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Abstract
Human liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic 
metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain 
myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immor-
talized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. 
To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced 
miniaturized three-dimensional (3D) cell culture array (DataChip 2.0) and an advanced metabolizing enzyme microarray 
(MetaChip 2.0). The DataChip is a functionalized micropillar chip that supports the Hep3B human hepatoma cell line in a 
3D microarray format. The MetaChip is a microwell chip containing immobilized DMEs found in the human liver. As a proof 
of concept for generating compound metabolites in situ on the chip and rapidly assessing their toxicity, 22 model compounds 
were dispensed into the MetaChip and sandwiched with the DataChip. The IC50 values obtained from the chip platform 
were correlated with rat LD50 values, human Cmax values, and drug-induced liver injury categories to predict adverse drug 
reactions in vivo. As a result, the platform had 100% sensitivity, 86% specificity, and 93% overall predictivity at optimum 
cutoffs of IC50 and Cmax values. Therefore, the DataChip/MetaChip platform could be used as a high-throughput, early stage, 
microscale alternative to conventional in vitro multi-well plate platforms and provide a rapid and inexpensive assessment of 
metabolism-induced toxicity at early phases of drug development.

Keywords  Metabolism-induced hepatotoxicity · Three-dimensional (3D) cell culture array · Metabolizing enzyme 
microarray · DataChip/MetaChip · High-throughput toxicity screening

Introduction

Modern drug discovery is a multidisciplinary enterprise 
consisting of disease-based target identification and valida-
tion, and high-throughput screening of chemical and natural 
product libraries (Kennedy et al. 2008). This is followed by 
the careful optimization of selected lead compounds, in vitro 
and in vivo pharmacokinetics, toxicology and bioavailability 
testing, and finally, preclinical and clinical studies (Lee and 
Dordick 2006; Hughes et al. 2011). These new drug can-
didates can be eliminated at different stages of drug devel-
opment for many reasons, resulting in only 1 of 5000 lead 
candidates that pass the discovery process ever reaching the 
market. The total capitalized development cost per drug now 
approaches $2.6 billion, of which a large portion is attributa-
ble to drug candidate failures (DiMasi and Grabowski 2012).
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A wide range of emerging in vitro technologies have 
begun to impact the assessment of chemical and drug can-
didate toxicity in high-throughput with an aim to reduce the 
need for animal models (Shukla et al. 2010). While many of 
these technologies are still nascent, a roadmap toward ulti-
mate validation and industry adoption is becoming clearer. 
One area where such a roadmap is critically needed is in 
the confluence of chemical toxicity and human metabo-
lism. Recent advances in genomics and proteomics coupled 
with sequencing of the human genome have dramatically 
increased the number of drug targets and their lead com-
pounds (Schadt et al. 2009). Combinatorial and diversity-
oriented synthesis programs along with increased access to 
natural products and their structural scaffolds have provided 
vast numbers of compounds to screen for identifying lead 
candidates. Conventional models to elucidate drug toxic-
ity and human metabolism in vitro include isolated liver 
slices (Westra et al. 2016), primary hepatocytes (Hewitt 
et al. 2007), transformed hepatoma cell lines (Watanabe 
et  al. 2003), immortalized liver cells expressing P450s 
(Gustafsson et al. 2014), as well as human liver micro-
somes (HLMs) and isolated recombinant cytochrome P450 
(CYP450) isoforms (Brandon et al. 2003; Hariparsad et al. 
2006). Hepatocytes and liver slices most closely resemble 
the in vivo system, and cryopreserved primary hepatocytes 
have been extensively used for in vitro drug testing, and are 
considered as the gold standard for drug screening (Solda-
tow et al. 2013). Primary hepatocytes provide a complete 
set of drug-metabolizing enzymes (DMEs) and pathways, 
and therefore, offer an appropriate system to test for toxicity, 
metabolite production, and drug stability and partitioning 
(Bale et al. 2016). Nevertheless, primary hepatocytes are 
expensive and difficult to obtain in large quantity for high-
throughput toxicity screening (Soldatow et al. 2013). More 
problematic, these cells rapidly lose liver specific functions 
when maintained under standard in vitro cell culture condi-
tions and often variably express CYP450s and other metabo-
lizing enzymes over time (Gómez-Lechón et al. 2004). In 
addition, primary hepatocytes are not easy to pool due to 
varying expression levels of DMEs, which often result in 
significant experimental variability. Many modifications to 
conventional culture methods have been developed to foster 
retention of hepatocyte function. However, the current bio-
transformation functions of the liver are likely difficult to be 
mimicked at desired in vivo levels (Sivaraman et al. 2005; 
Hewitt et al. 2007; Huch et al. 2015).

While these problems represent a major gap in the devel-
opment of high-throughput in vitro techniques for concord-
ance between in vitro assays and in vivo responses, and 
consequently, there is a significant opportunity for new 
technologies to fill this gap. Complicating the difficulty of 
in vitro systems to mimic human metabolism and toxicity, 
predicting human responses in drug testing and disease 

research in vivo with animal tests have poor outcomes. For 
example, animal models have failed to reproduce human 
liver toxicity of troglitazone (Rezulin™), which was with-
drawn from the market because of CYP450-medicated hepa-
totoxicity in humans (Reddy et al. 2005; Masubuchi et al. 
2006). Mibefradil was also withdrawn due to hepatotoxicity, 
cardiovascular toxicity, and drug interactions via CYP450 
isoforms (Bui et al. 2008). Moreover, drug candidates that 
fail in clinical trials due to toxicity concerns, by definition, 
were not flagged by animal models as being potentially 
toxic. Thus, there remains a gap in our ability to identify 
toxic drug candidates before clinical testing.

To address these needs, we have developed the Data 
Analysis Toxicology Assay Chip (DataChip) and the 
Metabolizing Enzyme Toxicology Assay Chip (MetaChip) 
technologies that link metabolism and cell-based screening 
(Lee et al. 2005, 2008). However, the earlier version of the 
DataChip/MetaChip (i.e., the DataChip 1.0 and MetaChip 
1.0) used chemically functionalized microscope glass slides, 
which required direct contact between cell spots and metabo-
lizing enzyme spots through a liquid layer on sandwiched 
glass slides to transfer compounds and their metabolites to 
target cells. It had several technical limitations such as the 
difficulty of accurately aligning cell/enzyme spots on the 
glass slides and limited incubation times (typically 6 h). 
To overcome these technical issues, a plastic micropillar/
microwell chip platform (Lee et al. 2013, 2014a, b) was 
developed and used in the DataChip/MetaChip platform. 
By inserting a micropillar chip (DataChip) into a microwell 
chip (MetaChip), the new DataChip/MetaChip platform 2.0 
eliminates the spot alignment issue and provides sufficient 
growth media with compounds in the microwell for cell 
culture (typically 1–3 days). In addition, the composition 
of DME solutions on the MetaChip was changed from indi-
vidual DMEs to mixtures of DMEs to better mimic DME 
conditions in the liver. In this study, we report in vitro toxic-
ity data obtained for a set of 22 compounds and their in situ-
generated metabolites using the high-throughput DataChip/
MetaChip platform 2.0 and correlate the in vitro IC50 values 
from the chip with rat LD50 values as well as human Cmax 
values to better predict drug-induced liver injury (DILI) in 
humans.

