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CYP1A2 in combination with NAT2 to be genotoxic, 
whereas SULT1A1 did not enhance their genotoxicity; 
(4) PhIP became genotoxic after CYP1A2 and SULT1A1 
bioactivation—NAT2 had not effect. Our results corrobo-
rate some previous data regarding the genotoxic potency of 
seven HAAs and established the genotoxicity mechanism 
for five others HAAs. This study also permits to compare 
efficiently the genotoxic potential of these 13 HAAs.

Keywords Genotoxicity · H2AX · Heterocyclic aromatic 
amines · Metabolism · V79 cells

Introduction

Heterocyclic aromatic amines (HAAs) are dietary car-
cinogens formed in some foodstuffs, but also arise in 
tobacco smoke (Turesky and Le Marchand 2011). HAAs 
are divided into two major classes. The pyrolysis HAAs 
(Fig.  1a) arise during high-temperature pyrolysis. These 
compounds contain a five-membered ring (imidazole or 
pyrrole) fused with two six-membered rings at separate 
sites. HAAs of the second class (Fig. 1b) contain a 2-ami-
noimidazo moiety fused to additional aromatic elements. 
They are formed in meats that are cooked at lower tempera-
tures, more commonly used in household kitchens (150 °C) 
(Skog et al. 1998).

Several HAAs have been shown to be carcinogenic in 
rodents, inducing tumors in multiple organs and tissues 
(Kato et al. 1988; Ohgaki et al. 1991). Whereas the liver is 
a major target organ for the carcinogenicity of many HAAs 
in rodents, only PhIP was found to induce tumors at other 
sites. Based on current evidence, the International Agency 
for Research on Cancer (IARC) classified 2-amino-3-me-
thyl-3H-imidazo[4,5-f]quinoline (IQ) as a probable human 
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carcinogen (class 2  A) and nine other HAAs as possible 
human carcinogens (class 2B) (IARC 2016). HAAs are 
pro-carcinogens and have to be metabolically activated to 
intermediates that form DNA adducts, leading to mutations 
and carcinogenesis. HAAs bioactivation pathway is initi-
ated by the hydroxylation of the exocyclic amine group by 
cytochrome P450 enzymes (CYPs). In general, CYP1A2 
is involved, but other CYPs are also able to N-hydroxylate 
some HAAs (Boobis et  al. 1994; Hammons et  al. 1997; 
Schut and Snyderwine 1999). N-Hydroxy-HAA metabo-
lites are substrates for phase II enzymes, such as N-acetyl-
transferases (NAT) or sulfotransferases (SULT), and form 
unstable esters that can transfer a resonance stabilized aryl-
nitrenium/carbonium ion to nucleophilic sites of DNA and 
other cellular molecules (Turesky and Le Marchand 2011).

The carcinogenicity of HAAs does not reflect the 
extraordinarily high mutagenicity of some congeners in 

the Ames test (Turesky and Le Marchand 2011). This dis-
crepancy may be attributed in part to the observed interspe-
cies differences in the metabolic fate of these compounds. 
The expression of biotransformation processes that can 
produce reactive intermediates varies widely among spe-
cies (Martignoni et  al. 2006), notably for HAAs (Turesky 
et al. 1999). On the other hand, the exceptionally efficient 
activation of some HAAs in the Ames test, owed to the 
expression of an acetyltransferase in the target cells, may 
be not reflecting the in vivo situation. In striking contrast 
to the Ames test, HAAs have often been found negative 
or only weakly positive in standard mutagenicity tests in 
mammalian cells in culture using external activation by 
S9 mix (Mizota et al. 2011; Westerink et al. 2010, 2011). 
This modest response in mammalian cell tests may be 
explained by the low expression, or lack, of NATs and 
SULTs in standard target cells. To better mimic the in vivo 
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Fig. 1  Structures of the different heterocyclic aromatic amines (HAAs) tested in this study. a Pyrolysis HAAs, b aminoimidazoarene HAAs
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situation, potential activating enzymes (CYPs and SULTs, 
NATs) were expressed in Chinese hamster V79 cells. Glatt 
and co-workers (Glatt et al. 2004; Glatt 2006) tested seven 
HAAs in these models for the induction of gene mutations 
at the Hprt locus (Glatt 2006; Glatt et al. 2004). Recently, 
we developed and validated a high-throughput genotoxic-
ity assay, named γH2AX in-cell western (ICW), in human 
cells (Audebert et  al. 2010). However, some human cells 
were unable to detect the genotoxicity of a limited number 
of genotoxic chemicals, notably IQ or PhIP. We suspected 
that these HAAs require specific bioactivation process not 
sufficiently covered by the cell lines used (Khoury et  al. 
2013, 2016a, b).

