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differences in activity; at distances of up to about 5.5  Å, 
a phospholipidotic compound would also inhibit hERG, 
while at longer distances, a sharp reduction of the PLD-
inducing potential leaves only a well-pronounced hERG 
blocking effect. The hERG activity itself diminishes after 
the distance between the centroids of the two aromatic 
rings exceeds 12.5 Å. Further comparison of the two toxi-
cophores revealed that the almost identical aromatic rings 
to amino group distances play no significant role in dis-
tinguishing between PLD and hERG activity. The hypoth-
esis that the PLD toxicophore appears to be a subset of the 
hERG toxicophore explains why about 80% of all phos-
pholipidotic chemicals (the remaining 20% are thought to 
act via a different mechanism) also inhibit the hERG ion 
channel. These models were further validated in large-scale 
qHTS assays testing 1085 chemicals for their PLD-induc-
ing potential and 1570 compounds for hERG inhibition. 
After removal of the modeling and experimental incon-
clusive compounds, the area under the receiver-operating 
characteristic (ROC) curve was 0.92 for the PLD model 
and 0.87 for the hERG model. Due to the exceptional abil-
ity of these models to recognize safe compounds (negative 
predictive values of 0.99 for PLD and 0.94 for hERG were 
achieved), their use in regulatory settings might be particu-
larly useful.

Keywords  Human Ether-à-go-go related gene · 
Phospholipidosis · 3D-SDAR · Toxicophore · Molecular 
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Introduction

Both drug-induced phospholipidosis (PLD) and human 
Ether-á-go-go related gene (hERG) potassium channel 

Abstract  Recent reports have noted that a number of com-
pounds that block the human Ether-à-go-go related gene 
(hERG) ion channel also induce phospholipidosis (PLD). 
To explore a hypothesis explaining why most PLD inducers 
are also hERG inhibitors, a modeling approach was under-
taken with data sets comprised of 4096 compounds assayed 
for hERG inhibition and 5490 compounds assayed for 
PLD induction. To eliminate the chemical domain effect, 
a filtered data set of 567 compounds tested in quantitative 
high-throughput screening (qHTS) format for both hERG 
inhibition and PLD induction was constructed. Partial least 
squares (PLS) modeling followed by 3D-SDAR mapping 
of the most frequently occurring bins and projection on to 
the chemical structure suggested that both adverse effects 
are driven by similar structural features, namely two aro-
matic rings and an amino group forming a three-center 
toxicophore. Non-parametric U-tests performed on the 
original 3D-SDAR bins indicated that the distance between 
the two aromatic rings is the main factor determining the 
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blocking are undesired side effects of drugs. While it is still 
unclear if the phospholipidosis causes any adverse health 
effects on humans (Reasor and Kacew 2001), blocking 
of the hERG channel has been associated with prolonged 
QT intervals, which may further degenerate to Torsades 
de pointes and in severe cases to sudden cardiac death 
(Witchel 2011). PLD induction, hERG blocking, and the 
link between PLD and hERG (Sun et  al. 2013) are still a 
major concern to the pharmaceutical industry during the 
preclinical testing phase of drug candidates. The increased 
interest towards these two adverse events has led to numer-
ous efforts to model the PLD-inducing and hERG blocking 
potentials of chemicals. Including our own (Stoyanova-Sla-
vova et al. 2017), more than 70 models of hERG blocking 
(Villoutreix and Taboureau 2015) have been published to 
date. Unlike hERG, most PLD models (Bauch et al. 2015) 
were published after 2008 when a large curated phospho-
lipidosis database compiled at FDA became publicly avail-
able (Kruhlak et al. 2008).

Despite the substantial amount of PLD and hERG mod-
els reported in the literature, only a few attempts to associ-
ate the spatial configuration of specific substructural units 
with activity (Cavalli et al. 2002; Goracci et al. 2015; Sla-
vov et al. 2014; Stoyanova-Slavova et al. 2017) have been 
published. Among these, our earlier work on hERG (Stoy-
anova-Slavova et al. 2017) was the first one to emphasize 
the similarity between the hERG and PLD toxicophores. In 
both cases, three-center toxicophores composed of two aro-
matic rings and an amino group were found to be present 
in the structures of most phospholipidotic and hERG inhib-
iting drugs. Furthermore, we hypothesized that the gross-
similarity between the two toxicophores is responsible for 
the fact that many hERG channel blockers are also PLD 
inducers (Sun et  al. 2013). Our models indicated that the 
distance between the two aromatic rings in the molecules 
of phospholipidotic compounds varies in a narrow range, 
between 4 and 5 Å; in the structures of hERG blockers, this 
distance spans a much wider range from about 4.5–11.5 Å. 
In both cases, the aromatic ring-to-amino-group dis-
tances were found to be approximately the same, and thus 
unlikely to play a role in distinguishing between hERG and 
PLD active compounds. As a result of these observations, 
we put forward a hypothesis that the distance between the 
two aromatic rings is the defining factor for the activity 
mode—at shorter distances, a phospholipidotic compound 
would also inhibit the hERG ion channel, while at longer 
distances, a sharp reduction of the PLD-inducing potential 
would leave only a well-pronounced hERG blocking effect. 
The Venn diagram reported by Sun et  al. (2013) appears 
to be in agreement with such a conjecture, indicating that 
about 80% of all PLD inducers would also block hERG, 
a likely consequence of the fact that the PLD toxicophore 
appears to be a subset of the hERG toxicophore. However, 

