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Cancer statistics and background

Regulatory and cancer research agencies carefully moni-
tor changes in cancer statistics each year and determine 
both incidence and death rates for all tumor types (Miller 
et al. 2016; Siegel et al. 2015; Torre et al. 2016). Despite 
scientific and medical advances in detection, treatment and 
understanding the unique features of each tumor type, the 
overall progress in terms of decreased incidence and mor-
tality has been limited (Miller et al. 2016). For example, 
cancer is still the leading cause of death worldwide and 
the total number of cancer cases and deaths are increas-
ing along with population growth (Torre et al. 2016). The 
statistics in the USA are more encouraging and from 2007 
to 2011, cancer incidence rates had decreased by 1.8% in 
men but were unchanged in women; cancer death rates 
decreased by 1.8 and 1.4% in men and women, respectively 
(Siegel et al. 2015). Improvements in cancer incidence were 
not only tumor specific, but also dependent on age, sex, 
race, socioeconomic status and region. Some of the most 
dramatic changes in cancer incidence have been correlated 
with lifestyle changes such as decreased smoking in males 
from the 1990s, leading to a significant decline in this dis-
ease (Siegel et al. 2015). The success of cancer therapies in 
contributing to improved survival of cancer patients is due, 
in part, to the extensive use of combination drug therapy 
regimens and the limited, but impressive effects of targeted 
mechanism-based therapies for treatment of some tumors. 
For example, the use of BCR–ABL tyrosine kinase inhibi-
tors such as imatinib has increased the 5-year survival of 
chronic myeloid leukemia patients from 31 to 60% (Ferdi-
nand et al. 2012; Miller et al. 2016). Unfortunately, “won-
der” drugs for most other cancers have not been developed.

The basic science of cancer initiation, promotion, pro-
gression and metastasis has been extensively studied, and the 
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progress made at the organismal, cellular and genomic lev-
els have been remarkable and will form the future basis for 
successful development of new targeted therapies. Hanahan 
and Weinberg (2000) organized thinking about cancer based 
on their initial proposal of six hallmarks of cancer including 
“sustained proliferative signaling, evading growth suppres-
sors, resisting cell death, enabling reproductive mortality, 
inducing angiogenesis, activating invasion and metastasis”. 
Two additional hallmarks, reprogramming of energy metab-
olism and evading immune destruction, have been added 
(Hanahan and Weinberg 2011), and these hallmarks now 
serve not only to define critical features of cancer cells but 
also as a framework for development of new targeted ther-
apies. The complexity of cancer cells and tumors is appar-
ent from the continuing efforts by pathologists and oncolo-
gists to divide tumors from each site into various subclasses 
based on their unique pathologies and stages (early to late) 
and their biochemical/molecular characteristics, since these 
classifications are not only related to outcomes (e.g., survival 
times) but to specific treatment regimens. Not surprisingly, 
tumor classifications are continually changing based on 
the acquisition of new information on various cellular and 
molecular characteristics of each tumor type. Breast cancer 
classifications initially relied on expression of the estrogen 
receptor (ERα) in the presence or absence of the proges-
terone receptor (PR); this was subsequently expanded to 
include expression of the oncogenic epidermal growth fac-
tor receptor 2 (HER2, ErbB2) which could be targeted by 
antibodies such as Herceptin (trastuzumab), an antibody that 
binds HER2 and blocks its function. Breast cancer classifica-
tions continue to evolve and include molecular characteris-
tics, staging, pathology and other factors (Perou et al. 2000; 
Sinn and Kreipe 2013; Viale 2012). Thus, tumors from the 
same site are highly heterogenous and provide enormous 
problems for designing stage-specific therapies and for over-
coming subsequent drug-resistance problems associated with 
activation of the alternative pro-oncogenic pathway.

The AhR and its physiological role

The AhR was initially identified as the receptor that bound 
the environmental toxicant 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) and structurally related toxic halogen-
ated aromatic industrial compounds and by-products 
(Poland et al. 1976; Poland and Knutson 1982) (Fig. 1). 
The development of AhR knockout mice confirmed that 
this receptor was necessary to mediate the toxic effects 
of TCDD and other dioxin-like compounds (DLCs) (Fer-
nandez-Salguero et al. 1996; Mimura et al. 1997). Unfor-
tunately, this has been and continues to be a major prob-
lem in exploiting the AhR as a drug target, whereas other 
receptors such as the ER that plays a role in breast cancer 