The aim of this study was to compare the genotoxic 
potential of 16 HAAs and related heterocyclics with the 
γH2AX ICW assay in parental V79 cells using three cell 
lines genetically engineered to express human CYP1A2 
alone or together with human SULT1A1 or NAT2, as pre-
viously employed in the Hprt gene mutation assay (Glatt 
2006; Glatt et  al. 2004). The objective was to answer the 
following questions: (1) are HAAs tested positive using 
the Hprt assay also positive in the γH2AX ICW assay in 
V79-derived cell lines? (2) What is the relative sensitivity 
of Hprt and γH2AX ICW? (3) Are the enzymatic require-
ments for the individual HAAs the same in both cases? If 
γH2AX ICW gives credible answers for the seven HAAs 
for which Hprt mutagenicity data are available, then 
γH2AX ICW tests could be conducted with additional 
HAAs to which humans are exposed.

Materials and methods

Caution

Heterocyclic aromatic amines are potential human carcino-
gens, and they should be handled carefully.

Chemicals and reagents

All compounds used were of analytical grade. 
9-(4′-aminophenyl)-9H-pyrido[3,4-b]indole (APNH), 
2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-
3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-
6-methyldupyrido[1,2-a:3′,2′-d]imidazole (Glu-P-1), 
2-aminodipyrido[1,2-a:3′,2′-d]imidazole (Glu-P-2), 
3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-
1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 
2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-
3,4-dimethyl-3H-imidazo[4,5-f]quinoline (4-MeIQ), 
2-amino-3-methyl-3H-imidazo[4,5-f]quinoxaline (IQx), 
2-amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline 
(8-MeIQx), 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]

quinoxaline (4,8-DiMeIQx), 2-amino-1,6-dimethyl-
1H-imidazo[4,5-b]pyridine (DMIP), 2-amino-1-methyl-
6-phenylimidazo[4,5-b]pyridine (PhIP), harman and nor-
harman, were purchased from Toronto Research Chemicals 
(North York, ON, Canada). All stock solutions of the tests 
compounds were prepared in 100% dimethyl sulfoxide 
(DMSO). From the stocks, tenfold dilution series were 
prepared.

Penicillin, Streptomycin, trypsin, PBS, RNAse A, and 
Triton X-100 were purchased from Sigma–Aldrich (Saint 
Quentin Fallavier, France). The phosphatase inhibitor cock-
tail tablets (“PHOSSTOP”) were purchased from Roche 
(France) and the blocking solution (MAXblock Blocking 
Medium) was purchased from Active Motif (Belgium). 
CF770 antibody and RedDot2 were purchased from Bio-
tium (Hayward, CA, USA).

Cell culture

The V79 clone used in our laboratory (V79-Mz) has been 
investigated for many xenobiotic-metabolizing activities 
(Glatt et  al. 1990). These cells do not show any endog-
enous CYP, SULT or NAT activities. V79-hCYP1A2, 
V79-hCYP1A2-hNAT2 and V79-hCYP1A2-hSULT1A1 
cells were generated from V79-Mz cells by introduction 
of appropriate expression vectors as described previously 
(Glatt et  al. 2004; Schmalix et  al. 1993). Clones stably 
expressing the corresponding enzymes were selected. The 
expression of CYP1A2, measured by immunoblotting 
and mutagenicity tests with a compound whose activa-
tion only requires CYP activity (benzo[a]pyrene-trans-
7,8-dihydrodiol), is known to be equal in V79-hCYP1A2, 
V79-hCYP1A2-hNAT2 and V79-hCYP1A2-hSULT1A1 
cells (Glatt et  al. 2004). The level of SULT1A1 protein 
in V79-hCYP1A2-hSULT1A1 cells is in the high hepatic 
physiological range, whereas the level of NAT2 in V79-
hCYP1A2-hNAT2 is higher (20-fold above the hepatic in a 
subject with high expression) (Glatt et al. 2004). The cells 
were grown in DMEM medium supplemented with 5% 
fetal bovine serum, 100 U ml−1 penicillin and 100 µg ml−1 
streptomycin (Glatt 2006; Glatt et al. 2004). Cultures were 
maintained in a humidified atmosphere with 5%  CO2 at 
37 °C and the medium was refreshed every 2–3 days during 
sub-culturing.

