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larvae exposed to 4  µM chlorpyrifos oxon [1  ×  median 
lethal concentration (LC50)] were determined. Moreover, 
the neuroprotective effects of pralidoxime, memantine, 
caramiphen and dexamethasone at the gross morphological 
level were confirmed by histopathological and transcrip-
tional analyses. Our results demonstrated that the zebrafish 
model for severe acute OP intoxication has a high predic-
tive value and can be used to identify new compounds 
that provide neuroprotection against severe acute OP 
intoxication.
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Introduction

Organophosphorus (OP) compounds are a class of acetyl-
cholinesterase (AChE) inhibitors used not only in agricul-
ture and industry but also as chemical warfare nerve agents. 
Severe acute OP intoxication is a worldwide clinical and 
public health problem, with an estimated 3 million cases 
and 300,000 deaths annually (Bertolote et al. 2006; Eddles-
ton and Phillips 2004). In developing countries, in particu-
lar those from the Asia–Pacific region, the major concern 
is self-poisoning with OP pesticides. However, developed 
countries are predominantly concerned with the poten-
tial use of highly toxic OP compounds by terrorists or the 
release of these compounds during transportation or from 
storage facilities after an accident or natural disaster (Jett 
and Yeung 2015).

Neurodegeneration and brain damage are the hall-
marks of severe acute OP intoxication. OP compounds 
inhibit AChE, resulting in the accumulation of the 
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neurotransmitter acetylcholine (ACh) at the cholinergic 
synaptic clefts and subsequent long-term activation of the 
nicotinic and muscarinic ACh receptors (AChR), overstim-
ulation of the cholinergic neurons, hyperexcitation and sei-
zures (Pena-Llopis 2005). Then, a cascade of downstream 
events occurs, resulting in secondary neuronal toxicity. 
The release of excitatory amino acids (EAAs), such as glu-
tamate and aspartate, and the activation of the N-methyl-
d-aspartate (NMDA) receptors promote intracellular Ca2+ 
influx, which can activate different lipases, proteases, endo-
nucleases, kinases or phosphatases and result in severe 
brain damage (Kaur et  al. 2014). The generation of reac-
tive oxygen or nitrogen species may also play an important 
role in the development of neuroinflammation and cellular 
death that are found in severe acute OP intoxication (Eisen-
kraft et al. 2013; Pena-Llopis 2005).

Although many different mechanisms are involved in the 
pathophysiology of severe acute OP intoxication, the stand-
ard therapy has not changed much over the last 50 years. 
Pyridostigmine bromide is the only FDA-approved pro-
phylactic drug (Jett and Yeung 2015), and standard therapy 
is essentially restricted to the administration of atropine 
to counteract muscarinic overstimulation and an oxime to 
reactivate AChE (Balali-Mood and Saber 2012). Admin-
istration of benzodiazepines to control convulsions and 
mechanical respiration may be required. However, the 
limitations of these treatments are well known, and new 
and more efficient therapies are needed (Albuquerque et al. 
2006; Buckley et al. 2004).

Zebrafish is a vertebrate model increasingly used in 
biomedical research, including human toxicology stud-
ies (Raldúa et  al. 2012; Thienpont et  al. 2011). One key 
advantage of zebrafish embryos/larvae over other ver-
tebrate models for drug discovery is their suitability for 
in vivo high-throughput screening of chemical libraries for 
pharmacological and/or toxicological effects. In this con-
text, zebrafish has been proposed as an intermediate step 
between single cell-based assays and mammalian (and ulti-
mately human) testing. Furthermore, previous studies have 
indicated that zebrafish is an excellent organism for model-
ling human neuropathological processes (Babin et al. 2014; 
Kabashi et al. 2010).

Recently, we generated a zebrafish chemical model 
of severe acute OP intoxication using chlorpyrifos oxon 
(CPO) as a prototypic OP compound (Faria et  al. 2015). 
At the gross morphological level, this zebrafish model was 
characterized by a compacted head with areas of opacifica-
tion, which indicates brain necrosis (Rodriguez and Driever 
1997). Further histopathological analyses confirmed the 
presence of severe brain damage underlying the observed 
morphological changes (Faria et  al. 2015). Moreover, we 
demonstrated that the zebrafish severe acute OP intoxi-
cation model displays many of the pathophysiological 

mechanisms, including AChE inhibition, NMDA receptor 
activation, calcium dysregulation and activation of inflam-
matory and immune responses, underlying this toxidrome 
in humans. Three hours after exposure to CPO, a percent-
age of the larvae displayed morphological changes in the 
head, and the development of this larval phenotype was 
already irreversible. Although the above data strongly sug-
gest that this model could be useful for identifying new 
compounds that protect against brain toxicity in humans 
with severe acute OP intoxication, additional studies are 
needed to demonstrate the predictive power of the model.

