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Abstract
A grid-based, alignment-independent 3D-SDAR (three-dimensional spectral data–activity relationship) approach based on 
simulated 13C and 15N NMR chemical shifts augmented with through-space interatomic distances was used to model the 
mutagenicity of 554 primary and 419 secondary aromatic amines. A robust modeling strategy supported by extensive valida-
tion including randomized training/hold-out test set pairs, validation sets, “blind” external test sets as well as experimental 
validation was applied to avoid over-parameterization and build Organization for Economic Cooperation and Development 
(OECD 2004) compliant models. Based on an experimental validation set of 23 chemicals tested in a two-strain Salmonella 
typhimurium Ames assay, 3D-SDAR was able to achieve performance comparable to 5-strain (Ames) predictions by Lhasa 
Limited’s Derek and Sarah Nexus for the same set. Furthermore, mapping of the most frequently occurring bins on the pri-
mary and secondary aromatic amine structures allowed the identification of molecular features that were associated either 
positively or negatively with mutagenicity. Prominent structural features found to enhance the mutagenic potential included: 
nitrobenzene moieties, conjugated π-systems, nitrothiophene groups, and aromatic hydroxylamine moieties. 3D-SDAR was 
also able to capture “true” negative contributions that are particularly difficult to detect through alternative methods. These 
include sulphonamide, acetamide, and other functional groups, which not only lack contributions to the overall mutagenic 
potential, but are known to actively lower it, if present in the chemical structures of what otherwise would be potential 
mutagens.
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Introduction

Worldwide, about 15% of total human deaths are cancer 
related—it is the second leading cause of death in developed 
countries (following the cardiovascular diseases)—and the 
third leading cause of death in the developing world fol-
lowing cardiovascular, infectious, and parasitic diseases 
(Stewart and Wild 2014). Cancer is caused by both intrinsic 
(such as inherited genetic mutations, hormonal imbalance, 
and immune conditions) and environmental factors (expo-
sure to synthetic and natural chemicals, infectious organ-
isms, or smoking). During the past few decades, significant 
progress has been made in understanding, limiting the effect 
of and preventing cancers induced by exposure to carcino-
genic chemicals and in particular to genotoxic carcinogens 
(Benigni and Bossa 2011). The ability of these chemicals to 
cause permanent damage to the genetic material of cells is 
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primarily evaluated by in vitro Ames mutagenicity assays 
(Ames et al. 1975). Since mutagenicity is tied to the multi-
step process of carcinogenicity and has been demonstrated 
to correlate well with it (Benigni 1989), the Ames test has 
become a preferred early indicator of potential genotoxic 
carcinogenicity (Gadaleta 2016). Although invaluable 
in evaluating the mutagenic potential of chemicals, the 
Ames assay requires a reasonable quantity of a compound 
(~ 0.75–1 g), and as such, it might be problematic for early 
stage drug development or testing of impurities. Hence, 
where bacterial mutagenicity experimental data are absent 
or impractical, accurate computational prediction of the 
mutagenic potential of chemicals is highly desirable and may 
speed up toxicity profiling and evaluation of drug impurities 
as outlined in ICH Guideline M7 (2015).

Due to reliability concerns often associated with the use 
of single models, the ICH Guideline M7 recommends a 
more stringent approach based on consensus between two 
complementary (Quantitative) Structure–Activity Relation-
ship Approaches ((Q)SARs)—one generated by a statistical 
system and another utilizing expert rules. There are several 
statistical-based systems in widespread use: Sarah Nexus 
from Lhasa Limited (Barber et al. 2016), Leadscope Model 
Applier—Statistical Models (Yang et al. 2008), CASE Ultra/
MC4PC from MultiCASE Inc. (Saiakhov and Klopman 
2008), Lazar (Helma 2006), and T.E.S.T (Martin 2016). 
Among the expert rule-based systems, popular are Lhasa 
Limited’s Derek Nexus (Marchant et al. 2008), Leadscope 
Model Applier–Expert Alerts (Yang et al. 2008) and some 
of the modules in Toxtree (Patlewicz et al. 2008a).

Due to their use as starting materials in the pharmaceu-
tical industry, which subsequently leads to their presence 
as impurities in many drug formulations, the primary and 
secondary aromatic amines (further referred to as PAA 
and SAA) are prime candidates for mutagenicity evalua-
tion (McCarren and Springer 2011). Such scrutiny is fur-
ther supported by a substantial amount of evidence linking 
the aromatic amines and their metabolites to well-known 
mechanisms of DNA damage such as the formation of DNA 
adducts with the nitrenium ions, direct DNA intercalation 
and the formation of reactive oxygen species resulting in 
oxidative stress (Benigni and Bossa 2011). For these rea-
sons, structural alerts warranting further investigation are 
often designed around the presence of amino-aromatic moie-
ties. The overly general nature of such alerts, however, has 
been demonstrated to lead to a significant amount of false 
positives for certain subclasses of chemicals (Cariello 2002). 
As an alternative to the use of structural alerts, numerous 
QSARs utilizing molecular descriptors have been proposed 
during the past few decades, some of which are summarized 
in Table 1.