γH2AX in-cell western (ICW) assay

The γH2AX in-cell western technique was performed 
as previously described (Audebert et  al. 2010, 2011, 
2012; Graillot et  al. 2012a, b; Jamin et  al. 2013; Khoury 
et  al. 2013, 2016a, b; Quesnot et  al. 2016). Briefly, cells 
(3.2 × 104 cells per well) were grown in 96-well plates con-
taining 200  µl of medium. Sixteen hours later, cells were 
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treated in duplicate with the model compounds or vehicle 
in serum free medium. For each plate, DMSO (0.2% v/v 
final dose) was used as negative control. The positive con-
trol used in each treatment was 1 µM etoposide. 24 h after 
the treatment, cells were analyzed by the ICW technique. 
For the determination of genotoxicity, relative fluores-
cent units for γH2AX per cell (as determined by γH2AX 
divided by DNA content) were divided by the respective 
controls (vehicle only) to determine the change in phos-
phorylation of H2AX level compared with the control cells. 
To determine cytotoxicity, the DNA content (related to the 
number of cells) recorded in the treated cells was compared 
to the DNA content in control cells. All experiments were 
performed at least in triplicate, independently.

Data analysis

Results are presented as mean ± SEM (standard error of 
the mean) of at least three separate experiments. Statisti-
cally significant increases in H2AX phosphorylation after 
treatment were compared with the vehicle (DMSO) con-
trol using two-sided Student’s t test; *p < 0.05; **p < 0.01. 
Genotoxicity was considered positive when a compound 
induced a statistically significant 1.3-fold γH2AX histone 
phosphorylation at a level of cytotoxicity below 50% com-
pared to the control DMSO. These parameters were based 
on our previous studies (Khoury et al. 2013, 2016a, b) and 
are similar to those used by other groups who use γH2AX 
quantification for genotoxicity determination (Ando et  al. 
2014; Bryce et al. 2014; Smart et al. 2011).

Results

In a first step, we performed the γH2AX ICW assay with 
16 HAAs and related heterocyclics in the parental V79 cell 
line. None of these 16 compounds demonstrated any geno-
toxicity in this cell line devoid of functional human enzy-
matic activities (Fig. 2). Then we tested the same chemicals 
in three cell lines genetically engineered from V79 cells to 
express specific human xenobiotic-metabolizing enzymes 
(CYP1A2 alone, CYP1A2 plus SULT1A1 and CYP1A2 
plus NAT2). Out of the 16 compounds tested, three (har-
man, norharman and DMIP) did not exert any genotoxic-
ity whatever the cell line used and the concentration tested 
(data not shown).

For Trp-P-1, we observed almost the same concentra-
tion–response genotoxicity curves whatever the cell line 
used (V79-hCYP1A2, V79-hCYP1A2-hSULT1A1 and 
V79-hCYP1A2-hNAT2), with a LEC of 0.01 µM (Fig. 3; 
Table  1). AαC, Glu-P-1, MeAαC, Glu-P-2 and Trp-P-2 
were not genotoxic in V79-hCYP1A2 cells (Figs. 2c, e, f, 
4b, d). On the contrary, positive results were obtained with 

all these HAAs in V79-hCYP1A2-hSULT1A1 as well as 
in V79-hCYP1A2-hNAT2 cells with a LEC of 0.1 µM for 
AαC, Glu-P-1 and MeAαC, 1 µM for Trp-P-2, respectively, 
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and a LEC of 10 µM for Glu-P-2. APNH was tested posi-
tive in V79-hCYP1A2 cells at the 0.1 and 1 µM concentra-
tions, but its effects were drastically enhanced, with a LEC 
of 0.001 µM, when SULT1A1 or NAT2 were co-expressed 
with CYP1A2 (Fig.  4a). The concentration–response 
curves were found to be nearly equal in the latter cell lines 
for all these HAAs.

For the five other compounds (IQ, IQx, 4-MeIQ, 
8-MeIQx and 4,8-DiMeIQx) we observed only a mini-
mal genotoxicity when using V79-hCYP1A2 or V79-
hCYP1A2-hSULT1A1 cell lines, and this only for the 
two highest concentrations tested (1 and 10  µM, Fig.  5). 
Conversely, these chemicals were found to be strongly 
genotoxic in V79-hCYP1A2-hNAT2 cells, with a LEC 
of 0.01  µM for IQ, 4-MeIQ and 8-MeIQx, and a LEC of 
0.1  µM for IQx and 4,8-DiMeIQx. For PhIP (Fig.  6), we 
observed similar genotoxicity results in V79-hCYP1A2 
and V79-hCYP1A2-hNAT2 cells, with a LEC of 1  µM. 
Nevertheless, the genotoxicity of PhIP was increased by 
a factor of 10 in the V79-hCYP1A2-hSULT1A1 cell line, 
with a LEC of 0.1 µM.