and other hormone-dependent diseases is a major target 
for selective ER modulators that are extensively used for 
clinical applications (Jordan 2007, 2009). Over the past 
25 years, it has been well established that multiple dif-
ferent classes of compounds including biochemicals that 
are possible endogenous AhR ligands, health-promoting 
phytochemicals and AhR-active pharmaceuticals bind the 
AhR (Denison and Nagy 2003; Denison et al. 2011; Hu 
et al. 2007; Safe et al. 2012; Soshilov and Denison 2014) 
(Fig. 1). Moreover, there is increasing evidence that the 
AhR plays a prominent role in physiology and pathophysi-
ology including important roles in the immune function, 
autoimmunity, gastrointestinal function, inflammation and 
cancer (Benson and Shepherd 2011; Boitano et al. 2010; 
Ehrlich et al. 2016; Esser 2012; Kerkvliet et al. 2009; Mar-
shall and Kerkvliet 2010; Murray et al. 2010; Punj et al. 
2014; Quintana et al. 2008; Veldhoen et al. 2008), and 
development of selective AhR modulators is a promising 
new area of pharmacological research, particularly for can-
cer chemotherapy (Murray et al. 2014; Safe et al. 2013).

Cancer chemotherapies and a role for the AhR

The standard first-line chemotherapies for most cancers 
include a range of cytotoxic drugs that target critical 

Fig. 1  AhR ligands. 2,3,7,8-TCDD and benzo[a]pyrene are classi-
fied as “toxic” AhR ligands. FICZ and kynurenine are endogenous 
ligands. CH223191 is an AhR antagonist and omeprazole is an AhR-
active pharmaceutical
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functions more highly expressed in tumor versus non-
tumor tissues/cells (Masui et al. 2013). Some of the 
genes/pathways that are targeted in cancer cells include 
membrane receptors (tyrosine kinases) and their ligands, 
oncogenes such as Ras and other pro-oncogenic factors, 
transcription factors and nuclear receptors. Members of 
the nuclear receptor superfamily are ligand-activated 
nuclear transcription factors that include the estrogen 
receptor and androgen receptor which are targeted by 
selective receptor modulators (SRMs) for treatment of 
early stage receptor-positive breast and prostate cancer 
(Aesoy et al. 2015; Baek and Kim 2014; Burris et al. 
2013; Tice and Zheng 2016). Over 80 drugs targeting 18 
different nuclear receptors have been approved for vari-
ous uses (Tice and Zheng 2016). In contrast, compounds 
targeting the aryl hydrocarbon receptor (AhR), which is 
also a ligand-activated nuclear transcription factor and 
a member of the basic helix-loop-helix (bHLH) family, 
have not been approved for any pharmacologic applica-
tions. There are only a few AhR ligands including amino-
flavone and laquinimod that have been used in clinical 
trials for treatment of breast cancer and multiple sclero-
sis, respectively (Haggiag et al. 2013; Loaiza-Perez et al. 
2004).

The AhR and its ligand in tumorigenesis 
and cancer chemotherapy

Most initial studies on the AhR and its ligands focused on 
the effects of TCDD on tumor formation after long-term 
rodent feeding studies, and there was general consen-
sus that TCDD was a hepatocarcinogen in most studies 
[reviewed in (Bock and Kohle 2005; Knerr and Schrenk 
2006)]. TCDD-induced tumors were also observed in 
multiple sites; however, in a lifetime feeding study in 
Sprague–Dawley rats, there was a decrease in spontane-
ous mammary and uterine tumors (Kociba et al. 1978). 
The AhR has been characterized in multiple cell lines 
and human tumors (Safe et al. 2013) and, with the devel-
opment of selective AhR modulators (SAhRMs) (Safe 
et al. 1999) including AhR-active pharmaceuticals, the 
AhR has emerged as a drug target for cancer and other 
diseases. In this review, we will outline the role of the 
AhR in cancer cell and mouse models and also the oppor-
tunities for novel approaches of using SAhRMs as can-
cer therapeutics. It is also apparent that the AhR and its 
ligands can act as agonists or antagonists to block many 
of the hallmarks of cancer (Fig. 2) and these results will 
be apparent in the following summaries.

