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excreted within the first 24 h. Investigation of the glucu-
ronidation patterns revealed that the carboxy-metabolites 
are excreted almost completely in their free form (>90 %), 
whereas for 5OH-MEHTP and 5oxo-MEHTP, glucuronida-
tion is preferred (>70 %). With this study we provide reli-
able urinary excretion factors to calculate DEHTP intakes 
based on metabolite concentrations in environmental and 
occupational studies.
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Introduction

Plastics and polymers have become an integral part of 
today’s everyday life. For some polymers (e.g., polyvi-
nyl chloride; PVC) plasticizers are needed to adjust the 
polymer´s flexibility depending on its field of application. 
Many of the classically used plasticizers belong to the sub-
stance class of phthalates. Some phthalates however, such 
as di(2-ethylhexyl) phthalate (DEHP) have been shown 
to possess reprotoxic properties in rodents (Foster 2006) 
or are under scrutiny regarding testicular effects and anti-
androgenic activity (Boberg et al. 2011). Typical effects, 
also known as the “phthalate syndrome,” caused by these 
phthalates are: reduced amount of motile sperms, infertility 
and influence on the male phenotype. Testicular testoster-
one reduction during sensitive windows of sexual differen-
tiation has been identified as one relevant mode of action 
(Furr et al. 2014). Consequently some phthalates, among 
them DEHP, have been classified as toxic to reproduction 
category 1B according to the CLP (Regulation (EC) No 
1272/2008). DEHP, di-iso-nonyl phthalate (DiNP), and 
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other phthalates like di(iso-decyl) phthalate (DiDP) or di(n-
octyl) phthalate (DnOP) have been restricted in sensitive 
applications such as toys or childcare articles according to 
Regulation (EC) No 1907/2006, Annex XVII, 51/52. How-
ever, the demand for plasticized products is still strong. 
Therefore, the worldwide plasticizer market is in an ongo-
ing state of flux, and alternative plasticizers with no label-
ling requirements, no use restrictions, and an advantageous 
toxicological profile are gaining importance (Bizzari et al. 
2013; Bui et al. 2016).

One of these substitute plasticizers is di(2-ethylhexyl) 
terephthalate (DEHTP), CAS Registry No. 6422-86-2, a 
structural isomer of DEHP. While the core structure of 
phthalates like DEHP is 1,2-benzene-dicarboxylic acid, the 
core structure of DEHTP is 1,4-benzene-dicarboxylic acid. 
In both DEHTP and DEHP, these isomeric core structures 
are esterified with 2-ethylhexanol. Toxicological studies 
with DEHTP have not shown any of the critical effects 
associated with DEHP toxicity (“phthalate syndrome”) 
(Earl Grey et al. 2000). A repeated oral dose study derived 
a no observed effect level (NOEL) of 500 mg DEHTP/
kg bw/d based upon increased relative liver weight; per-
oxisome proliferation was not noted (Barber and Topping 
1995). Another study (Topping et al. 1987) reported a very 
weak peroxisome proliferating potential, albeit only at the 
highest dietary DEHTP content of 2.5 %. The authors con-
cluded that relative liver weight might have been increased 
due to reduced feed consumption. In 2008, the Euro-
pean Food Safety Authority (EFSA) evaluated DEHTP 
(EFSA 2008) and derived a tolerable daily intake (TDI) of 
1000 µg/kg bw/day based upon a 2-year combined toxicity/
carcinogenicity study (Deyo 2007); the most sensitive end 
points observed were effects on the retina and nasal turbi-
nates. This TDI is a factor of 20 higher than the TDI for 
DEHP of 50 µg/kg bw/d (EFSA 2005) and a factor of 50 
higher than the reference dose (RfD) of 20 µg/kg bw/d (US 
EPA 1987).

Data on the Western European production volumes 
of DEHTP indicate the growing importance of DEHTP 
as a substitute plasticizer. In 2002 the production volume 
of DEHTP amounted to a total of 2.000 metric tons. This 
production volume rose to 45.000 metric tons in 2012, and 
production volumes are predicted to further rise to 90.000 
metric tons in the year 2018 (Bizzari et al. 2013). DEHTP 
is already used in a wide range of applications from food 
contact materials, toys, medical devices, and floorings 
to cable insulations (Eastman 2014; EFSA 2008). Both, 
the increasing production volumes and the multiplicity of 
applications close to the consumer suggest exposures of the 
general population to DEHTP.