The purpose of this study was to assess the suitability 
of the zebrafish severe acute OP intoxication model for 
identifying new compounds that provide neuroprotection 
against severe acute OP intoxication in humans. We used 
this zebrafish model, which was induced with 4 μM CPO 
[1 ×  LC50 (median lethal concentration)], to assess the 
potential neuroprotective effects of a panel of drugs com-
monly used in human medicine (Table S1). First, a pre-
treatment therapeutic approach was designed to assess 
the suitability of the zebrafish model for identifying 
medical countermeasures that protect against intoxication 
when administered prior to acute OP exposure. Person-
nel that should be pre-treated with these medical coun-
termeasures include first responders, such as emergency 
medical technicians, and individuals responsible for site 
decontamination (Jett and Yeung 2015). Four reversible 
AChE inhibitors (huperzine A, galantamine, physostig-
mine and pyridostigmine), as well as the muscarinic 
AChR antagonist atropine and the oxime pralidoxime, 
were tested using the pre-treatment approach. Moreo-
ver, a post-treatment therapeutic approach was designed 
to assess the suitability of the model for identifying new 
molecules with neuroprotective effects in cases of severe 
acute OP intoxication. Atropine, pralidoxime and a panel 
of drugs targeting selected key events of the pathophysi-
ological pathways of this condition were tested using the 
post-treatment approach. These selected drugs included 
two NMDA receptor antagonists (MK-801 and meman-
tine), two dual-function NMDA receptor and AChR 
antagonists (caramiphen and benactyzine) and two anti-
inflammatory drugs (dexamethasone and ibuprofen). The 
effects on the 24-h survival and the prevalence of abnor-
mal heads were determined for all compounds. Moreover, 
the effectiveness of the countermeasures to protect the 
brain was further confirmed by histopathological evalua-
tion and by mRNA quantification of three selected genes 
(il-12, hspb11, pth1a) that are potentially involved in 
severe acute OP intoxication. Our results demonstrate that 
the zebrafish model for severe acute OP intoxication pro-
vides reasonably accurate evaluations of the neuroprotec-
tive effects of well-characterized antidotes in mammalian 
models.
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Methods

Fish husbandry and larvae production

Adult wild-type zebrafish were maintained in fish water 
[reverse-osmosis purified water containing 90  µg/ml of 
Instant Ocean (Aquarium Systems, Sarrebourg, France) 
and 0.58 mM CaSO4˙2H2O] at 28 ± 1 °C in the Research 
and Development Centre of the Spanish Research Council 
(CID-CSIC) facilities under standard conditions. Embryos 
were obtained by natural mating and maintained in fish 
water at 28.5  °C. Larvae were not fed during the experi-
mental period. All procedures were conducted in accord-
ance with the institutional guidelines under a licence from 
the local government (DAMM 7669, 7964) and were 
approved by the Institutional Animal Care and Use Com-
mittees at the CID-CSIC.

Chemicals

Chlorpyrifos oxon (CPO) (CAS#5598-15-2, 98.1 % purity) 
was purchased from Chem Service (West Chester, PA). Gal-
antamine hydrobromide (CAS#1953-04-4, ≥98  % purity) 
and benactyzine hydrochloride (CAS#57-37-4,  ≥98  % 
purity) were purchased from Santa Cruz Biotechnology 
(Santa Cruz, CA). Atropine (CAS 51-55-8, ≥99 % purity), 
pralidoxime chloride (2-PAM; CAS#51-15-0,  ≥97  % 
purity), (±)-huperzine A (CAS#120786-18-7,  ≥  98  % 
purity), caramiphen hydrochloride (CAS#125-85-9, ≥98 % 
purity), dexamethasone (CAS#50-02-2,  ≥98  % purity), 
physostigmine (eserine hemisulfate salt; CAS#64-47-
1, ≥99 % purity), memantine hydrochloride (CAS#41100-
52-1, ≥98 % purity), pyridostigmine bromine (CAS#101-
26-8, ≥98 % purity), MK-801 (CAS#77086-22-7, ≥98 % 
purity) and ibuprofen (CAS#15687-27-1,  ≥98  % purity) 
were all purchased from Sigma-Aldrich (St. Louis, MO).

Stock solutions of CPO and dexamethasone were pre-
pared in dimethyl sulfoxide (DMSO), stock solutions of 
ibuprofen were prepared in ethanol, and stock solutions of 
galantamine, benactyzine, atropine, pralidoxime, huperzine 
A, caramiphen, physostigmine, memantine, pyridostigmine 
and MK-801 were prepared directly in fish water. Exposure 
solutions were prepared by diluting the stock solution in fish 
water. The final concentration of the solvent in the exposure 
solutions was 0.01 %, except for the reversible AChE inhibi-
tors. Several of these compounds only weakly penetrate the 
skin of zebrafish larvae in water (Behra et al. 2004; Fischer 
et  al. 2015); thus, 1 % DMSO was added to the exposure 
medium for this group of compounds (Berghmans et  al. 
2008). A preliminary range-finding test was performed for 
each drug, and the final selected concentration corresponds 
to the no observed effect concentration (NOEC) for survival 
and gross morphological defects, unless otherwise stated.