Genitourinary cancers

Table 1 summarizes the effects of several AhR ligands on var-
ious genitourinary-derived tumors and also the endogenous 
role of the AhR in prostate cancer using the TRAMP mouse 
model (Fritz et al. 2009). TCDD and related compounds and 
also omeprazole and tranilast inhibit pancreatic cancer cell 
invasion; however, there is evidence for different mecha-
nisms of action dependent on the cell classification (Jin et al. 
2015; Koliopanus et al. 2002). For example, in Panc1 cells 
which are highly invasive, the mechanism of omeprazole-
mediated inhibition of invasion is due to a non-genomic AhR 
pathway (Jin et al. 2015). The role of the AhR and its ligands 
in prostate cancer cells are dependent on androgen receptor 
(AR) expression. There is evidence that AhR ligands are anti-
androgenic in AR-expressing prostate cancer cells, and the 
AhR itself is growth inhibitory (Gluschnaider et al. 2010). 
In contrast, knockdown of the AhR in AR-negative prostate 
cancer cells decreases proliferation (Tran et al. 2013), mul-
tiple AhR ligands induce pro-invasion MMP9 (Haque et al. 
2005) and the AhR antagonist CH223191 inhibits growth 
(Richmond et al. 2014). In TRAMP mice which are AR-pos-
itive, the evidence suggests that the AhR and its ligands are 
tumor growth inhibitory, although some mixed results were 
observed for TCDD (Fritz et al. 2007, 2009; Moore et al. 
2016). The results of limited studies in urinary tract tumors 
suggest that the AhR and its ligands increase invasion (Ishida 
et al. 2010), whereas in kidney cancer cell lines the results 
are contradictory and may be cell context dependent (Callero 
et al. 2012; Ishida et al. 2015).

Neurological cancers

Glioblastoma is a highly lethal tumor in which survival 
times are low and treatment options are limited and not 

Fig. 2  Targeting the hallmarks of cancer via the AhR
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very effective. Initial studies showed that the AhR was 
expressed in human tumors and glioblastoma cell lines, and 
the pro-oncogenic activity of the AhR was linked to regula-
tion of TGFβ signaling (Gramatzki et al. 2009). Moreover, 
this study showed that AhR knockdown or the AhR antag-
onist CH223191 inhibited clonal survival and migration 
of glioblastoma cells. A subsequent study by this group 
demonstrated that tryptophan-2,3-dioxygenase-mediated 
metabolism of tryptophan to give kynurenine was a key 
pro-carcinogenic event, since kynurenine promotes AhR-
dependent tumor cell survival and motility (Opitz et al. 
2011). A recent report indicates that AhR–integrin–TGFβ 
cross talk is also involved in glioblastoma (Silginer et al. 
2016). It is clear that these studies demonstrate a potential 
clinical role for AhR antagonists in the treatment of glio-
blastoma. Other neurological cancers including medullo-
blastoma and pituitary adenomas also express an AhR that 
is pro-oncogenic (Dever and Opanashuk 2012; Jaffrain-
Rea et al. 2009), whereas the AhR enhances differentia-
tion in neuroblastoma cells (Huang et al. 2011) and TCDD 
induces apoptosis in PC12 cells (Sanchez-Martin et al. 

2010). These studies suggest different roles for the AhR 
and its ligand in brain cancers (Table 2).

Lung, head and neck, esophageal, melanoma, leukemia 
and lymphoma

In lung cancer cells, there is evidence from most stud-
ies that PAHs and other ligands are growth promoters and 
induce growth-promoting genes, and the constitutive AhR 
is also involved in lung cancer cell growth (Chuang et al. 
2012; Shimba et al. 2002; Wang et al. 2009) (Table 3). 
The major exception to these results was observed in 
CL1-5 cells which express low AhR levels; however, in an 
AhR-inducible cell line overexpression of the AhR pro-
tected against sidestream smoke-induced ROS (Cheng 
et al. 2012). This “protective” effect may be significant; 
however, AhR overexpression was also associated with 
increased anchorage-independent growth and cell prolif-
eration and this is consistent with other studies in lung can-
cer cells. The AhR is also pro-oncogenic in head and neck 
and oral cancers and AhR agonists enhance cell growth 

Table 1  Role of AhR ligands on genitourinary tumors

Cell line/animal model Ligands/treatment Responses (AhR-dep) References

Pancreatic

 Multiple cell lines TCDD and alkylated PCDFs (sAh-
RMs)

Growth inhibition Koliopanus et al. (2002)

 Panc1, MiaPaCa2 Omeprazole and tranilast Inhibition of invasion Jin et al. (2015)

Prostate

 LNCaP TCDD Inhibition of DHT-induced cell 
proliferation/enzymes

Barnes-Ellerbe et al. (2004)

 PC3, DU145 TCDD, BaP, soot Enhanced MP9 Haque et al. (2005)

 LNCaP TCDD, MCDF Anti-androgen (transactivation) Morrow et al. (2004)

 LNCaP TCDD Anti-androgenic (transactivation) Jana et al. (1999)

TCDD Anti-androgenic (cell growth)

 C-42  (AR−) siAhR Decreased proliferation Tran et al. (2013)

 LNCaP AhR expression Decreased proliferation via β-TrCP Gluschnaider et al. (2010)

 DU145, PC3 and PC3M  (AR−) Caritin (flavonoid AhR ligand) Inhibits growth in vitro/in vivo; 
induces apoptosis; decreases AR

Sun et al. (2015)