Discussion

We investigated 16 HAAs and heterocyclics in four cell 
lines (V79 and three V79 derived cell lines engineered 
for expressing specific human enzymes) with the γH2AX 
ICW genotoxicity assay. This experimental work required 
approximately six person-months, much less than Hprt 
assays in the same cell lines (over 12 person-months for 

only seven compounds) (Glatt et  al. 2004; Glatt 2006). 
For seven HAAs it is possible to compare the results of 
the γH2AX ICW assay (current study) with those of the 
Hprt mutagenicity assay previously performed in the 
same cell lines (Table 1). None of these seven HAAs was 
found to be genotoxic with either assays in parental V79 
cells. The remaining 21 situations (seven compounds in 
three cell lines) can be subdivided as follows: five HAAs 
were negative in parental V79 cells with both assays; in 
three situations, both endpoints gave positive test results 
with a similar LEC (AαC and MeAαC in V79-hCYP1A2-
hSULT1A1; IQ in V79-hCYP1A2-hNAT2); in five situ-
ations both assays gave positive test results, but the LEC 
was lower for γH2AX ICW than for gene mutations 
(8-MeIQx, PhIP, AαC Glu-P-1 in hCYP1A2-hNAT2; 
PhIP in V79-hCYP1A2-hSULT1A1); in eight situations, 
positive results were only obtained when using the γH2AX 
ICW assay (IQ and PhIP in V79-hCYP1A2; Trp-P-2 and 
MeAαC in V79-hCYP1A2-hNAT2; IQ, in V79-hCYP1A2-
hSULT1A1 and Glu-P-1 in V79-hCYP1A2-hSULT1A1). 
This comparison demonstrates that γH2AX ICW was more 
sensitive than the gene mutation assay. However, some 
differences cannot be solely explained by differences in 
sensitivity. NAT2 enhanced the mutagenicity of PhIP, but 
not the γH2AX response in CYP1A2 expressing cells; 
NAT2, unlike SULT1A1, failed to enhance the mutagen-
icity of N-hydroxy-PhIP in S. typhimurium TA1538/1,8-
DNP-derived strains (devoid of endogenous acetyltrans-
ferase) (Muckel et  al. 2002). Conversely, NAT2 enhanced 
the γH2AX response to MeAαC similar to SULT1A1, 
whereas SULT1A1 was required for a mutagenic effect 

Table 1  Comparative 
genotoxicity of HAAs in 
V79 cells engineered for the 
expression of specific human 
xenobiotic-metabolizing 
enzymes, with the Hprt (Glatt 
et al. 2004; Glatt 2006) or 
γH2AX ICW (this study) assays

Concentrations in micromolar units correspond to the lowest effective concentration (LEC) observed (posi-
tive results) or the highest concentration that could be adequately tested (negative results)
nd, not determined; +, tested positive; − tested negative in this assay

Substances V79-hCYP1A2 V79-hCYP1A2-hNAT2 V79-hCYP1A2-
hSULT1A1

Hprt γH2AX Hprt γH2AX Hprt γH2AX

IQ −(30) +(10) +(0.01) +(0.01) −(30) +(1)
4-MeIQ nd +(0.1) nd +(0.01) nd +(1)
IQx nd −(10) nd +(0.1) nd −(10)
8-MeIQx −(100) −(1) +(0.1) +(0.01) −(30) +(1)
4,8-DiMeIQx nd −(10) nd +(0.1) nd −(10)
PhIP −(30) +(1) +(10) +(1) +(0.3) +(0.1)
AαC −(30) −(10) −(30) +(1) +(0.1) +(0.1)
MeAαC −(10) −(100) −(10) +(0.1) +(0.1) +(0.1)
Glu-P-1 −(100) −(10) +(0.3) +(0.1) −(30) +(0.1)
Glu-P-2 nd −(100) nd +(10) nd +(10)
Trp-P-1 nd +(0.1) nd +(0.01) nd +(0.01)
Trp-P-2 −(3) −(10) −(3) +(1) −(3) +(10)
APNH nd +(0.1) nd +(0.001) nd +(0.001)
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Fig. 4  In vitro genotoxicity of APNH, AαC, MeAαC, Trp-P-2, 
Glu-P-2 and Glu-P-1 tested with the γH2AX ICW assay in V79-
hCYP1A2, V79-hCYP1A2-hSULT1A1 and V79-hCYP1A2-hNAT2 
cell lines. a APNH, b AαC, c Glu-P-1, d MeAαC, e Glu-P-2, f Trp-