Human biomonitoring studies, through the meas-
urement of specific urinary metabolites, are a proven 
tool to quantify and evaluate individual and population 

exposures to phthalates and other plasticizers (Silva et al. 
2003, 2004; Koch et al. 2004, 2005, 2006, 2012, 2013; 
Kasper-Sonnenberg et al. 2014; Schütze et al. 2014). The 
omnipresent exposure of the general population to phtha-
lates, and some of their novel substitutes like DINCH 
(=Hexamoll®DINCH®, registered trademarks of BASF 
SE) and bis(2-propylheptyl) phthalate (DPHP) has already 
been shown in several studies (Schütze et al. 2014, 2015). 
Recently, we have published a sensitive analytical method 
for the determination of oxidized DEHTP metabolites in 
urine (Lessmann et al. 2016). These metabolites, depicted 
in Fig. 1, are analogous to the oxidized metabolites of 
DEHP (Koch et al. 2004, 2005, Kato et al. 2005, Silva et al. 
2006) and have already been identified as relevant DEHTP 
metabolites by in vitro (human) (Silva et al. 2015) and 
in vivo (rat) (Barber et al.1994) studies. In a pilot biomoni-
toring study (Lessmann et al. 2016), we have detected one 
or more of these specific metabolites in the majority (94 %) 
of spot urine samples from the general German population, 
and thus proven that these metabolites are promising bio-
markers of human DEHTP exposure.

Consequently, the aim of this study was the detailed 
investigation of the human metabolism and renal excretion 
of DEHTP after oral dosage, and the derivation of meta-
bolic conversion factors for the above mentioned, specific 
DEHTP metabolites. Metabolic conversion factors enable 
the back calculation of actual DEHTP intakes in terms of 
daily intake (in µg/kg bw/day) from urinary metabolite lev-
els. For risk assessment these calculated daily intake lev-
els can be compared with toxicologically derived health 
benchmarks like the no observed adverse effect level 
(NOAEL) from animal studies or the derived tolerable 
daily intake (TDI)/acceptable daily intake (ADI) values, as 
recently performed for the plasticizer alternatives DINCH 
and DPHP (Schütze et al. 2014, 2015).

Experimental design

In 2014, three healthy male volunteers (aged 32–45; body 
weight 85–95 kg) received an oral dose of about 50 mg 
(weighted exactly) DEHTP dissolved in 1 ml ethanol in a 
chocolate coated waffle cup containing water. The result-
ing dosages amounted to 0.55–0.59 mg/kg bw. The volun-
teers did not have any occupational exposure to DEHTP. 
The DEHTP dose was about a factor of two below the 
EFSA evaluated TDI of 1 mg/kg bw/day (EFSA 2008) and 
considerably lower than the NOEL for chronic toxicity of 
79 mg/kg bw/day (Deyo 2007). Furthermore, the dose level 
is comparable with human metabolism studies on phtha-
lates and alternative plasticizers successfully conducted by 
our group (Koch et al. 2003a, b; Koch and Angerer 2007; 
Schütze et al. 2014; Leng et al. 2014). The volunteers 
donated urine samples right before the oral dosage (t = 0) 
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and consecutively collected their full urine samples for the 
following 48 h. The time of the urine void was recorded by 
each volunteer. Sample volume was determined as the mass 
difference between an empty and a filled sample container. 
Urine samples were stored in 250 ml polyethylene contain-
ers frozen at −20 °C until further use.

Chemicals

1-Mono-(2-ethyl-5-hydroxy-hexyl) benzene-1,4-dicarbox-
ylate (5OH-MEHTP), 1-Mono-(2-ethyl-5-oxo-hexyl) ben-
zene-1,4-dicarboxylate (5oxo-MEHTP), 1-Mono-(2-ethyl 
-5-carboxyl-pentyl) benzene-1,4-dicarboxylate (5cx-
MEPTP), 1-Mono-(2-carboxyl-methyl-hexyl) benzene-
1,4-dicarboxylate (2cx-MMHTP), and their D4-ring 
labelled analogues were synthesized by Dr. Belov, Max 
Planck Institute for Biophysical Chemistry, Göttingen, 
Germany. All synthesized compounds had a purity >95 % 
determined by 1H-NMR. HPLC-grade water and acetoni-
trile were purchased from Carl Roth, Karlsruhe, Germany. 
Ammonium acetate (>98 %) was purchased from Sigma-
Aldrich, Steinheim, Germany. β-glucuronidase from E. coli 
K12 (with no aryl-sulfatase side activity) was purchased 
from Roche Diagnostics, Mannheim, Germany. Acetic acid 
and formic acid were purchased from Merck, Darmstadt, 
Germany.