Although some of the published models were properly 
derived and validated, many suffered from: (1) absence of or 

poor validation; (2) omission of data critical for their repro-
ducibility; (3) lack of structural/mechanistic interpretation; 
and (4) undefined applicability domains. Hence, it is not 
surprising that none of these approaches (except those based 
on nitrenium ions stabilities) is routinely used in estimating 
the Ames mutagenicity of aromatic amines. To avoid the 
above outlined shortcomings and to build an OECD compli-
ant model, this work was focused on:

1.	 developing a transparent modeling procedure with well-
defined training/hold-out, validation, and “blind” exter-
nal test sets;

2.	 utilizing a rigorous modeling procedure relying on mul-
tiple fully randomized training/hold-out set pairs pro-
cessed by a robust algorithm designed to avoid overfit-
ting;

3.	 defining an optimal prediction space/applicability 
domain based on a similarity score calculated from the 
3D-SDAR fingerprints;

4.	 using 3D-SDAR mapping techniques to facilitate the 
identification of structural features associated either 
positively (enhancers) or negatively (reducers) with 
mutagenicity.

Data sets

Curated data sets consisting of 579 PAA and 437 SAA pro-
vided to the National Center for Toxicological Research 
(NCTR) by Lhasa Limited were preprocessed using the fol-
lowing rules: (1) all solvent molecules were discarded to 
obtain a single structure; (2) all counter-ions of organic salts 
such as Cl−, Br−, SO4

2−, Na+, etc., were removed; and (3) in 
cases of mixtures, only the active component identified by 
its CAS number was retained. The removal of counter-ions 
from the PAA set resulted in 15 duplicates and 2 triplicates. 
In cases of concordant calls, one of the duplicates/tripli-
cates was retained, whereas in cases of conflicting calls, both 
chemicals were discarded. In total, 25 PAAs were removed 
from the data set. Similarly, the identification of 15 SAA 
duplicates resulted in the removal of 18 chemicals. After 
the “washing” procedure described above, the PAA and 
SAA data sets were comprised, respectively, of 554 and 419 
chemicals; these will be referred to as initial data sets.

To build reliable predictive models, the initial data sets 
of 554 PAA and 419 SAA were split into modeling (3/4) 
and validation (1/4) subsets using the following strategy 
designed to generate validation sets representative of the 
modeling sets. Since the conjugated systems in the mol-
ecules of aromatic amines are essential for mutagenicity, 
the Toxmatch (Patlewicz et al. 2008b) software was used 
to calculate “the number of atoms in the largest pi system” 
descriptor, which ranked values determined the assignment 
of each chemical to either the modeling or the validation 
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set. The chemicals in the PAA and SAA sets were arranged 
in an ascending order of their calculated descriptor values 
and were labeled sequentially as “a”, “b”, “c” and “d”. The 
chemicals labeled by “d” were then moved to form the vali-
dation set. Thus, the initial data set of 554 PAA was split 
into 416 chemicals forming the modeling set and 138 com-
pounds comprising the validation set. Respectively, 315 out 
of the total of 419 SAAs were assigned to the modeling set, 
whereas the remaining 104 chemicals formed the validation 
set. Both modeling sets were further (repeatedly) split (by a 
bagging-like randomization algorithm) into training (80% of 
the chemicals, 333 in case of PAA, and 252 in case of SAA) 
and hold-out test (20% of total, 83 in case of PAA, and 63 in 
case of SAA) subsets. This procedure is described in detail 
in the “model building” section.

Once the modeling phase was complete and the models 
were reported back to Lhasa Limited, NCTR was provided 
with two sets of PAAs and SAAs to be used as “blind” 

external test sets. The Tanimoto similarity score (defined as 
T =

A.B

A2+B2−A.B
 , where A and B are vector rows of the bin 

occupancies for compounds A and B) was used to identify 
and retain only those chemicals from the two external test 
sets that had close analogs among the PAA and SAA training 
set compounds. Similarity thresholds equal to the average of 
the maximum pairwise similarities (Tmax) calculated for all 
possible pairs of chemicals in the training sets were used to 
determine which external test set chemicals belong to the 
applicability domains of the PAA (T > 0.294) and SAA 
(T > 0.274) models. In other words, only those chemicals 
that belonged to the applicability domains of our models 
were retained. The performance parameters for these two test 
sets were used to estimate the true predictive power of our 
models. Under collaboration with the Swiss Federal Food 
Safety and Veterinary Office (FSVO), NCTR predicted the 
mutagenic potential of a data set of 23 aromatic amines, 

Table 1   Summary of published models on the mutagenicity of aromatic amines

Endpoint Data set size Data processing algo-
rithm

Descriptors Statistical parameters Reference

Mutagenic activity 88 MLR log P, ELUMO, EHOMO, I1 R = 0.898, s = 0.86 Debnath (1992)
Mutagenic potency 165 MLR HOMO, LUMO, number 

of fused aromatic 
rings, etc

R2
adj = 0.62, F = 91.7 Hatch (1997)

Revertants/nanomole 95 MLR CODESSA descriptors R2 = 0.834, R2
cv = 0.81 Maran (1999)

Revertants/nanomole 95 Hierarchical QSAR Topological, geometric 
and QM indices

R = 0.89…0.92
F = 37.8…57.2

Basak (2001)

Revertants/nanomole 95 MLR Electrotopological state 
indices

R = 0.87, F = 44.2 Cash 2001

Revertants/nanomole Trn = 47/Tst = 48 Least squares Graphs of atomic orbitals Rtrn = 0.87, Rtst = 0.87
s = 1.05, s = 0.86

Toropov (2001)

Revertants/nanomole Trn = 60/Tst = 39 Ordinary least squares, 
GA

DRAGON descriptors Rtrn = 0.80, Rtst = 0.69 Gramatica (2003)