P-2. Each value represents the mean ± SEM (n ≥ 3) after 24 h of treat-
ment. Significant differences were observed between controls and 
matched group (*p ≤ 0.05, **p ≤ 0.01)
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in the Hprt assay. Finally, SULT1A1 enhanced the muta-
genicity of MeAαC and N-hydroxy-MeAαC in S. typh-
imurium TA1538/1,8-DNP-derived strains, although not 

as strongly as NAT2 (Glatt et al. 2004). Thus, few results 
obtained with the γH2AX ICW assay in recombinant V79 
cells do not exactly match Hprt results in the same cells, 
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(*p ≤ 0.05, **p ≤ 0.01)
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but are consistent with mutagenicity findings in recombi-
nant S. typhimurium strains. Incubation conditions (such 
as cell density) may affect the expression levels and impact 
of metabolizing enzymes. Putting aside these subtle differ-
ences, our findings regarding the role of phase II enzymes 
in the response returned by the γH2AX ICW test clearly 
match the results returned by the Hprt assay for the same 
cellular model, as well as that of various other experimen-
tal models (Glatt 2006; Glatt et  al. 2004; Muckel et  al. 
2002; Schut and Snyderwine 1999; Turesky and Le March-
and 2011; Wild et al. 1995). All these data may be helpful 
to improve structure–mutagenicity relationship for HAAs 
(Ripa et al. 2014; Shamovsky et al. 2011, 2012).

Selective or preferential terminal activation by either 
SULT1A1 or NAT2 may be owed to two factors. The first 
factor is the substrate specificity of enzymes. This is illus-
trated by the observation that mouse’s Sult1a1, unlike its 
human orthologue, is not able to activate PhIP (in geneti-
cally recombinant S. typhimurium strains as well as geneti-
cally modified mouse lines) and that rat Nat1 (the ortho-
logue of human NAT2), unlike human NAT1 and NAT2, 
expressed in S. typhimurium, is capable of activating 
N-hydroxy-PhIP (Meinl et  al. manuscript in preparation), 
although much less efficiently than SULT enzymes. The 
second factor is the chemical reactivity of acetic acid ver-
sus sulfuric acid esters. Sulfate is a better leaving group 
than acetate, as also reflected by the higher acidity of sul-
furic acid as compared to acetic acid. There is no infor-
mation available so far on the respective half-life times of 
acetic and sulfuric esters derived from heterocyclic amines. 
Yet, it has been shown that 1-acetoxymethylpyrene is only 
marginally hydrolyzed after a 70 h stay in water at 37 °C, 
whereas 1-sulfooxymethylpyrene exhibits a half-life time of 
2.8 min under the same conditions (Landsiedel et al. 1996).

Three out of the 16 compounds tested did not exert any 
genotoxicity in the recombinant cells. Two of these com-
pounds, harman and norharman, are heterocyclics lacking 

an exocyclic amino group. All previous genotoxicity tests 
experiments with these compounds have returned nega-
tive results (Chang et al. 1978; Holme et al. 1985). These 
negative findings underline the importance of the exocyclic 
amino group in the biological activity of HAAs. DMIP was 
the only HAA showing no genotoxic activity in this study, 
whatever the cellular model used. It differs from PhIP 
by the substitution of a methyl group for a phenyl group 
(Fig.  1). Therefore, the resonance stabilization of a nitre-
nium/carbonium ion formed from DMIP is expected to be 
weaker, as compared to PhIP. Then, even an excellent leav-
ing group, such as sulfate, may not provide enough reactiv-
ity to produce a genotoxic effect, simply because the inter-
mediate metabolite is not stable enough. APNH was found 
to be the most genotoxic HAA among the congeners tested 
in this study, exhibiting a LEC of 1  nM. Interestingly, in 
previous long-term carcinogenicity studies, lower in  vivo 
doses were required to observe a carcinogenic effect of 
APNH (Husain et al. 2007) than of other HAAs (Sugimura 
et  al. 2004). APNH differs from the other HAAs tested 
by the presence of a fourth aromatic ring. This additional 
ring may enhance the resonance stabilization of nitrenium/
carbonium ions, and consequently, the chemical reactivity 
of N-sulfoxy and N-acetoxy metabolites. Furthermore, we 
found that both human NAT2 and SULT1A1 were able to 
strongly enhance the genotoxic activity of APNH. Taken 
together, these findings may suggest a high carcinogenic 
activity of APNH in humans. Further studies, like APNH 
quantification in human urine (Nishigaki et  al. 2007) 
should be carried out to clarify the extent of human expo-
sure to APNH. As well, the conditions in which APNH is 
formed should be further investigated.

