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Introduction

Melanin is polyanionic pigment that colors, e.g., the hair, 
skin and eyes. The retinal pigment epithelium (RPE) of 
the eye and epithelial cells in the inner ear also contain 
melanin. An important biological function of melanin is 
to attenuate UV-light penetration of the skin and protect 
from UV-induced DNA damage. The melanin in the RPE, 
located between the choriocapillaris and the light-sensitive 
photoreceptors, plays an important photoprotective role by 
absorbing radiation and scavenging free radicals and reac-
tive oxygen species (ROS) (Boulton et al. 2001; Rozanow-
ska et al. 1999). In the inner ear, melanin is found in, e.g., 
the stria vascularis in the cochlea and planum semiluna-
tum in the ampullae. Similar to the eye, this location of the 
melanin-containing cells suggests that melanin has a role 
to protect the receptor cells by filtering the endolymph in 
the inner ear. Chemically, there are two distinct groups of 
melanin: brown to black eumelanin and yellow to reddish 
pheomelanin. Neuromelanin is a pigment closely related to 
other melanins and mainly produced in specific neurons of 
the substantia nigra.

Certain drugs and chemicals bind to melanin and are 
retained in pigment cells for long periods. This specific 
retention in pigmented tissues is thought to protect the cells 
but may also serve as a depot that slowly releases accu-
mulated toxicants and may cause adverse effects (Lars-
son 1993; Lindquist et  al. 1987). Melanin affinity is also 
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important in fields such as ocular drug efficacy and toxicity 
(Salminen and Urtti 1984; Manzanares et al. 2016; Salazar-
Bookaman et al. 1994; Reilly et al. 2015), melanoma imag-
ing and imaging-guided chemotherapy (Zhang et al. 2015; 
Liu et al. 2013; Larsson 1993), and forensic science where 
hair analysis for drugs of abuse is in practice (Potsch et al. 
1997; Kintz 2012).

The function of neuromelanin in the brain is not well 
understood. Several compounds can be retained in pig-
mented parts of the brain (D’Amato et  al. 1986; Double 
et  al. 2003; Karlsson et  al. 2009; Ostergren et  al. 2004; 
Lyden et  al. 1983). For instance, incubation of human 
brain sections in 35S-chlorpromazine revealed a distinct 
and highly specific uptake in the neuromelanin-containing 
neurons in substantia nigra and locus coeruleus (Lindquist 
1972). Neuromelanin and compounds with high neuromela-
nin affinity have been suggested to be implicated in the 
development of adverse drug reactions in the central nerv-
ous system (CNS) as well as in the etiology of Parkinson’s 
disease (PD). The aim of the present review is to provide 
an overview of melanin/neuromelanin binding of drugs and 
other compounds, and possible toxicological implications, 
with particular focus on the CNS and its potential involve-
ment in neurodegenerative disorders.

Melanin and neuromelanin synthesis

The biosynthesis of melanin mainly takes place in melano-
cytes (Prota 1992). These cells originate from the neural 
crest and migrate during embryogenesis, primarily to the 
basal layer of the epidermis, but also to the choroid, cili-
ary body, iris of the eye, inner ear and leptomeninges of the 
brain (Sanes et  al. 2006; Prota 1992). The RPE has neu-
roectodermal origin and is derived from the optic vesicle 
(Sanes et al. 2006; Prota 1992).

Both eumelanin and pheomelanin are derived from the 
precursor dopaquinone formed by oxidation of the amino 
acid l-tyrosine by tyrosinase (Ito 2003; Jimbow 1995). 
Dopaquinone undergoes a series of spontaneous reactions, 
leading to the production of eumelanin (Fig. 1). In addition 
to tyrosine, the amino acid cysteine participates in melanin 
synthesis. Cysteine reacts with melanin precursor dopaqui-
none and forms the intermediates 5-S- and 2-S-cysteinyl-
dopa which also can be incorporated into the melanin pol-
ymer, leading to the formation of pheomelanin (Ito 2003; 
Jimbow 1995). Most mammalian melanin consists of a 
mixture of eumelanin and pheomelanin (Wakamatsu et al. 
2003, 2008). Pheomelanin appears to be restricted to the 
core of the pigment granule, while the surface may be cov-
ered with eumelanin (Ito and Wakamatsu 2008).