since the PLD and hERG data sets used to derive the above 
hypothesis did not cover identical chemical domains (only 
alosetron, clozapine, haloperidol, and thioridazine were 
common to both), it is unclear whether such an interpreta-
tion reflects the “true” nature of the underlying biochemical 
phenomena or is a mere statistical artifact, a function of the 
structural diversity and dissimilarity between the two data 
sets.

To further elucidate the role of the spatial configuration 
of the toxicophore centers, a set of compounds tested for 
both their PLD-inducing and hERG blocking potentials 
was compiled—the uniformity of this data set allowed 
exploration of the underlying structural factors by cancel-
ling out the effects caused by differences in the covered 
chemical domains. In addition to the above-defined goal, 
this work intended to achieve the following:

1.	 develop reliable, OECD compliant models for predic-
tion of phospholipidosis induction and hERG inhibi-
tion;

2.	 derive toxicophores, whose presence is associated with 
PLD and/or hERG activity;

3.	 determine how the PLD and hERG activity depends on 
the toxicophores’ geometry;

4.	 test the validity of our earlier hypothesis that the dis-
tance between the two aromatic rings determines the 
difference in biological activity;

5.	 validate experimentally and compare the predictive 
performance of both models.

Data set

HERG and PLD assays in a qHTS format

A slightly modified version of the qHTS assay using 
human U-2 OS (osteosarcoma) transduced cells (Titus 
et al. 2009) was used to evaluate the hERG inhibition of a 
total of 4095 chemicals (Sun et al. 2013). After culturing in 
Dulbecco’s Modified Eagle Medium (Invitrogen, Carlsbad, 
CA, USA) with Glutamax containing 10% fetal bovine 
serum (HyClone, Logan, UT, USA), 1% of Non-Essential 
Amino Acids (Invitrogen), and 50 U/mL penicillin/50 μg/
mL streptomycin (Invitrogen), the U-2 OS cells were 
transduced using a BacMan-hERG construct (Montana 
Molecular, Bozeman, MT, USA) and subjected to a thal-
lium influx assay (Xia et al. 2011). Data analysis performed 
as previously described by Titus et al. (2009) followed by 
classification based on the type of the observed concen-
tration–response curves (Wang et  al. 2010) assigned each 
compound to one of the following three categories: active, 
inactive, or inconclusive.
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A qHTS assay described by Shahane et al. (2014) meas-
uring the fluorescence intensity of LipidTOX red dye 
(Molecular Probes, H34351) labeled phospholipid accu-
mulations in Human HepG2 (Hepatocellular carcinoma) 
cells (ATCC, Manassas, VA, USA) was used to quantify the 
PLD-inducing potential of 5490 chemicals. Amiodarone, a 
well-known PLD inducer, and DMSO were used as positive 
and negative controls, respectively. The fluorescence inten-
sities (595  nm excitation, 615  nm emission for LipidTox 
red) were measured using an ImageXpress Micro Widefield 
High Content Screening System (Molecular Devices, Sun-
nyvale, CA, USA) with a 20X Plan Fluor objective. Data 
analysis was performed as previously described by Wang 
and Huang (2016). The same three categories (active, inac-
tive, or inconclusive) were defined.

Data set design

Among the 4095 chemicals assayed for their hERG inhibi-
tion and 5490 chemicals tested for their phospholipidotic 
potential, a total of 2456 chemicals were common to both 
sets (see Table 1). The inability to formulate a rational rule 
for class assignment (as either active or inactive) led to the 
removal of 328 hERG and 122 PLD inconclusive com-
pounds. Furthermore, all duplicates, mol files containing 
multiple structures, metal, ammonium, or sulfonate ions 
were also excluded.

