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combined actions of its constituents soot, metals and PAHs. 
The soot fraction and metals were found to be the most 
important factors for ROS formation, whereas the PAH 
response can be mimicked by the model PAH benzo[a]pyr-
ene. Strikingly, PAHs adsorbed to WSPs were even more 
potent in activating target gene expression than B[a]P indi-
vidually applied in suspension. As PAHs initiate multiple 
adverse outcome pathways and are prominent carcinogens, 
their role as key pollutants in wood smoke and its health 
effects warrants further investigation. The presented results 
suggest that each of the investigated constituents soot, met-
als and PAHs are major contributors to WSP toxicity. Miti-
gation strategies to prevent adverse health effects of wood 
combustion should therefore not only aim at reducing the 
emitted soot and PAHs but also the metal content, through 
the use of more efficient combustion appliances, and parti-
cle precipitation techniques, respectively.

Keywords Wood smoke · Particulate matter · Lung 
epithelial cells · Polycyclic aromatic hydrocarbons · Soot · 
Metals

Introduction

Worldwide, around one-third of the human population 
relies daily on the burning of biomass (e.g. wood and crop 
residues) and coal for heating and cooking (Bonjour et al. 
2013). In the recent years, the emissions from burning 
these fuels have gained attention as an important source of 
adverse health effects. The WHO estimates over 4 million 
premature deaths annually attributable to domestic burning 
of biomass and coal (World Health Organization 2014).

Human exposure to combustion products from biomass 
and coal is particularly prevalent in developing countries, 
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where solid fuel is often used indoors without proper ven-
tilation. In higher-income countries, less domestic burning 
of solid fuels and better ventilation usually leads to a lower 
indoor exposure. But even in these countries, 10–15 % of 
ambient particulate matter originates from biomass com-
bustion (Thurston et al. 2011; Belis et al. 2013).

Wood is the main fuel source for domestic biomass com-
bustion (Straif et al. 2013), and wood smoke has recently 
emerged as a major health concern (Naeher et al. 2007; 
Kocbach Bølling et al. 2009). While the association of 
ambient particulate matter (PM) with adverse health effects 
has long been established (Dockery and Pope 1994), much 
less research has been devoted to the impact of wood 
combustion.

Epidemiological studies repeatedly link wood smoke 
emissions to increased morbidity and mortality, for exam-
ple, in areas affected by wildfires (Johnston et al. 2012) and 
populations with high use of wood as a fuel source (Ezzati 
et al. 2000; Sanhueza et al. 2009). Further, pulmonary and 
systemic symptoms along with increased levels of urinary 
exposure markers could be found for workers with high 
occupational exposure (Kato et al. 2004; Swiston et al. 
2008; Neitzel et al. 2009; Greven et al. 2012).

Recent short-term exposure studies in healthy volunteers 
or subjects with mild disease partially corroborate adverse 
health effects in humans (Janssen et al. 2012). However, 
although some studies find weak increases in pulmonary 
and systemic markers of inflammation (Riddervold et al. 
2012; Ghio et al. 2012), other studies report no or very mild 
effects (Sehlstedt et al. 2010; Forchhammer et al. 2012; 
Stockfelt et al. 2012, 2013; Bønløkke et al. 2014; Jensen 
et al. 2014). Long-term exposure studies under controlled 
conditions are not possible with humans, but have been 
performed to a limited extent with rodents. As summarized 
by Naeher et al., these long-term studies on adverse health 
effects generally lend support to epidemiological data, but 
interspecies comparisons need to be approached with cau-
tion (Naeher et al. 2007).

In vitro studies with collected particles reduce the 
experimental complexity in comparison with in vivo stud-
ies, allowing for a more detailed focus on the molecular 
mechanism of action and the physicochemical parameters 
determining the toxicological outcome of wood smoke 
particle (WSP) exposure. The combustion of wood gener-
ates particulate matter consisting of a complex mixture of 
different chemical species (Schmidl et al. 2008; Orasche 
et al. 2013). Among these are potentially toxic compounds 
such as polycyclic aromatic hydrocarbons (PAHs) and soot, 
formed during incomplete combustion, as well as metals, 
which evaporate during the combustion process and con-
densate in lower-temperature zones.

Some PAHs are human carcinogens with well-docu-
mented mechanisms of action (Baird et al. 2005). Uski 

et al. found that particles collected during intermediate and 
smouldering combustion contain more PAHs than particles 
from efficient combustion which correlated with genotoxic-
ity but not cytotoxicity or oxidative stress in murine mac-
rophages (Uski et al. 2014). Kocbach et al. investigated the 
effects of collected WSPs from different combustion condi-
tions on a co-culture model. Interestingly, although secre-
tion of inflammatory cytokines was differentially induced 
by the organic fractions of particle extracts, this effect could 
not directly be correlated with PAH content (Bølling et al. 
2012). Other researchers, however, reported PAH-mediated 
effects of particles originating from complete combustion 
which might be explained by a higher PAH bioavailability 
compared to the previous studies (Gauggel-Lewandowski 
et al. 2013). Increased levels of PAHs are often paralleled 
by enhanced soot content, depending on the combustion 
conditions, yet the role of soot for WSP toxicity is poorly 
understood. Several studies report a correlation between 
soot content and oxidative stress for other combustion-
derived particles (Garza et al. 2008; Chuang et al. 2011). 
Surface area of the soot particles plays an important role 
in reactive oxygen species (ROS) formation (Nel et al. 
2006; Stoeger et al. 2009). Carbon black, consisting of rel-
atively pure elementary carbon, was occasionally used as 
a soot surrogate and induced both inflammation and ROS 
(Pulskamp et al. 2007; Aam and Fonnum 2007; Monteiller 
et al. 2007; Garza et al. 2008; Diabaté et al. 2011).

In contrast to PAHs and soot, trace metals are enriched 
in the particulate phase at higher combustion temperatures. 
Emissions of inorganic particles containing trace metals 
may shift the toxicity profile and metal emissions appear 
to be particularly high when the metal content is reported 
relative to total particle mass, a common practice in par-
ticle toxicology. Many metal compounds (i.e. the respec-
tive salts and oxides) are well known for their cytotoxic 
and carcinogenic properties (Stohs and Bagchi 1995; Bey-
ersmann and Hartwig 2008) and have been implicated in 
toxicity induced by combustion-derived particles (Fritsch-
Decker et al. 2011; Diabaté et al. 2011). WSPs with high 
metal content triggered more acute toxicity and ROS for-
mation compared to other WSPs in rat macrophages (Uski 
et al. 2014). Zinc is usually the predominant trace metal in 
WSPs. Zinc oxide nanoparticles and zinc containing arti-
ficial reference particles were tested in comparison with 
WSPs and could reproduce WSP toxicity to some extent 
(Torvela et al. 2014b).