Revertants/nanomole 95 Counter propagation 
neural network

Topostructural, topo-
chemical, geometrical 
and quantum chemical

Q2
LOO = 0.751; F = 279.9 Vracko (2004)

Revertants/nanomole 95 MLR, ANN Diatomic fragments R2 = 0.77…0.91
Q2

LOO = 0.67…0.70
Casalegno (2006)

Revertants/nanomole 20 PLS, MLR BMC chromatographic 
retention, molar refrac-
tivity, MW, etc

R2 = 0.86, se = 0.8, 
F = 52

Torres-Cartas (2007)

Revertants/nanomole Trn = 97/Tst = 25 HSVR, SVM, ANN, 
GFA

Discovery Studio and 
E-Dragon descriptors

R2
trn = 0.78…0.93

R2
tst = 0.73…0.85

Leong (2010)

Ames active/inactive Trn = 212
Calibration = 71
Validation = 71

Regression, kNN SMILES descriptors, 
similarity indices, 
CAESAR-VEGA 
descriptors

ACC = 0.77…0.85
SN = 0.76…0.87
SP = 0.73…0.88

Manganelli (2016)

Ames active/inactive 257 ΔΔE cutoff Nitrenium ions stabilities 
(ΔΔE)

ACC = 0.84…0.86
SN = 0.88…0.93
SP = 0.62…0.77

Bentzien et al. 
(2010)

Ames active/inactive 846 unique (32, 
326, 189, 459)

Formation energy cutoff Nitrenium ion formation 
energy

ACC = 0.55…0.88
SN = 0.73…0.90
SP = 0.33…0.88

McCarren (2011)



2372	 Archives of Toxicology (2018) 92:2369–2384

1 3

whose activities were not disclosed to the NCTR before the 
predictions were made. These were tested in a two-strain 
Ames assay at Envigo Lab (Rossdorf, Germany) (Brüsch-
weiler and Merlot 2017).

Methodology

Endpoint transformation

The PAA and SAA sets provided by Lhasa Limited con-
tained data expressing the mutagenic potential of chemi-
cals as a binary overall call, with 0 (or negative) encoding 
for a lack of evidence for mutagenicity and 1 (or positive) 
encoding for a strong evidence of mutagenic activity (see 
Table 2 and the SI spreadsheet). The overall call was defined 
as a surrogate endpoint combining Ames assay data derived 
from TA98 and TA100 Salmonella typhimurium strains 
(with and without metabolic activation) with literature 
evidence from other salmonella strains and bacteria (e.g., 
Escherichia coli). In addition, the PAA and SAA data sets 
included records detailing the outcomes of the Ames test 
for two of the most sensitive to aromatic amines strains, 
TA98 and TA100 as well as their metabolically activated 
counterparts TA98+S9 and TA100+S9 (Fan et al. 1998). 
These two strains are often considered sufficient to detect 
either frame-shift (TA98) or base-pair substitution (TA100) 
mutations (Leong et al. 2010). Although there are different 
variants of the Ames test, most protocols recommend the 
use of either four (TA97a, TA98, TA100, and TA102) or 
five (TA98, TA100, TA1535, TA1537, and TA1538) strains 
(Winder 2004). Of these, strains TA97a, TA98, TA1537, 
and TA1538 detect frame-shift mutations, strains TA100 
and TA1535 are used to identify base-pair mutagens and 
the TA102 strain detects oxidants and cross-linking agents 
not detected by other strains (Winder 2004).

The Ames test outcomes for TA98, TA98 + S9, TA100, 
and TA100 + S9 were categorized as follows: negative (no 
evidence of mutagenicity), conflicting (evidence for and 
against), equivocal (absence of strong evidence for muta-
genicity), and positive (strong evidence for mutagenicity).

Due to the inherent limitations of models based on binary 
endpoints (i.e. their inability to identify subtle but impor-
tant structural determinants of activity) a coherent approach 
taking advantage of all available data to construct an inter-
mediary, synthetic endpoint (referred to as P-score) was 
employed. The Ames test outcomes reported for the individ-
ual TA98, TA98+S9, TA100, and TA100+S9 assays were 
assigned categorical variables, such that the negative out-
comes were encoded as 1, the conflicting as 2, the equivocal 
as 3, and the positive as 4. A value of 5 (instead of 4) was 
considered for the positive outcomes, thus positioning the 
equivocal outcomes in the middle (halfway between the neg-
ative and positive outcomes). This idea was discarded due 
to the increased discontinuity of the transformed P-scores, 
characterized by more sparsely populated or unoccupied 
regions (see Fig. 1b). For the purpose of this transformation, 
the original overall call assignments (0/1) were encoded as 
1 and 4, representing, respectively, the negative and positive 
calls. The transformed intermediary endpoint P was calcu-
lated using the following formula:

in which the first term in the numerator is an average of 
the Ames assay outcomes for TA98, TA98+S9, TA100, and 
TA100+S9 and C is the overall call. As defined, the con-
tribution of the overall call C to the intermediary score P 
is equal to that of the four individual assays. There were 
several benefits resulting from this decision:

1.	 It helped resolve seemingly conflicting situations, such 
as the case in which 8 PAAs and 7 SAAs, each char-
acterized by four negative individual Ames assay out-
comes (for TA98, TA98 + S9, TA100, and TA100 + S9) 
were assigned an overall positive call due to evidence 
for mutagenicity from other strains.

