threonine
residues. The figure depicts some of the major histone marks on his-
tone 2A (H2A), 2B (H2B), 3 (H3), and 4 (H4) listing the position
(numbers denoted at the bottom) and type of amino acid residue (K
or R) and the nature of the modification [ac, me, mel (mono-meth-

smoking cessation in the peripheral blood from current,
former, and never smokers. The genes myosin light chain
kinase (MYLK) and leucine-rich repeat neuronal 3 (LRRN3)
were identified as ‘rapidly-reversible’ while G-Protein-cou-
pled receptor protein 15 (GPR15) and Fas ligand (FASLG)
as ‘slowly-reversible’ CpG sites in this study (Wan et al.
2012). A slight contradiction to this view was provided in
reports by Philibert et al. (2016) and Wilson et al. (2017),
which showed that the magnitude of this reversion on smok-
ing cessation is larger than normal individuals who have
never smoked. This suggests overcorrection of DNA meth-
ylation marks on smoking cessation and adds another layer
of complexity to the regulation of DNA methylation and
gene expression in current and former smokers (Philibert
et al. 2016; Wilson et al. 2017).
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ylation), me2 (dimethylation), and me3 (trimethylation)]. The induc-
ible histone modifications are depicted in green; while the repressive
histone signatures are shown in red (b). MicroRNAs (miRNA) are
the third level of epigenetic regulation within the cell. Like messen-
ger RNAs (mRNA), miRNAs are also transcribed by RNA polymer-
ase II. However, unlike mRNAs, the pri-miRNAs are translocated to
the cytoplasm by the nuclear enzyme Drosha; where it is converted
to miRNA by the action of Dicer enzyme as shown in the figure. The
miRNA shows complementarity to the sequence of its target mRNA.
On binding of the miRNA to the mRNA, a duplex is formed which
prevents the binding of the translational machinery to the mature
mRNA, and thus halts gene expression (c¢) (color figure online)

Despite our knowledge about the differential DNA meth-
ylation on smoke exposure, not many studies have been con-
ducted to correlate the gene expression with CpG methyla-
tion changes. Most of the current investigations have been
conducted using peripheral blood from smokers due to ease
of sampling. However, DNA methylation changes on smok-
ing may differ in multiple tissues (Hammons et al. 1999;
Monick et al. 2012; Peters et al. 2007; Satta et al. 2008;
Suzuki et al. 2007), which has not been examined in detail
so far. Most of the current studies test genome-wide changes
in DNA methylation signatures on smoking. The platforms
and approaches used for each of these studies differ and so
do the assumptions and statistics used to deduce outcomes.
It, thus, becomes difficult to compare such genome-wide
studies and find specific targets to serve as biomarkers or
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Table 3 Enzymes involved in epigenetic regulation
Enzyme family Name Function Effect
on gene
expression®
DNA methyltransferase (Jin and Robertson ~ DNMT1 Responsible for maintenance of DNA Repression
2013; Kaneda et al. 2004; Milutinovic methylation
et al. 2004; Moore et al. 2013; UniProt Involved in DNA repair
2019a) DNMT3A Responsible for de novo DNA methylation ~ Repression
Essential for genetic imprinting
DNMT3B Responsible for de novo DNA methylation ~ Repression
DNMT3L Functions in association with DNMT3A and Repression

DNA demethylase (Moore et al. 2013;
UniProt 2019b)

TETI1, TET2, TET3

Histone methyltransferase (Hyun et al. 2017) SET1A, SET1B, SET7/9, MLL
SUV39H1, SUV39H2, G9a

EZH1, EZH2
NSDI, NSD2, NSD3

SUV4-20H1, SUV4-20H2

Histone demethylases (Hyun et al. 2017) LSD1, LSD2
JHDM2, JHDM3
UTX, UTY
JHDM1, JHDM3
PHFS, PHF2

GNATs
MYST-related HATs
p300/CBP HAT

Histone acetylation (HATs) (Carrozza et al.
2003)