As can be seen from Table 1, the original data set (this 
was also true for the curated set) contained a dispropor-
tionately large number of inactive chemicals. Since models 
based on heavily unbalanced data sets tend to be biased in 
the direction of the majority class and thus may be unable 
to capture well structural trends associated with the minor-
ity class (He and Garcia 2009), undersampling strategies 
reducing the number of PLD and hERG inactive com-
pounds were applied. Since earlier studies indicated that 
the structures of most PLD and hERG actives contain at 
least one aromatic ring and a nitrogen atom (Slavov et al. 
2014; Stoyanova-Slavova et al. 2017), therefore, the task of 
building binary classification models for which the chemi-
cals in the active class are substantially dissimilar from 
these in the inactive class was abandoned as being trivial. 
For example, building a classification model for which 
the active class is comprised of aromatic amines (typical 
PLD and hERG actives), whereas the inactive class con-
tains primarily aliphatic, non-nitrogen containing chemi-
cals constitutes a trivial modeling exercise with a little 
added value. Hence, a robust modeling data set comprised 
of either active or inactive nitrogen containing aromatic 
compounds was constructed. Thus, the generated PLD and 
hERG 3D-SDAR models should be able to capture small 
variations in the chemical structure leading to substantial 
changes in biological activity. The high degree of structural 

similarity between the chemicals in the active and inactive 
classes can be regarded as a prerequisite for establishing a 
sound structure–activity relationship built on solid chemi-
cal and biological foundations.

The removal of all aliphatic chemicals while retaining 
all nitrogen containing aromatic compounds still resulted 
in a heavily unbalanced data set with many more inactive 
than active chemicals. Focused on small molecules, further 
reduction of the number of inactive samples was achieved 
by filtering out all chemicals with a molecular weight 
exceeding 300 AU. To retain most of the relatively few 
samples in the active class, only compounds for which the 
prediction of the nitrogen atom(s) chemical shifts failed as 
well as a small subset of 28 steroid derivatives (due to the 
different mechanism by which they elicit their PLD effect) 
were removed. The final data set consisted of 567 chemicals 
common to both PLD and hERG (listed in supplementary 
information spreadsheet). Of these two, the hERG data set 
was somewhat better balanced: 234 compounds were hERG 
active (further denoted as hERG+), while the remaining 
333 chemicals were hERG inactive (or hERG−). On the 
other hand, the ratio between the active (108) and inactive 
(459) samples in PLD data set was approximately 1:4.

Methodology

3D‑SDAR fingerprint construction and descriptor 
generation

The optimized geometries of all 567 compounds and their 
corresponding 13C and 15N chemical shifts simulated by 
ACD/NMR Predictor version 12.0 (Advanced Chemistry 
Development, Toronto, Canada 2011) were used to gener-
ate unique 3D-SDAR molecular fingerprints as described 
previously (Slavov et  al. 2014; Stoyanova-Slavova et  al. 
2017). In brief, a 3D-SDAR fingerprint is composed of 
n(n–1)/2 fingerprint elements (where n is the number of 
C and N atoms in a molecule), each of which has X and 
Y coordinates determined by the NMR chemical shifts δAi 

Table 1   hERG and PLD compounds by class, shown for the reduced 
set of 2456 chemicals for which PLD and hERG data were available

a  All chemicals with inconclusive data were excluded from further 
analysis

PLD class

Inactive Inconclusive Active

hERG class 1741 51a 41

 Inactive

 Inconclusive 270a 27a 31a

 Active 159 44a 92
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and δAj of a pair of atoms (Ai, Aj ≡ C, N) and a Z coordinate 
corresponding to the through-space distance (rij) between 
them. This concept is illustrated in Fig. 1, which shows the 
structure and the 13C and 15N NMR chemical shifts of ani-
line (Fig. 1a) as well as its corresponding 3D-SDAR finger-
print (Fig. 1b).

These fingerprints were then tessellated by regular grids 
and the count of fingerprint elements within the boundaries 
of each bin was stored in a 3D-SDAR descriptor matrix. 
Earlier models built for non-overlapping PLD (Slavov et al. 
2014) and hERG (Stoyanova-Slavova et al. 2017) data sets 
focused on a more detailed exploration of the 3D-SDAR 
parametric space suggested optimal models using the 
following grid parameters: 6C30N1Å or 10C25N0.5Å 
for hERG and 8C20N1Å or 10C25N1Å for PLD. How-
ever, models using tessellations different from the above 
were found to perform similarly with only a minor drop 
of about 5% in terms of overall accuracy, sensitivity, and 
specificity. To be able to compare directly the performance 

characteristics, the generated 3D-SDAR maps, and their 
corresponding toxicophores, the present models utilized a 
fixed grid size of 10 ppm ×  10 ppm ×  0.5Å grid for the 
C–C region, 10 ppm × 25 ppm × 0.5Å grid for the C–N 
region, and 25  ppm ×  25  ppm ×  0.5Å grid for the N–N 
region (or 10C25N0.5Å in short notation).