In order to reduce adverse health effects associated with 
wood combustion, primary and secondary measures to con-
trol emissions have to be implemented. For example, in 
Germany stringent legislation has been passed to reduce 
particulate emissions (BImSchG 2014). Improved stoves 
and boilers providing more efficient combustion conditions 
reduce the products of incomplete combustion (Johansson 
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et al. 2004). Indeed, such measures have already proven 
successful in rural areas (McCracken et al. 2007; Noo-
nan et al. 2012) but may shift the profile of toxicity due to 
elevated metal emissions as described above. Therefore, a 
reduction of particulate emissions, including metal species, 
would be desirable, e.g. by the use of electrostatic precipi-
tation (Bologa et al. 2011; Pudasainee et al. 2014). These 
measures are feasible for small-scale wood combustion 
boilers (25–500 kW). However, for even smaller log-wood 
stoves, such as those used in large numbers for residential 
wood combustion, further strategies need to be explored. 
Hence, identification of key constituents of WSPs driving 
adverse effects is instrumental and ultimately will serve 
regulatory purposes to establish appropriate dose metrics 
and potential thresholds, which are currently mostly based 
on emitted PM mass (Cassee et al. 2013).

In vitro toxicity testing of collected WSPs is a valuable 
tool in this process. By the use of a candidate approach, 
critical constituents of WSPs can be assessed individually 
to identify the most relevant driver(s) of toxicity. In this 
study, we applied WSPs collected from wood combustion 
in a domestic stove to human lung epithelial cells (A549) 
and addressed several toxicological endpoints, i.e. acute 
toxicity, response to bioavailable PAHs, inflammation 
and oxidative stress. Our hypothesis was that the toxicity 
of the complex mixture of WSPs can be reproduced by 
some of its constituents. To this end, we chose the model 
PAH benzo[a]pyrene (B[a]P), carbon black nanoparticles 
(CB14, Printex 90®) and zinc oxide nanoparticles (ZnO) 
to represent the PAH, soot and metal fraction of WSPs, 
respectively.

Methods

Materials and reagents

Materials and reagents were obtained from the follow-
ing suppliers: Foetal calf serum (FCS): PAA Laborato-
ries (Cölbe, Germany). Medium, supplements and other 
reagents used for cell culture; 2′,7′-dichlorodihydroflu-
orescein-diacetate (DCFH2-DA); phosphate-buffered 
saline without calcium and magnesium (PBS): Invitrogen, 
(Karlsruhe, Germany). Chromogenic Limulus Amebocyte 
Lysate (LAL) assay: Lonza (Basel, Switzerland). MSTFA 
(N-Methyl-N-trimethylsilyl-trifluoroacetamide): Mach-
erey–Nagel (Düren, Germany). Cytotoxicity detection kit 
based on release of lactate dehydrogenase (LDH): Roche 
(Mannheim, Germany). AlamarBlue® reagent for viabil-
ity testing: AbD Serotec (Puchheim, Germany). OptEIA 
ELISA kit: BD Biosciences (Heidelberg, Germany). 
peqGold TriFast (Trizol): Peqlab (Erlangen, Germany). 
DNAse (RQ1 RNase-Free DNase); reverse transcriptase 

(M-MLV RT (H-) Point mutant); dNTP mix: Promega, 
(Mannheim, Germany). Primers were synthesized by 
Metabion, Planegg-Martinsried, Germany. RNAse inhibi-
tor (RiboLock); DNA polymerase (DreamTaq): Fermentas 
(St. Leon-Rot, Germany). SYBR QuantiTect Green PCR 
mastermix: Qiagen (Hilden, Germany). Odyssey block-
ing reagent and secondary IRDye™ antibodies for West-
ern blots: LICOR Biosciences (Bad Homburg, Germany). 
Primary antibodies: Santa Cruz Biotechnology (Heidel-
berg, Germany). Benzo[a]pyrene, with a purity of >99 % 
as determined by GC–MS, was purchased from the Bio-
chemical Institute for Environmental Carcinogens, Gross-
hansdorf, Germany. 7-ethoxyresorufin: Cayman Chemical 
(Ann Arbour, MI), Deferoxaminemesylate: Sigma-Aldrich 
(Taufkirchen, Germany), cadmium oxide (CdO): Merck 
(Darmstadt, Germany). All other, not specifically men-
tioned chemicals were purchased from Roth (Karlsruhe, 
Germany).

Particles and preparation of suspensions and reference 
substances

The WSPs were collected from emissions during a field 
study by the Technologie- und Förderzentrum (TFZ) 
Straubing, Germany, using a common tiled stove operated 
in a private household. Corresponding to prevailing habits 
of wood combustion in the private sector, the particles were 
collected under incomplete combustion conditions using 
mixed fuel. The fuel consisted of wood briquettes, split 
logs comprised of hard and soft wood, as well as waste 
wood. The particles were characterized by Gauggel et al. 
(sample “PM#2”) (Gauggel et al. 2012) and kindly pro-
vided by Sonja Mülhopt (Karlsruhe Institute of Technology, 
Germany). The nano-sized carbon black particles (CB14, 
Printex®90) were kindly provided by Evonik (Frankfurt, 
Germany), and the ZnO nanomaterial (<100 nm) was pur-
chased from Sigma-Aldrich (Cat.nr. 54906, Taufkirchen, 
Germany). For cell exposure experiments, stock suspen-
sions of 1 mg/mL in cell culture medium were prepared 
from 5 to 15 mg of particles. The stock suspensions were 
probe sonified for 15 s (duty cycle 50, output control 5, 
Branson Sonifier, 250, Schwäbisch Gmünd, Germany) and 
diluted in cell culture medium. Please note that a probe 
sonifier delivers more energy to the sample than a soni-
cation bath, for which longer sonication times would be 
appropriate. All experiments in this study were performed 
in the absence of serum. Serum-free conditions were cho-
sen because adsorption of proteins can change the physico-
chemical properties of particles with implications for their 
in vitro toxicity (Panas et al. 2013). In the lung, the main 
exposure route for WSPs, particles are not coated with 
serum proteins and can directly interact with the tissue. For 
TEM analysis and the CdO nanoparticles stock suspension, 
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ultrapure water was used for dispersion. A benzo[a]pyr-
ene (B[a]P) stock solution of 1 mM in DMSO was diluted 
in cell culture medium to prepare the solutions for B[a]P 
treatment. All particles were tested for endotoxin contami-
nation with the LAL assay. Particle suspensions of 1 mg/
mL in deionised water were centrifuged at 20,800 g for 
10 min, and the supernatants were tested according to the 
instructions of the manufacturer. The result for each parti-
cle type was not distinguishable from the blank made from 
ultrapure water. It was therefore excluded that endotoxins 
contributed to the biological responses.