General transcription factor HATs

3B as it lacks the catalytic domain
Required for genomic imprinting, retrotrans-
poson methylation, compaction of the X

Nuclear hormone-related HATs

Histone deacetylation (HDACsS) (de Ruijter
et al. 2003)
Class III (Sirutins)
Class IV (HDAC 11)

Class I (HDAC 1, 2, 3, and 8)
Class II (HDAC 4, 5, 6,7, 9, and 10)

chromosome
Mediates 5-methylcytosine (SmC) con- Induction

version into 5-hydroxymethylcytosine

(5hmC)
Responsible for H3K4 methylation Induction
Responsible for H3K9 methylation Repression
Responsible for H3K27 methylation Repression
Responsible for H3K36 methylation Induction
Responsible for H4K20 methylation Repression
Responsible for H3K4 demethylation Repression
Responsible for H3K9 demethylation Induction
Responsible for H3K27 demethylation Induction
Responsible for H3K36 demethylation Repression
Responsible for H4K20 demethylation Induction
Responsible to catalyze the transfer of an Induction

acetyl group from acetyl-CoA to the lysine

1-amino groups on the N-terminal tails of

histones
Responsible for removal of acetyl groups Repression

from the histones

*This table shows the generally observed effect of the mentioned enzymes on gene expression

therapy. Finally, several of the EWAS investigations focus
on the phenotypic outcome of cigarette smoking such as
COPD, lung cancer, etc. (Carvalho et al. 2012; Fasanelli
et al. 2015; Qiu et al. 2012), but they do not examine the
effects of smoking per se. Such explorations are crucial to
understand the molecular mechanisms affected on smoking
and identifying potential biomarkers for early detection of
various smoking-related disease outcomes (Lee and Pausova
2013).

Cigarette smoke-induced chromatin remodeling
and changes in histone modifications

Histone modifications are chemical modifications in the form
of methylation, acetylation, ubiquitination, and/or phospho-
rylation of specific amino acids [particularly lysine (Lys),

serine (Ser), threonine (Thr), and tyrosine (Tyr)] on their
N-terminal tail, which influence chromatin packaging and, in
turn, transcriptional activity. Inducible histone modifications
loosen the DNA association with histones, thus providing a
permissive environment for transcription, whereas repres-
sive histone modifications tighten the chromatin packaging,
thus repressing gene expression. The inducible or repres-
sive nature of a histone modification is determined based
on the: (a) type of histone modification, (b) modified amino
acid base, and (c) position of modification (Bannister and
Kouzarides 2011; Moore et al. 2013), as depicted in Fig. 2b.

Of note, histone modifications not only regulate chro-
matin structure, but also recruit remodeling enzymes
to reposition nucleosomes. Like DNA methylation, the
addition/removal of chemical groups to histone tails is
also catalyzed by a group of enzymes collectively termed
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as histone-modifying enzymes (HMEs) (Bannister and Kou-
zarides 2011). The names and functions of some of the com-
mon HME:s are listed in Table 3.

The in vitro and in vivo studies have shown downregu-
lation of histone deacetylase 2 (HDAC2) expression and
activity in smoking-induced lung inflammation (Ito et al.
2001; Marwick et al. 2004; Moodie et al. 2004; Sundar
and Rahman 2016). In fact, reduction in HDAC2 has been
reported in the lung tissues from COPD and severe/smoking
asthma patients as well, thus stating its role in the disease
pathophysiology (Barnes 2009; Ito et al. 2002; 2005). Fur-
thermore, HDAC1 expression is often found to be reduced
in smoke-challenged cells and bronchial biopsies from
asthmatics; which is not surprising as it is associated with
HDAC?2 in the nucleus (Adenuga et al. 2009; Ito et al. 2002).
Function of other HDACs in smoke-related inflammation
is uncertain (Barnes 2009). Additionally, the expression of
histone acetyltransferases (HATs)—CREB-binding protein
(CBP) and p300-CBP-associated factor (PCAF)—has been
found to be unaltered in response to cigarette smoke chal-
lenge in vitro (Ito et al. 2001).