Materials and methods

Preparation of the micropillar and microwell chip

A micropillar chip made of poly (styrene-co-maleic anhy-
dride) (PS-MA) contains 532 micropillars (0.75 mm pillar 
diameter and 1.5 mm pillar-to-pillar distance). In addition, 
a microwell chip made of co-polymer of polystyrene and 
polybutadiene has a complementary set of 532 microwells 
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(1.2 mm microwell diameter and 1.5 mm well-to-well dis-
tance). PS-MA provides a reactive functionality to cova-
lently attach poly-l-lysine (PLL) and, ultimately, alginate 
spots by ionic interactions. Plastic molding was performed 
by the SODIC PLUSTECH injection molder in Samsung 
Electro-Mechanics Company (SEMCO, Suwon, South 
Korea).

Human liver cell culture and preparation of cell 
suspension for spotting

Hep3B human hepatoma cell line [American Type Culture 
Collection (ATCC), Manassas, VA, USA] at passage num-
bers between 15 and 23 was grown in RPMI 1640 (Medi-
atech, Manassas, MA, USA) supplemented with 10% fetal 
bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA) 
and 1% Penicillin–Streptomycin (P/S, ThermoFisher Sci-
entific, Waltham, MA, USA) in T-75 cell culture flasks in 
a humidified 5% CO2 incubator (ThermoFisher Scientific) 
at 37 °C. Suspensions of Hep3B cells were prepared by 
trypsinizing a confluent layer of the cells from the culture 
flask with 0.6 mL of 0.05% trypsin-0.53 mM EDTA (Ther-
moFisher Scientific), and re-suspending the cells in 7 mL 
of 10% FBS-supplemented RPMI. After centrifugation at 
300×g for 4 min, the supernatant was removed and the cell 
pellets were re-suspended with 10% FBS-supplemented 
RPMI to a final concentration of 6 × 106 cells/mL.

2D cell viability assessment

For toxicity testing on Hep3B monolayers in 96-well plates 
(i.e., 2D culture), 5.0 × 103 cells were seeded with 200 µL 
RPMI media in each well and incubated in the CO2 incu-
bator. Following overnight pre-incubation, the cells were 
treated with test compounds at varying concentrations for 
72 h. After incubation, the cells were incubated with 50 µL 
of 2.5 mg/mL MTT solution in PBS for 3 h at 37 °C. Purple-
colored MTT-formazan crystals generated in metabolically 
active cells were measured by completely removing the 
MTT solution and adding 150 mL of DMSO. After shaking 
for 30 min at 150 rpm, absorbance was measured at 590 nm 
using a microtiter plate reader (Synergy H1, BioTek instru-
ments, VT, USA).

Preparation of a miniaturized 3D cell culture array 
(DataChip) on a micropillar chip

To attach cell spots on the micropillar chip, a mixture of 
poly-l-lysine (PLL, Sigma-Aldrich) and BaCl2 (Sigma-
Aldrich) was prepared by mixing an equal volume of 0.01% 
(w/v) PLL and 100 mM BaCl2. The DataChip was pre-
pared by spotting 60 nL/micropillar of the PLL/BaCl2 mix-
ture onto each of the 532 micropillars using a microarray 

spotter (S + MicroArrayer, Samsung ElectroMechanics, Co. 
(SEMCO)) and allowed to dry for 24 h. This was followed 
by printing 60 nL/micropillar of Hep3B cells suspended in 
0.75% (w/v) alginate on top of the dried PLL/BaCl2 spots. 
While printing Hep3B cells, the micropillar chip was placed 
on a chilling deck at 4 °C to retard evaporation of water in 
the spots. The suspension of Hep3B cells in low-viscosity 
alginate (Sigma-Aldrich) was prepared by mixing 500 µL of 
the Hep3B cell suspension in 10% FBS-supplemented RPMI 
(6 × 106 cells/mL), 250 µL of 3% alginate in distilled water, 
and 250 µL of RPMI so that the final concentration of the 
cells and alginate were 3 × 106 cells/mL and 0.75%, respec-
tively. After nearly instantaneous gelation, each Hep3B cell 
spot was immersed in 800 nL of RPMI growth medium in 
the complementary microwell by sandwiching the micro-
pillar chip with the cells (DataChip) and the microwell 
chip containing growth media together (“stamping”). The 
stamped chips placed in a gas-permeable incubation cham-
ber for 30 min to remove excess BaCl2 were then separated 
and the DataChip was re-stamped onto the microwell chip 
containing fresh growth media. Finally, the stamped chips 
were incubated in the CO2 incubator at 37 °C for 18 h prior 
to toxicity assessment.

Preparation of a miniaturized enzyme array 
(MetaChip) on a microwell chip

The MetaChip, a complementary array of encapsulated 
metabolizing enzymes that was designed to emulate the 
metabolic reactions in the human liver, was prepared on a 
microwell chip made of a co-polymer of polystyrene and 
polybutadiene. Fresh metabolizing enzyme solutions in 
Matrigel were prepared in a 96-well plate on ice (Table 1) 
and 120 nL of metabolizing enzyme mixtures in Matrigel 
were printed on the microwell chip laid on a chilling deck 
at 4 °C. The MetaChip was transversely divided into four 
regions (I–IV in Fig. 1c). Specifically, regions I–IV con-
tained no enzyme as a test compound only control, a mixture 
of human CYP450 isoforms (P450 Mix), a mixture of P450 
Mix and human Phase II metabolizing enzymes (All Mix), 
and human liver microsomes (HLM). Immediately after 
enzyme printing, the MetaChip was placed in a Petri dish (4 
MetaChips per 150 mm-diameter Petri dish) and stored in a 
− 80 °C freezer until use.