General experimental design

Severe acute OP intoxication model generation

For the severe acute OP intoxication model generation, 
zebrafish larvae were transferred to 48-well plates (1 larva 
per well) at 7 days post-fertilization (dpf) and exposed for 
24 h to 4 µM CPO, which corresponds to 1 × LC50 (Faria 
et  al. 2015), in a dark incubator at 28.5  °C. Control lar-
vae were exposed to the same concentration of the carrier 
(0.1  % DMSO) under identical conditions. The zebrafish 
model was characterized by a compacted head with areas 
of opacification at the gross morphological level. At the end 
of every experiment, survival and prevalence of the mor-
phological changes in the head were determined.

Therapeutic approaches

Two different therapeutic approaches were used (see 
Fig. 1a, b):

1.	 Pre-treatment 7-dpf zebrafish larvae were pre-treated 
with selected concentrations of different prophylac-
tic drugs for 1 h and were then co-exposed to a cock-
tail of 1 ×  LC50 CPO plus the prophylactic drugs for 
an additional 24 h. The drugs assessed using this thera-
peutic approach were galantamine (0.5  mM), huper-
zine A (1 µM), physostigmine (75 µM), pyridostigmine 
(10 mM), atropine (0.4 mM) and pralidoxime (0.4 mM). 
For galantamine, which has a very low permeability in 
zebrafish, the pre-treatment period was increased to 24 h 
(from 6 to 7 dpf). Survival and morphological features 
were recorded at the end of the 24 h incubation period.

2.	 Post-treatment 7-dpf zebrafish larvae were first chal-
lenged with 1  ×  LC50 CPO alone for 3  h and were 
then co-exposed for an additional 21  h to a cocktail 
of 1 ×  LC50 CPO plus the post-treatment drugs. The 
selected drugs included pralidoxime (0.4 mM), atropine 
(0.4 mM), MK-801 (100 µM), memantine (50 µM), car-
amiphen (25 µM), benactyzine (50 µM), dexamethasone 
(40  nM) and ibuprofen (2.5  µM). Survival and preva-
lence of the morphological changes in the head were 
assessed at the end of the incubation period (3 h + 21 h).

Gross morphological analyses

Morphological analyses of the zebrafish head were per-
formed using standard protocols (Supplementary Methods).

Histopathological analysis

Histopathological analysis was performed using light micros-
copy with standard protocols (Supplementary Methods).
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RNA preparation and qRT‑PCR analysis

RNA preparation and qRT-PCR analysis were performed 
following standard protocols (Supplementary Methods).

Data analysis

Each experiment was carried out with its corresponding 
negative control (solvent control) and positive control 
(medium with CPO only). The two endpoints, survival 
and changes in head morphology, were calculated as a 
per cent of the total n of the corresponding treatment. 

The mean value of the CPO only responses was consid-
ered 100 %, and the results of all co-exposure treatments 
were then determined relative to the corresponding CPO 
treatment. The data were analysed with a Student’s t test 
using IBM SPSS 19.0 (Statistical Package 2010, Chi-
cago, IL). Data are presented as the mean ± SEM of 2–3 
independent experiments, unless otherwise stated. Sig-
nificance was set at P < 0.05. Analysis of the qRT-PCR 
data, which was normally distributed (Levene’s test), was 
performed using the ΔΔCt method. Differences among 
the control and treated groups were analysed by Stu-
dent’s t test.

Fig. 1   Drugs used in mammalian models to protect against 
severe acute OP intoxication have a similar effect in zebrafish. a, b 
Scheme of the pre-treatment (a) and post-treatment (b) experimental 
approaches used in this study to assess the effects of drugs admin-
istered for prophylaxis and treatment, respectively. c, d Effects of 
a panel of drugs on the mortality rate of the zebrafish severe acute 
OP intoxication model using the pre-treatment (c) and post-treat-
ment (d) approaches. Mortality (%) for each drug is represented as 
the percentage of dead larvae (mean ±  SE; n: 95–192) relative to 
that of the group exposed to 4 μM chlorpyrifos oxon (CPO) alone. 
Drug concentrations used in the pre-treatment approach were as 
follows: pyridostigmine, 10  mM; physostigmine, 75  μM; galan-
tamine, 0.5  mM; huperzine A, 1  μM; pralidoxime, 0.4  mM; atro-

pine, 0.4 mM. e, f Effects of a panel of drugs on the prevalence of 
the changes in the head morphology of the larvae using the pre-treat-
ment (e) and post-treatment (f) approaches. Prevalence of the mor-
phological changes (%) is represented as the percentage of larvae 
(mean ±  SE; n: 80–192) exhibiting altered head morphology rela-
tive to that of the larvae exposed to CPO alone. Drug concentrations 
used in the post-treatment approach were as follows: pralidoxime, 
0.4 mM; atropine, 0.4 mM; memantine, 100 μM; MK-801, 50 μM; 
caramiphen, 25 μM; benactyzine, 50 μM; dexamethasone, 40  nM; 
ibuprofen, 2.5 μM. The results are pooled data from 2 to 3 independ-
ent experiments. Asterisks indicate significant differences between 
the larvae treated with a drug and those in the CPO group [*P < 0.05; 
**P < 0.01 or ***P < 0.001, following a one-tailed Student’s t test]
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Results