 LNCaP TCDD, BaP Gene expression changes Hruba et al. (2011)

 TRAMP mice AhR−/− cross Decreased prostate cancer Fritz et al. (2007)

 TRAMP mice MCDF (SAhRM) Decreased tumor metastasis Fritz et al. (2009)

 TRAMP mice TCDD Pro- and anti-carcinogenic responses Moore et al. (2016)

Bladder and urinary tract and kidney

 AhR−/− mice AhR loss Decreased Ugt1a1 in bladder Iida et al. (2010)

 T27 TCDD Increased invasion and MMPs Ishida et al. (2010)

siAhR Decreased invasion

 786-O, ACHN and 769-P renal 
cancer cells

Indirubin, TCDD Increased invasion/MMPs Ishida et al. (2015)

siAhR Decreased invasion

 TK-10, Caki-1, SN12-C renal 
cancer

Aminoflavone Decreased cell growth Callero et al. (2012)
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and survival, whereas AhR antagonists exhibit anti-can-
cer activity, demonstrating a possible role for these com-
pounds in clinical applications (DiNatale et al. 2011, 2012; 

Stanford et al. 2016a). The AhR is expressed in esophageal 
cancer and leukemia/lymphomas; however, the function of 
the AhR and its ligands are not well defined, although one 

Table 2  Role of the AhR in neurological cancers

Cell line/animal model Ligands/treatment Responses References

Neurological

 Glioma cells MC, Ch223191, siAhR/
overexpression

AhR regulates growth and invasion; inhibition 
by antagonist/siAhR

Gramatzki et al. (2009)

 Glioma cells Kynurenine, TCDD, 
siAhR/overexpression

AhR pro-oncogenic, Kyn activates growth, 
immune suppression

Opitz et al. (2011)

 Glioma cells, astrocytes siAhR AhR regulates integrin and TGFβ-induced 
malignancy

Silginer et al. (2016)

 Glioma patients AhR polymorphisms AhR polymorphisms correlate with glioma risk Gu et al. (2012)

 Pituitary adenomas AhR/AIP AhR/AIP decrease correlates with increased 
aggressiveness

Jaffrain-Rea et al. (2009)

 Neuroblastoma SK-N-SH AhR AhR enhances differentiation Huang et al. (2011)

 Medulloblastoma siAhR/overexpression Loss of AhR decreases proliferation Dever and Opanashuk (2012)

 Pheochromocytoma (PC12) cells TCDD Induces apoptosis Sanchez-Martin et al. (2010)

Table 3  Role of AhR and AhR ligands in lung, head and neck, and esophageal tumors, melanoma, leukemia and lymphoma

Cell line/animal model Ligands/treatment Responses References

Lung

 A549 βNF Induces growth Shimba et al. (2002)

AhR expression Induces growth

 Multiple PAHs FGF9/growth induction Wang et al. (2009)

 H1299 BaP Osteopontin induction Chuang et al. (2012)

 CL1-5 Smoke particulates AhR protects against oxidative stress Cheng et al. (2012)

 Multiple cells Cigarette smoke extracts Induction of adrenomedullin Portal-Nunez et al. (2012)

 H1355 and others TCDD, BaP, siAhR Decreased anchorage-independent growth (siAhR) 
and ROS levels (siAhR)

Chang et al. (2007)

Head and neck/oral

 Multiple TCDD, TMF TCDD induces TMF; inhibits IL-6 DiNatale et al. (2011)

 Multiple TMF, GNF351 AhR antagonists inhibit growth and migration/inva-
sion

DiNatale et al. (2012)

 Multiple Agonist/antagonist; siAhR Antagonists inhibit growth, invasion/migration Stanford et al. (2016a)

Leukemia/lymphoma

 U937 TCDD Cox2 induction; increased survival genes Vogel et al. (2007)

 HL60 None AhR downregulated Oct4 Bunaciu and Yen (2011)

 T-cell leukemia – AhR is expressed Hayashibara et al. (2003)

 Multiple – Low AhR expression in acute lymphoblastic leuke-
mia

Mulero-Navarro et al. (2006)

Esophageal

 Multiple Flavonoids Induces ABCG2 drug-resistant gene To et al. (2012)

 Tissues/cell lines βNF, siAhR Suppression of invasion Zhang et al. (2012a)

Melanoma

 Multiple cell lines and in vivo siAhR, AhR-CA Loss of AhR enhances tumorigenicity Contador-Troca et al. (2013)

 A375 Leflunomide Inhibits cell proliferation O’Donnell et al. (2012)

 A205A TCDD Increases MMPs and invasion Villano et al. (2006)

 IPC-398/SK-MEL2 siAhR Loss of AhR decreases growth Barretina et al. (2012)
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study showed that β-naphthoflavone significantly inhibited 
invasion of esophageal cancer cells. Contradictory data 
have also been reported for melanoma. Loss of the AhR 
enhanced tumorigenicity in vivo and leflunomide inhibited 
melanoma cell proliferation (Contador-Troca et al. 2013; 
O’Donnell et al. 2012); however, it was also reported that 
AhR knockdown decreased growth (Barretina et al. 2012) 
and TCDD increased invasion and expression of MMPs 
(Villano et al. 2006). Differences in these data may be cell 
context dependent and mouse model specific and need fur-
ther investigation.  