Stamping the DataChip onto the MetaChip with test 
compounds

Metabolism-induced toxicity assays were performed by 
printing compounds into the MetaChip and then stamping 
the DataChip onto the MetaChip. The compounds selected 
were acetaminophen (as a positive control), benzbromar-
one, fenoterol, flutamide, diclofenac, labetalol, imipramine, 
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phentolamine, risperidone, oxybendazole, sulindac, propran-
olol, promazine, trazodone, buspirone, carbidopa, bosentan, 
chlorpropamide, phenazopyridine, estradiol, mefenamic 
acid, and fluoxetine, all of which were water soluble at the 
highest dosages to avoid issues with precipitation over time 
and adsorption on the chip surfaces. Briefly, compound stock 
solutions were prepared by dissolving compounds in DMSO. 
Typically, higher than 100 mM of compound stock solu-
tions were required to maintain final DMSO content less 
than 0.5%. Approximately 40 µL of test compound solu-
tions were prepared in 200-fold higher concentrations than 
the desired final concentration (5 dosages plus 1 control) 
by serially diluting compound stock solutions in DMSO in 
a 384-well plate. As a control, 100% DMSO without com-
pound was used. After that, 300 µL of diluted test compound 
solutions in a round-bottom 96-well plate was prepared by 
mixing 1.5 µL of the diluted compounds in DMSO with 
298.5 µL of RPMI (typically 0–1000 µM of final concentra-
tions). Frozen MetaChips were removed from the freezer and 
immediately placed on the cold slide deck at 4 °C, and then 
720 nL of the test compound solutions in RPMI were printed 
into each well of the MetaChip using the microarray spotter. 
Six different compounds were printed in sections 1–6 of the 
MetaChip, each region containing a 12 × 6 mini-array. The 
stamped chips were placed, with the DataChip on top, in 
the gas-permeable chamber with 20 mL of sterile distilled 
water to prevent water evaporation during incubation, and 
then incubated for 24 h in the CO2 incubator at 37 °C for 
cytotoxicity assays. After 24 h incubation with compounds, 
the MetaChip was discarded, the DataChip was stamped 
onto the pre-warmed microwell chip with 800 nL/well of 

fresh RPMI, and then the stamped chips were incubated in 
the gas-permeable chamber in the CO2 incubator at 37 °C 
for additional 48 h.

Cell staining, chip scanning, and data analysis

At the end of the 48 h culture period post-MetaChip stamp-
ing, the DataChip was washed twice by immersing the 
micropillars with cell spots in a deep-well staining plate 
containing 5 mL of 140 mM NaCl with 20 mM CaCl2 for 
5 min each. CaCl2 was supplemented to prevent degradation 
of alginate spots by excess phosphate. A staining dye solu-
tion was prepared by adding 1.0 µL of calcein AM (4 mM 
stock from ThermoFisher Scientific) and 4.0 µL of ethidium 
homodimer-1 (2 mM stock from ThermoFisher Scientific) in 
8 mL of 140 mM NaCl supplemented with 20 mM CaCl2. To 
stain the cell spots, 2 mL of the dye solution was dispensed 
on a shallow-well staining plate and then the DataChip was 
placed on the top of the shallow-well staining plate, and 
incubated in the dark for 45 min at room temperature. The 
DataChip was then washed twice by immersing micropillars 
with cell spots in the deep-well staining plate containing 
5 mL of 140 mM NaCl with 20 mM CaCl2 for 15 min each 
to remove excess dye in the alginate spots. After drying the 
DataChip in dark for at least 2 h, the location of each cell 
spot where compounds added was detected by imaging the 
entire DataChip using a blue laser (488 nm) and a standard 
blue filter for green dye (PMT gain: 180 and power: 10) and 
a blue laser and a 645AF75/594 filter for red dye (PMT gain: 
200 and power: 10) in a GenePix® Professional 4200A scan-
ner (MDS Analytical Technologies). Due to the scanning 

Table 1   Composition of 
enzyme mixtures for preparing 
the MetaChip

Phase II mixture contained 12% UGT1A1 (5 mg/mL), 12% T1A3 (5 mg/mL), 12% UGT1A4 (5 mg/mL), 
12% UGT1A9 (5  mg/mL), 12% UGT2B4 (5  mg/mL), 12% UGT2B7 (5  mg/mL) from BD Gentest, 4% 
SULT1A1 (250 µg/50 µL), 4% SULT1A3 (250 µg/50 µL), 4% SULT1B1 (250 µg/50 µL) from Cypex, 6% 
GST (5 mg/200 µL) from Sigma, 5% NAT1 (2.5 mg/mL), and 5% NAT2 (2.5 mg/mL) from BD Gentest
a Baculosome® negative control was purchased from Invitrogen and used without dilution
b P450 Mix contained 52% 3A4 (1  µM), 20% 2D6 (1  µM), 8% 2C9 (1  µM), 5% 2E1 (1  µM), 4% 1A2 
(1 µM), 4% 3A5 (1 µM), 3% 2C8 (1 µM), 3% 2C19 (1 µM), and 1% 2B6 (1 µM), all from BD Gentest
c All Mix contained 50% P450 Mix and 50% Phase II enzyme mixture
d Human liver microsome (HLM) were purchased from BD biosciences and used without dilution
e Phase I cofactor solution (containing 24.8 mM NADP+, 52.8 mM glucose-6-phosphate, and 8 U/mL glu-
cose-6-phosphate dehydrogenase) was prepared by mixing 4  mL NADP regenerating system solution A 
and 1 mL solution B from BD biosciences
f All cofactor solution contained 50% Phase I cofactor and 50% Phase II cofactor. Phase II cofactor solution 
contained 50% UDP-GA (2 mL BD solution A + 3 mL BD solution B = 10 mM in 50 mM Tris–HCl buffer, 
pH 7.5), 20% GSH (100 mM in 20 mM PBS buffer, pH 8), 20% PAPS (25 mM in 20 mM PBS buffer, pH 
8), and 10% acetyl CoA (25 mM in 10 mM PBS buffer, pH 8)

Regions Enzymes Co-substrates Matrix

I 120 µL Baculosome®a 120 µL RPMI 80 µL Matrigel
II 120 µL P450 Mixb 120 µL Phase I cofactore 80 µL Matrigel
III 120 µL All Mixc 120 µL All cofactorf 80 µL Matrigel
IV 120 µL HLMd 120 µL All cofactor 80 µL Matrigel
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height difference of the micropillar chip from standard glass 
slides, the DataChip was scanned at focus position 120. Data 
files were saved as single images for analysis. The green flu-
orescence intensity was quantified from the scanned images 
using the S + Chip Analysis (SEMCO) program by extract-
ing fluorescent intensity from each cell spot and plotting 
the percentage of live cells against the concentration of the 
compound tested. We used a background subtraction of dead 
cells (cells immersed in 70% methanol for 1 h), which was 
negligible compared to the total fluorescence. The percent-
age of live cells was calculated using the following equation: 

where FReaction is the green fluorescence intensity of the 
reaction spot and FMax is the green fluorescence intensity of 
untreated viable cells. To produce a conventional sigmoidal 
dose–response curve, with response values normalized to 
span the range from 0 to 100% plotted against the logarithm 
of test concentration, the green fluorescence intensities of all 
cell spots were normalized with the fluorescence intensity of 
100% live cell spot (i.e., cell spots contacted with no com-
pound) and the test compound concentration was converted 
to their respective logarithms. The sigmoidal dose–response 
curves and IC50 values (concentration of the compound 
where 50% of cell growth inhibited) were obtained using 
the following equation: 

where IC50 is the midpoint of the curve, H is the hill 
slope, X is the logarithm of test concentration, and Y is the 
response (% live cells), starting at Bottom and going to Top 
with a sigmoid shape.

