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prediction process. In ITS-3 structure, three validated alter-
native assays, DPRA, KeratinoSens and h-CLAT, repre-
sent first three key events of the adverse outcome pathway 
for skin sensitization. The skin sensitization potency pre-
diction is provided as a probability distribution over four 
potency classes. The probability distribution is converted to 
Bayes factors to: 1) remove prediction bias introduced by 
the training set potency distribution and 2) express uncer-
tainty in a quantitative manner, allowing transparent and 
consistent criteria to accept a prediction. The novel ITS-3 
database includes 207 chemicals with a full set of in vivo 
and in vitro data. The accuracy for predicting LLNA out-
comes on the external test set (n =  60) was as follows: 
hazard (two classes)—100  %, GHS potency classification 
(three classes)—96 %, potency (four classes)—89 %. This 
work demonstrates that skin sensitization potency predic-
tion based on data from three key events, and often less, is 
possible, reliable over broad chemical classes and ready for 
practical applications.

Keywords  Integrated testing strategy · Skin 
sensitization · Bayesian network · LLNA potency class

Introduction

Chemical agents are the principal cause of occupational 
skin disease NIOSH (2012). Skin diseases comprise 17 % 
of all reported occupational diseases (Bureau of Labor 
Statistics 2014). The economic impact is significant; the 
estimated annual cost of occupational contact dermatitis 
is more than $1 billion (NIOSH 2012). Contact dermati-
tis is the most common type of occupational skin disease, 
and allergic contact dermatitis (ACD) is responsible for 
20  % of the contact dermatitis cases (Sasseville 2008). 

Abstract  The presented Bayesian network Integrated 
Testing Strategy (ITS-3) for skin sensitization potency 
assessment is a decision support system for a risk asses-
sor that provides quantitative weight of evidence, lead-
ing to a mechanistically interpretable potency hypothesis, 
and formulates adaptive testing strategy for a chemical. 
The system was constructed with an aim to improve pre-
cision and accuracy for predicting LLNA potency beyond 
ITS-2 (Jaworska et al., J Appl Toxicol 33(11):1353–1364, 
2013) by improving representation of chemistry and biol-
ogy. Among novel elements are corrections for bioavail-
ability both in  vivo and in  vitro as well as consideration 
of the individual assays’ applicability domains in the 
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ACD is also a public health problem, accounting for more 
than seven million outpatient visits every year (Middleton 
et al. 1998). Over 3700 substances are considered contact 
allergens (Beltrani et  al. 2006; De Groot 1994). Consum-
ers are exposed to contact allergens in skin care products, 
shampoos, and pesticides. To help consumers and workers 
avoid ACD, national and international regulatory authori-
ties require chemicals and products to be tested to identify 
and label potential contact allergens (Boeniger and Ahlers 
2003).

Although traditional skin sensitization tests are con-
ducted in animals, legislative changes increasingly mandate 
that skin sensitization potential be assessed with non-ani-
mal methods. Since 2013, the European Union has banned 
the use of animals for testing cosmetic products and ingre-
dients, as well as the marketing of finished products that 
have either been tested on animals or that contain ingre-
dients that have been tested on animals following the ban 
(European Union 2009). Similar legislation may be pro-
posed in the USA in 2015 (AP 2014). Additionally, many 
institutional animal care and use policies encourage animal 
use to be minimized.

Consequently, the skin sensitization field has been an 
area of very active research that resulted in great advances 
in mechanistic understanding of the processes leading to 
sensitization (Kimber et  al. 2011; Mehling et  al. 2012), 
many novel promising tests (Reisinger et  al. 2015), and 
proposals for frameworks to make classification decisions 
with alternative data.

Expert approaches to classification, described as weight-
of-evidence (WoE) approaches, have been used to integrate 
existing information and determine the need for additional 
testing. However, the amount of available alternative assay 
data is increasing rapidly and becoming more diverse. The 
new data streams are heterogeneous in metrics and scales 
(cell-based assays with dose–response curves for both 
cell marker induction and cytotoxicity, reactivity assays 
with reaction kinetics or peptide depletion, diverse in sil-
ico readouts) as are the biological events leading to skin 
sensitization that they address. Such heterogeneity makes 
traditional, subjective expert-based evaluations increas-
ingly more challenging. To facilitate information exchange, 
increase shared knowledge, and encourage the develop-
ment of mechanistic frameworks, the Organisation for 
Economic Co-operation and Development (OECD) coor-
dinates the development of Adverse Outcome Pathways 
(AOP) for understanding the adverse effects of chemicals 
(OECD 2015a). The AOP framework codifies the mecha-
nistic steps leading to an adverse effect and allows existing 
and novel tests to be mapped to the biological events of the 
AOP. The AOP framework construction practices are rap-
idly evolving (Villeneuve et al. 2014a, b). The AOP for skin 
sensitization produced by chemicals that bind covalently to 

proteins (OECD 2012) includes four key events that occur 
after a substance penetrates through the skin (Villeneuve 
et  al. 2014a, b) and is potentially transformed to active 
metabolites:

•	 Key Event 1: covalent binding to skin proteins
•	 Key Event 2: activation of inflammatory cytokines and 

induction of cytoprotective genes in the keratinocyte
•	 Key Event 3: activation (induction of inflammatory 

cytokines and surface molecules) and mobilization of 
dendritic cells in the skin

•	 Key Event 4: activation and proliferation of antigen-
specific T-cells

The final adverse outcome is the inflammatory response 
(e.g., erythema, edema, blisters, itching) that occurs in 
the skin of animals or humans upon re-challenge with an 
allergen.