Chemical analysis of particulate matter

For analysis of particulate matter, extraction was carried out 
separately for non-polar and polar compounds with dichlo-
romethane (GC ultra grade) and toluene (GC ultra grade), 
respectively, in an ultrasonic bath. Prior to extraction, 
approximately 10 mg of samples was spiked with internal 
standard mixtures as previously described (Orasche et al. 
2011) and listed in the Supplementary Table S1. Ultra-son-
ication was carried out three times, each with two millili-
tres of solvent for fifteen minutes. The three extracts were 
combined and filtered over PTFE syringe membrane filters 
(0.2 µm, Sartorius, Germany). Dichloromethane extracts 
were evaporated to dryness. Derivatization was started by 
adding 100 µL of N-Methyl-N-(trimethylsilyl) trifluoro-
acetamide to the samples. Reaction time was 3 h at 80 °C. 
After derivatization, samples were injected to the GC–
MS system (Shimadzu GCMS-QP2010 Ultra, Shimadzu, 
Japan). Toluene extracts were concentrated to 100 µL and 
directly injected to the GC, which was equipped with a 
60 m BPX-5 column (0.22 mm ID, 0.25 µm film, SGE, 
Australia). A calibration was done by using the same set of 
internal standards and procedures (except ultra-sonication 
and filtration). Relative standard deviations of the proce-
dure (RSD) were calculated via the confidence intervals.

Transmission electron microscopy (TEM)

Ten microlitres of particle suspensions at 50 µg/mL in 
deionized water was spotted on 75-mesh formvar-coated 
copper grids, dried at room temperature and observed 
with a Zeiss EM 109 T transmission electron microscope 
(Oberkochen, Germany).

Cell culture

The human alveolar epithelial cell line A549 was obtained 
from American Type Culture Collection (ATCC, Rock-
ville, MD, USA) and maintained in Roswell Park Memo-
rial Institute medium 1640 (RPMI) supplemented with 
10 % (v/v) FCS, 100 U/mL penicillin, and 100 mg/mL 

streptomycin in 5 % CO2 at 37 °C. The cells were passaged 
every 2 to 3 days before reaching confluence.

Toxicity test (LDH release)

1.65 × 105 A549 cells per well of a 24-well plate were 
seeded one day before the experiment. After treatment 
(600 µL per well), medium from the supernatant was col-
lected and an aliquot (100 µL) was used for quantifica-
tion of released LDH, an indicator of plasma membrane 
integrity. The LDH assay was performed in accordance 
with the manufacturer’s instructions with slight modifica-
tions: the dye solution was diluted 1:1 (v/v) with PBS to 
slow down the reaction due to the high cell densities. The 
absorbance of the reaction mix was measured at 490 nm 
with a microplate reader, and values were analysed by the 
software package SoftMaxPro (Molecular Devices, Isman-
ing, Germany). Cell free medium, kept under the same con-
ditions as the tested cells, was used to generate blank val-
ues, which were subsequently subtracted from all samples. 
Non-treated control cells were lysed with 0.1 to 1 % Triton 
X-100 for 30 min prior to the end of the experiments to 
obtain reference values for the highest LDH release achiev-
able, and the measured values were set as 100 % toxicity.

Viability test (AlamarBlue®)

For testing the metabolic activity, A549 cells were seeded 
and treated as described for toxicity testing (LDH release). 
After treatment, the supernatant medium was replaced 
by AlamarBlue® diluted 1:10 (v/v) in RPMI 1640 with-
out FCS supplementation, and the cells were incubated at 
37 °C and 5 % CO2 for 1 h. The AlamarBlue assay meas-
ures the ability of the cells to reduce the non-fluorescent 
dye resazurin to the fluorescent product resorufin by mito-
chondrial dehydrogenases (O’Brien et al. 2000); 100 µL 
of the supernatant was transferred to 96-well plates, and 
the fluorescence of the metabolically reduced reagent was 
quantified with a microplate reader (Bio-Tek FL600, soft-
ware package KC4, MWG-Biotech AG, Ebersberg, Ger-
many) at 580-nm excitation and 620-nm emission. Alamar-
Blue® diluted in medium without contact to cells was used 
as a blank. Blank values were subtracted from all samples 
and the fluorescence intensities of the samples were nor-
malized to the untreated controls, which were set to 100 %.

Enzyme‑linked immunosorbent assay (ELISA)

Secreted IL-8 was analysed from the supernatants of exper-
iments performed as described for toxicity testing (LDH 
release) using OptEIA ELISA kits according to the manu-
facturer’s instructions. For measurement of absorption and 
data analysis, a microplate reader and the software package 
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SoftMaxPro (Molecular Devices, Ismaning, Germany) 
were used.

ROS formation (DCF assay)

A549 cells were seeded in 96-well plates 1 day before the 
experiment, at a density of 3 × 104 cells/well. After 3 h 
incubation with 100 µL of particle suspensions per well, 
H2DCF oxidation was measured as described before (Panas 
et al. 2013). The assay plates were handled in the absence 
of artificial light until reading. The metal chelator deferox-
aminemesylate (DFO) was used in order to reduce metal-
associated ROS formation (Fritsch-Decker et al. 2011; 
Diabaté et al. 2011). For these experiments, cells were 
pre-incubated for 15 min with 50 µL of 10 mM DFO or 
medium only; before 50 µL of twofold concentrated par-
ticle solutions were added for the indicated exposure time. 
The final DFO concentration was 5 mM.