2.	 It helped to retain chemicals for which only an overall 
call was reported (44 PAA and 47 SAA).

3.	 The resulting intermediary endpoint P suffered from 
fewer (and smaller) gaps in continuity—i.e. improved 
uniformity of the distribution (see Fig. 1a).

Following from the above definition, the P-score will 
increase gradually to its maximum value of 4 as more of its 
components increase to their maximum values. Since each 
component of the P-score represents a different mechanism 
(need for metabolic activation, frame-shift mutation, base-
pair substitution mutation, mutations caused by oxidants and 
cross-linking agents, etc.), its increase would be linked to 
the ability of each individual compound to damage DNA 
via one, two, or more alternative mechanisms. For example, 
a chemical with a P-score of 1 would be inactive under all 

P =

∑n

i=1
A
i

n
+ C

2
,

Table 2   Average P-scores and distribution of the positive and nega-
tive samples between the test and training sets based on the binary 
overall call for the PAA and SAA data sets

Chemical class Set Positive Negative Average P score

PAA Modeling 249 167 2.487
Validation 78 60 2.376

SAA Modeling 155 160 2.309
Validation 62 42 2.538
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testing conditions (different strains and added S9 fraction), 
whereas a compound that needs a metabolic activation to 
revert TA98 (but is inactive under other testing conditions) 
would have a P-score of 2.875. On the opposite end of the 
spectrum would be a compound that is active in both strains 
(with and without metabolic activation) and for which 
there might be evidence for mutagenicity from other strains 
(potential indicators for alternative mechanisms). Such a 
compound would be characterized by a P-score of four (its 
highest possible value). In general, a higher P-score would 
indicate that a given compound is mutagenic under more 
testing conditions (for example, active in TA98, TA100 or 
both with and without metabolic activation and potentially 
active in other strains) and by extension might damage DNA 
via multiple alternative mechanisms. Alternative scoring 
functions that might be more closely related to the number of 
different mechanisms are also possible; however, as defined, 
the P-score was preferred for its simplicity.

Due to the improved continuity of the P-score (as opposed 
to the binary overall call), the generated 3D-SDAR models 
should be able to pinpoint specific structural features asso-
ciated either “positively” or “negatively” with mutagenic-
ity. It is also important to note that at the final stage of the 
modeling procedure, the predicted P-score values were con-
verted back to a binary class assignment (negative/positive) 
using cut-off values determined from each of the training 
sets (shown in the last column of Table 2).

3D‑SDAR fingerprint generation

3D-SDAR is a grid-based approach, which is based on 
fingerprints constructed from the NMR chemical shifts of 
pairs of atoms (determining the X and Y coordinates of the 
individual fingerprint elements) and their corresponding 
through-space atom-to-atom distances (determining the 
Z-coordinate). These fingerprints are further tessellated by 
regular grids, thus generating descriptor matrices with thou-
sands of columns (see the SI spreadsheet), later processed by 
a bagging-like Partial Least Squares (PLS) algorithm. The 
following steps describe the generation of these 3D-SDAR 
fingerprints:

4.	 The molecular geometries of all chemicals were opti-
mized using the AM1 Hamiltonian as implemented in 
Hyperchem v. 8.03 (2007). The ACDLabs NMR (2011) 
and XNMR (2011) predictors were used to simulate the 
13C and 15N NMR chemical shifts;

5.	 The ranges of the 13C and 15N chemical shifts for the two 
modeling sets were determined. In case of PAAs, δ13C 
covered a range between 5.82 and 206.9 ppm, whereas 
the δ13C of SAAs ranged from 5.07 to 207.99 ppm. The 
lower bound of the PAAs δ15N range was − 373.56 ppm, 
while the upper bound was 632.13 ppm. Respectively, 
the lower and upper bounds of SAAs δ15N were 
− 360.69 ppm and 632.13 ppm;

6.	 To avoid the overlap between the δ13C and δ15N regions, 
the chemical shifts of the nitrogen atoms were translated 
downfield by 1000 ppm past the upper bound of the δ13C 
region. This translation, however, was performed only 

Fig. 1   Histogram of the distribution of the P-scores for the PAA and SAA data sets based on the: a “1, 2, 3, 4” and b “1, 2, 3, 5” categorical 
class assignments, encoding for the negative, conflicting, equivocal and positive outcomes
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for convenience, as to simplify the fingerprint binning 
procedure and the fingerprint element count algorithm. 
For the purpose of structural interpretation, the original 
values of δ15N were restored once the modeling phase 
was complete.

7.	 The through-space distances between all C–C, C–N, 
and N–N atom pairs were calculated and combined 
with their corresponding chemical shifts to generate 
unique fingerprints representing each compound in the 
3D-SDAR space. One such fingerprint constructed for 
the structure of aniline is shown in Fig. 2.

8.	 The above-described downfield translation of δ15N, 
allowed division of the XY-plane into three distinct 
regions: carbon–carbon, carbon–nitrogen and nitro-
gen–nitrogen. Since the gyromagnetic ratio γ of the 
carbon atoms is approximately 2.5 times that of the 
nitrogens, the grid density was set in such a way that 
the bins in the C–N region were 2.5 times larger than 
the bins in the C–C region and 2.5 times smaller than 
those in the N–N region. To explore the 3D-SDAR para-
metric space, tessellations with grid densities ranging 
from 4 × 4 ppm × 0.5 Å to 10 × 10 ppm × 1 Å in the 
C–C region, 4 × 10 ppm × 0.5 Å to 10 × 25 ppm × 1 Å 
in the C–N region and 10  ×  10  ppm  ×  0.5  Å to 
25 × 25 ppm × 1 Å in the N–N region (with incremental 
steps of 0.5 Å on the Z-axis and 2 ppm on the chemical 
shifts plane XY) were generated.