Reports suggest that inactivation of HDAC2 leads to
increased acetylation at histone 3 (H3) and 4 (H4) in the
lungs of smokers, COPD patients, cigarette smoke-exposed
animals (rat), and cellular (A549) models (Ito et al. 2005;
Marwick et al. 2004; Moodie et al. 2004; Szulakowski et al.
2006). However, most of these studies investigate global
changes in the histone marks in association with smoking
and do not provide much information about the site-specific
regulation of gene transcription (Marwick et al. 2004).

Nevertheless, cigarette smoke exposure does not just alter
the histone acetylation marks, but also affects other histone
modifications. This was reported by Sundar et al. in smoke-
exposed mouse lungs and human bronchial epithelial (H292)
cells. Using a bottom-up mass spectrometry approach, this
group identified acetylation at H3K56, H4KS8, H4K12, and
H4K16 in smoke-exposed mouse lungs and H292 cells as
compared to the controls. In the same study, distinct site-spe-
cific histone post-translational modifications at H3K27mel,
H3K27me2, H4K31me?2, and H4R35me2 were found to be
associated with smoke exposure. These findings suggest a
strong link between chromatin compaction, replication, and
transcriptional control in response to cigarette smoke chal-
lenge (Sundar et al. 2014).

Contrary to the abovementioned studies, our group under-
took a targeted approach to study the changes in the his-
tone signatures at the promoter site of NLRP10 (family of
NOD-like proteins) gene in response to smoke challenge
(Kaur et al. 2018). We demonstrated NLRP10-mediated
caspase-1 activation, cytokine/chemokine production (IL-
1B, IL-18, MCP-1, and IL-17A), and NF-xkB and MAPKs
expression in the lungs of second-hand smoke-exposed
C57Bl/6 mice and cigarette smoke extract-challenged human
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lung epithelial cells with type II characteristics. To identify
upstream mediators of NLRP10 regulation, we investigated
changes in the epigenetic signatures on the Nlrp10 promoter
region following smoke exposure and observed significant
changes in active (H3K4me3 and H3K9ac) as well as repres-
sive (H3K9me3 and H4K20me3) gene markers on histone 3
and histone 4 both in vivo and in vitro. Furthermore, altera-
tions in the respective histone acetyl- and methyltransferases
(PCAF, SET1, ESET, SUV20H1) correlated well with the
alterations observed in the histone markers (Kaur et al.
2018). Such targeted studies are important to understand
the mechanism of regulation of inflammatory responses on
smoke exposure at molecular level.

Despite all these evidences, establishing a direct link
between altered expression of HATs/HDACs leading to
chromatin remodeling and gene transcription at specific gene
sites has many challenges (Marwick et al. 2004). The histone
PTMs vary based on the duration of smoke exposure, type
of cell/tissue exposed to smoke, and the experimental mod-
els used for the study; making it difficult to ascertain their
exact role under physiological and disease state (Marwick
et al. 2004; Sundar et al. 2014). Furthermore, there are con-
trasting evidences with regard to the expression and activity
of various HDACSs in smoke-related disease conditions (Ito
et al. 2005; Sohal et al. 2013). The histone modifications
are dynamic in nature and gene transcription is affected by
a concerted effect of the histone modifications which adds to
the complexity of studying such a phenomenon (Bannister
and Kouzarides 2011; Sundar et al. 2014).

Smoke-associated alterations in miRNA expression

MicroRNA (miRNA) are a class of small endogenous
RNAs approximately 22 nucleotides in length that play an
important regulatory role by targeting specific mRNAs for
degradation and/or translational repression in both animal
and plant cells. These are single-stranded RNA molecules
produced from hairpin-shaped precursors, also known as
pri-miRNAs, by the action of two RNase III-type proteins:
Drosha (in nucleus) and Dicer (in cytoplasm) (Wahid et al.
2010) (Fig. 2c¢).