Colon and gastric cancer

The functions of AhR ligands in colon cancer cells are cell 
context and ligand dependent (Table 4). Several different 
ligands, including 3-methylcholanthrene (MC) (Caco-2, 
LS174T) and TCDD (H508, SN7-C4), exhibit pro-onco-
genic responses including induction of cell growth and 
genes associated with migration (MMP9) and drug trans-
port (ABCG2) (Tompkins et al. 2010; Villard et al. 2007; 
Xie et al. 2012). However, in several other colon cancer cell 
lines, the AhR ligands FICZ (LoVo) and chrysin (HCT116, 
DLD-1 and SW837) inhibited cell growth (Ronnekleiv-
Kelly et al. 2016; Yin et al. 2016). In contrast, several 
reports demonstrate that the loss of the AhR in wild-type 

and  APCmin/+ mice enhances colon/cecum carcinogenesis 
and in  APCmin/+ and wild-type mice I3C/DIM inhibit car-
cinogenesis (Diaz-Diaz et al. 2016; Ikuta et al. 2013; Kawa-
jiri et al. 2009). Thus, the in vivo mouse model clearly 
demonstrates tumor suppressor-like activity for the AhR in 
colon/cecum cancer and specific AhR ligands can inhibit 
tumorigenesis. In MNK5 gastric cancer cells ± AhR, 
in vitro and in vivo (xenograft-AhR) studies indicate that 
the AhR promotes cell growth, migration and survival (Lai 
et al. 2014; Yin et al. 2013). TCDD induced proliferation 
and invasion of AGS cells (Peng et al. 2009), whereas DIM 
decreased SGC-7901 cell growth (Yin et al. 2012); how-
ever, it is not clear if the growth-inhibitory effects of DIM 
are AhR dependent. Expression of constitutively active 
AhR (CA-AhR) in mice results in gastric tumor formation, 
suggesting pro-oncogenic function of the receptor (Anders-
son et al. 2002; Kuznetsov et al. 2005). Future studies are 
needed to determine whether AhR agonists or antagonists 
will be effective for treatment for gastric cancer.

Liver cancer

Liver cancer is a leading cause of cancer-related mortal-
ity worldwide, accounting for more than 600,000 deaths 
each year. Although liver cancer is much more common 
in Southeast Asia, liver cancer cases worldwide including 

Table 4  Role of the Ah receptor in colon and gastric cancer

Cell line/animal model Ligands/treatment Responses References

Caco-2 MC IL-1β and MMP9 induction Villard et al. (2007)

H508, SNU-C4 TCDD, I3C Cell proliferation Xie et al. (2012)

LS174T MC ABCG2 induction Tompkins et al. (2010)

LoVo FICZ Cell growth inhibition (Yin et al. 2016)

HCT116, DLD-1, SW837 Chrysin Cell growth inhibition and apoptosis Ronnekleiv-Kelly et al. (2016)

AhR−/− – Colonic/cecum tumors Kawajiri et al. (2009)

APC−/+/AhR−/− – Decreased time to tumors Kawajiri et al. (2009)

APCmin/+ I3C/DIM Inhibition of tumorigenesis Kawajiri et al. (2009)

AhRmut – Increased tumorigenesis in colitis-associated 
tumor

Diaz-Diaz et al. (2016)

AhR+/+ I3C Decreased colitis-associated tumors Diaz-Diaz et al. (2016)

HCT-116, DLD-1, SW837 Chrysin Induction of apoptosis Ronnekleiv-Kelly et al. (2016)

AhR−/− – Enhanced cecal tumors Ikuta et al. (2013)

AhR−/−/ASC−/− – Enhanced tumorigenesis Ikuta et al. (2013)

AGS cells TCDD Enhanced MMP9/invasion Peng et al. (2009)

SGC-7901, MKN45 siAhR Decreased growth and MMP9, induction of 
apoptosis

Yin et al. (2013)

SGC-7901 DIM Decreased cell growth Yin et al. (2012)

MNK45 (xenograft) siAhR cells Decreased tumor weight Lai et al. (2014)

MNK45 (xenograft) Biseugenol Inhibition of EMT and AhR downregulation Lai et al. (2014)