Toxicity prediction with sensitivity and specificity 
analysis

To assess the predictivity of metabolism-induced com-
pound toxicity, sensitivity and specificity were calculated 
using IC50 values from the DataChip/MetaChip platform, 
human Cmax values, and rat LD50 values determined by oral 
administration. Briefly, test compounds that exhibited an 
IC50 value less than or equal to an arbitrary IC50 cutoff at 
a given cell/enzyme condition were categorized as toxic. 
Similarly, test compounds that exhibited a human Cmax value 
or a rat LD50 value less than or equal to an arbitrary Cmax or 
LD50 cutoff were categorized as toxic. Based on the results 
of IC50, Cmax, and LD50 evaluation, the test compounds were 
classified into four categories: true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN). For 
example, when arbitrary cutoffs of LD50 of 300 mg/kg and 

% Live cells =
FReaction

FMax

× 100

Y = Bottom +

(

Top − Bottom

1 + 10(log IC50−X)×H

)

IC50 of 250 µM are used, TP, FP, TN, and FN are determined 
as follows:

•	 True positive (TP): LD50 ≤ 300  mg/kg (toxic) and 
IC50 ≤ 250 µM (toxic)

•	 False positive (FP): LD50 > 300 mg/kg (nontoxic) and 
IC50 ≤ 250 µM (toxic)

•	 True negative (TN): LD50 > 300 mg/kg (nontoxic) and 
IC50 > 250 µM (nontoxic)

•	 False negative (FN): LD50 ≤ 300  mg/kg (toxic) and 
IC50 > 250 µM (nontoxic)

The predictive performance of the DataChip/MetaChip 
technology from test compounds was assessed by calculating 
sensitivity and selectivity as follows:

•	 Sensitivity (%) = [Number of in vitro toxic test com-
pounds (TP)]/[Number of in vivo toxic test compounds 
(TP + FN)] × 100

•	 Specificity (%) = [Number of in vitro nontoxic test com-
pounds (TN)]/[Number of in vivo nontoxic test com-
pounds (TN + FP)] × 100

•	 Overall predictivity (%) = [sensitivity + specificity]/2

The arbitrary LD50 cutoffs were determined based on 
OECD categories for testing in vivo compound toxicity 
(OECD 2002). Since identifying optimum cutoffs for obtain-
ing high predictivity are paramount importance, we either 
varied both in vivo and in vitro cutoffs simultaneously (vari-
able cutoffs) or varied in vitro cutoffs at a fixed in vivo cut-
off (fixed cutoffs). For both variable and fixed cutoffs, the 
acceptance limit for both sensitivity and specificity was set 
for greater than 50%.

Results

Miniaturized 3D cell culture on the DataChip

The highly versatile DataChip/MetaChip platform is based 
on micropillar/microwell structures made by plastic injection 
molding, which is a robust and flexible system for mamma-
lian cell culture, enzymatic reactions, and compound screen-
ing (Fig. 1a, b). For 3D cell culture, small Hep3B cell spots 
were printed on the micropillar chip and strongly attached 
through robust surface chemistry, as in our previous studies 
(Lee et al. 2008). The maleic anhydride group in PS-MA 
was used to covalently attach PLL with amine groups, which 
led to the negatively charged alginate attaching to positively 
charged PLL by ionic interactions. BaCl2 was used for the 
gelation of the alginate matrix on the micropillar chip. After 
incubating the stamped DataChip onto the microwell chip 
with RPMI for 3 days, a unique 3D morphology of Hep3B 
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cells in 60 nL alginate spots was observed on the micropillar 
chip. The Hep3B cells in the spots were stained with calcein 
AM and ethidium homodimer for assessing live and dead 
cells and determining cell viability. Based on the calcula-
tion of the green fluorescence intensity from stained cell 
spots on the DataChip, the population of Hep3B cells on 
each micropillar was very uniform with a 14% coefficient of 
variability. To determine 3D cell growth quantitatively on 
the chip, changes in the green fluorescence of Hep3B cells 
at 3 million cells/mL seeding density (i.e., 180 Hep3B cells 
per 60 nL spot) were monitored over time. As evidenced 
by increase in green fluorescence over time, Hep3B cells in 
alginate spots grew linearly, forming unique 3D spheroids 
(Fig. 1d, e). The doubling time of Hep3B cells on the chip 
calculated from green fluorescence intensities measured was 
approximately 60 h. 3D-cultured Hep3B cells on the chip at 
the high seeding density grew approximately half as fast as 
in the 2D counterpart (32 h doubling time), presumably due 
to the nature of 3D cell culture and limited space available 
for cell growth within small alginate spots.

Metabolism‑induced toxicity assessment 
in combination with the DataChip and the MetaChip

To mimic human metabolism in high-throughput screen-
ing, the DataChip containing 3D-cultured hepatic cells was 
coupled with the MetaChip containing DMEs and model 
compounds to generate their metabolites in  situ on the 
chip and assess metabolism-induced toxicity of the com-
pounds in Hep3B cell spheroids. The Hep3B cells within 
12 × 6 mini-arrays were exposed to six different dosages of 
a compound and four different DME conditions, including 
no DME control, P450 Mix, All Mix, and HLM (Table 1). 
Thus, a single Data chip combined with a single MetaChip 

had the capability to generate 24 dose response curves for 6 
compounds and their metabolites from DMEs (Fig. 1c). To 
study metabolism-induced toxicity with model compounds, 
IC50 values were determined for a parent test compound and 
its enzyme-generated metabolites against Hep3B cells by 
staining the DataChip with a Live/Dead® cell viability kit. 
As demonstrated in Fig. 2a, cell death occurred when Hep3B 
cells were exposed to high concentrations of acetaminophen 
in the presence of P450 Mix. The dotted circles represent the 
boundary of the micropillars onto which Hep3B cell spots 
were encapsulated. Green dots indicate live cells, whereas 
dark-red dots represent dead cells. The activity of metaboliz-
ing enzymes on the frozen MetaChip was stable for at least 
6 months.