Quantitative RT‑PCR measurements of mRNA 
expression levels

One day before particle treatment, 3.35 × 105 A549 cells 
per well of a 12-well plate were seeded. Directly after 
treatment, in a volume of 1.22 mL per well, cells were 
lysed with 500 µL trizol reagent. Total RNA was extracted 
according to the manufacturer’s instructions and dissolved 
in 30–50 µL of diethylpyrocarbonate-treated H2O. Purity 
and concentration of the mRNA was measured spectromet-
rically (NanoDrop 1000U, Thermo Scientific, Wilmington, 
DE, USA); 0.5–1 µg mRNA was then treated with DNAse 
and reverse-transcribed with 200 U reverse transcriptase 
in a total reaction volume of 22 µL containing 91 µM of 
each dNTP, 200 ng of random hexanucleotide primers and 
40 U RNAse inhibitor according to the supplier’s protocol. 
To rule out a contamination with genomic DNA, additional 
sample aliquots were subjected to the transcription proto-
col in the absence of reverse transcriptase and checked for 
any polymerase activity by agarose gel electrophoresis and 
ethidiumbromide detection. Quantitative RT-PCR was per-
formed in 20-µL reactions containing 10 µL 2 × Quantitect 
SYBR Green mastermix and 10 pmol primer pairs in an 
ABI StepOnePlus System (Applied Biosystems, Carlsbad, 
CA, USA) using the following conditions: 15-min activa-
tion at 95 °C, 40 amplification cycles (15-s denaturation 
at 95 °C, 30-s hybridization and elongation at 60 °C. The 
relative expression values of target mRNA were analysed 
using the 2−(ddCt) method (Schmittgen and Livak 2008) 
with normalization to the reference gene large ribosomal 
protein P0 (RPLP0) using the following primer sequences 
(gene, forward, reverse): RPLP0, 5′-GAAGGCTGTGGT-
GCTGATGG-3′, 5′-CCGGATATGAGGCAGCAG-3′; CYP 
1A1, 5′-GAGCCTCATGTATTTGGTGATG-3′, 5′-TTGTG 

TCTCTTGTTGTGCTGTG-3′ (Val et al. 2011); IL-8,  
5′-GAATGGGTTTGCTAGAATGTGATA-3′,5′-CAG 
ACTAGGGTTGCCAGATTTAAC-3′; HO-1, 5′-TTCTCC 
GATGGGTCCTTACACT-3′, 5′-GGCATAAAGCCCTACA 
GCAACT-3′.

CYP1A1 activity (EROD assay)

The cells were seeded in 96-well plates and treated as 
described for the DCF assay. After 48 h, the supernatant 
medium was replaced by 100 µL of 8 µM 7-ethoxyresorufin 
(7-ER) in RPMI-1640 medium without phenol red in the 
absence of artificial light. After 30 min, the fluorescence 
was measured as described for the AlamarBlue® assay. 
Background fluorescence of 8 µM 7-ER was subtracted 
from all samples.

Heme oxygenase expression levels (Western blot)

For the analysis of protein expression, the cells were seeded 
into six-well plates at a density of 8.25 × 105 per well 24 h 
before the experiment. Cells were then treated for 24 h with 
the particles suspended in serum-free medium at the indi-
cated concentrations. At the end of the exposure period, the 
medium was removed and the cells were lysed using 2× 
Laemmli buffer (125 mM Tris–HCl, 4 % SDS, 20 % glyc-
erol, 8 % beta-mercaptoethanol, pH 6.8). Cell lysates were 
boiled at 95 °C for 5 min and sonicated in an ultrasonic 
bath for 10 min (Bandelin Sonorex, Berlin, Germany). 
Equal protein amounts were loaded on a 12 % gel for SDS-
PAGE. After electrophoresis, the proteins were transferred 
onto an Immobilon-P membrane (Millipore, Eschborn, 
Germany). The membranes were blocked with Odyssey 
blocking buffer for 1 h and then incubated overnight at 4 °C 
with the primary antibodies against heme oxygenase 1 (sc-
10789, Santa Cruz, diluted 1:1000) and Lamin B (sc-6216, 
Santa Cruz, diluted 1:2000) in a 1:1 (v/v) mixture of Odys-
sey Blocking Buffer and Tris-buffered saline containing 
0.1 % Tween 20 (TBS-T). After washing, the membranes 
were incubated with the appropriate secondary IRDye™ 
700 or 800 antibody 1:5000 diluted in the same buffer as 
the primary antibodies. Membranes were scanned using the 
Odyssey® Classic Infrared Imaging System (LICOR Bio-
sciences). Image processing and quantification was done 
using Image Studio Lite 4.0 (LICOR Biosciences) with 
automated background correction (settings: median, width 
5, all segments).

Statistical analysis

Values are reported as mean + standard deviation (SD) of 
multiple independent experiments except when otherwise 
indicated in the figure legends. Statistical analyses were 
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performed using R version 3.1.3 (R Foundation for Statisti-
cal Computing, Vienna, Austria). P values were calculated 
using analysis of variance (ANOVA) and Dunnett’s post 
hoc test (“multicomp” package), using the respective con-
trols as reference levels if not otherwise indicated. Values 
of p < 0.05 were considered statistically significant and 
annotated as indicated in the figure legends.

Results

Particle characterization

TEM was used to study the size distribution, morphology 
and agglomeration state of the tested particles (Fig. 1). The 
wood smoke particles (WSPs) are comprised of spherical 
primary particles with a size of about 20–40 nm, which are 
heavily agglomerated. Even after sonication, WSP agglom-
erates reach up to a few microns in diameter. Areas of crys-
talline structure were occasionally visible in proximity to 

WSPs, indicating the presence of inorganic salts that were 
dissolved and released from the WSPs by the dispersion 
process and precipitated on the TEM grids during drying. 
Carbon black nanoparticles (CB14) also show a spherical 
primary particle shape in the size range of 10–20 nm and 
also form large agglomerates, comparable to the WSPs in 
size and morphology. However, in contrast to WSPs, no 
impurities such as inorganic salts are apparent. The zinc 
oxide nanoparticles (ZnO) have a heterogeneous shape and 
size, ranging from 10 nm to over 100 nm. ZnO particles 
also appear as agglomerates, which are smaller than those 
of the carbonaceous particles, rarely exceeding 1 µm in 
size. The agglomeration of all tested particles could further 
be observed in cell culture experiments, as particles sedi-
mented readily and agglomerates were visible under the 
light microscope on the cell layer. Comparable findings 
have been reported before for resuspended particulate mat-
ter from wood combustion (Danielsen et al. 2011), CB14 
(Diabaté et al. 2011; Saber et al. 2012) and ZnO (Karlsson 
et al. 2008).