9.	 After tessellation of all individual fingerprints, the fin-
gerprint elements occupying each bin were counted 
and stored in 3D-SDAR descriptor matrices. In these 
matrices, each row vector represents a single compound, 
whereas each column vector contains the counts of the 
fingerprint elements occupying a specific bin.

Model building

A bagging-like PLS-SIMPLS algorithm (De Jong 1993) 
written in Matlab (v8.0, 2012) was used to process each of 
the generated 3D-SDAR descriptor matrices. Before pro-
cessing, all descriptors were standardized using the “zscore” 
Matlab function. To avoid overfitting and build models free 
of selection bias, the PAA and SAA modeling sets (3/4 of 
the initial sets) were split randomly into training (80% of 
the chemicals) and hold-out test (the remaining 20% of the 
chemicals) sets. One hundred such randomizations were per-
formed. On each run, the PLS algorithm fitted the P-scores 
for the training set and predicted the hold-out test and the 
validation sets (see Fig. 3). At the end, the aggregated pre-
dictions for the individual compounds belonging to any of 
the above defined sets (training, hold-out and validation) 
were averaged and a threshold equal to the average of the 
P-scores for the training set was used to classify each chemi-
cal as either positive or negative. Due to the repeated split-
ting of the modeling set into training/hold-out test set pairs, 
each compound from the modeling set had two predicted 
values; one, when it was randomly assigned to the training 
set and another, when it belonged to the hold-out test set. 

Fig. 2   Molecule of aniline (1a) and its corresponding 3D-SDAR fingerprint (1b). The colors of the dashed lines correspond to the colors of the 
fingerprint elements shown in 1b. As explained above, δ15N is translated downfield by 1000 ppm
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Because the training set predictions merely reflect the ability 
of PLS to fit data (and are thus irrelevant for estimating the 
“true” predictive power of models), the Results and discus-
sion section will be focused only on the predictions made 
for the hold-out, validation and the “blind” external test sets.

Models with between 1 and 10 latent variables (LVs) 
were generated and the accuracy of prediction for the hold-
out test set was used to determine their optimal number. To 
recreate the same training/hold-out test set sequence when 
processing 3D-SDAR descriptor matrices based on different 
tessellations, the random number generator was initialized 
with a pre-specified random seed. This was also done with 
the intention of building completely reproducible models.

Interpretation

The linear nature of PLS combined with the robustness of 
the bagging-like randomization algorithm and the atom-level 
resolution of 3D-SDAR allow for a straightforward determi-
nation of the structural factors playing a role in mutagenic-
ity. Since 3D-SDAR relies on composite models aggregat-
ing the predictions from multiple randomized models, the 
PLS weights from the individual models cannot be utilized 
directly to rank the 3D-SDAR descriptors by importance. An 
alternative approach would be to extract a preset number of 
highly weighted (positive as well as negative) descriptors for 
a preset number of latent variables on each run and to fur-
ther calculate the frequency of occurrence of each descriptor 
as a fraction of the total number of extracted descriptors. 

The more frequently a given descriptor appears in the series 
of models, the more likely it is that this descriptor is truly 
related to the observed biological effect. During the next 
stage, the descriptors with the highest frequency of occur-
rence are mapped on the set of chemical structures and the 
recurring structural patterns would then represent molecular 
features that if present would lead to either an increase (posi-
tive PLS weights) or a decrease (negative PLS weights) in 
the overall mutagenic potential.

Results and discussion

Predictive performance

For both PAA and SAA sets, models utilizing grids with 
4 × 4 ppm × 0.5 Å in the C–C region, 4 × 10 ppm × 0.5 Å in 
the C–N region and 10 × 10 ppm × 0.5 Å in the N–N region 
resulted in models with the highest overall accuracy for the 
hold-out test sets. In the case of PAA, the highest accu-
racy of prediction was achieved using models with 7 LVs, 
whereas in the case of SAA 6 LVs were found to be optimal. 
Our earlier work (Slavov et al. 2014, 2016; Stoyanova-Sla-
vova et al. 2017), dealing with conversions between continu-
ous and categorical variables indicated that the effect of the 
continuous variable distribution bias on the class assignment 
could be mitigated using cut-off values equal to the average 
of the training set activity vectors (in this case, the average 
of the P-scores for the PAA and SAA training sets). In other 

Fig. 3   Flowchart of the 3D-SDAR modeling process
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words, to convert the averaged P-scores for each compound 
back to a binary positive or negative class assignment, the 
cut-off values shown in the last column of Table 2 were used 
(2.487 for PAA and 2.309 for SAA). Since the probability 
to classify correctly chemicals near the above cut-off values 
decreases as a function of their proximity to the cutoffs, con-
fidence bands excluding all compounds with P-scores within 
the ± 5% on both sides (2.362...2.611 and 2.194…2.425) of 
the cut-off values were defined. The performance parameters 
of the 3D-SDAR models for the hold-out test, validation and 
external test sets are summarized in Table 3. The statistical 
parameters for the sets in Table 3 marked with an aster-
isk exclude the chemicals within the low confidence bands. 
As can be seen from the performance parameters shown in 
Table 3 and Fig. 4, both PAA and SAA models offer an 
excellent performance transferability from the hold-out test 
set to the validation and the “blind” external test sets.