The fundamental question we wanted to address in this 
study was whether or not we could predict in vivo adverse 
drug responses on the chip platform. Acetaminophen (an 
analgesic and antipyretic drug) that is known to be hepa-
totoxic by CYP450 catalysis, and is a major cause of liver 
failure, was selected as a key model compound and included 
on each chip to monitor chip-to-chip and day-to-day variabil-
ity (Supplementary Table 1). As expected, acetaminophen 
demonstrated metabolism-induced toxicity on the chip, as 
evidenced by the toxic response of Hep3B cells when they 
were exposed to P450 Mix and All Mix. This result indicates 
that the DataChip/MetaChip platform could predict hepa-
totoxicity caused by active metabolites of acetaminophen 
(most likely N-acetyl-p-benzoquinone imine) (Andersson 
et al. 2011) produced by human liver CYP450 isoforms. 
The degree of cytotoxicity in the All Mix was less than that 
of P450 Mix, presumably due to Phase II DMEs included in 
All Mix, which could reduce toxicity of toxic metabolites 
generated in situ on the chip through conjugation reactions. 
Similar results were obtained from Hep3B cells exposed to 
acetaminophen and HLM (Supplementary Table 1). The 
degree of cytotoxicity in the HLM was less than that of All 
Mix, presumably due to larger amounts of Phase II DMEs 
included in HLM. HLM purchased from BD Biosciences 
contained approximately 5–10 times large amount of UDP-
glucuronosyltransferase (UGT) isoforms compared to All 
Mix, but did not contain sulfotransferase (SULT), glu-
tathione S-transferase (GST), and N-acetyltransferase (NAT) 
isoforms. Thus, All Mix is a better mimic of human liver.

To further validate the concept and calculate predictivity 
of in vivo hepatotoxicity, the 22 compounds were printed 
on the MetaChip in triplicate and tested under the four 
DME conditions. As a result, several compounds showed 
augmented toxicity or were detoxified by the DMEs. For 
example, carbidopa, which is used to manage the symp-
toms of Parkinson’s disease, was activated in P450 Mix and 
All Mix on the chip presumably due to formation of toxic 
metabolites (Fig. 2b). Eighteen compounds were found to 
be toxic against Hep3B cells on the chip, out of which nine 

Fig. 1   Schematics and photographs of the micropillar/microwell 
chip with cells and enzymes printed. a The structure of the micro-
pillar and microwell chip. The inset shows the scheme of each chip, 
including cells and drug-metabolizing enzymes (DMEs) printed. 
b Experimental procedures to prepare the DataChip/MetaChip for 
metabolism-induced toxicity assays. After cell printing on the micro-
pillar chip, the DataChip was sandwiched with the microwell chip 
containing growth media for 3D cell culture. For the MetaChip, 
DME mixtures and compounds were printed into the microwell chip 
sequentially. This was followed by the DataChip sandwiched with 
the MetaChip and incubated for cytotoxicity assays. c The layout 
of DMEs and compounds printed in the microwell chip to prepare 
the MetaChip and test metabolism-induced toxicity. Regions I–IV 
contained no enzyme as a test compound only control, a mixture of 
human cytochrome P450 isoforms (P450 Mix), a mixture of P450 
Mix and human Phase II metabolic enzymes (All Mix), and human 
liver microsomes (HLM), respectively. Regions 1–6 contained six 
different compounds in triplicate microwells. From left to right, the 
concentration of each compound was increased (6 concentrations 
per compound in each region). d Microscopic picture of Hep3B cell 
growth on the micropillar chip after 3 days. e The growth of Hep3B 
cells encapsulated in alginate spots on the DataChip over time

◂
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Fig. 2   The scanned images of Hep3B cells stained after compound 
treatment. a Images of Hep3B cells on the DataChip after exposure 
to the MetaChip containing P450 Mix and different concentrations 
of troglitazone (3–250 µM). Live cells are stained in green and dead 
cells are stained in red. b The scanned image of the DataChip with 
Hep3B cells after exposure to the MetaChip containing metabolic 
variance (no enzyme, P450 Mix, All Mix, and HLM) and compound 

variance (6 compounds at 6 different concentrations per compound). 
Representative dose response curves shown were obtained from car-
bidopa (Compound 5) and acetaminophen (Compound 6). Hep3B cell 
spots in the 24 distinct regions (each region containing a 3 × 6 mini-
array, triplicates with 6 varied concentrations) were exposed to vari-
ous combinations of compounds and DMEs. (Color figure online)
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compounds showed statistically significant, augmented tox-
icity in the P450 Mix, indicating that toxic metabolites could 
be generated on the chip by CYP450 isoforms. Two com-
pounds (carbidopa and oxybendazole) showed augmented 
toxicity in All Mix compared to their parent compounds. In 
addition, in situ, on-chip metabolism of flutamide, sulindac, 
and mefenamic acid led to statistically less toxicity in the 
All Mix vs. the respective parent compounds (Table 2). The 
cytotoxicity profiles under varying DME conditions on the 
chip were well correlated with representative toxic metabo-
lites of the compounds generated.

Prediction of hepatotoxicity in vivo by comparing 
rat LD50 and IC50 values from the chip

A common way to predict in vivo toxicity using in vitro data 
is to compare LD50 values with IC50 values at arbitrary cut-
offs and determine the number of compounds that can be 

classified into TP, FP, TN, and FN. Thus, we calculated sen-
sitivity and specificity to assess in vivo metabolism-induced 
hepatotoxicity by comparing rat oral LD50 values with IC50 
values from the DataChip/MetaChip. We initially tested a 
range of cutoffs to identify an optimum cutoff that can pro-
vide high sensitivity and specificity from the chip (Supple-
mentary Fig. 1), thus providing high predictivity of in vivo 
hepatotoxicity from the IC50 values. The acceptance level 
of sensitivity and specificity was set for greater than 50%.

As a result, we were able to obtain a good in  vivo 
LD50-in vitro IC50 correlation at cutoffs of LD50 of 300 mg/
kg and IC50 of 250–450 µM depending on DME conditions 
tested. Among all DME conditions tested, including no 
enzyme control in 2D and 3D-cultured Hep3B cells, P450 
Mix in 3D, All Mix in 3D and HLM in 3D (Fig. 3), All 
Mix in 3D appeared to be a better predictor of rat in vivo 
acute toxicity with 60% sensitivity and 60% specificity 
(60% overall predictivity). This outcome is likely due to 

Table 2   Summary of IC50 values obtained from 3D Hep3B cells on the DataChip/MetaChip and 2D Hep3B cell monolayers in 96-well plates

Compounds DILI category 2D cultured 
Hep3B cells 
in 96-well 
plates

3D cultured Hep3B cells on the Data/MetaChip 1000 × Human 
Cmax (µM)