Modeling algorithm

A bootstrap aggregation (bagging)-based PLS algorithm 
(shown in Fig. 2) was used to establish a consistent relation-
ship between the 3D-SDAR descriptors and the PLD and 
hERG class membership. Earlier computational experiments 
(Slavov et al. 2013) using reasonably sized data sets demon-
strated that most performance estimators tend to reach a pla-
teau at about 100 randomization cycles. Hence, the employed 
PLS algorithm was set to perform 100 random splits parti-
tioning the modeling set into training (80% of the total) and 
hold-out test (20% of the total) sets. Models with up to ten 

Fig. 1   3D-SDAR fingerprint 
(b) of aniline (a) constructed 
using the atom-to-atom through-
space distances and the atoms’ 
corresponding 13C (shown in 
black) and 15N (shown in blue) 
NMR chemical shifts. For 
simplicity, the δ15N was shifted 
downfield by 1000 ppm

Fig. 2   Flowchart of the 
3D-SDAR modeling process 
(adapted from Ref. [4]). A 
bagging-like PLS (partial least 
squares) algorithm was used to 
build a composite model, which 
was used further to elucidate the 
structural features associated 
with PLD induction and hERG 
blocking (color figure online)
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latent variables (LVs) were generated. At the end, the aggre-
gated predicted values for each individual compound were 
averaged (that was done separately for the training and 
hold-out sets) and cut-off values equal to the ratio between 
the positive samples and the total number of compounds in 
each of the two (PLD and hERG) data sets was used for class 
assignment. The optimal number of LVs was determined 
from the plateau on the LVs vs classification accuracy plot 
for the hold-out test set. These two models were later used 
to predict the PLD and hERG activity of compounds from 
the Tox21 program. Due to the specifics of the bagging-like 
PLS approach, each compound from the modeling set had 
two distinct average predicted values—functions of its ran-
dom assignment to either the hold-out test set or the training 
set. Since the training set statistical parameters are incon-
sistent predictors of behavior of the models in situations in 
which the activity of novel/untested compounds needs to be 
predicted, our further discussion will be focused only on the 
hold-out test set performance characteristics and the models’ 
true external predictive power.

Interpretability

The final stage of the modeling phase involved decipher-
ing of the structure–activity relationship using 3D-SDAR 
maps of the most frequently occurring bins (Slavov et  al. 
2014). These bins are usually clustered together in specific 
regions of the 3D-SDAR space; their location on the XY-
plane allows for an identification of the structural features 
associated with activity, while their position on the Z-axis 
determines the distances between these features. Since 
there is only a limited number of interactions and orien-
tations by which a compound can activate a receptor and 
exert its activity and a multitude of factors preventing such 
interactions leading to inactivity, for simplicity, these maps 
were generated only for the highest positively weighted 
bins. These bins were further projected on the standard 
coordinate space to determine the spatial configuration of 
the toxicophore centers. A non-parametric Mann–Whitney 
U-test exploring the dependence between bin occupancy 
and activity at fixed chemical shifts (on the XY-plane) and 
varying distances (on the Z-axis) was used to determine the 
most optimal distances between the toxicophore centers 
specific to strong hERG blockers and PLD inducers.

Optimal prediction space and applicability domain 
determination

The use of 3D-SDAR fingerprints allows for a rela-
tively straightforward determination of the applicability 
domains (AD) of models. Whether a new/untested com-
pound belongs to the AD of a 3D-SDAR model is deter-
mined by the similarity of its fingerprint to the fingerprint 

of a compound present in the training set. Within the 
framework of 3D-SDAR, the similarity between two 
molecular fingerprints is calculated from their linearized 
representations (equivalent to the rows in a 3D-SDAR 
matrix) using the generalized Tanimoto similarity (Bajusz 
et  al. 2015) formula T(A,B) = A.B

�A�2+�B�2−A.B
, in which 

A and B are vectors of bin occupancies. Instead of rely-
ing on arbitrarily defined thresholds, 3D-SDAR uses an 
objective procedure to determine if a new/untested com-
pound belongs to the AD of a model. These thresholds 
were determined from the maximum pairwise similari-
ties (Tmax) calculated for all possible pairs of chemicals 
in the training set: the average and the standard devia-
tion of these Tmax values can be used to define four AD 
regions with predictions ranging from excellent to poor. 
Compounds characterized by T  <  Tmean. trn.—SDT are 
considered outside of the AD. The application of this 
approach will be illustrated in the “Experimental valida-
tion” section.