Pre‑treatment

Using the pre-treatment therapeutic approach (Fig. 1a), we 
explored the potential prophylactic effects of four revers-
ible AChE inhibitors (galantamine, huperzine A, physostig-
mine and pyridostigmine) on zebrafish larvae exposed to 
1 × LC50 CPO for 24 h. Pre-treatment with all four drugs 
resulted in a significant reduction (P < 0.01) in both mor-
tality and prevalence of larvae with morphological changes 
in the head (Fig. 1c, e; Table 1). The reduction in morpho-
logical changes was very similar across all tested drugs and 
had a range of 51.9–58.5 % (Fig. 1c, e; Table 1). However, 
there were differences among the drugs in the reduction 
of lethality. Thus, physostigmine increased the survival 
to 83.9 %, while the increases in survival caused by pyri-
dostigmine, huperzine A and galantamine were more mod-
erate (Fig. 1c; Table 1).

Atropine and/or pralidoxime are antidotes commonly 
administered in mammalian models of acute OP intoxica-
tion shortly before or 1 min after the OP exposure to reduce 
mortality. When zebrafish larvae were pre-treated with 
atropine, a significant increase in survival was found, with 
a concomitant reduction in the prevalence of morphological 
changes (Fig.  1c, e; Table  1). Interestingly, pre-treatment 

with pralidoxime provided the highest degree of protec-
tion of all the chemicals and treatments tested in this study, 
with a 97.4  ±  1.8  % reduction in the prevalence of the 
severe phenotype and a 96.9 ± 3.1 % decrease in lethality 
(Fig. 1c, e; Table 1).

Post‑treatment

The effectiveness of atropine and pralidoxime in protecting 
poisoned zebrafish was also tested using the post-treatment 
therapeutic approach (Fig. 1b). Although both drugs signif-
icantly reduced the prevalence of morphological changes, 
the effectiveness of pralidoxime was higher than that of 
atropine (Fig.  1f; Table  1). Furthermore, post-treatment 
with pralidoxime, but not atropine, significantly increased 
the survival of the larvae (Fig. 1d; Table 1).

Our next objective was to analyse the efficacy of the 
drugs targeting the secondary neuronal toxicity pathways 
in zebrafish. Thus, the efficacy of two NMDA receptor 
agonists (memantine and MK-801) and two dual-func-
tion NMDA receptor and AChR antagonists (caramiphen 
and benactyzine) was tested in zebrafish using the post-
treatment therapeutic approach. Exposure of zebrafish 
larvae to selected concentrations of each drug alone did 
not affect mortality or morphology, with the exception of 
MK-801, which caused altered pigmentation in the larvae. 

Table 1   Analysis of the effectiveness of twelve human antidotes to protect zebrafish larvae from severe acute OP intoxication

The prevalence of morphological changes in the head and mortality are represented as % relative to the corresponding CPO group. The results 
are shown as the mean ± SEM. P values are given for each endpoint and treatment, with * P < 0.05; ** P < 0.01, simple one-tailed Student’s t 
test

* P < 0.05; ** P < 0.01
a  Number of experimental replicates

Drug class Exposure type Total na Phenotype prevalence 
%

P value Mortality  % P value

Pralidoxime (0.4 mM) Standard antidotes Pre-treatment 192 (4) 2.65 ± 1.80 1.19E-05** 3.10 ± 3.09 3.72E-07**

Pralidoxime (0.4 mM) Post-treatment 144 (3) 19.74 ± 7.2 1.61E-04** 9.28 ± 4.51 3.25E-06**

Atropine (0.4 mM) Pre-treatment 95 (2) 31.4 ± 15.0 5.00E-04** 16.8 ± 10.4 1.80E-03**

Atropine (0.4 mM) Post-treatment 95 (2) 30.3 ± 5.10 1.36E-03** 73.1 ± 8.25 6.04E-02

Pyridostigmine 
(10 mM)

AChE reversible  
inhibitors

Pre-treatment 131 (3) 43.1 ± 4.6 1.69E-05** 43.6 ± 6.13 3.24E-04**

Huperzine A (1 µM) Pre-treatment 96 (2) 48.1 ± 3.8 6.17E-05** 40.6 ± 5.14 1.44E-04**

Galantamine (0.5 mM) Pre-treatment 120 (2) 41.5 ± 16.4 3.12E-04** 46.8 ± 29.7 3.64E-03**

Physostigmine (75 µM) Pre-treatment 126 (3) 42.4 ± 4.0 1.74E-04** 16.1 ± 4.25 6.21E-06**

Memantine (100 µM) NMDA receptor 
antagonists

Post-treatment 191 (3) 34.6 ± 19.3 1.14E-07** 47.0 ± 16.7 7.93E-05**

MK-801 (50 µM) Post-treatment 96 (2) 18.6 ± 11.13 2.31E-07** 36.1 ± 6.53 1.80E-04**

Benactyzine (50 µM) AChR and NMDA 
receptor antagonists

Post-treatment 80 (2) 62.8 ± 6.50 1.08E-02* 48.7 ± 9.73 4.41E-03**

Caramiphen (25 µM) Post-treatment 144 (2) 28.0 ± 19.4 1.32E-06** 39.9 ± 13.58 9.36E-03**