Although the SAA sets were somewhat smaller in com-
parison to the PAA sets, the SAA model seemed to perform 
slightly better when predicting the validation and the “blind” 
external test set. The SAA model also needed fewer LVs to 
achieve this somewhat higher performance level. One possible 
explanation might be in the slightly better (although sparser) 
coverage of the chemical space by the SAA chemicals, which 
were less similar to each-other (average Tmax = 0.274) than the 
chemicals constituting the PAA set (average Tmax = 0.294). 
Hence, models based on more structurally diverse chemicals 
might be able to capture trends in the data that are not accessi-
ble to models based on sets with more limited structural vari-
ability and, respectively, benefit from that information when 
predicting external test sets. An alternative explanation could 
be derived from the P-score distribution shown in Fig. 1, 
which indicates the presence of fewer SAAs with intermedi-
ate values of P and m, respectively, fewer “borderline” cases.

Table 3   Predictive performance 
of the best PAA and SAA 
models

*Dataset size after excluding all chemicals lying within the low confidence bands

Performance 
parameters

PAA (7 latent variables) SAA (6 latent variables)

Hold-out set Validation set External test Hold-out set Validation set External 
test

N 416 355* 138 109* 121 104* 315 270* 104 86* 91 67*
Accuracy 0.70 0.74 0.79 0.83 0.70 0.72 0.73 0.75 0.84 0.87 0.69 0.76
Sensitivity 0.67 0.72 0.82 0.86 0.64 0.65 0.71 0.72 0.79 0.85 0.68 0.68
Specificity 0.74 0.77 0.75 0.78 0.80 0.84 0.75 0.78 0.90 0.91 0.71 0.88
NPV 0.60 0.66 0.76 0.80 0.57 0.58 0.73 0.74 0.75 0.79 0.57 0.64
PPV 0.79 0.81 0.81 0.85 0.84 0.88 0.73 0.76 0.92 0.94 0.80 0.90

Fig. 4   ROC curves for the primary (a) and secondary (b) amines prediction sets after removal of the modeling inconclusives near the cutoff
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Collaboration between NCTR and FSVO allowed a com-
parison between the predictions generated by 3D-SDAR, 
Lhasa Limited’s Sarah Nexus and Derek Nexus and a two-
strain Ames test performed on a set of 23 aromatic amines 
studied by Brüschweiler and Merlot (2017). This is a sub-
set of the 397 aromatic amines as potential cleavage prod-
ucts from the total 180 azo dyes used for clothing textiles. 
The Ames test was conducted under the assumption that 
the TA98 and TA100 strains are often sufficient to detect 
mutagenicity of most aromatic amines (Bentzien et al. 2010, 
Harding et al. 2015). The Ames assay outcomes reported 
by the FSVO (Brüschweiler and Merlot 2017) and the pre-
dictions based on our 3D-SDAR PAA model are listed in 
Table 4. It is interesting to note that although 3D-SDAR was 
based on a fairly structurally limited training set, it was the 
only technique able to correctly classify the 4,4′-cyclohex-
ane-1,1-diyldianiline as mutagenic and, respectively, achieve 
the highest sensitivity (see Table 5). In terms of specific-
ity, all three approaches seemed to have generated a signifi-
cant proportion of false positives. However, the somewhat 
significant level of concordance between these predictions 
(with Kendall τb coefficients ranging from 0.417 to 0.685) 
suggested that there might be a rational explanation for (at 

least) some of the misclassified compounds. It was hypoth-
esized that the presence of a 1,4-diaminobenzene moiety 
(found in 3 of the chemicals classified as false positives) or 
a 2-hydroxyethylamine group (present in 2 “false positives”) 
might influence the mechanism by which these chemicals 
cause damage to DNA and that this altered mechanism may 
go undetected by the Salmonella typhimurium strains used 

Table 4   Ames assay data for 
the experimental validation 
set of 23 PAA and predictions 
generated by 3D-SDAR. The 
non-mutagenic compounds are 
labeled with “−”, while the 
mutagenic chemicals are labeled 
with “+”

a Purchased as CAS 2051−79−8
b Purchased as CAS 25646−77−9

CAS Chemical name 2 Strain ames 
[31] exp

3D-SDAR

3282-99-3 4,4′-Cyclohexane-1,1-diyldianiline + +
615-47-4 1,2,4-Benzenetriamine + +
15791-87-4 4,6-Diamino-1,3-benzenediol + +
84-67-3 m-Tolidine + +
92-65-9 2-[(4-Aminophenyl)(ethyl)amino]ethanol − +
148-71-0a 1-(Diethylamino)-3-methylbenzene-4-amine − +
2359-51-5b 2-[(4-Amino-3-methylphenyl)(ethyl)amino]ethanol − +
105297-10-7 4-(1,1-Dioxido-4-thiomorpholinyl)aniline − −
23342-49-6 4-Amino-3-hydroxy-N-(2-methoxyphenyl)-2-naphthamide − +
52943-88-1 3-Methyl-1-phenyl-1H-pyrazole-4,5-diamine − +
88-50-6 4-Amino-2,5-dichlorobenzenesulfonic acid − −
98-44-2 1-Anilino-2,5-disulfonic acid − −
41772-23-0 2-Amino-1-naphthol − +
5856-00-8 N-(4-Amino-3-methylphenyl)-N-ethylbenzamide − +
2373-98-0 4,4′-Diamino-3,3′-biphenyldiol − +
117-62-4 2-Naphthylamine-1,5-disulfonic acid − −
137-51-9 4-Amino-1,3-benzenedisulfonic acid − −
6442-08-6 4,4′-Cyclohexane-1,1-diylbis(2-methylaniline) − −
98-36-2 2-Chloroaniline-5-sulfonic acid − −
2835-99-6 4-Amino-m-cresol − −
27746-11-8 (4-Amino-2-methylphenyl)dimethylamine − −
5272-86-6 3,5-Dimethyl-1H-pyrazol-4-amine − −
3204-61-3 1,2,4,5-Benzenetetramine − +