Tox prediction 
(All Mix vs. 
DILI)Highest 

dosage 
used

Enzyme condition used

IC50 (µM) (µM) No Enzyme P450 Mix All Mix HLM

Acetami-
nophen

P1 300 ± 0 1200 1200 ± 0 68 ± 30 1010 ± 160 1200 ± 0 138,900 TP

Benzbromar-
one

P1 58 ± 22 1200 260 ± 80 170 ± 50 330 ± 70 370 ± 20 4300 TP

Fenoterol P2 300 ± 0 1200 1200 ± 0 290 ± 140 1200 ± 0 1200 ± 0 0.6 FN
Flutamide P2 45 ± 18 1200 190 ± 10 200 ± 20 270 ± 10 200 ± 10 360 TP
Diclofenac P2 120 ± 51 1200 780 ± 190 520 ± 100 790 ± 140 860 ± 100 7990 TP
Labetalol P2 150 ± 34 1200 370 ± 40 200 ± 10 360 ± 70 310 ± 50 2680 TP
Imipramine P2 5 ± 2 1200 1200 ± 0 1200 ± 0 1200 ± 0 1200 ± 0 87 FN
Phentolamine P2 48 ± 9 1200 310 ± 50 300 ± 40 380 ± 30 360 ± 30 85 TP
Risperidone P2 270 ± 60 100 100 ± 0 84 ± 7 100 ± 0 100 ± 0 80 FN
Oxybendazole O1 24 ± 18 100 71 ± 20 37 ± 10 41 ± 10 88 ± 20 30 TP
Sulindac P2 300 ± 0 1200 460 ± 90 170 ± 70 1100 ± 160 840 ± 160 31,900 TP
Propranolol N1 56 ± 11 1200 470 ± 40 3 ± 0.3 530 ± 70 500 ± 50 200 TN
Promazine N3 21 ± 3 1200 1200 ± 0 1200 ± 0 1200 ± 0 1200 ± 0 490 TN
Trazodone P2 110 ± 26 400 400 ± 0 250 ± 60 400 ± 0 400 ± 0 5050 FN
Buspirone N1 170 ± 74 400 400 ± 0 400 ± 0 400 ± 0 400 ± 0 4.9 TN
Carbidopa N1 46 ± 28 400 370 ± 30 41 ± 3 65 ± 10 400 ± 0 660 FP
Bosentan P1 55 ± 20 1200 180 ± 30 120 ± 30 230 ± 50 250 ± 40 7430 TP
Chlorpropa-

mide
P2 300 ± 0 1200 1200 ± 0 980 ± 370 1200 ± 0 1200 ± 0 122,800 FN

Phenazopyri-
dine

P2 55 ± 13 800 800 ± 0 350 ± 120 800 ± 0 800 ± 0 124 FN

Estradiol N3 53 ± 20 1200 1200 ± 0 1200 ± 0 1200 ± 0 1200 ± 0 0.1 TN
Mefenamic 

acid
P2 260 ± 74 1200 450 ± 20 320 ± 40 770 ± 120 900 ± 140 26,900 TP

Fluoxetine N3 13 ± 0.3 1200 98 ± 10 89 ± 30 100 ± 10 130 ± 30 97 TN
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the presence of both Phase I and II DMEs in the All Mix, 
and hence, being more representative of the in vivo situa-
tion. Thus, our approach could be applied to predict human 
acute toxic potential of drug candidates in the liver. Inter-
estingly, the standard in vitro toxicity assessment in 2D 
without DMEs gave noticeably relatively poor predictivity. 
In addition, no enzyme control in 3D-cultured Hep3B cells 
on the chip at cutoffs of LD50 of 300 mg/kg and IC50 of 
450 µM could produce 60% sensitivity and 53% specific-
ity, which indicate that 3D cell culture is superior to 2D 
cell culture in terms of predicting in vivo hepatotoxicity 
(Fig. 3a, b). Overall, comparing in vivo LD50 values with 
in vitro IC50 values from the chip led to as high as 60% 
predictivity, which suggests that our DataChip/MetaChip 
platform could predict in  vivo rat hepatotoxicity. Of 
course, these were mixed species correlations involving 
human DMEs and a transformed cell line in comparison 
with rat LD50 literature. To achieve greater human predic-
tivity, human in vivo information is needed.

Prediction of hepatotoxicity in vivo by comparing 
human Cmax and IC50 values from the chip

We proceeded to evaluate a human pharmacokinetic end-
point to address the discrepancy between animals and 
humans in terms of toxicity evaluation. To this end, we used 
in vivo human Cmax values, which represent the maximum 
allowable concentration of a drug in serum. Cmax values can 
be considered an indirect indicator of drug toxicity, as the 
concentration above Cmax could cause harmful side effects 
in the body (Jang et al. 2001). Since Cmax values are much 
lower than IC50 values, in general, we compared 10-, 100-, 
and 1000-fold human Cmax values to IC50 values determined 
using the chip platform to calculate specificity and sensitiv-
ity. Overall, use of the 1000-fold human Cmax values resulted 
in higher predictivity compared to use of 10- and 100-fold 
counterparts (Supplementary Fig.  2). Interestingly, the 
1000-fold human Cmax and LD50 comparison generated only 
50% sensitivity and 65% specificity at 150 variable cutoffs 
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Fig. 3   Calculation of sensitivity and specificity using LD50 values at 
300 mg/kg cutoff and IC50 values at variable cutoffs: LD50 compared 
with a IC50 from 2D-cultured Hep3B cells in the 96-well plate, b IC50 
from 3D-cultured Hep3B cells without enzymes on the chip, c IC50 
from 3D Hep3B cells with P450 Mix, d IC50 from 3D Hep3B cells 
with All Mix, and e IC50 from 3D Hep3B cells with HLM. To cal-

culate sensitivity, specificity, and overall predictivity, LD50 and IC50 
values were compared at different cutoffs, and then TP, FP, TN, and 
FN were determined. The red dashed line represents 50% acceptance 
limit for sensitivity, specificity, and overall predictivity, and all of 
which have to be above the line to be acceptable. (Color figure online)
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(Fig. 4a). Not surprisingly, this result indicates that there is a 
poor correlation between rat in vivo data and human in vivo 
data. To better understand this outcome and identify opti-
mum cutoffs for in vivo animal and human correlations, we 
calculated sensitivity and specificity in detail at fixed cutoffs. 
The highest predictivity (67% sensitivity and 68% specific-
ity) was obtained at 150 µM cutoff for 1000-fold human 
Cmax and 200 mg/kg cutoff for rat LD50, which is still lower 
than the predictivity obtained from the chip platform (Sup-
plementary Fig. 3). As opposed to relatively poor animal 
predictivity, and the poor correlation of in vitro 2D results 
(Fig. 4a, b), our chip data outperformed in terms of toxicity 
prediction under control, P450 Mix, All Mix, and HLM con-
ditions (Fig. 4c–f). In particular, the 1000-fold human Cmax 
and All Mix IC50 comparison generated remarkable 100% 
sensitivity and 86% specificity at 50 variable cutoffs (93% 
overall predictivity). These results indicate that combining 
3D hepatic cell culture with drug metabolism on the chip 
platform could provide better predictivity of hepatotoxicity 
in vivo as compared to animal and in vitro 2D counterparts. 

Overall, maximum predictivity achieved at optimum cut-
offs by comparing LD50 and IC50 values with 10, 100, and 
1000-fold human Cmax values is summarized in Fig. 5. As 
indicated in Fig. 5, the highest sensitivity and specificity 
was obtained from All Mix compared with 1000-fold human 
Cmax values. This outcome implies once again that All Mix 
containing both Phase I and II DMEs could be a better indi-
cator for predicting hepatotoxicity in vivo. The All Mix was 
better than the P450 Mix, thereby showing the importance 
of a full complement of DMEs in predicting hepatotoxicity 
in vivo. Indeed, the P450 Mix was worse than the no enzyme 
control.