Results and discussion

Modeling performance

As described in the “modeling algorithm” section, apply-
ing cutoffs of 0.190 in the case of PLD and 0.413 in the 
case of hERG allowed a conversion of the generated con-
tinuous predicted values back to categorical class assign-
ments. While in the case of hERG, the accuracy, sensi-
tivity, and specificity leveled off after 2 LVs, in the case 
of PLD, the overall accuracy plateaued at 6 LVs (0.799), 
whereas the sensitivity achieved its highest value at 2 LVs 
(0.889). Since parsimonious models (those with fewer 
LVs) are generally preferred (Cherkasov et  al. 2014), in 

Table 2   Statistical performance of the hERG and PLD models for 
the hold-out test set

Performance/set PLD HERG

Accuracy 0.785 0.887

Sensitivity 0.889 0.829

Specificity 0.760 0.928

Negative predictive values 0.967 0.885

Positive predictive values 0.466 0.890

Predicted positive 206 218

Predicted negative 361 349

True positive 96 194

True negative 349 309

False positive 110 24

False negative 12 40
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both cases, 2 LVs were considered optimal and used fur-
ther. Table 2 summarizes the statistical parameters of our 
hERG and PLD models using 10C25N0.5Å bin size and 
2 LVs.

It is interesting to note that although the present mod-
els were based on a larger and more diverse data set, their 
performance exceeded that of our earlier attempts to model 
PLD and hERG (Slavov et  al. 2014; Stoyanova-Slavova 
et  al. 2017). Compared against each other, the present 
hERG model is characterized by a somewhat lower sensi-
tivity, while its overall accuracy is significantly higher than 
that of the PLD model. Furthermore, due to very few posi-
tive samples in the PLD data set which affected negatively 
the ability of the PLS algorithm to capture structural trends 
associated with a significant phospholipidotic potential, the 
model’s positive predicted value is almost twice as low as 
that of the hERG model.

Structural interpretation

The atom level resolution of 3D-SDAR combined with 
the linearity of PLS allows for a relatively straightfor-
ward identification of toxicophores or pharmacophores in 
the structures of bioactive chemicals. However, whereas a 
standard PLS algorithm could utilize directly the weights 
of individual bins as a measure of their statistical impor-
tance and provide an interpretation based on that, the bag-
ging-like algorithm driving 3D-SDAR requires a different 
approach. As described in detail in Stoyanova-Slavova 
et al. (2017), the simplest alternative is to extract a prede-
fined number of highly ranked, positively weighted bins 
from each latent variable for all individual models forming 
the final composite model and use their frequency of occur-
rence instead of their individual PLS weights. In general, 

if a given bin (3D-SDAR descriptor) appears to be statisti-
cally significant (has a high PLS weight) and occurs fre-
quently, then it is more likely that it depicts a structural fea-
ture essential for activity. The rationale behind this choice 
was that: (1) as a grid-based approach 3D-SDAR gener-
ates thousands of descriptors and (2) within smaller groups 
of descriptors ranked according to their PLS weights, the 
weights vary insignificantly (i.e. these descriptors can be 
regarded as contributing equally). In other words, to decode 
the structure–activity relationships established by the 
10C25N0.5Å models, the top 10 positively weighted bins 
for each of the two LVs, for all 100 randomized models, 
were extracted and their frequencies of occurrence were 
calculated and mapped on the 3D-SDAR space. Figure  3 
shows the 3D-SDAR maps corresponding to the PLD and 
hERG models, whose statistical parameters are carried out 
in Table 2.

As can be seen from Fig.  3 the PLD and hERG 
3D-SDAR maps are substantially similar sharing five dis-
tinct clusters at similar/identical locations. As explained 
earlier, the positions of these bins on the XY-plane iden-
tify uniquely the atom-pair types and their Z coordinate 
describes the through-space distance between the two 
atoms. The bins within the black contour that are close to 
the origin describe the spatial relationship between two 
carbon atoms connected directly to a nitrogen atom. The 
cluster of bins within the blue contour represents aromatic 
carbons at varying proximity (4Å to 9Å) to carbons that 
are immediate neighbors of a nitrogen atom. The red con-
tour encloses bins describing aromatic carbons members of 
the same (at short distances) or different (distances larger 
than 3 Å) rings. The carbon–nitrogen bins within the green 
contour depict an amino group, which is generally 6.5 to 
8.5 Å apart from the carbons of an aromatic ring system. 