Neuromelanin is produced in the substantia nigra but 
also in catecholaminergic neurons in other brain areas such 
as the locus coeruleus (Zecca et  al. 2008a). A significant 

number of dopaminergic midbrain cells do not synthesize 
the pigment (Gaspar et  al. 1983; Prota 1992). The dopa-
mine neurons of the substantia nigra pars compacta (A9 
neurons) are in humans the most heavily pigmented neu-
ronal cells (Halliday et al. 2005). Studies revealing differ-
ent phases in neuromelanin production indicate that the 
synthesis is regulated, possibly through enzymatic pro-
cesses (Fedorow et  al. 2006). However, the mechanism 
for neuromelanin synthesis is not fully understood and the 
role of the melanin producing enzyme tyrosinase is debated 
(Greggio et  al. 2005; Tribl et  al. 2007). The main precur-
sor of neuromelanin is dopamine and cysteine appears to 
be partially incorporated. In locus coeruleus, norepineph-
rine and its metabolites are involved in the neuromelanin 
synthesis (Wakamatsu et  al. 2015; Solano 2014). Neu-
romelanin synthesis appears to be driven by an excess of 
cytosolic catecholamines not accumulated in synaptic vesi-
cles (Sulzer et al. 2000; Liang et al. 2004). Neuromelanin 
is a complex polymeric multilayer system, and each layer 
consists of a polymer of melanic groups bound to aliphatic 
and peptide chains (Zecca et  al. 2003). It has also been 
reported to consist of β-sheet proteins and dolichols (Zecca 
et al. 2008a; Engelen et al. 2012). Neuromelanin is located 
in organelles that often are surrounded by a double mem-
brane and also includes lipid bodies (Duffy and Tennyson 
1965; Zecca et  al. 2008a). The initiation of pigmentation 
in human brain starts at approximately 3 years of age after 
which neuromelanin continues to accumulate in the sub‑
stantia nigra during aging (Fenichel and Bazelon 1968; 
Zecca et al. 2002; Halliday et al. 2006).

Melanin and neuromelanin function

A major biological function of melanin is to attenuate UV-
light penetration of the eye and skin to protect for UV-
induced DNA damage (Hu et al. 2008). Eumelanin acts as 
a photoprotective antioxidant, while pheomelanin exhib-
its phototoxic pro-oxidant behavior that rather increases 
the risk of UV-induced skin damage (Simon et  al. 2009). 
Furthermore, melanin scavenges ROS, toxic free radicals, 
redox active metal ions and various xenobiotics (Sarna 
1992; Lindquist 1973; Lindquist et al. 1987; Larsson 1993).

The heterogeneity of compounds that bind to melanin is 
large, but the compounds showing the highest affinity are 
generally basic organic amines and metal ions (Larsson 
and Tjalve 1979; Larsson 1993; Karlsson and Lindquist 
2013). Amines are common functional groups in drugs, and 
therefore, melanin binds several classes of pharmaceutical 
drugs, e.g., antibiotics, anesthetics and β-blockers (Larsson 
1993; Leblanc et al. 1998). Also other types of compounds 
(e.g., herbicides, illicit drugs, alkaloids, toxins) have mela-
nin affinity (Larsson and Tjalve 1979; Larsson 1993; Karls-
son and Lindquist 2013). Several mechanisms are thought 
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to be important for the binding properties of melanin. The 
great number of free and negatively charged carboxylic 
acid residues and semiquinones in the polymer is respon-
sible for cation exchange properties and provides most of 
the ionic bindings sites in melanin. Hydrogen bonds, van 
der Waal’s attractions and hydrophobic interactions are also 
suggested to contribute to melanin’s scavenger properties 
(Larsson and Tjalve 1979). In addition, pi-stacking interac-
tions between aromatic rings of the binding compound and 
the highly aromatic melanin structure appear to be impor-
tant (Reilly et  al. 2015). Because of the chemical proper-
ties, pheomelanin is significantly less efficient in binding 
drugs and metal ions than eumelanin where cysteinyldopa 
is not included in the polymer (Mars and Larsson 1999).