There are currently a total of 1917 known mature human
miRNAs in miR-Base, the central online repository for
miRNA sequences and annotation, which accounts for 1-5%
of all predicted human genes (Banerjee and Luettich 2012;
Wang et al. 2015). Functionally, miRNAs regulate develop-
mental processes, cellular homoeostasis, and responses to
various stimuli by binding to a target mRNA and altering
its protein expression. (Banerjee and Luettich 2012; Wahid
et al. 2010).

Reports indicate distinct miRNA profiles among smokers
and non-smokers (Advani et al. 2017; Andersson et al. 2018;
Banerjee et al. 2015; Gross et al. 2014; Huang et al. 2014;
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Shen et al. 2017; Wang et al. 2015; Willinger et al. 2017). In
general, these studies have found differences in the expres-
sion of several miRNAs following exposure to smoke. Most
of the dysregulated miRNAs have been found to be associ-
ated with lung development, airway epithelium differentia-
tion, inflammation, and cancer (Banerjee and Luettich 2012;
Wang et al. 2015; Willinger et al. 2017).

However, just like DNA methylation, changes in the
miRNA profile appear to be reversible in nature (Ambat-
ipudi et al. 2016; Wang et al. 2015). Wang et al. observed
that 3 months after quitting smoking, 22 of the 34 differen-
tially expressed miRNAs returned to their normal levels,
including the miRNAs related to cancer/inflammation (miR-
181a), airway epithelium differentiation (miR-449b), and
lung development (miR-214 and miR-127). Interestingly,
the remaining 12 differentially expressed miRNAs associ-
ated with smoking did not revert to their normal levels even
after smoking cessation. Further, the miRNAs with sus-
tained dysregulated expression are associated with carcino-
genesis and chronic airway diseases (miR-218, miR-133a,
miR-133b, miR-487b, and miR-1246) (Wang et al. 2015).
Importantly, the Wnt/B-catenin signaling pathway was found
to be significantly enriched in the target genes linked with
persistently dysregulated miRNAs, which is in accordance
with the previous knowledge that Wnt pathway dysregula-
tion is associated with diseases, including lung cancer and
COPD (Heijink et al. 2013; Konigshoff and Eickelberg 2010;
Wang et al. 2015).

Currently, miRNAs are being targeted as candidates for
biomarkers and drug discovery for various disease condi-
tions (Banerjee and Luettich 2012; Janssen et al. 2013).
However, certain considerations must be made before mak-
ing advances in this respect. Smoking-related dysregula-
tion of miRNAs is dependent on multiple factors includ-
ing the dose of exposure, duration of exposure, and cell
types exposed. Confounding factors such as age, race, and
other epigenetic changes could also affect miRNA expres-
sion (Banerjee and Luettich 2012; Izzotti et al. 2009, 2011;
Wang et al. 2015). To date, miRNA-based research has been
exploratory in nature. The main challenge ahead is the need
for a targeted approach to narrow down and identify specific
candidates for biomarker or drug development in smoke-
related diseases. Of note, several of the miRNAs identified
during such studies are regulated by DNA methylation,
which signifies the cross talk between the epigenetic sig-
natures and their regulatory mechanisms (Lyn-Cook et al.
2014; Wang et al. 2015). In the future, a detailed investiga-
tion of the cross talk between different epigenetic mecha-
nisms will be necessary to fully appreciate their therapeutic
potential.