Analytical procedure

The quantification of DEHTP metabolites was conducted 
with our previously published HPLC–MS/MS method with 
isotope dilution and online sample clean-up (Lessmann 
et al. 2016). In short, to each sample aliquot of 300 µl, 
100 µl of ammonium acetate buffer and 20 µl internal 
standard solution were added. For enzymatic hydrolysis of 
glucuronidated DEHTP metabolites, to each sample 6 µl of 
β-glucuronidase from E. coli K12 (diluted 1:1 with ammo-
nium acetate buffer) were added and incubated at 37 °C for 
2.5 h. After incubation, the pH was adjusted with 10 µl ace-
tic acid, and samples were frozen over night to precipitate 
proteins. After thawing, samples were centrifuged and 50 
µL of the supernatant were injected into an Agilent Tech-
nologies LC 1260 system (Agilent 1260 autosampler, two 
Agilent 1260 binary pumps coupled to an AB Sciex 4500 
triple quadrupole mass spectrometer in negative ionization 
mode). Online sample clean-up and enrichment of analytes 
was conducted with a Capcell Pak® C18-MG-II (Waters, 
10 × 4 mm, particle size 5 µm) column. Chromatographic 
separation was performed on an Accucore™ Phenyl X 
column (Thermo Scientific, 150 × 3 mm, particle size 
2.6 µm). The limit of quantification was 0.2 µg/L for 5cx-
MEPTP and 5oxo-MEHTP, 0.3 µg/L for 5OH-MEHTP, and 
0.4 µg/L for 2cx-MMHTP. Accuracy (relative recovery: 

Fig. 1  Metabolic pathway of 
DEHTP to specific, side-chain-
oxidized monoesters (modi-
fied according to Lessmann 
et al. 2016). Cleavage to the 
unspecific metabolite tereph-
thalic acid (TPA), and phase II 
metabolism (conjugation with, 
e.g., glucuronic acid) not shown 
for simplification
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95.8–111 %) and precision (relative standard deviation: 
<7 %) were highly acceptable. HPLC gradient, column 
assembly, and MS/MS conditions remain as described in 
Lessmann et al. (2016). Urinary creatinine concentrations 
were determined according to Jaffe (1886).

Statistical analysis

Statistical analysis was conducted with Microsoft Excel 
2010. Time-dependent functions for decreasing analyte 
levels (c(t)) after the maximum metabolite concentration 
(cmax) were calculated by exponential regression. k is the 
metabolite-specific urinary excretion constant. ∆t is the 
time after cmax.

The metabolic half time in urine is given by the natural log-
arithm of two over k, according to Clark and Smith (Clark 
and Smith 1986).

Results and discussion

The three volunteers donated 20, 22, and 23 individual 
urine samples with total 48-h urine volumes of 3620, 4050, 
and 5590 ml, respectively. We were able to detect and quan-
tify the specific DEHTP metabolites in all donated post-
dose samples analyzed. Examples of extracted ion chroma-
tograms of pre- and post-dose samples of one volunteer for 
each of the four target analytes are shown in Fig. 2.

The left column of Fig. 2 shows extracted ion chroma-
tograms from a representative pre-dose urine sample. The 
dotted lines represent the labelled internal standards for 
the respective metabolites, spiked to concentrations of 
~12 µg/L. The bold lines show the quantifier and qualifier 
ion transitions of the four target metabolites. In this pre-
dose sample we could detect only 5cx-MEPTP at a level of 
1.4 µg/L, with the other three metabolites below the respec-
tive LOQs (0.2–0.4 µg/L). Of note, the peaks eluting before 
the respective DEHTP metabolites represent known back-
ground levels of the structurally analogous DEHP metab-
olites with similar fragmentation characteristics in mass 
spectrometry. However, these DEHP metabolites were 
chromatographically separated from the DEHTP metabo-
lites, as described in Lessmann et al. (2016). The right 
column of Fig. 2 shows extracted ion chromatograms of a 
urine sample 3 h after dosage. Pronounced peaks of all four 
DEHTP metabolites are visible in these chromatograms at 
concentrations of 86.7 µg/L for 5OH-MEHTP, 50.2 µg/L 
for 5oxo-MEHTP, 923 µg/L for 5cx-MEPTP and 21.5 µg/L 
for 2cx-MMHTP. These post-dose metabolite levels are 
several orders of magnitude higher than levels observed 
in the pre-dose samples or background levels observed 

c(t) = Cmax ∗ e
−k∆t

in samples from the general population (Lessmann et al. 
2016). Thus, the known background exposure to ubiquitous 
DEHTP of the general population, or the study volunteers 
respectively, did not interfere with this oral dosage metabo-
lism study.