CA-AhR mice – Increased tumorigenesis, decreased osteopontin Andersson et al. (2005), Kuznetsov et al. 
(2005)
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in the USA have been on the rise. The prognosis for liver 
cancer patients is quite poor, with a 5-year survival rate 
of approximately 15% (American Cancer Society 2016). 
This poor outcome is explained in large part by the abil-
ity of hepatocellular carcinoma (HCC), which accounts for 
90% of liver cancers, to become resistant to chemotherapy 
and lack of existing targeted therapies. The only targeted 
therapy for liver cancer is sorafenib, a kinase inhibitor that 
extends patient survival, on average, by only 3 months 
(Bruera et al. 2014). Thus, there is a dire need to make bold 
moves and identify effective treatment options for liver 
cancer patients. Based on the recent evidence summarized 
below, we propose that the AhR is a viable molecular target 
for liver cancer. The function of the AhR in liver cancer is 
somewhat contradictory and the role of AhR and its ligands 
in both in vitro and in vivo model systems is summarized 
in Table 5.

AhR plays a significant role in development, presum-
ably due to its ability to regulate cell growth and differ-
entiation. AhR null mice have much smaller livers and 
display defects in development of vasculature (Fernandez-
Salguero et al. 1996; Lahvis and Bradfield 1998; Mimura 
et al. 1997). Genes required for proper growth and devel-
opment often play significant roles in cancer, functioning 
as oncogenes or tumor suppressors and sometimes both as 
tumor suppressor and oncogene depending on the context 
and stimuli. The genetic background or the expression of 
other co-regulatory proteins plays a role in the function of 
a gene. AhR null mice do not develop spontaneous tumors 
in liver suggesting that the AhR is not a classical tumor 
suppressor gene. Tumorigenesis is still a rare event and it 
is often kept under control by checks and balances in the 
system regulated by multiple genes that eliminate abnor-
mal cells. The endogenous AhR functions as a tumor modi-
fier gene in liver cancer in the absence of any exogenous 
ligand stimulation. The identification of a tumor modifier 
role for the AhR was investigated by crossing the AhR 
knockout mice with mice that express oncogenes or by 
exposure to chemical carcinogens that predispose mice to 
cancer. Puga and colleagues utilized genotoxic carcinogen 
diethylnitrosamine (DEN) to induce liver tumors in wild-
type mice expressing the AhR and knockout mice lacking 
the AhR (Fan et al. 2010). In this study, the absence of the 
AhR expression was associated with increased BrdU incor-
poration, a marker used to identify proliferating cells. In 
addition, decreased expression of known tumor suppressor 
genes in this study strongly demonstrated a tumor-suppres-
sive modifier role for the AhR.

The AhR is highly expressed in liver cancer cells 
(O’Donnell et al. 2012) and several AhR ligands inhibit 
cancer cell proliferation and/or induce liver cancer cell 
death. Some of these effects have been shown to be depend-
ent on AhR expression. Recent evidence including results 

from our laboratories supports the possibility that the AhR 
can also be transformed to yield biological responses that 
can be exploited for the treatment of cancer (Jin et al. 2014, 
2015; Koch et al. 2015; O’Donnell et al. 2012, 2014; Safe 
et al. 2013). Chemical libraries were screened to identify 
AhR ligands that have anti-cancer effects. The specificity 
and selectivity of the identified small molecules for the 
AhR were validated in well-characterized cell systems. Fur-
thermore, these compounds were tested for AhR-dependent 
growth-inhibitory effects in cancer cells. This resulted in 
the identification of promising AhR ligands with potential 
anti-cancer effects, one of which was raloxifene. Ralox-
ifene is a selective estrogen receptor modulator used in the 
clinic for prevention of osteoporosis. Raloxifene directly 
bound the AhR, promoted cytosol to nuclear translocation 
of the AhR, strongly activated AhR-driven reporter gene 
activity and endogenous AhR target genes (Bisson et al. 
2009; O’Donnell et al. 2014). AhR-dependent programmed 
cell death in breast and liver cancer cells that do not express 
estrogen receptor contributed to raloxifene-induced growth 
inhibition. Despite the ability of TCDD to strongly activate 
AhR signaling, TCDD did not induce apoptosis suggesting 
the unique activity of certain AhR ligands such as ralox-
ifene (O’Donnell et al. 2014). Unlike TCDD, raloxifene is 
not a high affinity ligand and it is important to understand 
ligand-selective AhR signaling that drive AhR-depend-
ent anti-cancer activities. Raloxifene is well tolerated in 
humans and this compound or new raloxifene-based mol-
ecules with improved AhR binding affinity need to be iden-
tified for future clinical applications.