Effects of maternal smoking

Altered DNA methylation and dysregulated miRNA expres-
sion have also been assessed to identify transgenerational
effects of maternal smoking (Breton et al. 2009; Herberth
et al. 2014; Jenkins et al. 2017; Knopik et al. 2012; Suter
et al. 2011). In this regard, studies by Suter et al. 2010 and
2011 showed significant hypomethylation in the placentas of
babies born to mothers who smoked during pregnancy com-
pared to that of non-smoking mothers. This hypomethylation
was found to correlate with increased placental CYP1Al
expression, which may have implications for xenobiotic
metabolism in the offspring (Suter et al. 2010; 2011). Like-
wise, hypermethylation of the brain-derived neurotrophic
factor (BDNF) might be responsible for its lowered expres-
sion with subsequent behavioral consequences in infants,
children, and adolescents exposed in utero to maternal ciga-
rette smoking (Knopik et al. 2012).

While assessing the gender-specific methylation differ-
ences in offspring in relation to maternal smoking, Murphy
et al. (2012) tested the methylation profiles of two imprinted
genes, H19 and IGF2, in cord blood. The results from this
study suggest that there is a more pronounced epigenetic
effect of maternal smoking on male offspring than on females
(Murphy et al. 2012). This is not surprising as sex differences
in DNA methylation patterns have been previously reported
among Dutch famine victims in response to caloric restric-
tion (Heijmans et al. 2007). Other population-wide studies
of human disasters have further revealed heightened pheno-
typic responses and risk among males (Catalano et al. 2005;
Khashan et al. 2011). One of the criticisms of this paper,
however, was that it only tested the methylation status at two
different regions of the imprinted genes. Nevertheless, meth-
ylation still holds significance as it plays an essential role in
regulating growth and its deregulation may lead to disease and
disorder in the growing fetus (Murphy et al. 2012). Another
group of researchers studied the DNA methylation status at six
CpG sites on the IL-13 gene in peripheral blood leukocytes of
offspring to study the correlation between maternal smoking
and asthma-related lung function. While a strong correlation
between differential methylation at the cg13566430 site and
maternal smoking during pregnancy was established, disease
outcome in the offspring remained unclear due to lack of
data relating to asthmatic traits (Patil et al. 2013). However,
Herberth et al. were able to establish an association between
maternal tobacco smoke exposure and cord blood miR223
expression, which was responsible for reduced Treg num-
bers, suggesting increased allergy risk in offsprings later in
life (Herberth et al. 2014). Additionally, a recent study by
Richmond et al. proved that maternal smoking during preg-
nancy is associated with persistent alterations in DNA meth-
ylation in the exposed offspring. These changes in the DNA
methylation pattern were observed to exist even 18 years after
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prenatal exposure (Richmond et al. 2018). Overall, it can be
concluded that changes in DNA methylation signatures and
the miRNA profile caused by maternal smoking may not only
increase disease susceptibilities in exposed offspring but are
also transmitted to the next generation.

Effects of paternal smoking

Interestingly, the intergenerational effects of smoking
are not limited to the smoking habits of mothers. Jenkins
et al. identified 141 differentially methylated CpGs in the
DNA of sperm from men who smoke compared with non-
smokers. The differential methylation occurred more fre-
quently at regions reported to display H3K4 and H3K27
methylation in mature spermatozoa (Jenkins et al. 2017).
Functionally, H3K4 methylation is associated with gene
activation while methylation at H3K?27 is a gene repression
signature. But despite opposite functions both these modi-
fications are responsible for development, lineage commit-
ment, and differentiation (Eissenberg and Shilatifard 2010;
Nichol et al. 2016). These changes could not only account
for reduced sperm count and motility in men who smoke, but
also affect the fetal development of their offspring at later
stages (Gunes et al. 2018). Another study tested the sperm
quality of smoking and non-smoking males and reported
differential miRNA expression in the spermatozoa from
smokers vs. non-smokers. In fact, four (hsa-miR-146b-5p,
hsa-miR-509-5p, hsa-miR-519d, and hsa-miR-652) of the
differentially methylated miRNAs identified in this study
are known to be altered in infertile men, thus suggesting that
smoking might be associated with male sterility. Moreover,
the major pathways affected by these differentially expressed
miRNAs are known to be involved in cell differentiation,
proliferation, and death. Thus, these pathways likely play
a vital role during sperm and early embryo development
(Marczylo et al. 2012). In a similar type of study, Hamad
and his group used a whole-genome DNA methylation assay
to study the differences in global DNA methylation among
smokers and non-smokers. The results of this study revealed
a significant increase in the levels of global DNA methyla-
tion in the sperm of smokers. Previous work showed that the
production of low quality and apoptotic spermatozoa could
be linked to altered spermatogenesis that resulted in global
DNA hypermethylation (Hamad et al. 2018). These findings
further suggest that global DNA methylation might affect
normal spermatogenesis and thereby affect male fertility as
well as the future progeny of men who smoke.