Table 5   Comparison of the performance of Lhasa Limited’s Derek 
Nexus, Lhasa Limited’s Sarah Nexus and 3D-SDAR to predict the 
two-strain Ames results

Sarah Nexus Derek Nexus 3D-SDAR

Accuracy 0.38 0.61 0.61
Sensitivity 0.75 0.75 1.00
Specificity 0.29 0.58 0.53
NPV 0.83 0.92 1.00
PPV 0.20 0.27 0.31
TP 3 3 4
TN 5 11 10
FP 12 8 9
FN 1 1 0
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(Yoshida et al. 1998). This was the case with 2-[(4-ami-
nophenyl)(ethyl)amino]ethanol, whose closest better-pro-
filed analog 2,2′-[(4-aminophenyl)azanediyl]di(ethan-1-ol) 
demonstrated activity in the WP2 strain of Escherichia coli, 
but not in any of the Salmonella typhimurium strains.

Hence, it can be concluded that the discrepancy between 
the experimental and predicted mutagenicities could largely 
be attributed to the restricted set of strains used in the two-
strain Ames test, as opposed to the broader sets, evidence 
from which is incorporated in Sarah Nexus, Derek and 
3D-SDAR. For example, Sarah Nexus uses data from a 5 
strain Ames test, whereas 3D-SDAR is based on a P-score, 
a component of which is the overall call.

Structural factors affecting the mutagenic potential 
of aromatic amines

The structural interpretation of both PAA and SAA mod-
els was based on the first two latent variables (i.e., those 
explaining most of the variance in mutagenicity data). 
On each of the 100 runs, the top 10 most positively and 
most negatively weighted bins for each of the two latent 
variables were extracted and their frequencies of occurrence 
(expressed as percentages) were calculated using the follow-
ing formula: F = 100 × (Count/10 × NLV × Runs). In this 
formula, Count is the number of times a specific bin is found 
in the accumulated list of bins, NLV is the number of latent 
variables and Runs represents the number of randomiza-
tion cycles. In the case of PAA, 23 positively weighted bins 
with a frequency of occurrence of more than one percent 
and a cumulative frequency of occurrence of 81.03% were 
selected to identify the structural features associated with an 
increase in the mutagenic potential. Using the same cutoff 
of 1% resulted in the selection of 29 negatively weighted 
bins with a cumulative frequency of occurrence of 77.13%. 
In the case of SAA, the first 12 most frequently occurring 
bins with positive weights had a cumulative frequency of 
occurrence of 95.80%, whereas the cumulative frequency 
of occurrence of the 26 most negatively weighted bins was 
81.40%. Due to the fewer number of both positively and 
negatively weighted individual bins needed to achieve a 
comparable or larger cumulative frequency of occurrence, 
in comparison to the PAA set, the SAA set is character-
ized by more clearly defined structural trends in the data. 
The most frequently occurring bins were further projected 
on the molecular structures to identify recurring patterns 
associated with an effective enhancement or reduction of 
the mutagenic potential of PAAs or SAAs. It is important 
to emphasize that the abundant atom specific information 
encoded in the 3D-SDAR fingerprints augmented with the 
robust bagging-like PLS algorithm allows for identifica-
tion of “true” negative contributions that might be particu-
larly difficult or often impossible to detect via alternative 

techniques. Such structural features are not simply lack-
ing contribution to the overall mutagenic potential, but are 
known to effectively lower it when present in the structures 
of otherwise potential mutagens.

All structural features discussed below were found to be 
consistent with earlier (Q)SAR findings and expert knowl-
edge derived fragments as well as with known mechanisms 
of mutagenicity (Ahlberg et al. 2016; Benfenati et al. 2015; 
Gadaleta et al. 2016).

Primary aromatic amines

The presence of several highly specific structural factors was 
found to enhance the mutagenic potential of PAAs. Aromatic 
amines containing conjugated planar π-systems such as flu-
orene or carbazole derivatives, including those with fused 
benzene rings such as naphthalene and anthracene were 
frequently present (select examples are shown in Fig. 5). 
These conjugated systems were often found to be long and 
narrow, with their width usually not exceeding two side-by-
side benzene rings or 9 Å (taking into account the hydrogen 
atoms). Due to these highly specific geometric restrictions, 
the conjugated planar aromatic amines are likely exerting 
their effect through DNA intercalation leading to frame-shift 
mutations—a well-known mechanism enhancing mutagenic-
ity (Ames et al. 1972). However, since the PAA data set con-
sists only of aromatic amines, it is possible that the amino 
group is only a passenger, while the true “mutagenophore” 
is the planar conjugated aromatic system. More rigid polycy-
clic aromatic amines such as biphenylamine and especially 
their ortho substituted sterically hindered derivatives will 
exhibit a stronger mutagenic potential than those in which 
the aromatic rings are separated by two or more rotatable 
bonds (as in 2-benzylaniline). Another, strong “mutageno-
phore” contender was the nitrophenyl group (see Fig. 5), 
found among many PAAs and SAAs characterized by high 
P-scores. Its presence has been associated with various pos-
sible mechanisms of DNA damage including intercalation, 
adduct formation and in specific cases incorporation of the 
active molecule as a base analog into DNA during DNA 
synthesis (Matsuda et al. 1991).