C
B
14

W
SP

Zn
O

Fig. 1  Characterization of analysed particles. Transmission electron microscopic images of collected wood smoke particles (WSPs), carbon 
black nanoparticles (CB14) and zinc oxide nanoparticles (ZnO) at different magnifications
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The chemical analysis of the WSP samples detected 
several PAHs in the WSP samples, with a total amount of 
948 mg/kg. The values for selected PAHs (16 EPA prior-
ity PAHs) are shown in Table 1. The full list of analysed 
organic contaminants for all particle samples, including 
the internal standards used for quantification, is available 
in Supplementary Table S1. Additional chemical analysis—
quantification of total elementary carbon (EC), organic car-
bon (OC), inorganic salts (Gauggel et al. 2012) and metals 
(Gauggel-Lewandowski et al. 2013)—has been published 
previously and is summarized in Supplementary Table 
S2. The WSPs are derived from a fuel consisting of wood 
briquettes, split logs comprised of hard and soft wood, as 
well as waste wood, the latter being presumably responsi-
ble for the relatively high Fe content in the particle samples 
(Gauggel et al. 2012; Gauggel-Lewandowski et al. 2013). 
The other analysed parameters are within the expected 
range for typical wood combustions (Schmidl et al. 2008; 
Orasche et al. 2012, 2013; Torvela et al. 2014a) and vary 
with the experimental conditions, such as fuel type, stove 
type and operation. The CB14 and ZnO nanoparticles are 
specified by the manufacturer as >99 % pure carbon and 
ZnO, respectively. Although CB14 nanoparticles have pre-
viously been found to also contain low but non-negligible 
amounts of PAHs with biological impact in vivo (Borm 
et al. 2005), our chemical analysis of the CB14 did not 
detect the presence of biologically relevant PAHs. The ZnO 
nanoparticles were found to contain high amounts of fatty 
acids, presumably used as dispersant (Suppl. Table S1).

Cytotoxicity of particles

The acute toxicity of WSPs was determined by measuring 
the mitochondrial activity with the AlamarBlue® assay, as 
well as the membrane permeability by analysing the release 
of LDH into the medium. After 24 h incubation, the A549 
cells neither show a reduction in the mitochondrial activity 
nor an elevated LDH secretion at all tested concentrations 
(Fig. 2a, b). Similarly, CB14 did not reduce, but rather 
slightly increase metabolic activity, and neither induced 
LDH release over the entire concentration range (Fig. 2c, 
d). On the contrary, high levels of ZnO particles triggered 
toxicity (Fig. 2e, f) as also published previously (Des-
champs et al. 2013). CdO was used as a positive control for 
the AlamarBlue® assay because it reduces mitochondrial 
activity, while it does not impair cell membrane integrity at 
the tested concentrations (Fig. S1).

Inflammatory responses after exposure to WSPs

Secretion of the pro-inflammatory cytokine IL-8 into 
the supernatant was measured after 24 h incubation with 
WSPs by an ELISA assay. CdO particles were used as a 
positive control. No elevated secretion of IL-8 could be 
observed for the WSP-treated cells. Instead, the highest 
tested WSP concentration led to a significant decrease in 
detectable IL-8 (Fig. 3a). To test whether the observed 
reduction in detected IL-8 might be due to adsorption 
of the protein on the WSP surface, we incubated recom-
binant IL-8 with increasing concentrations of WSPs in 
serum-free medium and analysed the IL-8 remaining in 
the supernatant after 24 h. Indeed, IL-8 recovery dimin-
ished significantly with increasing WSP concentrations 
(Fig. S2). IL-8 mRNA levels, measured by qPCR, sup-
port the negative results from the ELISA. No significant 
change in IL-8 expression was observed after both 4 and 
24 h, except a slight increase for the highest concentration 
at 24 h (Fig. 3b).

Cellular ROS formation after treatment with particles

We investigated the potency of WSPs to induce ROS for-
mation by oxidation of the fluorogenic probe dihydro-
dichlorofluorescein (H2DCF) to fluorescent DCF in A549 
cells. After 3 h incubation, the WSPs led to a significant 
increase in H2DCF oxidation in a dose-dependent manner 
(Fig. 4a). In addition, CB14 and ZnO NPs also induced the 
formation of ROS in A549 cells 3 h after exposure (Fig. 4b, 
c). However, the magnitude of H2DCF oxidation differed 
considerably between these substances: the cellular ROS 
formation after treatment of cells with WSP and ZnO parti-
cles was comparable, but much lower than in cells exposed 
to CB14.

Table 1  Concentrations of selected PAHs in the WSP sample 
(RSD = relative standard deviation)

PAH mg/kg RSD (%)

Acenaphthene <0.037 2

Acenaphthylene 2.59 2

Anthracene 6.3 5

Benz[a]anthracene 23.3 2

Benz[a]pyrene 18.6 2

Benzo[ghi]perylene 17 2

Chrysene 42.3 2

Dibenz[ah]anthracene 1.4 2

Fluoranthene 103 2

Fluorene 0.929 1

Indeno[1,2,3-cd]pyrene 11 2

Naphthalene 0.715 5

Phenanthrene 52.1 1

Pyrene 109 1

sum Benzo[b,k]fluoranthene 52.2 3

Sum of all analysed PAHs 948.0

B[a]P Toxic equivalent value Nisbet and LaGoy 
(1992)

35.2
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Interestingly, when H2DCF oxidation is normalized 
to the EC concentration of the tested WSP suspensions, 
WSPs and CB14 show similar efficiencies (Fig. 4d). This 
suggests that EC is one of the main parameters driving 
ROS formation by WSPs. To further elucidate the impact 
of metals on ROS formation by WSPs, we reduced the bio-
availability of metal ions using the transition metal chela-
tor DFO, which has a high stability constant for Fe3+ but 
also chelates Zn2+ and other metal ions with lower spec-
ificity. Whereas DFO alone had no effect on ROS status 
in cells treated with particle-free medium or on CB14-
induced ROS formation, it completely abrogated ZnO-
mediated H2DCF oxidation (Fig. 4e). Of note, enhanced 
ROS levels in response to WSPs were partially reduced by 
DFO. Hence, although the soot component of WSPs plays 

a major role in ROS formation, the metals in addition con-
tribute significantly.