Challenges and ethical concerns related
to epigenetic research

Despite the great potential of epigenetic research about the
future of medicine, the research community is currently
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unable to tap its full potential. Hence, it is important to dis-
cuss the challenges and ethical concerns hindering advances
in this area. While some of the challenges and ethical con-
cerns may be directly encountered during research pertain-
ing to smoke-related epigenetic alterations, most of these
challenges are more generic in nature and are not restricted
to any one disease condition.

Challenges

Study of the human epigenome is still in its infancy, as we
are just beginning to understand the complexities of epige-
netic signatures in disease and development (Zheleznyakova
et al. 2017). Several challenges lie ahead on this venture of
exploring the full potential of the epigenome. First, while
there is only one genome in all individuals of a species, the
epigenome exhibits tissue-specific variations (Costa et al.
2016; de Vries et al. 2018a; Leng et al. 2015). In this regard,
it should be noted that most previous epigenetic studies were
conducted using whole blood, which itself is comprised of
multiple cell types. Therefore, it is likely that the epigenetic
alterations detected in mixed tissues/whole blood arise
from differences in cell composition between tissues/sam-
ples from diseased and control subjects (Weinhold 2006;
Zheleznyakova et al. 2017). Thus, future experiments will
be required to further assess tissue-specific differences in
the epigenome.

Additionally, an individual’s epigenetic make-up could be
affected by multiple confounding factors such as age, genetic
background, environmental exposure, clinical conditions,
etc. Such confounders cause discordance and discrepancies
while comparing similar epigenetic cohort studies, thus
affecting the end deductions (Knopik et al. 2012; Zhelezn-
yakova et al. 2017). During our study, we found several
instances where inclusion of confounding factors altered the
study results completely. A good example to this is the con-
tradictions in the findings by Qiu et al. (2012) and de Vries
et al. (2018b) that have been explained earlier in this review.

Additional technical difficulties are known to arise when
conducting epigenetic research. For example, bisulfite
sequencing is the most extensively used technique to study
DNA methylation. In fact, most of the studies listed in this
review used this technique to study DNA methylation altera-
tions with respect to smoke (Breitling et al. 2011; de Vries
et al. 2018a; Prince et al. 2019; Sundar et al. 2017). How-
ever, bisulfite sequencing cannot differentiate between 5SmC
and ShmC. This raises the possibility that the observed DNA
methylation changes could be an overrepresentation due to
the lack of assay specificity (Zheleznyakova et al. 2017).

In addition, few biological/chemical tools, such as anti-
bodies and selective inhibitors or activators, exist to study
epigenetic changes in vitro and in vivo. Thus, this limits
the scope of understanding of this phenomenon. Currently
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scientists primarily use genetic association combined with
molecular tools, including gene silencing, protein overex-
pression, and catalytic-inactive mutants, to determine rel-
evant disease targets. However, each of these approaches has
certain caveats which make them less than ideal (Campbell
and Tummino 2014). We ourselves ran into this challenge
when attempting to identify the HDACs/HATs responsible
for histone modifications in vitro and in vivo (Kaur et al.
2018). We attempted to target the trimethylation on histone
3 and 4 during this study; however, finding an antibody that
specifically binds to trimethyl and not mono- or di-methyl
on histones remains a struggle.