Prediction of hepatotoxicity in vivo by comparing 
drug‑induced liver injury (DILI) index and IC50 values 
from the chip

The test compounds have been previously categorized 
according to their ability to cause drug-induced liver injury 
(DILI) in humans (Xu et al. 2008). For example, our test 
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Fig. 4   Calculation of sensitivity and specificity using 1000-fold 
human Cmax values at variable cutoffs and LD50 and IC50 values at 
variable cutoffs: 1000-Fold Cmax compared with a rat LD50, b IC50 
from 2D-cultured Hep3B cells, c IC50 from 3D-cultured Hep3B cells 
without enzymes, d IC50 from 3D Hep3B cells with P450 Mix, e IC50 

from 3D Hep3B cells with All Mix, and f IC50 from 3D Hep3B cells 
with HLM. To calculate sensitivity, specificity, and overall predictiv-
ity, 1000-fold human Cmax values were compared with LD50 and IC50 
values at different cutoffs, and then TP, FP, TN, and FN were deter-
mined
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compounds fell into one of seven DILI categories: (a) P1 
if it is associated with DILI in either animals or humans 
in a dose-dependent manner, (b) P2 if it is associated with 
idiosyncratic DILI, (c) O1 if it is hepatotoxic in animals, 
but untested in humans, (d) O2 if it causes elevated liver 
enzymes in humans, but generally safe, (e) N3 if it causes 
sporadic cases of DILI, but generally safe, (f) N2 if it is 
unknown to cause DILI but known to cause other organ 
injury, and (g) N1 if it is not known to cause DILI (Table 3). 
In general, compounds in P1, P2, and O1 categories are con-
sidered as hepatotoxic, and a compound O2, N1, N2, and N3 
categories is considered as minimally or none hepatotoxic.

To predict DILI from the in vitro chip data, 1000-fold 
Cmax values were used as a threshold to differentiate com-
pounds causing DILI from compounds not causing DILI 
(non-DILI). We hypothesized that compounds potentially 
causing DILI would be due to toxicity from the parent 
compounds or their metabolites. In addition, the highest 

predictivity would be obtained from All Mix. Thus, we 
defined a DILI-causing compound if it has an IC50 value 
from All Mix < 1000-fold Cmax. On the other hand, a com-
pound that has an IC50 value from All Mix ≥ 1000-fold 
Cmax was considered as not causative of DILI. Finally, TP, 
FP, TN, and FN were determined by comparing DILI/non-
DILI outcomes from the chip with a compound’s DILI 
category. For example, if a DILI-causing compound from 
the chip is in one of the P1, P2, and O1 categories, then it 
is a TP compound. Similarly, if a compound that does not 
cause DILI from the chip is in one of the P1, P2, and O1 
categories, then it is a FN compound. The sensitivity of 
the DataChip/MetaChip platform was defined as the ability 
of the chip platform to predict the P1, P2, and O1 com-
pounds as hepatotoxic [i.e., TP/(TP + FN)]. The specificity 
of the chip platform was defined as the ability to predict 
O2, N1, N2, and N3 compounds as nontoxic for DILI [i.e., 
TN/(TN + FP)].

Fig. 5   Maximum predictivity achieved using 10, 100, and 1000-
fold human Cmax with LD50 and IC50 values: Cmax compared with a 
rat LD50, b IC50 from 2D-cultured Hep3B cells (2D IC50—Control), 
c IC50 from 3D-cultured Hep3B cells without enzymes on the chip 
(3D IC50—Control), d IC50 from 3D Hep3B cells with P450 Mix 

(3D IC50—P450 Mix), e IC50 from 3D Hep3B cells with All Mix 
(3D IC50—All Mix), and f IC50 from 3D Hep3B cells with HLM (3D 
IC50—HLM). Color coding of bars indicate as follows: white—sensi-
tivity, light gray—specificity, and black—overall predictivity
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Out of the 16 P1, P2, and O1 compounds tested, the Data-
Chip/MetaChip platform could predict the DILI potential of 
ten compounds in the All Mix system. The sensitivity of the 
chip platform under the All Mix system was 63%. Out of the 
six N1 and N3 compounds tested, the DataChip/MetaChip 
could predict five compounds in All Mix that were not hepa-
totoxic. Thus, the specificity of the chip platform under the 
All Mix system was 83% (Table 2). Our overall predictivity 
from DILI index was 73%. The outcome was further com-
pared with overall predictivity from 10-fold and 100-fold 
Cmax values compared with All Mix IC50 values as well as 
1000-fold Cmax values compared with 2D counterpart IC50 
values (Fig. 6). Interestingly, predictivity calculated with 
DILI categories and 1000-fold human Cmax values in All 
Mix was much higher than other counterparts including 

10-fold, 100-fold human Cmax in All Mix, as well as 1000-
fold human Cmax with 2D Hep3B cells.

Discussion

Existing in vitro screening technologies for assessing drug 
metabolism and toxicology lack the ability to provide infor-
mation on highly predictive metabolism-induced drug tox-
icity and the necessary throughput for early stage go/no-go 
decision for lead compounds, and therefore, do not address 
a critical bottleneck in the drug development process. The 
goal of this study was to understand whether the new Data-
Chip/MetaChip platform could be used to screen metabo-
lism-induced compound toxicity by correlating our in vitro 
chip data with known toxicity profiles of test compounds.

There may be several reasons for poor predictivity of 
adverse drug reactions (ADRs) in humans using current 
in vitro assays as well as in vivo animal models. First, current 
in vitro cell models, including 2D hepatoma cell monolayers 
and sandwiched hepatocytes, may not adequately represent 
at human liver tissue, thus lacking accurate biochemical and 
cellular responses in vivo. Several hepatic cell models lack 
key hepatic properties, including metabolism competence, 
drug transporters, and cell–cell interactions between hepat-
ocytes and immune cells. Second, current in vitro assays 
may not provide proper biological circumstances necessary 
to predict toxicological reactions. For example, defensive 
pathways such as nuclear factor erythroid 2-related factor 
2 (Nrf-2) and nuclear factor-kappa B (NF-kB) can affect 
the toxic response depending on their levels of activation 
(Osburn and Kensler 2008; Tak and Firestein 2001). Third, 
current in vitro assays may not give sufficient information on 
surrounding cell types, proteins affected by metabolism, and 
toxicological pathways. Fourth, the number of potentially 
hepatotoxic compounds identified from individual assays 
may not be sufficient to capture the broad array of mecha-
nisms leading to in vivo toxicity. In the case of animal mod-
els, there are significant cross-species differences between 

Table 3   Drug-induced liver injury (DILI) categories sorted by hepatotoxicity levels

Group Category Description

Hepatotoxic P1 Associated with drug-induced liver injury, type 1 (hepatotoxic in animals and/or humans in a dose-dependent man-
ner)