The physiological role of this phenomenon is not fully 
known. The binding of toxicants to melanin probably 
protects the cells and surrounding tissues initially. How-
ever, the binding is usually reversible and melanin may 
therefore serve as a depot that accumulates the toxicant 

and gradually releases it into the cytosol (Larsson 1993; 
Lindquist et  al. 1987). In the 1950s, a new type of drug-
induced toxic chorioretinopathy involving pigmentary 
changes was reported for certain phenothiazine tranquiliz-
ers (e.g., thioridazine) and the antimalarial compound chlo-
roquine (for reviews, see Dayhaw-Barker 2002; Lindquist 
1973). Apart from the ocular damages, these compounds 
were also reported to cause pigmentary changes in the skin. 
Potts and coworkers demonstrated in a series of studies that 
the cause of the ocular toxicity was likely to be a conse-
quence of the strong melanin affinity of these compounds 
(Potts 1962a, b, 1964a, b). The detailed pathophysiologic 
mechanisms still remain a topic of further research (Tzekov 
2005; Kellner et al. 2008; Mecklenburg and Schraermeyer 
2007; Schroeder and Gerber 2014). Neuromelanin shares 
most properties with peripheral melanin. In the substan‑
tia nigra of normal subjects, neuromelanin is proposed to 
be neuroprotective since its synthesis removes excess of 
harmful oxidized catechols (Sulzer et al. 2000; Zucca et al. 

Fig. 1   Classical model of 
eumelanin structure. Most 
elements are indolic, and 
the abundant units are DHI 
(5,6-dihydroxyindole, U1) 
and the 2-carboxylated analog 
DHICA (5,6-dihydroxyin-
dole-2-carboxylic acid, U2) 
that both are derived from 
l-dopaquinone. Oxidized units 
of IQ (5,6-indolequinone, U3), 
unaltered  l-dopa units (U4) and 
carboxylated pyrroles (U5) can 
also be incorporated during the 
polymerization. Arrows indicate 
possible points for polymer 
growth. Pheomelanin has a 
similar polymeric structure but 
consists of the two main units 
benzothiazines and benzo-
thiazoles that are derived from 
the addition of l-cysteine to 
l-dopaquinone. Neuromelanin 
is a mixed melanin consisting of 
both indole and benzothiazine 
units derived from dopamine-
quinone (Adapted from Solano 
T, Melanins: Skin pigments and 
much more—types, structural 
models, biological functions, 
and formation routes. New Jour-
nal of Science. 2014, Article ID 
498276)
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2015) and due to the binding and accumulation of a large 
amount of various drugs, metals and toxicants (Larsson 
1993; Lindquist 1973; Zecca et al. 2003, 2008a). However, 
in accordance with the binding of compounds to melanin, 
binding to neuromelanin has also been suggested to be del-
eterious (Lyden et al. 1982; Aubry 2002).

Antipsychotics, neuromelanin interaction 
and extrapyramidal symptoms

The conventional or typical antipsychotic drugs such as 
haloperidol and certain phenothiazines (e.g., fluphenazine) 
could cause extrapyramidal symptoms (EPS) even at clini-
cally effective doses. These symptoms include dystonia, 
akathisia, parkinsonism (e.g., rigidity, bradykinesia, and 
tremor) and tardive dyskinesia. With introduction of atypi-
cal antipsychotics, the pharmacological effects of the treat-
ments could be achieved with a significantly lower risk of 
EPS (Tandon and Jibson 2002). The mechanism behind this 
adverse drug reaction is unknown, but it has been hypoth-
esized that it is associated with the neuromelanin affinity of 
these drugs (Lyden et al. 1982; Aubry 2002). This is sup-
ported by a recent study revealing that the melanin affin-
ity of seven antipsychotic drugs, determined by a novel 
magnetic beads method, correlated significantly (R = 0.89) 
with the potential to induce EPS (Marszall et al. 2011). The 
association between antipsychotics binding to melanin and 
EPS was also evident using an affinity chromatography 
method (Michal Piotr et al. 2013).

Neuromelanin and neurodegenerative disorders

Parkinson’s disease (PD) is a neurodegenerative disorder 
second only to Alzheimer’s disease in prevalence. This 
movement disorder is characterized by progressive brad-
ykinesia, rigidity, rest tremor and postural disturbances. 
Neuropathological hallmarks of PD are the selective loss 
of dopaminergic neurons containing neuromelanin as well 
as accumulation of α-synuclein and other proteins in intra-
neuronal inclusions called Lewy bodies (Kastner et  al. 
1992; Hirsch et  al. 1988). Heavily pigmented A9 neurons 
in substantia nigra pars compacta are most affected (Hal-
liday et al. 2005). Severe neuronal loss in locus coeruleus 
has also been reported (Zarow et al. 2003). Despite the dis-
covery of several important genes and environmental risk 
or protective factors, the etiology of the disease remains 
poorly understood (de Lau and Breteler 2006). Familiar 
forms of PD that are due to mutations of genes including 
SNCA, PINK1, PARKIN and LRRK2 are accounting for 
no more than 10  % of cases. The vast majority of cases 
are sporadic with unknown cause (Thomas and Beal 2007; 
Coppedè et  al. 2006). Studies of monozygotic and dizy-
gotic pairs of twins conclude that environmental factors 