Fig. 3   3D-SDAR map of the most frequently occurring C–C and C–N bins. For convenience, the δ15N are shifted by 700 ppm past the range of 
δ13C. The original negative δ15N values are shown in black
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The single bins in the orange contours describe the spa-
tial relationship between a nitrogen atom and its first- or 
second-order aliphatic carbon neighbors. As evident from 
the 3D-SDAR maps and their associated fragments, the 
presence of two aromatic rings and an amino group are 
the characteristic features of both PLD inducers and hERG 
blockers.

Toxicophore comparison

Projection of the most frequently occurring bins on to the 
molecular structures elucidated further the characteristics 
of the PLD and hERG toxicophores. As suggested by the 
3D-SDAR maps shown in Fig.  3, the molecules of many 
PLD inducers and hERG blockers contained three toxico-
phore centers: two hydrophobic (aromatic rings) and one 
hydrophilic (amino group). However, in several instances, 
it was observed that even a single hydrophobic center is 
sufficient for activity, thus indicating the optional inclusion 
of the second aromatic rings (shown using dashed lines). A 
CoMFA analysis reported by Cavalli et al. (2002) reached 
similar conclusions, describing a hERG toxicophore com-
prised of one to three hydrophobic centers (aromatic moie-
ties) and an amino group.

Exploring further the information encoded along the 
Z-axis of the 3D-SDAR space allowed the determination 
of a range of optimal distances between the three toxico-
phore centers. These distances are shown along the con-
necting solid and dashed lines in Fig.  4. A comparison 
between the hERG and PLD toxicophores revealed that 
the distances between the aromatic rings and the amino 
groups are almost identical and, therefore, cannot be con-
sidered as factors contributing to the observed differences 
in activity. However, it appeared that the distance between 
the two aromatic rings in the molecules of hERG block-
ers is less constrained compared to that found in the struc-
tures of PLD inducers—in other words, the PLD toxico-
phore is a subset of the hERG toxicophore. An important 
corollary derived from these results is that most phospho-
lipidotic compounds will also block the hERG channel, 

whereas hERG blockers in which the aromatic rings are 
farther than 5.5  Å apart would not induce phospholipi-
dosis. This hypothesis is supported by data from large-
scale qHTS hERG inhibition and PLD-inducing potential 
assays (Sun et  al. 2013), which reported that about 80% 
of all phospholipidotic compounds are also hERG block-
ers, with the remaining 20% (all steroid derivatives) likely 
acting via a different mechanism. On the other hand, only 
about 40% of the hERG inhibitors were able to induce 
phospholipidosis.

This hypothesis was further tested by performing a 
Mann–Whitney U-test comparing the bin occupancy of the 
active versus inactive chemicals at fixed chemical shifts in 
the XY-plane and varying distances on the Z-axis. In other 
words, the association of the bin occupancy with the prob-
ability of a compound being active or inactive as a func-
tion of the distance between the toxicophore centers was 
explored. This method allowed for a direct comparison 
of the most favorable spatial configurations of the hERG 
and PLD toxicophore centers. However, since it is based 
on the original through space atom-to-atom distances, this 
approach cannot distinguish between the two aromatic 
rings to amino-group distances (characteristic for each 
toxicophore), as the carbon atoms of both rings occupy the 
same bins.

The p values for two groups of bins were calculated: 
(1) X = 120–130 ppm, Y = −361 ppm to −336 ppm and 
Z = 1…17 Å (step 0.5 Å) corresponding to the distances 
between aromatic ring carbons and a nitrogen atom and (2) 
X = 120–130 ppm, Y = 120–130 ppm and Z = 1…20 Å 
(step 0.5  Å) corresponding to the distances between aro-
matic carbons, members of the same (distances  <3  Å) or 
two different ring systems (distances >3 Å). Due to the use 
of the original atom-to-atom distances, the distances shown 
in Fig.  5a and b differ slightly from those based on cen-
troids (Fig. 4). In Fig. 5a and b, low logarithmic p values 
correspond to bins, which are predominantly occupied by 
fingerprint elements of either PLD or hERG actives, but 
are rarely hit by fingerprint elements belonging to inactive 
chemicals.