O1 Hepatotoxic in animals, untested in humans
P2 Associated with drug-induced liver injury, type 2 (hepatotoxic in animals and/or humans in a dose-independent 

manner, generally regarded as idiosyncratic hepatotoxicity)
Minimally or 

not hepato-
toxic

O2 Elevated liver enzymes in humans, but generally regarded as safe
N3 Sporadic cases of liver injury in humans, but generally safe
N2 Not known to cause liver injury, but known to cause other organ injury
N1 Not known to cause liver injury

Fig. 6   Predictivity calculated by comparing IC50 values from 3D 
Hep3B cells-All Mix with human Cmax values and then determining 
TP, FP, TN, and FN by further comparing with DILI categories: a 
10-fold Cmax, b 100-fold Cmax, and c 1000-fold Cmax compared with 
IC50 from 3D Hep3B cells-All Mix. d 1000-fold Cmax compared with 
IC50 from 2D Hep3B cells. To calculate sensitivity, specificity, and 
overall predictivity, first, human Cmax values were compared with 
IC50 values from 3D Hep3B cells-All Mix to determine temporary 
toxicity prediction of the compound. This toxicity prediction was 
further compared with DILI categories to determine TP, FP, TN, and 
FN. For example, when the prediction from human Cmax and IC50 is 
toxic and the compound is classified as hepatoxic by DILI categories, 
then the prediction of the compound is true positive (TP). After deter-
mining TP, TN, FP, and FN for all compounds, sensitivity, specificity, 
and overall predictivity were calculated accordingly
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animals and humans (Shanks et al. 2009). Thus, predicting 
human toxicity with study outcomes from rats, mice, and 
rabbits is challenging in general.

To address these issues, there have been several in silico 
approaches developed in recent years to predict human toxic-
ity directly from in vitro toxicity data. One of good examples 
of in silico approaches is the in vitro–in vivo correlation 
(IVIVC) model, which is provided by the U.S. Food and 
Drug Administration (FDA) with diverse formulations and 
guidelines for predicting in vitro and in vivo pharmaceuti-
cal correlations. It has been used as a surrogate to reduce 
bioavailability studies of new drugs (Emami 2006; Sakore 
and Chakraborty 2011). Several research groups reported 
IVIVC results using a correlation between bioavailability 
variables and in vitro data (Emara et al. 2000; Mahayni et al. 
2000; Balan et al. 2001). Another pioneering approach is the 
in vitro–in vivo extrapolation (IVIVE) model, which refers 
to computational simulation to predict in vivo pharmacoki-
netics (PK) data such as Cmax values from in vitro experi-
mental data such as IC50 values (Yoon et al. 2015; Yoon and 
Clewell 2016). For example, Johnson et al. used IC50 values 
from 11 drugs to calculate the predictivity of in vivo clear-
ance in neonates, infants, and children (Johnson et al. 2006). 
In addition, US Environmental Protection Agency (EPA) 
applied the IVIVE model to grapple with potential human 
toxicity of environmental toxicants such as risk assessment 
of ToxCast chemicals in early age children (Wetmore et al. 
2014). Since both IVIVC and IVIVE models require more 
predictive in vitro data to better predict in vivo outcomes, 
there have several attempts made to incorporate metabolism 
competence in their in vitro assays and consider metabolic 
stability and metabolism-induced toxicity of drugs (Yoon 
et al. 2015; Yoon and Clewell 2016). The biotransformation 
of drugs can produce metabolites that have different toxicity 
profiles from their parent compounds (Combes et al. 2002). 
In particular, CYP450 reactions can generate metabolites 
that are more reactive and can induce toxicity through a 
variety of mechanisms (e.g., covalent binding to macromol-
ecules or contributing to oxidative damage) (Costas 2008). 
Differences in individual responses to compounds are com-
mon among the human population and can be attributed to 
genetic variations that limit the expression or activity of cer-
tain DMEs (Astrid et al. 2007). Thus, determining which 
enzymes activate or deactivate a compound is essential to 
understand population variances in drug and drug candidate 
toxicity.

In recognition of these issues, we developed the new 
DataChip/MetaChip platform to incorporate 3D hepatic 
cell culture as well as metabolism competence with an array 
of DMEs, which in turn can decipher metabolism-induced 
compound toxicity. In our results, the DataChip/MetaChip 
identified 18 compounds whose reactions with Phase I and II 
DMEs resulted in IC50 values significantly lower than that of 

the parent compounds, indicating that these compounds were 
directly metabolized and activated by the Phase I and/or II 
DMEs on the chip. In addition, 11 compounds were detoxi-
fied by Phase II DMEs. For example, metabolism of sulindac 
resulted in increased IC50 in the All Mix relative to that 
with the No Enzyme control and P450 Mix, suggesting that 
this compound was transformed by Phase II DMEs. Similar 
results were obtained from compounds exposed to HLMs. 
By simply comparing human Cmax values and All Mix IC50 
values from the chip at different cutoffs, we achieved 100% 
sensitivity, 86% specificity, and 93% overall predictivity. 
This outcome implies that our DataChip/MetaChip platform 
could provide high predictivity of human hepatotoxicity as 
compared to animal and in vitro 2D counterparts. In addi-
tion, our in vitro chip data might be used in IVIVC and 
IVIVE models to provide more predictive information on 
metabolism competence. In summary, the chip technology 
could be used at early stages of drug development, not to 
predict the extent and nature of all possible in vivo toxic 
effects, but rather to estimate the risk of failure if a new lead 
compound is transformed into metabolites that can be toxic 
to cells and potentially to humans.

Conclusions

Drugs react and form metabolites in the body via various 
metabolic pathways. Metabolites formed from Phase I and II 
DME reactions can cause ADRs, which may not be detected 
easily in animal models due difference in genetic makeups 
between animals and humans. Predictivity of in vivo hepato-
toxicity of 22 test compounds obtained from the DataChip/
MetaChip containing 3D-cultured Hep3B cells and Phase 
I and II DMEs demonstrated that the chip platform could 
provide a better correlation with in vivo human Cmax values 
compared to in vivo rat LD50 data. This result is presumably 
due to the in situ generation of compound metabolites on 
the MetaChip for more accurate assessment of metabolism-
induced toxicity and the 3D culture environment on the 
DataChip that may better mimic the tissue architecture and 
enhance functionality of the hepatic cells. The DataChip/
MetaChip platform could ultimately be tailored to accom-
modate an individual’s DME inventory and be used in con-
junction with various high-content imaging assays to provide 
specific mechanisms of metabolic toxicity profiles in differ-
ent populations of individuals as a component of broader 
precision medicine. With more in vitro IC50 data from the 
chip platform for further validation, the DataChip/MetaChip 
platform could represent a promising, high-throughput 
microscale alternative to conventional in vitro multi-well 
plate platforms and may create new opportunities for rapid 
and inexpensive assessment of human toxicology at very 
early phases of drug development.
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