are a major etiologic component (Tanner et al. 1999; Wir-
defeldt et  al. 2008). For example, epidemiological stud-
ies implicate the exposure to pesticides, metals, solvents 
and other chemicals as risk factors for PD (Franco et  al. 
2010). In most sporadic cases of neurodegenerative disor-
ders, environmental factors in combination with genetic 
susceptibility likely contribute to the onset of the disor-
der. Increasing attention has been given to neuromelanin 
because of its possible role in the etiology and pathogen-
esis of PD. An early accumulation and overload of redox 
active iron, which can lead to increased oxidative stress, 
is observed in neuromelanin in the substantia nigra of PD 
patients and may be important for the pathological pro-
cesses (Double et al. 2003; Faucheux et al. 2003; Jellinger 
et al. 1993; Zucca et al. 2015). Neuromelanin has also been 
demonstrated to interact with α-synuclein and may contrib-
ute to a vicious cycle of neuroinflammation/neurodegenera-
tion. Moreover, some toxicants that bind to neuromelanin 
have been suggested to be involved in PD and parkinson-
ism (Lyden et al. 1983; Lindquist et al. 1986, 1988; Karls-
son et al. 2009).

MPTP, neuromelanin binding and parkinsonism

MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) 
is an illicit drug contaminant causally linked with specific 
dopaminergic denervation and parkinsonism in humans 
(Langston et  al. 1983). This neurotoxin selectively dam-
ages dopaminergic neurons primarily in the substantia 
nigra pars compacta causing parkinsonism also in nonhu-
man primates. The active uptake of the metabolite MPP+ 
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ion) in 
dopaminergic nerve terminals via the dopamine trans-
porter is one important factor for this selectivity (Schmidt 
and Ferger 2001). In addition, both MPTP and MPP+ 
have high affinity for neuromelanin which appears to be 
important for the toxicity. After the first report by Lyden 
et  al. (1983) that MPTP have high affinity for melanin, 
MPTP-induced degeneration of dopaminergic neurons in 
monkeys has been correlated with the neuromelanin con-
tent in these cells (D’Amato et  al. 1986; Herrero et  al. 
1993; McCormack et  al. 2004). Moreover, Langston and 
co-workers observed ongoing nerve cell loss in humans 
decades after exposure to MPTP and suggest that MPP+ 
bound to neuromelanin continues to exert toxicity as it is 
gradually released (Langston et  al. 1999). Pretreatment 
with chloroquine partially prevents MPTP-induced par-
kinsonism in monkeys, possibly by blocking binding sites 
on the neuromelanin polymer, which further supports the 
importance of neuromelanin binding in MPTP-induced 
toxicity (D’Amato et  al. 1987). In addition, nicotine that 
also has high affinity for melanin and has been suggested 
to be protective against the development of PD in humans 
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is neuroprotective when administrated before but not after 
MPTP in monkeys (Huang et al. 2009). In vivo studies of 
MPTP in mice and rats do not take the significant inter-
action of MPTP and neuromelanin into account as they 
lack the pigment in the brain (Barden and Levine 1983; 
Marsden 1961). Notably, the nigrostriatal tissue damage 
of MPTP is less prominent and permanent parkinsonian 
symptoms rarely appear in rodents that lack neuromelanin 
(Kitamura et al. 2000; Kopin and Markey 1988).

Neuromelanin affinity, retinal pigment epitheliopathy 
and neurodegeneration

Since the discovery of the ability of MPTP to repro-
duce many of the features of PD, research has been more 
focused on finding other environmental risk factors impli-
cated in the etiology of PD as well as other neurodegenera-
tive disorders. Occupational exposures to pesticides such 
as paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) 
have increasingly been reported in epidemiological stud-
ies to enhance the risk of developing PD (Furlong et  al. 
2015; Franco et al. 2010). The toxicity of paraquat is well 
described regarding the effects to the main target organ, 
the lungs (Dinis-Oliveira et al. 2008). The mechanisms of 
paraquat-induced neurotoxicity are not fully known, but 
several pathways have been proposed: induction of oxi-
dative stress, mitochondrial dysfunction, apoptosis and 
autophagy, inhibition of the ubiquitin–proteasome system, 
induction of synucleinopathy and tauopathy (Baltazar et al. 
2014; Franco et  al. 2010). Paraquat is structurally simi-
lar to the MPTP metabolite MPP+ and has been shown to 
accumulate in neuromelanin-containing neurons (Lindquist 
et al. 1988). Hence, as for MPTP, the neuromelanin binding 
and interaction may be mechanistically important also for 
the neurotoxic effects of paraquat.