Regulation of heme oxygenase 1 by WSPs

Cells might react to oxidative challenges with an anti-
oxidative response. One well-documented anti-oxidative 
key enzyme is heme oxygenase 1 (HO-1). HO-1 counter-
acts oxidative stress by catalysing the first and rate-limit-
ing step in oxidative heme degradation, which addition-
ally produces the anti-oxidative biliverdin (Choi and Alam 
1996). We studied the regulation of HO-1 after exposure 
to WSPs in order to assess the cellular response following 
the perturbation of the redox equilibrium as indicated by 
the DCF assay. In contrast to expectations, even high WSP 

Fig. 2  Effects of particle treat-
ment on viability and membrane 
integrity of A549 cells. Cells 
are treated with collected WSPs 
(a, b), CB14 (c, d) and ZnO NP 
(e, f) at 5, 10, 50 and 100 μg/
mL or with CdO at 10 µg/
mL in medium without FCS 
or in particle-free medium for 
24 h. Cell viability is analysed 
using AlamarBlue® reagent (a, 
c, e) and is reported relative 
to negative controls (100 %). 
Membrane integrity is detected 
by LDH release (b, d, f) and 
is reported relative to posi-
tive controls (cells completely 
lysed with 1 % (WSP) or 0.1 % 
(CB14, ZnO) Triton X-100). 
Results are the means + SD of 
six independent experiments 
with three replicates each 
(WSP) and the means + SD 
of nine samples from three 
independent experiments 
(CB14) or six samples from 
two independent experiments 
(ZnO). (*p < 0.05, **p < 0.01, 
***p < 0.001 compared to 
controls)
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Fig. 4  WSPs induce intracellular reactive oxygen species (ROS), 
mainly caused by elemental carbon and metallic constituents. A549 
cells are treated with different concentrations of wood smoke parti-
cles (a, d), zinc oxide nanoparticles (b) and carbon black nanoparti-
cles (c, d) in medium without FCS or particle-free medium for 3 h. 
Additionally, particle-treated cells are co-treated with the transition 
metal chelator DFO to reduce the metal-mediated ROS formation 
(e). ROS formation is monitored by measuring H2DCF oxidation, 
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WSPs and ZnO particles. Similarly, in d the relative content of ele-
mental carbon (EC) for the different concentrations of WSPs and CB 
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reduced H2DCF oxidation by DFO co-treatment
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concentrations failed to induce the expression of HO-1 at 
the mRNA and protein level (Fig. 5a, b). Even treatment 
with CB14, which more strongly promoted H2DCF oxi-
dation, did not lead to a detectable increase in the HO-1 
protein.

Induction of cytochrome P450 1A1 (CYP1A1) by PAHs 
bound to WSPs

CYP1A1 expression was strongly increased after 4 and 
24 h treatment with WSPs (Fig. 6a, b). After 4 h, a con-
centration as little as 5 µg/mL led to a 70-fold increase 
in CYP1A1 expression, compared to the control. At this 
time point, a higher concentration was not able to induce a 

stronger effect. In contrast, after 24 h exposure, the WSPs 
induced CYP1A1 expression with a slightly different pat-
tern. Here, a dose-dependent induction was observed over 
the whole range of the tested concentrations. Notably, after 
24 h the magnitude of CYP1A1 mRNA increase was lower 
than after 4 h for low concentrations (0.5 µg/mL and 5 µg/
mL), while expression increased with a 24-h exposure of 
50 µg/mL as well as the much higher concentrated positive 
control B[a]P.

In line with the results from the qPCR, WSPs also 
increased the cytochrome P450-associated enzymatic 
activity, as was measured by the EROD (ethoxyresorufin-
O-deethylase) assay (Fig. 6b). The fluorogenic 7-ER is 
cytochrome P450 dependently deethylated to form the 
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fluorescent product resorufin, which can then easily be 
quantified (Eichbaum et al. 2014). EROD activity val-
ues showed a dose-dependent increase after 48 h of treat-
ment with WSPs, which were even slightly more potent in 
enhancing enzymatic activity compared to B[a]P.

Discussion

WSPs do not trigger acute cytotoxicity nor induce 
pro‑inflammatory IL‑8

In this study, the investigated WSPs did not induce signs 
of acute toxicity (Fig. 2). This finding is in line with the 
majority of other in vitro studies with WSPs using epi-
thelial cells (Kocbach Bølling et al. 2009; Danielsen et al. 
2011); however, for high particle concentrations, acute 
toxicity has been reported in murine macrophages (Jalava 
et al. 2010; Tapanainen et al. 2011).

Furthermore, WSPs did not lead to elevated expres-
sion and secretion of the pro-inflammatory cytokine 
IL-8. Instead, the highest tested WSP concentration sig-
nificantly decreased detectable IL-8 (Fig. 3a). Even when 
not challenged, A549 cells secrete IL-8 in small amounts. 
Given the high specific surface area of the tested parti-
cles, adsorption of cytokines to the surface could be an 
explanation for the decrease in detectable IL-8. Indeed, 
this could be confirmed experimentally (Fig. S2). Such 
interference with ELISA assays has also been observed 
before for WSPs and other particles (Herseth et al. 2013). 
However, besides confirming previous findings (Dan-
ielsen et al. 2011), there are also studies that document 
expression and secretion of inflammatory proteins after 
challenge of cultured cells with WSPs (Kocbach Bølling 
et al. 2009; Corsini et al. 2013). The divergent results 
are most likely explained by differences in the indi-
vidual composition and size of the tested WSPs, as well 
as the cell culture models employed. In fact, it has been 
observed that different PAH and metal compositions of 
diesel exhaust particles lead to qualitative differences in 
the inflammatory response (Totlandsdal et al. 2015). Fur-
thermore, monocytes in mono and co-culture with epithe-
lial lung cells seem to be more sensitive, indicated by the 
enhanced release of inflammatory markers (Kocbach et al. 
2008a, b). Some inhalation studies with human volunteers 
found limited evidence for mild airway inflammation 
(Riddervold et al. 2012; Ghio et al. 2012), whereas oth-
ers reported no alterations in markers of systemic inflam-
mation (Sehlstedt et al. 2010; Forchhammer et al. 2012; 
Stockfelt et al. 2012; Jensen et al. 2014). Thus, the rele-
vance of an acute inflammatory response observed in vitro 
needs to be explored in an entire organism such as rodents 
or human volunteers.