The urinary excretion kinetics for the four specific 
DEHTP metabolites are depicted in Fig. 3 on a logarith-
mic scale in µg/L and creatinine adjusted values in µg/g 
creatinine.

5cx-MEPTP was the predominant urinary metabolite 
of the four specific DEHTP metabolites investigated with 
maximum concentrations between 4900–7790 µg/L and 
3300–10,000 µg/g creatinine occurring 2–7 h post-dose. 
5OH-MEHTP was the second most important metabolite, 
though at levels one order of magnitude lower than 5cx-
MEPTP, closely followed by 5oxo-MEHTP. 2cx-MMHTP 
levels were the lowest of all four metabolites investigated. 
Forty-eight hours post-dose, all metabolites were still 
detectable in the urine samples of all three individuals with 
concentrations well above the respective limits of quanti-
fication. Metabolite elimination curves were rather similar 
for all three individuals and the four metabolites and cre-
atinine adjustment lead to somewhat smoother elimination 
curves. Elimination curves depicted as clearance (in µg/h) 
are given in supplemental Fig. 1 (Online Resource).

All four metabolites were excreted via urine rather rap-
idly with the bulk of the dose excreted within 24 h. After 
absorption and distribution, maximum urinary concentra-
tions occurred at around 4–5 h post-dose for all metabo-
lites. All metabolites were excreted in a single elimination 
phase with an estimated elimination half time of about 7 h. 
Basic elimination kinetic data are given in Table 1.

Taking the molar masses of the metabolites and the 
exact mass of the orally applied DEHTP into account, 
we calculated the urinary excretion factors (Fue) of the 
DEHTP metabolites as percentages of the applied dose. 
Over the sampling time of 48 h, the predominant specific 
DEHTP metabolite was 5cx-MEPTP with 13.00 % of the 
applied dose, followed by 5OH-MEHTP with 1.82 % and 
5oxo-MEHTP with 1.00 %. 2cx-MMHTP was a minor 
metabolite with a metabolic conversion factor of 0.29 %. 
In total, about 16.10 % (mean of the three volunteers) of 
the orally applied dose of DEHTP was excreted within 48 
h as the four specific metabolites. For the simple monoester 
MEHTP with no oxidative modification, we estimated 
a metabolic conversion factor of about 0.02 % (data not 
shown). Within the first 24 h, about 15.20 % was excreted 
as the four specific metabolites investigated, followed 
by less than 1 % being excreted 24–48 h after the dose. 
Thus, about 95 % of the total amount of recovered specific 
DEHTP metabolites was excreted within 24 h post-dosage. 
Detailed Fue for all investigated metabolites are given in 
Table 2.
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We can compare the share of the excreted DEHTP 
metabolites with the share of the analogous DEHP metabo-
lites previously determined by Koch et al. (2005), Ander-
son et al. (2011) and Kessler et al. (2012): The share of 
oxidized DEHTP metabolites excreted in urine (~16 %) 
is considerably smaller than the share reported for the 
analogous DEHP metabolites 5cx-MEPP, 5OH-MEHP 
and 5oxo-MEHP (41–57 %). Looking at the oxidized 
metabolites individually, the renal excreted shares of 5OH-
MEHTP (~2 %) and 5oxo-MEHTP (~1 %) are about one 
order of magnitude lower than the renal excreted shares 

of 5OH-MEHP (15–25 %) and 5oxo-MEHP (11–15 %). 
Only the carboxylated DEHTP metabolite 5cx-MEPTP 
(13 %) is excreted in shares comparable to the carboxylated 
DEHP metabolite 5cx-MEPP (14–22 %). For the simple 
monoester MEHTP we determined a negligible share of 
0.02 %, while for the DEHP monoester MEHP shares of 
~6 % have been reported. We assume that one reason for 
this lower share of DEHTP monoester metabolites might 
be that DEHTP is cleaved more rapidly to terephthalic acid 
(TPA) than DEHP to phthalic acid (PA). The structural 
differences between the two isomers might make DEHTP 