Finally, improvements to overcome batch variability and
to nullify the effects of confounding factors are needed in
high-throughput technologies. These include computational
capability, analytical techniques, mechanistic studies, and
bioinformatic strategies (Campbell and Tummino 2014;
Weinhold 2006).

Ethical concerns

Epigenetic research has largely been kept from the forefront
of the drug development process due to ethical issues associ-
ated with the gathering of patient information. For example,
it is well known that environmental factors including diet
and exposure to chemical toxicants such as pesticides, diesel
exhaust, and tobacco smoke increase disease risks; however,
such exposures are frequently linked to poverty, standard of
living, and working conditions of the exposed individuals,
which places the onus on law and policymakers. Evidences
related to epigenetic effects, including transgenerational
effects, suggest that some individuals are predisposed to
be more affected by adverse environmental conditions than
other individuals. Thus, the focus shifts from populations
with greater susceptibility to those receiving disproportion-
ate exposure, thus resulting in calls for environmental justice
advocates to address these injustices (Rothstein et al. 2009).
Something that is important to mention here is the fact that
during this literature review we found that most population-
based studies were conducted on Caucasians (Ambatipudi
et al. 2016; McCartney et al. 2018; Wan et al. 2012; Wilson
et al. 2017). However, it is well known that some population
is clearly predisposed to pulmonary health problems like
COPD caused by smoking (El-Zein et al. 2012). Study of
only specific population groups should thus be avoided both
in research and during drug development, but it is something
that is not practiced.

Another important aspect of extensive, ongoing epige-
netic studies is the generation of a wealth of sensitive infor-
mation regarding future health issues in patients and the
possibility of transmitting those risks to offspring. Our inves-
tigations of maternal/paternal smoking clearly showed that
offspring inherit not just genes, but also epigenes (Breton

et al. 2009; Jenkins et al. 2017; Joubert et al. 2014; Marczylo
et al. 2012). However, epigenes are not often considered,
and thus, neither are the privacy and confidentiality issues
surrounding such information. Another factor to consider
is that unlike our genetic information, epigenetic effects
are environmentally induced and might also be reversed,
as seen in the case of smoke-induced DNA methylation and
miRNA alterations (Ambatipudi et al. 2016; Wang et al.
2015). Though relevant, such questions have not yet been
addressed (Rothstein et al. 2009; Shabani et al. 2018).

Related to the abovementioned challenges is the issue
of equitable access to health care. Regarding genetics, both
public and private providers are reluctant to approve vari-
ous clinical genetic services on the grounds of these being
experimental and not medically essential. Considering this,
the success and popularity of epigenetic testing seems uncer-
tain. Particularly, the issue of access to healthcare will be
critical for individuals likely to work and live in hazardous
environments (Rothstein et al. 2009). Moreover, the current
medical system is treatment oriented and does not encour-
age means of disease prevention, which is where the true
potential of epigenetic research lies.

Advancements in epigenetic studies have raised aware-
ness of intergenerational equity and thereby broadened the
scope of our duties to future generations. Ardent supporters
of scientific advancements might believe that measures to
prevent the transmission of epigenetically harmful signatures
to future generations must be encouraged; however, critics
may argue that this would interfere with the natural order
of things (Rothstein et al. 2009). Thus, future policies must
consider these concerns so that epigenetic information can
be utilized as a diagnostic tool or treatment method for life-
debilitating disease.