Ibuprofen (2.5 µM) Anti-inflammatory Post-treatment 95 (2) 37.2 ± 10.6 6.34E-06** 61.1 ± 12.27 7.31E-03**

Dexamethasone 
(40 nM)

Post-treatment 95 (2) 62.1 ± 4.98 3.68E-04** 73.9 ± 5.54 3.27E-02*
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Administration of the antiglutamatergic drugs significantly 
reduced both mortality and the prevalence of morphologi-
cal changes in the head (Fig. 1d, f; Table 1). Post-treatment 
with MK-801 and caramiphen provided the maximal pro-
tection in this group, with a reduction of 63.9 and 60.1 % 
in mortality (Fig. 1d; Table 1), respectively, and a reduction 
in the prevalence of morphological changes of 81.4 and 
72.0 % (Fig. 1f; Table 1), respectively.

Finally, the efficacy of two anti-inflammatory drugs, 
including one steroid (dexamethasone) and one non-ster-
oid anti-inflammatory drug (ibuprofen), was tested in the 
severe acute OP intoxication zebrafish model using the 
post-treatment therapeutic approach. Although post-treat-
ment of zebrafish exposed to 1  ×  LC50 CPO with both 
drugs increased the survival and decreased the prevalence 
of the severe phenotype, the degree of protection pro-
vided by ibuprofen was higher than that of dexamethasone 
(Fig. 1d, f; Table 1).

Recovery of severe acute OP intoxication at different 
levels of organization

Once the efficacy of the drugs was demonstrated in 
zebrafish, our next objective was to determine whether the 
protection against changes in head morphology was indeed 
predictive of a neuroprotective effect at the cellular and 
molecular levels. However, approximately 45 % of the lar-
vae exposed to 1 × LC50 CPO for 24 h were resistant to the 
severe acute OP intoxication phenotype (Fig. 2). Thus, it is 
difficult to determine whether a larva with normal morphol-
ogy following treatment with the drugs is a true “rescued” 
larva or just a “resistant” larva. To overcome this confound-
ing factor, we used an adapted post-treatment approach pro-
tocol, in which the head morphology of each larva was ana-
lysed twice: (1) just before (i.e. 3 h after exposure to CPO) 
treatment and (2) at the end of the treatment. The protective 
effects of pralidoxime, memantine, caramiphen and dexa-
methasone in larvae exhibiting clear signs of severe acute 
OP intoxication at 3 h after exposure were also analysed at 
the end of the experiment (Fig. 3; Table 2).

For each compound, Fig. 3 shows the phenotype of the 
head, at the gross morphological level, of one representa-
tive larva just before (3 h; Fig. 3a, d, h, m, r, w) and at the 
end (24 h; Fig. 3b, e, i, n, s, x) of the antidote treatment. At 
3 h after exposure, larvae with moderate changes in head 
morphology (37–46  % of the surviving larvae; Table  2) 
were selected for the antidote treatment. When larvae were 
exposed to CPO for an additional 21 h, approximately 40 % 
died, and the remaining 60  % showed strong increases 
in the severity of the morphological changes in the head 
(Fig.  3e, g; Table  2). The histopathological evaluation of 
the brain of the same larva showed widespread liquefac-
tive necrosis with a total disruption of the local architecture 

(Fig. 3f). Moreover, transcriptional analyses showed upreg-
ulation of genes related to calcium homeostasis (hspb11, 
pth1a) and the inflammatory response (il-12), molecular 
events potentially involved in severe acute OP intoxication 
pathogenesis (Fig. 3l, q, v, aa).

Pralidoxime had a very potent neuroprotective effect. 
Post-treatment with this drug recovered normal head mor-
phology in 87.7  % of the selected larvae (Fig.  3h, i, k). 
Additionally, the lesions characteristic of severe acute OP 
intoxication at the histological level were not observed 
(Fig.  3j). Finally, pralidoxime also resulted in a partial 
recovery of pth1a and il-12 levels (Fig. 3l).

Memantine also counteracted the effects of CPO on 
the gross morphology of the head in approximately 47 % 
of the larvae (Fig. 3m, n, p), and histopathological assess-
ment showed the absence of general liquefactive necrosis 
(Fig. 3o). However, in this case, isolated or small groups of 
neurons displaying signs of acute degeneration and necro-
sis in different regions of the encephalon and also increased 
white areas in the white and grey matter indicated the pres-
ence of oedema (Fig. S1). Finally, memantine was shown 
to induce a significant recovery in the expression of all 
three genes (Fig.  3q). Interestingly, after treatment with 
memantine, the expression of hspb11, a calcium homeo-
stasis-related gene, returned to the control levels (Fig. 3q). 
Very similar results were obtained with caramiphen, a dual-
function AChR and NMDA receptor antagonist (Fig. 3r–v).

Finally, although dexamethasone protected against the 
liquefactive necrosis in approximately 42 % of the larvae 
(Fig.  3w–z), similar focal lesions as those observed fol-
lowing memantine treatment were present after treatment 
with this compound. Dexamethasone induced a significant 
recovery in only two of the three selected genes (Fig. 3a).