Fig. 4   hERG and PLD toxico-
phores derived from projection 
of the most frequently occurring 
bins on the chemical structures. 
The distances between the 
toxicophore centers are given to 
their corresponding centroids
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As evident from the logarithmic scale used in Fig.  5a 
and b, most bins are highly specific (p values of 10−10 and 
lower) and are occupied almost exclusively by the finger-
print elements of active chemicals. The almost identical 
curves shown in Fig.  5a demonstrate clearly that the aro-
matic-to-amino-group distances are non-specific and can-
not explain the observed differences in activity between 
the PLD and hERG chemicals. Similar to the toxicophores 
shown in Figs. 4, 5b indicates the critical importance of the 
distance between the carbon atoms belonging to two differ-
ent aromatic rings; at shorter distances of up to about 7 Å, 
the chemicals are both PLD inducers and hERG block-
ers, while at longer distances (shown in the blue contour 
in Fig.  5b), they lose their phospholipidotic potential, but 
retain their hERG blocking ability. The hERG blocking 
potential decreases sharply after about 12.5 Å (Fig. 5b).

Prediction of compounds for experimental validation

Similar to the model building phase, the true predictive 
power of the PLD and hERG models was tested by care-
fully avoiding the most generic (and with a somewhat pre-
determined outcome) forms of experimental validation: 
i.e., combining for example chemicals containing the sim-
plest toxicophore (an aromatic ring and an amino group) 
that have a high probability of being active with aliphatic 
chemicals which would likely be inactive. Hence, to rig-
orously test the proposed models, the Tox21 10 K chemi-
cal library (NCATS 2016; PubChem 2013) was screened 
for compounds containing at least one aromatic ring and 
a nitrogen atom; applying the two models these were clas-
sified into active and inactive chemicals. This specific 
choice made our task increasingly more difficult: since all 
compounds, both active and inactive, contain at least two 
toxicophore centers, the models should be able to make an 

accurate distinction based on small variations in the chemi-
cal structures (substituents) and the distances between the 
toxicophore centers. Due to unavailability or lack of suf-
ficient amounts for testing, the filtered list of compounds 
was reduced to 1823 chemicals whose hERG inhibition 
was to be predicted and 1167 chemicals (a subset of the 
above list of 1823 compounds) to be classified according 
to their phospholipidotic potential. A total of 304 of these 
were predicted as hERG+, whereas 247 were predicted as 
PLD+. A summary of our predictions for all tested com-
pounds as well as their chemical names and experimental 
activities are given in Table SI1.

Optimal prediction space and domains of applicability

Within the framework of 3D-SDAR, the Tanimoto similar-
ity as defined in the “Optimal prediction space and appli-
cability domain determination” section is used to deter-
mine several regions of reliability/confidence in prediction. 
These regions are defined on the basis of the distribution 
of the Tmax values within the training set. These Tmax val-
ues are calculated from the maximum degree of similarity 
between any one chemical from the training set and the 
remaining 566 chemicals. The histogram of their distribu-
tion is shown in Fig. 6 using darker gray-shaded bars. If a 
new/untested compound has an analogue in the training set 
to which it is similar with T exceeding Ttr.set mean + σT; its 
prediction will be highly reliable (see the region of “excel-
lent” predictivity in Fig. 6), in the range between Ttr.set mean 
and Ttr.set mean +  σT; the predictions will be good, below 
that region (Ttr.set mean − σT and Ttr.set mean); the predictive 
accuracy will be fair, and if a compound has no close ana-
logue in the training set (Ttr.set mean − σT), it will be consid-
ered outside of the applicability domain and, respectively, 
predicted poorly. In Fig.  6, the lighter bars represent the 

Fig. 5   Moving average log(p value) curves for the distances 
between: a aromatic ring carbon atoms and the amino-group nitrogen 
corresponding to the 120–130 ppm, −361 to −336 ppm, Z = 1…17 

Å bins and b carbons from two different aromatic rings (120–
130 ppm, 120–130 ppm, Z = 1…20 Å)
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distribution of the Tmax values for the 1823 predicted chem-
icals—approximately 1/5 of them lay outside of the appli-
cability domain and their class assignment is unreliable.

Experimental validation results

Predictions from our 3D-SDAR models were submitted to 
the National Center for Advancing Translational Sciences 
(NCATS) which upon availability tested 1570 and 1085 
chemicals for their hERG blocking and PLD-inducing 

potentials, respectively. After removing the experimental 
and predicted (±10% around the cut-off values) inconclu-
sive compounds, the true predictive performance of the 
3D-SDAR models based on 1383 hERG and 1012 PLD 
assayed chemicals was evaluated. Since the bagging-like 
PLS algorithm produces a quantitative output the receiver-
operating characteristic (ROC) curves and their correspond-
ing area under the curve (AUC) values were calculated and 
are shown in Fig. 7 with a blue line. As can be seen from 
Fig. 7, both curves manifest similar behavior with an AUC 
close to 0.90. The removal of the out of AD chemicals did 
not improve these results significantly (blue curves).