Humans exposed to high levels of TCDD did not exhibit 
higher incidences of cancer (Collins et al. 2009; McBride 
et al. 2009). Analysis of TOXcast chemicals and their 
activation of nuclear receptors including AhR revealed 
that there was no association between AhR activation and 
progression of hepatic lesions (Shah et al. 2011). Human 
HCCLM3 hepatoma cells were inhibited both in vitro and 
in vivo (xenograft) by the AhR ligand ITE (Zhao et al. 
2015). The FDA-approved drug and anti-androgen, fluta-
mide, is also an AhR ligand, and the growth-suppressive 
effects of flutamide are due to AhR-dependent induction of 
TGFβ1 in human HCC cells (Koch et al. 2015). AhR-medi-
ated activation of TGFβ1 signaling resulted in activation of 
cell cycle inhibitory proteins p15 and p27, and knockdown 
of AhR or TGFβ1 abrogated the anti-proliferative effects of 
flutamide. This is an example of an AhR-active approved 
pharmaceutical that could be repurposed for treatment of 
hepatocellular carcinomas.

Breast cancer

Breast cancer is the most common cancer among women 
worldwide and metastasis is responsible for most of the 
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deaths associated with breast cancer. Breast cancer is 
composed of multiple subtypes with distinct molecular 
markers. The three major classes of breast cancers are (i) 
hormone receptor-positive cancers that express estrogen 
receptor (ER) and progesterone receptor (PR), (ii) human 
epidermal growth factor receptor 2 (HER2)-positive can-
cers meaning cancers with overexpression of Her2 and (iii) 
triple-negative breast cancers (TNBC) that do not express 
ER or PR with normal or no expression of Her2 (Ameri-
can Cancer Society 2016; Santagata et al. 2014). Approxi-
mately, 20% of breast cancers are classified as TNBC, 
which is composed of at least six subclasses (Lehmann 
et al. 2011). TNBCs are the most difficult to treat with very 
limited options and poor prognosis.

The AhR is expressed in both hormone receptor-pos-
itive and -negative breast cancers including in TNBC 
(O’Donnell et al. 2010). Higher expression of AhR corre-
lates with better prognosis including increased overall sur-
vival and distant metastasis-free survival in different forms 
of breast cancer (O’Donnell et al. 2014). Targeting AhR 
expressing breast cancer patient subsets with AhR-based 
therapeutics is an exciting possibility for patients with 
limited treatment options and a recent paper elucidating 
the role of AhR in breast cancer is summarized in Table 6. 
Many studies presented in this table strongly support the 
role of AhR as an anti-cancer target in breast cancer.

TCDD pretreatment inhibited chemical carcinogen 
7,12-dimethylbenz[a]anthracene-induced mammary tumors 
in CB6F1 mice (Wang et al. 2011a). Diindolylmeth-
ane (DIM), a dietary AhR ligand, also inhibited DMBA-
induced mammary tumors in Sprague–Dawley rats (Chen 
et al. 1998). TCDD exposure reduced breast tumor metas-
tasis to the lung and to other mammary glands in a synge-
neic mouse model of breast cancer metastasis (Wang et al. 
2011b). Interestingly, TCDD treatment did not influence 
primary tumor growth in these mice or affect proliferation 
in in vitro assays. The data from these studies support test-
ing of AhR-targeting anti-cancer compounds independently 
both in vitro and in vivo studies. Most of the breast can-
cer deaths are due to complications in distant organ metas-
tasis, and systematic testing of different classes of AhR 
modulators will likely identify those that effectively inhibit 
metastasis.

The proton pump inhibitor omeprazole activates AhR 
transcription and also decreases metastasis of triple-nega-
tive breast cancer cells (Jin et al. 2014). Activation of the 
AhR by certain agonists including omeprazole downregu-
lated G-protein coupled receptor CXCR4, which is impli-
cated in the promotion of metastasis of breast tumors (Hall 
et al. 2010; Hsu et al. 2007, 2008; Jin et al. 2014; Wang 
et al. 2011b). AhR–regulated microRNAs also have roles 
in breast cancer metastasis. TCDD and MCDF induced 
the expression of miR-335 in BT474 and MDA-MD-231 Ta
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cells (Zhang et al. 2012a) resulting in the inhibition of the 
prometastatic SOX4 gene and inhibition of lung metasta-
sis in vivo. The antiestrogen raloxifene induced apoptosis 
in TNBC cells, indicating that this compound or its ana-
logs also have potential as AhR-targeted therapeutics for 
breast cancer therapy (O’Donnell et al. 2014). Focused vir-
tual ligand screening utilizing AhR ligand binding pocket 
models may help to identify such compounds (Bisson et al. 
2009; Perkins et al. 2014).