Fig. 2   Prevalence of the changes in the head morphology observed 
3 and 24 h post-exposure to 4 µM CPO. The results are representa-
tive of larvae from all recovery experiments. Responses are shown 
as % relative to the total number of larvae and represented as the 
mean ± SEM, total n > 300. P = 0.117, simple one-tailed Student’s 
t test
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Fig. 3   Recovery of the normal head phenotype in the severe acute 
OP intoxication zebrafish model after drug administration is predic-
tive of the protective effect at the cellular and molecular levels. An 
adapted post-treatment protocol was used, and 7 days post-fertiliza-
tion (dpf) larvae were exposed to 4 μM chlorpyrifos oxon (CPO) for 
24 h. Then, the head morphology of each larva was analysed after 3 
and 24 h of treatment. The leftmost column of this panel shows the 
lateral views of the head of one representative control larva (a) or 
a larva exposed to CPO for 3 h (d, h, m, r, w). Importantly, at 3 h 
post-exposure, only those larvae that exhibited signs of brain toxic-
ity, including a mild enlargement of the forebrain (f) and midbrain 
(m), were selected for antidote administration. Thus, immediately 
after recording the 3  h post-exposure results, the antidotes were 
administered for an additional 21 h: 0.4 mM pralidoxime (I), 100 μM 
memantine (n), 25 μM caramiphen (s), and 40  nM dexamethasone 
(x). After analysis of the phenotypes at the end of the exposure, the 
larvae were fixed and processed for histopathological assessment. 
Parasagittal sections of the heads of larvae from the control (c), CPO 
(f), pralidoxime (j), memantine (o), caramiphen (t) and dexametha-
sone (y) groups at the end of the experimental period are shown. The 

control larva (c) has a normal histological structure of the central 
nervous system, but severe and extensive liquefactive acute damage 
was found after CPO exposure (f). Notice the absence of the exten-
sive lesions induced by CPO exposure in larvae treated with the anti-
dotes (j, o, t, y). In the three columns on the left of this panel, pictures 
from the same line correspond to the same animal. In addition, the 
efficacy of the antidotes can be assessed by the relative frequency of 
the three phenotypes: (1) severe phenotype (brain toxicity), (2) res-
cued phenotype and (3) dead. In the CPO (g) group, there was no 
recovery of the phenotype, but larvae treated with pralidoxime (k), 
memantine (p), caramiphen (u) and dexamethasone (z) exhibited a 
significant recovery. Finally, the rightmost column shows the effects 
of pralidoxime (l), memantine (q), caramiphen (v) and dexametha-
sone (aa) on the relative gene expression of il-12, hspb11 and pth1a, 
three genes upregulated in zebrafish larvae exhibiting brain toxicity. 
Asterisks indicate significant differences between the larvae treated 
with a drug and those of the CPO group [*P < 0.05; **P < 0.01 or 
***P  <  0.001, following a one-tailed Student’s t test]. Scale bars 
300 μm
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Discussion

The present study demonstrates that a panel of drugs used 
to protect against the brain toxicity associated with severe 
acute OP intoxication in mammalian species exhibits simi-
lar neuroprotective effects in zebrafish. Therefore, these 
results indicate that the zebrafish model can be used to 
identify new compounds that protect against severe acute 
OP intoxication in humans.

The zebrafish model of severe acute OP intoxication 
used in the present study was developed using CPO, the 
major active metabolite of chlorpyrifos (CPF). While CPF 
is an atypical OP compound (López-Crespo et  al. 2007), 
CPO is considered a prototypic OP compound (Faria et al. 
2015; Garcia-Reyero et al. 2016). Thus, by selecting CPO 
for the model development, the specific effects of the 
parental compound as well as the effect of bioactivation 
were not considered. CPO is also a well-known develop-
mental neurotoxicant (Estevan et  al. 2013, 2014; Sogorb 
et al. 2016), and subacute exposure of zebrafish embryos to 
this compound inhibits the axonal growth of sensory neu-
rons, primary motor neurons and secondary motor neurons 
(Jacobson et  al. 2010; Yang et  al. 2011). Although most 
structures of the nervous system of the zebrafish larvae are 
well developed at 7 days post-fertilization and the adverse 
effects found at different levels of organization are similar 

to those reported in adult mammals with severe acute OP 
intoxication, the possibility of adverse effects on the devel-
opment of specific structures of the nervous system in the 
exposed larvae cannot be ruled out.