Amyotrophic lateral sclerosis/parkinsonism–dementia 
complex (ALS/PDC) is an enigmatic neurological disease 
with no obvious pattern of inheritance, primarily found on 
the island of Guam. Over 50 % of the ALS/PDC patients 
also have a rare retinal disease, a pigmentary retinopathy 
that is often bilateral (Campbell et  al. 1993; Cox et  al. 
1989). The combination of a very uncommon ocular dis-
ease that affects melanin and PDC with degeneration of the 
neuromelanin-containing neurons in substantia nigra could 
indicate a common link. Dietary exposure to the cycad 
toxin β-N-methylamino-l-alanine (BMAA) has been pro-
posed to be involved in the etiology of ALS/PDC (Banack 
and Cox 2003; Spencer et al. 1987; Reed et al. 1987; Whit-
ing 1963). Interestingly, studies have revealed that BMAA 
interacts with melanin and neuromelanin to the extent that 
pigmented cells and tissues such as the eye and neurons 
had the highest and most persistent level in the body after 
a single administration of 3H-BMAA to mice and frogs 

(Karlsson et al. 2009). In vitro experiments confirmed the 
binding of 3H-BMAA to melanin and indicated an incor-
poration of BMAA into the melanin polymer as a false pre-
cursor (Karlsson et al. 2009). This indicates that long-term 
exposure to the neurotoxin BMAA may lead to accumula-
tion in melanin- and neuromelanin-containing cells causing 
high intracellular levels and potentially changed melanin 
characteristics, e.g., binding capacity of metals or chemi-
cals (Karlsson et al. 2009; Mars and Larsson 1999). Hence, 
the interaction of BMAA with melanin could be a possible 
link between PDC and pigmentary retinopathy. However, 
ALS/PDC is likely to have a multifactorial etiology with 
both genetic and environmental risk factors and it should 
be noted that the role of BMAA in the etiology of the dis-
ease has been debated (Spencer et al. 2009; Cruz-Aguado 
and Shaw 2009; Bradley et al. 2009; Borenstein et al. 2009; 
Steele and McGeer 2008; Cox et al. 2016; Karlsson et al. 
2015).

Neuromelanin and a vicious cycle of neuroinflammation

During the recent years, evidence for an immunologic 
background of PD has started to accumulate (Koutsilieri 
et  al. 2013). Neuromelanin released by damaged dopa-
minergic neurons is suspected to play a key role in brain 
inflammation associated with PD (Viceconte et  al. 2015). 
Extracellular neuromelanin can activate the CNS immune 
cells, microglia, and may therefore induce neurodegenera-
tion via inflammatory pathways (Wilms et al. 2003; Zecca 
et  al. 2008b; Zhang et  al. 2011, 2013). A recent study 
reports that neuromelanin activates proinflammatory micro-
glia through a caspase-8-dependent mechanism (Vice-
conte et  al. 2015). In humans, extracellular neuromela-
nin has been detected close to activated microglia cells in 
brains from patients suffering from PD as well as MPTP-
induced parkinsonism (Ishikawa and Takahashi 1998; 
Langston et  al. 1999). Moreover, studies have shown that 
neuromelanin is recognized by dendritic cells and triggers 
their maturation (Oberlander et al. 2011). This could initi-
ate an adaptive autoimmune response directed against neu-
romelanin rich structures as dendritic cells are the major 
cell type for inducing T- and B cell responses (Koutsilieri 
et al. 2013). The immunogenic role of neuromelanin in PD 
pathogenesis is further strengthened by the detection of a 
specific humoral anti-neuromelanin response in PD patients 
(Double et  al. 2009). This indicates that neuromelanin is 
involved in the progression of the neurodegenerative pro-
cess. After neuron damage due to an environmental or a 
genetic factor, extracellular neuromelanin may release 
neurotoxic substances, initiate an adaptive autoimmune 
response and activate microglia. This could damage other 
neurons and lead to a vicious cycle of neuroinflammation 
and neurodegeneration. Neuromelanin-containing neurons 
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can also be targeted by CD8+ cytotoxic T cells as they 
express major histocompatibility complex class I (MHC-I) 
molecules on their cell membranes (Cebrian et al. 2014).