WSPs induce ROS formation but do not trigger further 
anti‑oxidative responses in A549 cells

One of the central paradigms of particle toxicology is the 
formation of reactive oxygen species (ROS) leading to 
adverse health effects (Nel et al. 2006). Treatment of A549 
cells with WSPs led to a significant increase in H2DCF oxi-
dation in a dose-dependent manner (Fig. 4a). WSPs contain 
two major constituents, which could be causative for parti-
cle-mediated ROS formation: soot and metal compounds. 
Soot primarily consists of elementary carbon with a high 
specific surface area, while transition metals can lead to 
elevated formation of ROS, e.g. by Fenton-like reactions 
or inhibition of anti-oxidative processes (Oberdörster et al. 
2005; Nel et al. 2006; Limbach et al. 2007). We therefore 
chose carbon black (CB14) as well as ZnO nanoparticles 
to mimic the soot and Zn fraction of WSPs, respectively 
(Torvela et al. 2014a), and tested them separately for their 
potency to mediate ROS formation. CB14 induces intra-
cellular ROS formation even at low doses, while no toxic-
ity could be observed over the whole tested concentration 
range, similarly to WSPs (Fig. 2). It is interesting to note 
that CB14 exposure even leads to an increased reduction in 
AlamarBlue reagent, which might be due to the catalytic 
activity of the CB14 surface, facilitating the intra- or extra-
cellular reduction of the dye (Oh et al. 2012). Interestingly, 
when H2DCF oxidation is normalized to the EC concentra-
tion of the tested WSP suspensions, WSPs and CB14 show 
similar efficiencies (Fig. 4). This suggests that EC is one 
of the main parameters driving ROS formation by WSPs. 
A correlation of higher H2DCF oxidation with increasing 
surface area of soot-like particles has been reported before 
(Chuang et al. 2011). The WSPs tested in our study pro-
voked a comparable, but slightly weaker level of ROS for-
mation than CB14 when the EC content is used as dose 
metric. Possibly, organics and inorganics covering the sur-
face of WSPs diminish the available surface area and thus 
the activity. Cellular ROS formation after treatment with 
ZnO nanoparticles was much lower than for CB14 (Fig. 4). 
Moreover, enhanced ROS formation was only observed at 
high ZnO concentrations, which are well beyond the levels 
of Zn present in the tested WSP samples, indicating that Zn 
is unlikely to contribute to H2DCF oxidation in response 
to WSPs. Interestingly, efficient combustion conditions, 
although reducing overall emissions, lead to enrichment 
of Zn in the emitted particle mass. It has recently indeed 
been shown that Zn-rich WSPs sampled from an efficient 
combustion source increased ROS formation and toxicity 
in murine macrophages and inflammation in murine lungs, 
while particles derived from less efficient combustion did 
not (Happo et al. 2013; Uski et al. 2014).

The ratio of Fe and Zn in wood smoke particles (WSPs) 
is quite variable, dependent primarily on the source of 
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wood and combustion conditions. The Fe content of the 
tested particles in the present study is relatively high, 
whereas the amount of Zn is within the range found in most 
other studies. Combustion of hardwoods usually results in 
particle emissions with roughly equal Fe and Zn concen-
trations, and combustion of other wood fuels, however, can 
also generate particles with 5–20 times more Zn than Fe 
(Schmidl et al. 2008; Orasche et al. 2012; Gauggel-Lewan-
dowski et al. 2013). ZnO nanoparticles thus were chosen 
as a model for metal constituents as Zn is on average the 
dominating metal species in particles derived from wood 
combustion (Schmidl et al. 2008; Orasche et al. 2012; 
Gauggel-Lewandowski et al. 2013) and is suspected to be 
of relevance for adverse effects promoted by wood smoke 
particles (Torvela et al. 2014b). Yet, our results suggest that 
the Zn content in the tested wood smoke particles is too 
low to lead to the observed ROS formation, in line with our 
previous studies (Deschamps et al. 2013) where enhanced 
ROS formation was observed only at high ZnO concentra-
tions. Unlike other transition metals such as Fe, Zn does 
not directly promote generation of ROS. Rather the indirect 
action on redox sensing thiol groups in, for example, anti-
oxidative enzymes or by impairing mitochondrial respira-
tion is of relevance in this context (Wu et al. 2013).

In our study, the Fe content of the WSPs (~12 µg Fe/mL) 
seems to be important, as the iron chelator DFO decreased 
ROS production (Fig. 4). Interestingly, we previously stud-
ied the impact of two differently sized iron oxide nanopar-
ticles on ROS formation using the same cell line and assay 
protocol but found no increasing ROS levels at concen-
trations of ~140 µg Fe/mL (Panas et al. 2013). However, 
for Fe-containing fly ash particles (~1.7–3.4 µg Fe/mL), 
we also observed ROS formation in macrophages which 
could be completely suppressed by co-incubation with the 
iron chelator DFO (Fritsch-Decker et al. 2011). It is pos-
sible that Fe localized in combustion-derived particles has 
a higher bioavailability because the particles act as carriers 
for endocytosis and lead to liberation of Fe in the lysosome.

The absence of an anti-oxidative response as evidenced 
by a lack of HO-1 induction (Fig. 5) despite ROS forma-
tion following WSP treatment has been noted before in 
A549 cells (Danielsen et al. 2011). However, the effect was 
cell type specific as the monocytic cell line THP-1 showed 
an increased HO-1 expression. Like in many lung cancer-
derived cell lines, in A549 cells the regulatory KEAP1 pro-
tein is mutated, which leads to a persistent increase in the 
activation of the transcription factor NRF2 and subsequent 
up-regulation of anti-oxidative genes, e.g. HO-1 (Singh 
et al. 2006). Nevertheless, CdO particles, which served as 
a positive control in this study, and combustion-derived 
particles from other sources (Fukano et al. 2006) enhance 
expression of HO-1 in A549 cells. Yet, a higher baseline 
level of anti-oxidative gene expression may lead to a lower 

susceptibility towards oxidative damage in A549 cells. 
Therefore, a moderate increase in ROS levels by WSPs, as 
observed here, might not be sufficient to initiate an anti-oxi-
dative response. Also, CB14 failed to trigger HO-1 expres-
sion although ROS formation was even more pronounced. 
CB14 rather decreased the levels of HO-1. Whether CB14 
specifically triggers inhibition of gene expression or pro-
tein stability, or rather artificially interferes with detection 
of some proteins due the strong adsorption of proteins to its 
surface (Ruh et al. 2012), needs to be further investigated.