During severe acute OP intoxication, initial seizures 
rapidly progress to status epilepticus and finally result 
in profound brain damage (Shih and McDonough 1997; 
Tryphonas and Clement 1995). The proposed sequence of 
events consists of three phases: an early cholinergic phase, 
a transitional phase of mixed cholinergic/non-cholinergic 
modulation, and finally, a non-cholinergic phase (Shih and 
McDonough 1997). During the early cholinergic phase, 
AChE inhibition results in increased ACh levels in the syn-
aptic clefts, triggering seizure activity in several susceptible 
areas of the brain. Then, seizure activity rapidly spreads, 
perturbing other neurotransmitter systems. Anticholinergic 
drugs, such as reversible AChE inhibitors and AChR antag-
onists, block seizures at this early stage and prevent brain 
damage. Consistent with the results in different mammalian 
models (Albuquerque et  al. 2006; Grunwald et  al. 1994; 
Lallement et al. 2002; Worek and Szinicz 1993), our results 
showed that pre-treatment of zebrafish with both peripher-
ally (pyridostigmine) and centrally acting (physostigmine, 
huperzine A and galantamine) reversible AChE inhibitors 
provided significant protection against severe acute OP 
intoxication. The highest increase in survival was found 

Table 2   Relative frequency 
distribution of phenotypes after 
3 and 24 h of exposure to 4 μM 
CPO

At 3 h post-exposure, immediately after determining the phenotype, four different antidotes were added, 
and the changes in the phenotype were recorded individually
a  Number of experimental replicates

Brain toxicity (%) No brain phenotype (%) Dead (%) Total na

(a) Three hours post-exposure to 4 μM CPO (just before adding the antidotes)

 CPO 43.8 ± 2.9 44.8 ± 2.4 11.5 ± 3.0 336 (7)

 Pralidoxime 38.0 ± 4.3 49.0 ± 4.5 13.0 ± 2.9 192 (4)

 Memantine 40.6 ± 1.8 47.4 ± 3.0 12.0 ± 3.0 192 (4)

 Caramiphen 37.0 ± 2.1 57.3 ± 1.3 5.7 ± 2.1 192 (4)

 Dexamethasone 46.0 ± 3.0 47.9 ± 2.4 5.2 ± 0.6 192 (4)

(b) Twenty-four hours post-exposure to 4 μM CPO (21 h after adding antidotes): group of larvae exhibit-
ing signs of brain toxicity at 3 h post-exposure

 CPO 57.3 ± 6.6 0.0 ± 0.0 42.7 ± 6.6

 Pralidoxime 3.8 ± 3.9 85.7 ± 7.1 10.4 ± 6.9

 Memantine 20.9 ± 8.9 48.2 ± 7.0 31.0 ± 5.9

 Caramiphen 25.7 ± 7.3 48.5 ± 8.3 25.8 ± 8.8

 Dexamethasone 35.0 ± 2.9 42.5 ± 1.4 22.5 ± 1.4

(c) Twenty-four hours post-exposure to 4 μM CPO (21 h after adding antidotes): group of larvae with no 
signs of brain toxicity at 3 h post-exposure

 CPO 19.1 ± 2.8 66.7 ± 6.6 14.3 ± 4.5

 Pralidoxime 0.0 ± 0.0 92.4 ± 2.3 7.6 ± 2.3

 Memantine 8.4 ± 3.1 80.2 ± 5.5 11.4 ± 4.2

 Caramiphen 7.2 ± 2.8 73.7 ± 2.3 19.0 ± 4.4

 Dexamethasone 28.7 ± 4.3 62.1 ± 5.0 9.1 ± 6.5
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after physostigmine pre-treatment, while the prevalence of 
morphological head changes was reduced to similar levels 
by all four tested drugs (Fig. 1c, e; Table 1). Interestingly, 
pyridostigmine, a peripherally acting compound, provided 
similar protection against brain toxicity as that of cen-
trally acting compounds, indicating increased permeability 
of the brain–blood barrier (BBB) in our zebrafish model. 
Although the zebrafish and mammalian BBB both share 
structural and functional similarities (Fleming et al. 2013), 
zebrafish BBB maturation occurs between 3 and 10 dpf. 
The central neuroprotective effect of pyridostigmine could 
be related to the immaturity of the BBB in 7-dpf larvae, but 
a contribution of CPO to the increase in BBB permeability 
cannot be excluded (Parran et al. 2005).

Oximes reactivate the OP-inhibited AChE by dephos-
phorylating the enzyme active site. However, commonly 
employed pyridinium oxime reactivators, such as pralidox-
ime, HI-6 and obidoxime, are permanently charged and 
therefore show low penetration of the BBB. Consequently, 
for many years, it was assumed that the main therapeutic 
activity of oximes was via AChE reactivation in the periph-
eral nervous system (PNS) but not in the brain (de Koning 
et al. 2011). However, oximes may be active in the central 
nervous system (CNS) because several of these compounds 
prevent seizures and brain damage in nerve agent-exposed 
animals (Shrot et  al. 2009). In the present study, we ana-
lysed the capacity of pralidoxime to counteract mortality 
and brain damage induced by acute exposure to 1 × LC50 
CPO. Although it has been reported that pralidoxime can 
penetrate the BBB in a dose-dependent manner (Sakurada 
et  al. 2003), the major effect reported in the literature is 
increased survival due to the reactivation of AChE in the 
PNS (Antonijevic and Stojiljkovic 2007; Quinby 1968). 
In our study, however, pre-treatment with pralidoxime 
decreased both the mortality rate and the prevalence of 
brain toxicity by approximately 97  %. This extremely 
potent neuroprotective action exhibited by pralidoxime in 
our zebrafish model suggests an increased permeability of 
the BBB. As discussed above, the immaturity of the BBB 
in 7-dpf zebrafish larvae, as well as the enhanced perme-
ability induced by CPO, could be involved in the potent 
CNS activity of this oxime in our model. Although post-
treatment with pralidoxime also provided significant pro-
tection against severe acute OP intoxication, the efficacy of 
pre-treatment was three- and sevenfold higher in increas-
ing survival and decreasing brain toxicity, respectively 
(Fig. 1; Table 1). The higher efficacy of the pre-treatment 
compared to that of the post-treatment may be because the 
post-treatment effectiveness of the oximes is limited by 
the irreversible ageing of a portion of the inhibited AChE. 
Moreover, 3  h after exposure, seizures have already pro-
gressed to the transition phase, which is characterized by 
progressive activation of the glutamatergic system and 