Fig. 2  Example chromato-
grams of one volunteer of the 
metabolism study. Left column: 
pre-dose sample (t = 0). Right 
column: post-dose sample 
∆t = 3 h; dashed line internal 
standard ion transition; black 
line quantifier ion transition; 
grey line qualifier ion transition
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more accessible to (enzymatic) ester cleavage than DEHP. 
This would be in accordance with a study describing the 

kinetics of enzymatic cleavage of aromatic ethers, where 
the authors observed that para-substituted aromatic ethers 
were cleaved to a bigger extent than the corresponding 
ortho-substituted ethers (Axelrod 1956). Our findings in 
regard to the share of side-chain-oxidized metabolites of 
DEHTP are also in good accordance with the results from 
Silva et al. (2015) and Barber et al. (1994). They reported 
that TPA was the main metabolite of DEHTP in vitro 
and in vivo (rat), respectively. Since TPA is an unspecific 
metabolite of DEHTP and thus not applicable as a bio-
marker of human DEHTP exposure, we did not quantify 

Fig. 3  Urinary excretion kinet-
ics for specific DEHTP metabo-
lites in µg/L (left column) and 
creatinine adjusted concentra-
tions (right column); continuous 
data of three volunteers
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Table 1  Elimination half times and times of maximum concentra-
tion for the specific DEHTP metabolites calculated from creati-
nine adjusted values; mean value of the three volunteers, ranges in 
brackets

5OH-MEHTP 5oxo-MEHTP 5cx-MEPTP 2cx-MMHTP

tmax (h) 4.7 (2.3–7.2) 5.2 (3.8–7.2) 4.2 (2.3–7.2) 4.2 (2.3–7.2)

t½ (h) 6.9 (5.3–8.7) 6.9 (5.8–8.4) 7.0 (5.3–8.8) 6.9 (5.8–8.3)
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TPA in the samples of our metabolism study. However, 
based upon the rather low share of the monoester metab-
olites excreted in urine in our study, we also can assume 
that TPA would have shown up as the major metabolite, if 
analyzed.

One common characteristics of DEHTP and DEHP 
metabolism is that the carboxylated monoester metabolites 
5cx-MEPTP and 5cx-MEPP are the major oxidized metab-
olites excreted in urine. In DEHTP metabolism the share 
of 5cx-MEPTP is even more dominant than the share of 
5cx-MEPP in DEHP metabolism. This finding is in some 
contrast to the results obtained from in vitro experiments 
using human liver microsomes (Silva et al. 2015). In their 
study, the hydroxylated metabolite 5OH-MEHTP seemed 
to be the most dominant oxidized DEHTP metabolite. 
However, the authors already speculated that the fraction 
of DEHTP excreted as 5cx-MEPTP may be higher in vivo 
than in vitro, because in vitro metabolism of DEHP also 
produced 5cx-MEPP only as a minor metabolite (Silva 
et al. 2007) in contrast to being the major urinary DEHP 
metabolite in humans (Koch et al. 2005).

In addition to the metabolic conversion factors, we 
investigated the glucuronidation patterns of the specific 
DEHTP metabolites. To do so, representative 48-h pooled 
urine samples were prepared separately for each of the 
three volunteers. By processing these pooled samples as 
described above once with and once without addition of 
the β-glucuronidase (replaced with high purity water), we 
were able to determine the shares of DEHTP metabolites 
in unconjugated form (sample preparation without enzyme) 
and glucuronidated form (difference between total amount 
determined after enzymatic deconjugation and unconju-
gated amount determined without enzymatic deconjuga-
tion). Detailed percentages of unconjugated metabolites (in 
relation to total amounts) are given in Table 3.

The distribution of free and glucuronidated metabolites 
was similar over the three volunteers investigated. Whereas 
the hydroxy- and oxo-metabolites were excreted with about 
70 % predominantly in their glucuronidated form, the more 
polar carboxy-metabolites were excreted almost completely 
(>90 %) in their free (unconjugated) form. These findings 
are in good accordance with studies on human DINCH 
metabolism (Koch et al. 2013), who reported that conju-
gation with glucuronic acid is preferred for the hydroxy- 
and oxo-metabolite compared to the carboxy metabolite. 

Silva et al. (2003) investigated the glucuronidation pat-
terns of different monoester phthalate metabolites and also 
observed that the more polar metabolites are excreted pref-
erably in their free form compared to the more lipophilic 
metabolites. It must be noted, that the conjugation patterns 
of the metabolites investigated might change over the time 
course of excretion. The values presented provide informa-
tion on the conjugation pattern of a 48-h pooled urine for 
each study volunteer.