Discussion

Systematic review of the literature to identify epigenetic
alterations on cigarette smoke exposure revealed heterogene-
ous results. Our search criteria identified 80 studies focusing
mainly on 3 of the widely known epigenetic mechanisms,
DNA methylation (35 studies), histone modifications/chro-
matin remodeling (11 studies), and miRNA expression (12
studies). Among these, most of the studies were conducted
using human and/or clinical samples (69 studies); while 9
were employed in vitro and 8 used in vivo study models
to identify epigenetic changes. Considerable evidence is
available in the literature suggesting that cigarette smok-
ing regulates DNA methylation signatures. In fact, several
genes which have been commonly cited in multiple studies
(e.g., AHRR, p16, F2RL3, and DAPK) could be developed
as biomarkers to assess disease progression. These studies
have several merits including large sample size, correlation
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with confounding factors such as smoking status; smoking
history, smoking cessation, robust approach, and efficient
summary statistics. Likewise, miRNA expression studies
also have great potential to identify probable biomarkers
and drug targets. However, unlike DNA methylation, other
epigenetic markers have not been extensively investigated.

The major criticism of epigenetic studies related to
smoke-associated diseases is the heterogeneity of sample
size, sample type, and assessment techniques used to deter-
mine epigenetic alterations. Further, non-inclusion of comor-
bidities and factors such as demographics, genetic variations,
BMI, and other health determinants for statistical correc-
tions, and the lack of evidence regarding the consequences
of the observed changes are the major drawbacks of these
studies. In this context, three studies included in this review
compared the DNA methylation alterations among smokers
based on their demographics and provided contrasting out-
comes. The study conducted by Zhu et al. measured methyl-
ation marks at> 485,000 CpGs in current, former, and never
smokers from a Chinese cohort and compared their results
to previous studies conducted on Europeans and African
Americans. This group identified 161 CpGs annotated to 123
genes that were not associated with smoking in Europeans
or African Americans and concluded that these sites were
specific to the Chinese population (Zhu et al. 2016). Sun
et al. conducted a methylome-wide study using 972 African
Americans to identify DNA methylation sites associated
with smoking in this population and compared their results
with previous work done in Caucasians. They concluded
that the two ethnic groups share common associations with
cigarette smoking despite their distinct genetic backgrounds
(Sun et al. 2013). While both of these studies compared their
observation with data from a previously published study to
draw conclusions, Elliot et al. performed a methylome-wide
study in a population-based cohort including 1711 first-gen-
eration South Asian migrants and 1762 people of European
origin aged 40-69 living in West London, UK. In this study,
they found distinct smoking-associated methylation changes
at both single CpG sites and overall smoking score (con-
structed based on methylation profile) based on ethnicity
(Elliott et al. 2014). While most of the DNA methylation
studies have been conducted in European populations, the
studies conducted in other populations have not considered
demographic differences in their results. Thus, there exists
a wide knowledge gap with regard to the effect of genes
and epigenes on smoking-associated disease susceptibilities
among various populations. The abovementioned examples
highlight the importance of inclusion of confounding factors
like ethnicity in the DNA methylation studies. Future stud-
ies, thus, need to address these gaps to draw more meaning-
ful conclusions.

Since a wide variety of cells/tissue samples have been
used in epigenetic studies to deduce the effects of smoking, it
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is challenging to identify common epigenetic signatures and
associated molecular mechanisms as these changes are pre-
dominantly tissue specific (Gutierrez-Arcelus et al. 2015).
The information about various types of cellular and tissue
models used in individual epigenetic studies is included in
Tables 1 and 2. Likewise, it is difficult to compare the infor-
mation about epigenetic changes from different studies due
to the measurement of different variables (DNA methylation,
histone modification or miRNA) in terms of individual sig-
natures. While the studies included in our systematic review
identify the top candidate genes, chromatin modifications,
and miRNAs altered during smoke exposure, none of them
explored the interconnections between various epigenetic
markers. In future, such associations must be explored to tap
the full potential of epigenetics in deducing disease mecha-
nisms and developing therapies.

Conclusions

The evidence presented in this systematic review is sugges-
tive of a vital role of epigenetic changes in regulating smok-
ing-associated alterations and disease development. Better
study design to interconnect different epigenetic marks,
inclusion of confounding factors, and association with dis-
ease outcomes could improve the quality of future research.
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