A comparison of the accuracy, sensitivity, and speci-
ficity of the PLD predictions shown in Table  3 to their 
corresponding values for the hold-out test set from 
Table  2, demonstrated excellent transferability of inter-
nal-to-external predictivity. Although in terms of overall 
accuracy, the hERG model outperformed the PLD model, 
its sensitivity was lower. However, a comparison of the 
positive predictive values indicated that the hERG model 
recognized correctly twice as large of a proportion of 
the positive samples. Furthermore, both PLD and hERG 
models were characterized by exceptionally high nega-
tive predictive values, which in case of phospholipidosis 
reached 0.99. Due to their ability to recognize correctly 
(with just a few exceptions) most safe compounds, both 
models should be particularly valuable for use in regula-
tory settings.

Further examination of the dependence of the accu-
racy, sensitivity, specificity, and negative and positive 
predicted values (see Fig.  8) from the above-defined 
four confidence regions (poor, fair, good, and excellent) 

Fig. 6   Histograms of the Tanimoto similarity distribution for: (1) the 
training set (darker gray bars) and (2) for the prediction set (lighter 
gray bars)

Fig. 7   ROC curves (shown in red) for the predictions based on the PLD and hERG 3D-SDAR models. The recalculated ROC curves after 
removing the out of AD compounds are shown in blue (color figure online)
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revealed several trends in the data. While the over-
all accuracy, specificity, and negative predictive values 
improved only slightly, the sensitivity and the positive 
predictive values improved tremendously moving from 
the region of poor predictions to the region of excellent 
predictions. This observation further emphasizes the 
fact that all active chemicals are characterized by highly 
selective functional groups/substituents positioned at 
specific locations and with well-defined spatial orienta-
tions—hence, a high degree of structural similarity (i.e. 
fingerprint similarity) between a new untested chemi-
cal and a chemical from the training set is required for 
an accurate prediction of activity. However, in case of 
hERG- and PLD-chemical fingerprints, a similarity 
lower than Ttr.set mean—σT is still sufficient for a correct 
classification. The high structural specificity required 
for PLD (as well as for hERG) activity suggests that the 
phospholipidosis is likely a receptor driven/mediated 
phenomena.

Due to the simplicity of the derived toxicophores, a 
simple visual inspection can be used as a quick filter 
to decide whether a new untested compound should be 
scrutinized and submitted for in silico modeling and fur-
ther laboratory testing.

Conclusions

The 3D-SDAR modeling performed on data sets of over-
lapping chemicals tested for their PLD-inducing and hERG 
blocking potentials resulted in models with an excellent 
external predictive power as demonstrated by the qHTS 
validation assays. There are several corollaries that follow 
naturally from the analysis carried out in this work:

1.	 Many PLD and hERG active chemicals share common 
structural features—two aromatic rings and an amino 
group forming a three-center toxicophore;

2.	 the PLD and hERG toxicophores are characterized 
by identical aromatic ring-to-amino-group distances. 
However, in the molecules of hERG blockers, the dis-
tance between two aromatic rings varies to a much 
greater extent;

3.	 compared to the hERG toxicophore, the PLD toxico-
phore is geometrically more constrained and appears 
to be a subset of hERG. Hence, most PLD induc-
ers would also block the hERG ion channel, whereas 
hERG inhibitors with larger aromatic-to-aromatic ring 
distances would not induce phospholipidosis.

4.	 the exceptionally high negative predictive values of 
both models make them potential candidates for use in 
regulation;

5.	 the reason for the apparent similarity between the 
PLD toxicophore and the structures of hERG inhibi-

Table 3   Number of compounds in the predicted, tested, and valida-
tion sets

ACC, SN, and SP reported for the validation set

Sets/performance characteristics PLD HERG

Predicted 1167 1823

Tested by NCATS 1085 1570

Inconclusives removed 1012 1383

Accuracy 0.844 0.863

Sensitivity 0.885 0.588

Specificity 0.842 0.902

Negative predictive values 0.993 0.940

Positive predictive values 0.232 0.457

Fig. 8   Dependence of the hERG and PLD models’ predictive performance characteristics from the degree of similarity to the training set chemi-
cals
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tors remains unknown at this time and requires further 
investigation.

This work also demonstrated the capability of 3D-SDAR 
to provide structural interpretation of the models in terms 
of toxicophores or pharmacophores. Due to its atom level 
resolution 3D-SDAR can also determine a set of optimal 
distances between the toxicophore/pharmacophore centers, 
which makes it a valuable tool with application in the fields 
of computational toxicology and molecular design.
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