The presence of the following structural factors was 
found to be associated with an overall reduction of the 
mutagenic potential: (1) ester, carboxyl and carboxamide 
groups directly attached to the phenylamine ring, with the 
ortho position being preferable (see Fig. 6 for select exam-
ples); (2) bulky (often aliphatic) substituents on both sides 
of the amino group; (3) diaminopyrimidine or diaminotria-
zine derivatives and (4) monoaromatic amines (except for 
the discussed above nitrophenylamines). In these cases, the 
reduction of mutagenic potential is likely caused by either 
the nearby bulky substituents blocking the free access to the 
nitrogen atom or its deactivation caused by redistribution of 
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the electron density in the molecules and its concentration 
around the nearby more electronegative oxygens.

Secondary aromatic amines

In addition to the above-described structural features found 
to enhance the mutagenic potential of PAAs, specific pat-
terns better expressed in the SAA data set confirmed indi-
rectly one of the postulated mechanisms of aromatic amine 
activation in their path to forming DNA adducts. This is 
indeed the case of the phenylhydroxylamine derivatives 
(some examples of which are shown on Fig.  7) which 
undergo activation through conversion to their correspond-
ing hydroxyl amines, further forming esters and finally pro-
ducing nitrenium ions via elimination of the OR group. The 
nitrenium ions further form DNA adducts (Ford and Herman 

1992). As with the PAAs, many SAAs containing either con-
jugated planar aromatic systems or somewhat more rigid 
(due to steric hindrance) polycyclic aromatic amine moie-
ties were found to exhibit strong mutagenic potentials. One 
striking case was that all SAAs containing nitrothiophene 
moieties (see Fig. 7) were characterized by multiple overlaid 
positively weighted bins indicating a significant mutagenic 
effect. Although multiple positively weighted bins were also 
present in most of the cases discussed above (but only the 
most significant of them were visualized for simplicity), the 
large variety and recurring consistency of the bins associ-
ated with the presence of nitrothiophene moieties suggested 
that they carry an exceptionally high mutagenic potential. 
The DNA damaging potential of nitrothiophenes was noticed 
early on (Wang et al. 1975) with later studies demonstrating 
that their activation is largely dependent on the bacterial 

Fig. 5   Structural features associated with an increase in the mutagenic potential of PAAs
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nitroreductase, and therefore, they do not require a S9 frac-
tion (Hrelia et al. 1990). Nitrothiophenes mutagenicity is 
likely caused by their reduction to diamagnetic and free radi-
cal intermediates further forming hydroxylamines (Hrelia 
et al. 1990).

Examination of the projection of the negatively weighted 
bins on the molecular structures of SAAs revealed several 
structural features that if present would effectively reduce 
the mutagenic potential of otherwise potentially active aro-
matic amines. Two such examples are the sulphonamide and 
acetamide residues (see Fig. 8), where the mechanism of 
deactivation is likely associated with the electron withdraw-
ing effect on the nitrogen atom, thus hindering its oxidation 
in the conversion to a nitrenium ion. Similar to PAA, bulky 
substituents near the amino group, ester, carboxyl and car-
boxamide groups were also found to lower the mutagenic 
potential of SAA.

The structural interpretation of the 3D-SDAR models dis-
cussed in this section clearly demonstrates that the muta-
genic potential of both PAAs and SAAs is driven by similar 
structural features. Although some are better expressed in 
one of the data sets and not in the other, this is likely a sta-
tistical artefact arising as a result of the differences in the 
coverage of the chemical space.

Conclusions

Using a carefully designed algorithm focused on valida-
tion and interpretability 3D-SDAR was able to successfully 
model diverse classes of primary and secondary aromatic 
amines. Experimental validation using 23 aromatic amines 
demonstrated predictive performance comparable to that of 

Fig. 6   Structural features associated with a decrease in the mutagenic potential of PAAs
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two widely used commercial systems developed by Lhasa 
Limited, namely Sarah Nexus and Derek Nexus.

The aggregated positively and negatively weighted 
3D-SDAR bins and their projection on the standard coordi-
nate space allowed the determination of structural features 
that either enhance or suppress the mutagenic potential of 
aromatic amines. Unlike most alternatives, 3D-SDAR was 
able to capture “true” negative contributions; i.e., functional 

groups or moieties whose presence actively reduces the 
overall mutagenic potential.

In compliance with the OECD requirements, our models 
were used to provide insights into the mechanisms by which 
the aromatic amines elicit their mutagenic effect. Observed 
structural trends in the data seem to confirm the postulated 
method of aromatic amines activation through conversion to 
their corresponding hydroxyl amines.

Fig. 7   Structural features associated with an increase in the mutagenic potential of SAAs
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