Conclusion

With this study we provide the first human in vivo data 
investigating the metabolism and urinary excretion kinet-
ics of DEHTP, a direct substitute for high molecular weight 
plasticizers like DEHP. As the most dominant and prom-
ising specific urinary biomarker of DEHTP exposure, we 
identified 5cx-MEPTP with 13 % of an orally applied dose 
excreted via urine. This share is roughly comparable to the 
analogous DEHP metabolite 5cx-MEPP that represents 
between 14 and 22 % of an orally applied dose. The other 
oxidized DEHTP metabolites 5OH-MEHTP and 5oxo-
MEHTP are clearly of lesser importance representing only 
2 and 1 % of the dose, respectively. This finding is in some 
contrast to DEHP metabolism where the analogous metab-
olites represented much bigger shares of the renal excreted 
dose. This has to be kept in mind when directly compar-
ing urinary DEHTP and DEHP metabolite levels with 
each other in human biomonitoring studies. The simple 
monoester MEHTP, representing only 0.02 % of the orally 
applied dose in urine cannot be regarded as an applicable 
biomarker at all.

Table 2  Urinary excretion factors (Fue) as DEHTP dose equivalents in %; mean values of three volunteers, ranges in brackets

5OH-MEHTP 5oxo-MEHTP 5cx-MEPTP 2cx-MMHTP Σ all four

0–24 h (%) 1.72 (1.22–2.28) 0.95 (0.54–1.55) 12.24 (6.34–19.72) 0.27 (0.16–0.41) 15.18 (8.26–23.96)

24–48 h (%) 0.10 (0.08–0.12) 0.06 (0.03–0.07) 0.71 (0.62–0.87) 0.01 (0.01–0.02) 0.88 (0.74–1.08)

Total (%) 1.82 (1.34–2.36) 1.01 (0.57–1.63) 12.95 (6.96–20.37) 0.28 (0.17–0.42) 16.06 (9.04–24.77)

Table 3  Mean values (in %, total recovered amount of each metab-
olite was set to 100 %) for the three volunteers of unconjugated 
DEHTP metabolites in 48-h pooled urine samples; ranges in brackets

% Unconjugated

5OH-MEHTP 28.9 (16.4–47.9)

5oxo-MEHTP 27.3 (13.9–51.3)

5cx-MEPTP 91.2 (83.8–97.0)

2cx-MMHTP 91.3 (87.4–96.8)
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As a note of caution we have to point out that already 
established analytical methodologies to quantify DEHP 
exposure have to be checked for sufficient chromatographic 
separation of DEHP from DEHTP metabolites since 
metabolites from both plasticizers share similar mass frag-
ments and therefore cannot be reliably distinguished my 
means of mass spectrometry. Furthermore, similar restric-
tions as for DEHP metabolite analysis apply here for the 
use of the right enzyme: Since enzymes with aryl-sulfatase 
activity (such as HP2 from Helix pomatia) rapidly cleave 
the ester bonds of the monester metabolites of both DEHP 
and DEHTP such enzymes must not be used.

We expect rising exposures to DEHTP, because DEHTP 
is increasingly used as a substitute for DEHP and other 
high molecular weight plasticizers such as DiNP. We have 
already proven that the oxidized DEHTP metabolites can 
be detected and quantified in urine samples of the gen-
eral population. In a pilot biomonitoring study with 34 
spot urine samples (Lessmann et al. 2016), 5cx-MEPTP 
was quantifiable in 94 % of the samples analyzed. The 
median in these samples was 0.9 µg/L and the maximum 
level 38.7 µg/L. The other metabolites 5OH-MEHTP and 
5oxo-MEHTP were quantifiable in only 18 and 21 %, 
respectively, and at considerably lower levels. This domi-
nance of the carboxylated metabolite 5cx-MEPTP over 
5OH-MEHTP and 5oxo-MEHTP can now be explained 
by the metabolic conversion factors derived in this study. 
With increasing DEHTP usage and the resulting exposures, 
we also expect these metabolites to be detectable in more 
and more urinary samples in the years to come. However, 
for now, 5cx-MEPTP is clearly the most sensitive urinary 
metabolite to detect the omnipresent exposure to DEHTP. 
With this metabolite we will be able to follow trends in 
internal exposures to DEHTP as we have previously done 
for other novel plasticizer substitutes such as DINCH or 
DPHP (Schütze et al. 2014, 2015). In conjunction with the 
now derived metabolic conversion factors, we enable the 
estimation of daily DEHTP intakes and thus contribute to 
a sound exposure and risk assessment for this alternative 
plasticizer.
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