Cancer stem cells

There is also evidence that the AhR plays a role in stem 
cell functions and this includes an early study showing 
that AhR antagonists promoted the expansion of hemat-
opoietic stem cells (Bock 2017; Boitano et al. 2010; Cas-
ado et al. 2011; Hou et al. 2013; Rentas et al. 2016; Singh 
et al. 2009). Cancer stem cells are often drug resistant and 
are important for maintaining and expanding individual 
tumor types. There is also evidence that the AhR can be 
targeted in cancer stem cells; for example, the AhR-active 
pharmaceutical tranilast significantly inhibits breast can-
cer stem cell growth and metastasis in vivo using MDA-
MB-231 drug-surviving cancer stem cells (Prud’homme 
et al. 2010). Another study characterized the Ah-respon-
siveness of triple-negative Hs578T breast cancer-derived 
stem cells and showed that AhR ligands induce AhR 
interactions with Sox2, a regulator of self-renewal and 
this study clearly demonstrated a role for the AhR and its 
agonists as enhancers of cancer stem cells (Stanford et al. 
2016b). These results differ from those observed using 
tranilast suggesting some cell context-dependent differ-
ences in AhR function in breast cancer stem cells, and 
this may be related to differential expression of the AhR, 
Arnt, HIF-1α and other cofactors. Cheng et al. (2015) 
investigated the effects of several tryptophan-derived AhR 
ligands including 2-(1′H-indole-3′-carbonyl)-thiazole-
4-carboxylic acid methyl ester (ITE) and demonstrated 
that these compounds suppressed transcription of Oct4 
in stem-like cancer cells. ITE induced an AhR-dependent 
decrease in Oct4, a stem cell marker, and also decreased 
the tumorigenicity of stem-like leukemia (U87) cancer 
cells. In contrast, AhR antagonists enhanced leukemia 
stem cell activity (Pabst et al. 2014) and this corresponded 
to their effects reported in hematopoietic stem cells (Boi-
tano et al. 2010). These results and other studies (Kim 
et al. 2016; Tsai et al. 2015) demonstrate that the AhR 
and AhR-regulated genes such as Oct4 are important in 
cancer stem cells, indicating that AhR ligands (agonists or 
antagonists) are a unique set of agents for targeting cancer 
stem cells.

Concluding remarks

The endogenous function of the AhR as a tumor modifier 
and the anti-cancer effects stimulated by distinct classes of 
AhR ligands with diverse pharmacologies offer an oppor-
tunity to pursue AhR signaling holistically beyond TCDD-
induced responses. The effects of TCDD and AhR func-
tions have been interlinked for a long time resulting in 
decreased support by major funding agencies and biotech 
companies for developing AhR-based cancer therapeutics. 
The reason for the cautionary approach to target AhR in 
cancers is understandable, when there are other treatment 
options or clearly targetable molecular pathways. However, 
for difficult to treat cancers and for cancers where treatment 
options are very limited or non-existent, such as pancreatic, 
liver and hormone-independent breast and prostate cancers, 
the time is ripe to exploit the potential of AhR signaling to 
develop a new class of anti-cancer therapeutics. It is impor-
tant to define the modes of AhR function that contributes 
to its anti-cancer actions and some common themes have 
emerged including regulation of cell cycle genes (Hall et al. 
2010; Huang and Elferink 2005; Jin et al. 2014; Kolluri 
et al. 1999; Levine-Fridman et al. 2004; Zhang et al. 2009), 
interaction with distinct co-regulatory molecules (Bar-
hoover et al. 2010; Huang and Elferink 2005; Kang et al. 
2006; Safe et al. 2013) and non-genomic pathways that 
contribute to the anti-cancer activities of the AhR (Jin et al. 

Fig. 3  A summary of the role of the AhR and its ligands (agonists or 
antagonists) as inhibitors of carcinogenesis
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2015) (see summary; Fig. 3). Design and selection of AhR 
ligands based on a given anti-cancer mechanism of action 
will allow discovery of molecules with therapeutic value. 
There are numerous successful examples from the nuclear 
receptor field where therapeutics targeting the retinoid X 
receptor (bexarotene), ER (tamoxifen and raloxifene), AR 
(flutamide, enzalutamide) and glucocorticoid receptor (flu-
ticasone) (Bambury and Scher 2015; Helsen et al. 2014; le 
Maire et al. 2012; McDonnell and Wardell 2010; Su et al. 
2016) have been identified and used in clinical applications. 
It will be fascinating to see FDA-approved AhR-targeted 
compounds added to this list and this is strongly supported 
by the increasing number of studies showing that ligands 
for this receptor target many of the hallmarks of cancer 
(Fig. 2) through activating/inactivating various genes and 
pathways (Fig. 3).
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