decreased cholinergic control of the seizures. Our results 
suggest that new BBB-permeable oximes could be a part of 
the multifunctional drug therapy used to treat severe acute 
OP intoxication.

Secondary neuronal toxicity during severe acute OP 
intoxication results in brain damage (Kaur et al. 2014). We 
tested the zebrafish model using three groups of compounds 
that target key components of the pathophysiological path-
ways of secondary neuronal toxicity: glutamate antagonists, 
dual-function NMDA receptor and AChR antagonists, and 
anti-inflammatory drugs. The efficacy of MK-801, meman-
tine, caramiphen and benactyzine has been demonstrated in 
a wide range of mammalian species and experimental pro-
tocols (Deshpande et al. 2010; McLean et al. 1992; Raveh 
et al. 2008; Raza et al. 2004; Zhou et al. 2005). We found 
that post-treatment of zebrafish with these drugs signifi-
cantly decreased the prevalence of brain toxicity, with the 
highest protection provided by MK-801 and caramiphen. 
The use of anti-inflammatory drugs has been proposed 
to counteract neuroinflammation during severe acute OP 
intoxication (Amitai et  al. 2006; Banks and Lein 2012; 
Dhote et al. 2007; Spradling et al. 2011). Post-treatment of 
the zebrafish with the anti-inflammatory agents ibuprofen 
and dexamethasone provided significant protection against 
brain toxicity, although this group of drugs was the least 
efficient of all tested treatments. Similar responses were 
observed in experiments conducted in rats (Amitai et  al. 
2006), suggesting that zebrafish could serve as a model to 
study inflammatory processes and their crucial roles in OP 
neurotoxicity.

The identification of chemical-specific gene expression 
signatures is very useful in determining the mode of action 
(MoA) of particular toxicants. Based on the transcriptional 
patterns observed in our previous work (Faria et al. 2015), 
we selected three genes involved in key pathophysiological 
pathways, including Ca2+ homeostasis (hspb11 and pth1a) 
and the inflammatory pathway (il-12), of severe acute OP 
intoxication in zebrafish. The mRNA levels of the heat 
shock protein family B (small), member 11 (hspb11) were 
strongly upregulated following exposure to AChE inhibi-
tors, an effect mediated by the increase in the intracellu-
lar calcium levels (Klüver et al. 2011). In the present study, 
the upregulation of hspb11 found in the zebrafish larvae 
exposed to 1 × LC50 CPO was counteracted by post-treat-
ment with memantine and caramiphen but not with pral-
idoxime and dexamethasone. The increase in intracellular 
Ca2+ appears to induce the hspb11 upregulation and brain 
toxicity, and thus, these two drugs may provide neuropro-
tection to the zebrafish model of severe acute OP intoxi-
cation by blocking the Ca2+ entrance through the NMDA 
receptors.

Parathyroid hormone (PTH) is the major hormone that 
regulates calcium homeostasis. In turn, the synthesis and 
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secretion of PTH is finely regulated by the serum calcium 
concentration, with hypocalcaemia resulting in a marked 
increase in the PTH transcripts (Moallem et al. 1998). The 
fact that drugs such as pralidoxime and dexamethasone, 
which are not directly linked to calcium homeostasis, par-
tially counteract upregulation of pth1a in CPO-treated larvae 
suggests that serum calcium homeostasis can be restored by 
drugs that improve the general condition of the larvae.

A major hallmark of the inflammatory response is the 
release of cytokines and chemokines from activated mac-
rophages. Acute intoxication with OP nerve agents can directly 
increase transcript and protein levels of pro-inflammatory 
cytokines (IL-12, IL-18) (Dhote et  al. 2007; Johnson et  al. 
2011; Williams et  al. 2003). Similar to previous studies in 
mammalian species, il-12 expression significantly increased in 
untreated larvae. Interestingly, in spite of the different MoAs, 
all tested drugs decreased inflammation in our severe acute OP 
intoxication model. Because inflammation is a downstream 
event in the pathophysiological pathways of severe acute OP 
intoxication, these results suggest that drugs such as oximes 
and NMDA receptor antagonists, which target upstream events, 
can block the development of the inflammatory response.

Overall, the results from our study demonstrate that the 
zebrafish model of severe acute OP intoxication is highly 
predictive and can be used for identifying new compounds 
with therapeutic potential against the brain toxicity induced 
by severe acute OP intoxication in humans.
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