In order to explore the consequences of WSP-mediated 
ROS formation in more detail, cells with an intact NRF2 
pathway, such as the bronchial epithelial cell line BEAS-
2B, would be of advantage. Nevertheless, treatment of 
BEAS-2B cells with CB14 did not alter the levels of HO-1 
expression despite strong formation of ROS (Diabaté et al. 
2011). Thus, an alternative explanation for the disconnec-
tion of ROS formation and HO-1 induction by CB14 and 
possibly WSPs could be the localization and chemical 
nature of ROS, which are therefore unable to activate the 
NRF2 pathway. The overall relevance of oxidative stress 
for adverse effects of WSPs needs to be further explored 
especially with regard to the impact of different combustion 
conditions as discussed above. As residential wood com-
bustion in conventional stoves emits substantial amounts of 
PAHs, we finally assessed the role of PAHs associated with 
the WSPs in downstream toxicological events.

PAHs bound to WSPs induce cytochrome P450 1A1

The investigated WSPs contain a range of toxicologically 
relevant PAHs (Table 1). CYP1A1 (Cytochrome P450, fam-
ily 1, subfamily A, polypeptide 1) is involved in metabolic 
activation of PAHs and is transcriptionally up-regulated in 
response to PAHs. Therefore, CYP1A1 expression levels are 
a specific readout for the bioavailability of particle bound 
PAHs and their receptor activating potency. One of the most 
toxic PAHs is benz[a]pyrene (B[a]P) which upon binding 
to the aryl hydrocarbon receptor (AhR) is metabolized and 
thereby detoxified. Yet, metabolism also generates highly 
reactive genotoxic intermediates which can also trigger cell 
death (Schreck et al. 2009; Donauer et al. 2012). Thus, we 
also used B[a]P in our experiments as proxy for PAH toxicity. 
The affinity to the AhR and the metabolism of various PAHs 
is different when compared to B[a]P. Therefore, the so-called 
B[a]P toxic equivalent (TEQ) value provides an estimate of 
the toxicity of PAH mixtures expressed as benz[a]pyrene 
equivalent concentration (Nisbet and LaGoy 1992). There 
was a striking difference in the cellular response between the 
soluble B[a]P and the particle bound PAH mixture (Fig. 6). 
When the TEQ concentration of the different WSP suspen-
sions are compared to the TEQ concentration of the soluble 
B[a]P (Table S1), the PAHs bound to WSPs are by several 
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orders of magnitude more potent to induce CYP1A1 than 
B[a]P. As PAHs are adsorbed on the particle surface, particles 
might serve as a vehicle to deliver PAHs to the cell either due 
to particle sedimentation and/or increasing PAH uptake via a 
“trojan horse” mechanism, where particles act as carriers for 
OC (Janssen et al. 2012; Gebel et al. 2014). Hence, the differ-
ence in CYP1A1 induction might simply be explained by an 
increased cellular dose of PAHs promoted by WSPs, whereas 
most of the suspended B[a]P remains in the supernatant and 
only a fraction enters the cell.

As shown above (Fig. 2), WSPs increased ROS forma-
tion; however, the underlying mechanisms of this result 
are poorly understood. Interestingly, metabolism of PAHs 
by CYP1A1 could also produce ROS (Briedé et al. 2004). 
PAHs might be metabolized by aldo-keto reductases to 
generate ROS, as has been seen in A549 cells (Park et al. 
2008). To our knowledge, data on the response of human 
cells to PAHs after exposure to WSPs are scarce. In rats, 
neither inhalation of wood smoke nor exposure of lung 
explants to extracts of WSPs induced CYP1A1 expression 
(Iba et al. 2006). However, in rat liver cells WSPs strongly 
increased the expression of an AhR-dependent luciferase 
gene similar to the potent AhR ligand B[a]P (Gauggel et al. 
2012), yet the response of endogenous CYP1A1 was not 
analysed. Rats are more sensitive to AhR ligands when 
compared to humans due to a polymorphism in the coding 
sequence of AhR, which enhances ligand affinity (Morigu-
chi et al. 2003). Therefore, our findings of a pronounced 
activation of AhR, and consequently, CYP1A1 by WSPs 
in human lung cells is quite significant also with respect to 
risk assessment, bearing in mind the key role of this path-
way in carcinogenesis (Nebert and Dalton 2006).

Conclusion

The present study demonstrates that WSPs from residen-
tial wood burning induce ROS as well as a strong cellular 
response typical for exposure to PAHs. PAHs adsorbed to 
WSPs even more potently induced expression of CYP1A1 
than B[a]P applied in suspension. Clearly, more studies 
are needed to address the bioavailability of PAHs bound 
to WSPs and the mechanism of particle and PAH interac-
tions. As metabolic activation of PAHs is critically linked 
to genotoxicity, mutagenesis and carcinogenesis, the effect 
of WSPs on these endpoints needs to be critically evaluated 
in the future. The soot fraction and metals were found to be 
the most important factors for ROS formation. A brief sum-
mary of the results is shown in Fig. 7. Soot and especially 
PAH content are important parameters for WSP toxicity. 
Both can be reduced by the use of more efficient furnaces. 
Yet, enhanced combustion technologies might increase the 
relative metal content per mass and thus shift the profile of 

toxicity. Therefore, also a reduction in emitted metal spe-
cies would be desirable, e.g. by the use of particle precipi-
tation techniques in the off-gas. In perspective, our present 
study warrants further investigations on the toxicity of 
WSPs. As the response of cells to particle deposition in 
classical submerged experiments and at the air–liquid inter-
face (ALI) might differ (Paur et al. 2008; Panas et al. 2014) 
in the future, lung cells should also be exposed at the ALI 
and adverse effects induced by wood smoke particles, but 
also the gas phase, need to be investigated in more detail 
including systems biology approaches (Oeder et al. 2015).
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Fig. 7  Wood smoke particles (WSPs) derived from residen-
tial combustion are a complex mixture, containing toxic con-
stituents, such as polycyclic aromatic hydrocarbons (PAHs), 
soot and metals. In human A549 lung cells, WSPs induce ROS 
formation as well as a strong PAH response. These effects 
can indeed be mimicked by individual substances represent-
ing the PAH and soot fraction of WSPs. B[a]P, representing one 
of the most potent PAHs, induced qualitatively the same PAH 
response (CYP1A1 gene expression, EROD activity). However, 
the WSP-bound PAHs are much more potent than pure B[a]P  
dissolved in medium. Treatment with carbon black nanoparticles, 
representing the carbonaceous soot fraction, led to a ROS forma-
tion comparable to treatment with WSPs when the elemental carbon 
content of both particle types is used as a metric. The metal chelator 
DFO partially prevented ROS formation mediated by WSPs suggest-
ing that in addition to elemental carbon metals are also responsible 
for WSP-induced ROS formation
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