Neuromelanin and α‑synuclein interactions

Besides the progressive degeneration of neuromelanin-con-
taining dopaminergic neurons in the substantia nigra, PD is 
characterized by the intraneuronal cytoplasmic inclusions, 
Lewy bodies, mainly consisting of the protein α-synuclein 
(Ma et al. 2003). To date, six point mutations in the gene 
SNCA encoding for this protein are associated with famil-
ial PD (Polymeropoulos et  al. 1997; Xu and Chan 2015) 
and over-expressed wild-type α-synuclein causes neu-
ronal cell death (Zhou et  al. 2002). Several studies have 
reported important interactions between neuromelanin 
and α-synuclein. Studies suggest that age-related accu-
mulation of neuromelanin could induce α-synuclein over-
expression and thereby make the neurons more sensitive 
to injuries (Xuan et al. 2011; Li et al. 2012; Xu and Chan 
2015). Peripheral melanin may also induce the expression 
of α-synuclein as this protein is expressed in melanoma and 
nevous, but not in normal skin or non-melanocytic cuta-
neous carcinoma (Matsuo and Kamitani 2010). Although 
growing evidence support that neuromelanin could induce 
α-synuclein expression, the mechanism is unclear. Neu-
romelanin overloaded with toxic metals or other com-
pounds such as paraquat can potentially produce many 
free radical species and increased oxidative insult that may 
increase α-synuclein expression (Double et al. 2002; Seg-
ura-Aguilar et al. 2014). The degradation of proteins could 
also be obstructed as neuromelanin is reported to inhibit 
the 26S proteasome (Shamoto-Nagai et al. 2004), causing 
accumulation of abnormal proteins such as α-synuclein 
aggregates. Another interesting finding is that numerous 
of epidemiological studies have established an increased 
incidence of melanoma in PD patients, but the pathogenic 
pathways behind the connection remains to be determined 
(Liu et al. 2011; Bertoni et al. 2010; Gao et al. 2009). It has 
been suggested that the link between the diseases resides 
in genes that regulate pigmentation and could involve 
neuromelanin as well as α-synuclein (Herrero Hernandez 
2009; Pan et  al. 2012). However, the genetic control of 
neuromelanisation in humans is currently unknown (see 
above).

Concluding remarks

Although there is little doubt regarding melanin’s photo-
protective role in skin and eye, the reason for pigmentation 
elsewhere in the mammalian remains somewhat elusive. 
After the first reports showing that drugs with melanin 

affinity may cause lesions in the eye and skin melanin/
neuromelanin has been proposed to be linked to a range of 
pathologies in association with drug/compound binding. 
Neuromelanin has attracted increasing attention because 
of its possible role in neurodegeneration and in particu-
lar PD. The majority (>90  %) of PD cases are sporadic, 
and environmental risk factors (e.g., pesticide exposure) 
together with genetic predisposition probably contribute to 
the onset of the disorder, but the specific causative agents 
and the underlying mechanisms are not fully understood. 
Research indicates that neuromelanin and its interaction 
with toxicants may play a significant part both in the initia-
tion and in the progression of neurodegeneration. MPTP/
MPP+ that has been casually linked with parkinsonism has 
high affinity for neuromelanin, and the induced dopamin-
ergic denervation correlates with the neuromelanin content 
in the cells. The age-related accumulation of neuromelanin, 
overloaded with toxic metals or other compounds, could 
potentially lead to an increased oxidative stress, decreased 
sequestration of toxic dopamine metabolites, and release of 
active toxicants. Furthermore, neuromelanin, in particular 
if it is loaded with neurotoxic substances, may also induce 
the expression and aggregation of α-synuclein, making 
the neuromelanin-containing neurons even more vulner-
able. Neuromelanin that leaks from degenerating neurons 
can contribute to a vicious cycle of neuroinflammation and 
degeneration of dopamine neurons by activating micro-
glia and possibly by initiating an adaptive autoimmune 
response. Today most research has focused on genetic risk 
factors for PD, which accounts for less than 10  % of all 
cases. The above-described findings make further studies 
of the role of neuromelanin in PD and parkinsonism war-
ranted. However, the lack of neuromelanin in the substantia 
nigra of mice and rats (Barden and Levine 1983; Marsden 
1961) and the restricted use of primates as animal models 
makes it challenging to determine the importance of neu-
romelanin in neurodegeneration and to examine interac-
tions with genetic predisposition, metals and environmental 
toxicants.
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