Only Trp-P-1 demonstrated a high genotoxic activity 
linked with CYP1A2 bioactivation, independently of the 
expression of SULT1A1 and NAT2 enzymes. Yamazoe 
et  al. reported that seryl-tRNA synthetase from yeast and 
prolylyl-tRNA synthetase from rat are able to stimulate 
the covalent binding of N-OH-Trp-P-2 to DNA in cell-free 
systems (Yamazoe et al. 1981, 1985). Likewise, Saito et al. 
observed the formation of a semistable glutathione con-
jugate from N-OH-Trp-P-2, which exhibited higher muta-
genic activity in S. typhimurium than N-OH-Trp-P-2 itself. 
Thus, unusual conjugation reactions may be involved in the 
activation of Trp-P-2 (Saito and Kato 1984).

In animal models, the main target organs of carcinogen-
esis differ between HAAs. It is probable that differences in 
bioactivation requirements are important factors underlying 
these organotropisms and species-dependent differences. 
In this study, we demonstrated that the final activation step 
of many HAAs is highly dependent upon conjugation reac-
tions. One might expect that tissues expressing high levels 
of the appropriate phase II enzyme(s) are potential targets 
for adverse effects of HAAs, provided they are sufficiently 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

PhIP (µM)

γ H
2A

X 
in

du
ct

io
n

Fig. 6  In vitro genotoxicity of PhIP tested with the γH2AX ICW 
assay in V79-hCYP1A2, V79-hCYP1A2-hSULT1A1 and V79-
hCYP1A2-hNAT2 cell lines. Each value represents the mean ± SEM 
(n ≥ 3) after 24 h of treatment. Significant differences were observed 
between controls and matched group (*p ≤ 0.05, **p ≤ 0.01)
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exposed to N-hydroxy-HAAs, via local activation of HAAs 
by CYPs or via the circulation. In humans, SULT1A1 is 
expressed in many different tissues, the levels being par-
ticularly high in liver and gut (Teubner et  al. 2007). It 
appears that few human tissues express NAT2, primarily 
the large intestine (Husain et al. 2007). It has to be empha-
sized that expression sites and substrate specificity of 
orthologous enzymes can substantially vary between spe-
cies. This is true in particular for SULTs (Dobbernack et al. 
2011; Glatt et al. 1998; Meinl et al. 2013). The tissue distri-
bution of DNA adduct formation by PhIP in wild-type mice 
and in mice transgenic for the human SULT1A1–SULT1A2 
gene cluster was investigated by in animals orally exposed 
to PhIP (Dobbernack et  al. 2011; Hoie et  al. 2016). 
Whereas the liver demonstrated the lowest level of DNA 
adducts in wild-type mice, it was the tissue exhibiting 
the highest adduct levels in transgenic mice. This selec-
tive influence of transgenic SULT1A1–SULT1A2 in the 
liver contrasted with the high expression of the transgene 
in many extrahepatic tissues. We suspect that PhIP is pri-
marily converted to N-hydroxy-PhIP in the liver; in trans-
genic mice, it is expected that this metabolite is immedi-
ately converted into a DNA reactive, short-lived ester by 
human SULT1A1 and SULT1A2, explaining the high 
hepatic adduct levels. Since in wild-type mouse, SULT1A1 
does not activate N-hydroxy-PhIP, much N-hydroxy-PhIP 
may escape the liver and be further activated in other tis-
sues (Meinl et  al. manuscript in preparation). This exam-
ple illustrates that knowledge of critical phase II enzymes 
may be useful to explain target sites of HAAs. Neverthe-
less, broad knowledge on the toxicokinetics, including the 
role of many phase I and phase II enzymes, will be required 
for the prediction of target sites in humans. High-through-
put genotoxicity assays, such as γH2AX ICW, in combina-
tion with recombinant cell lines should be useful tools for 
obtaining the relevant information.
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