There is a growing consensus that, given the evolution in 
knowledge and data, decision frameworks for risk must be 
more objective, consistent, and transparent (Bus and Becker 
2009; Jaworska et  al. 2010). Integrated testing strategies 
(ITS) are tools that can support the new paradigm of tox-
icity testing. They present a conceptual framework for the 
cumulative synthesis of information and for guiding test-
ing in such a way that the information gain is maximized 
in a testing sequence that leads to a risk decision (Jaworska 
et  al. 2010; Jaworska and Hoffmann 2010). As described 
by Jaworska and Hoffmann (2010) and further emphasized 
by Hartung et al. (2013) and Rovida et al. (2015), ITS are 
combinations of tests in a battery covering the relevant 
mechanistic steps organized in a logical, hypothesis-driven 
decision scheme, which is required to make efficient use of 
generated data and to provide a comprehensive information 
basis for making decisions regarding hazard or risk.

Recognition that the process of skin sensitization is 
too complex to be able to predict an adverse in vivo out-
come using a single alternative test and the need for an ITS 
approach was very convincingly illustrated in the ITS con-
ceptual model of Jowsey et  al. (2006) and later reiterated 
by Basketter and Kimber (2009). The development of very 
diverse ITS approaches soon followed.

The majority of approaches focus on data integration 
and require that all data needed for a particular approach 
be available for a given chemical to make a prediction. The 
simplest approach is based on majority voting from the out-
come of three in vitro tests (Bauch et al. 2012). Approaches 
based on machine learning algorithms are very popular. 
They use hybrid sets of inputs, most often combinations 
of physico-chemical properties, in silico predictions, and 
experimental data from one or more in vitro assays. Among 
them are linear regression-based methods (McKim Jr et al. 
2010; Natsch et al. 2009; Nukada et al. 2012) and nonlinear 
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methods such as neural networks (Tsujita-Inoue et al. 2014, 
2015) or support vector machines (Strickland et al. manu-
script in preparation) and random-forest models (Luech-
tefeld et al. 2015). The difference between linear and non-
linear lies in the assumption that the predicted variable is 
a linear or nonlinear combination of inputs. The common 
characteristic of these models is that the underlying model 
structure is dictated by the chosen machine learning algo-
rithm, while parameters are data driven. As such, despite 
the fact that they use mechanistically relevant input data, 
these approaches do not have the ability to make mechanis-
tically interpretable integrated predictions.

To overcome this shortcoming, Natsch et al. (2015b) and 
Patlewicz et  al. (2014a) utilized mechanistic knowledge, 
from a chemistry perspective, to develop an ITS framework 
based on local reactivity domain models, physico-chemi-
cal properties, structural alerts, in silico simulators of skin 
metabolism, auto-oxidation, hydrolysis, and in vitro experi-
mental data. While the approach in Natsch et al. (2015b) is 
quantitative and estimates the pEC3, a measure of potency, 
the approach taken by Patlewicz et  al. (2014a) does not 
have a built-in algorithm to make quantitative estimates. 
It is a WoE tool with decisions driven by expert opinion. 
The WoE tool is limited to hazard characterization, and 
the authors suggest that it be used in read-across deter-
minations. The work of Natsch et  al. (2015b) and Patle-
wicz et al. (2014a) serves as inspiration to better integrate 
knowledge of reaction chemistry in quantitative ITS frame-
works, which other approaches tend to lack.

The reason that there are so few ITS approaches in 
which model structure encodes the skin sensitization pro-
cess, i.e., in a fully mechanistic framework, is the complex-
ity and remaining uncertainty of the process. It is a very 
challenging task to formalize this process into equations 
and then populate the model with data for the parameters. 
Only two models of this kind are known to the authors: 
Maxwell and Mackay (2008) and Su et al. (2009). The lat-
ter is a model aimed to discover the fundamental principles 
of the immune response to antigens, while the objective 
of the first model is to eventually develop a tool for risk 
assessment for human health. The Maxwell and Mackay 
(2008) model is a classic pharmacodynamic-pharmacoki-
netic model represented by a set of ordinary differential 
equations to model the underlying chemical and biologi-
cal dynamic processes of mass transport, reaction kinetics, 
cell population dynamics and receptor binding events. To 
date, the model has been parameterized only for 2,4-dini-
trochlorobenzene and its readiness for routine risk assess-
ment is compromised by the lack of parameters for other 
chemicals.

Expectations regarding risk decision frameworks reach 
beyond data integration and, for resource efficiency, should 
include methods to identify an optimal testing strategy. 

Among diverse ITS approaches, there is a class of sequen-
tial or tiered test batteries that require particular tests or 
information to be evaluated in a predetermined way (Bauch 
et al. 2012; Natsch 2014; Nukada et al. 2013; van der Veen 
et  al. 2014). These approaches attempt to introduce effi-
ciency to the strategy by stopping the testing whenever a 
chemical is predicted positive in the first tier, which usually 
consists of an assay. Sequential batteries of this kind have 
a tendency to yield a low number of false negatives and 
a higher number of false positives. This situation occurs 
because these strategies use prediction models initially 
developed as stand-alone prediction models for the individ-
ual assays, which usually have higher sensitivity and lower 
specificity. This effect is exacerbated in the sequential bat-
tery because sequential testing does not take into account 
information overlap between the assays in the battery 
(Jaworska et al. 2010, 2013; Natsch 2014). Jaworska et al. 
(2010) demonstrated that prescribed tiered strategies are 
not optimal and that mandating a single generic set of tests, 
either tiered or not, as a replacement strategy, is unlikely to 
be effective, and that ITS must be flexible and adaptive.

Despite high demand to predict sensitization potency, 
which is driven by the needs of classification and labe-
ling (UN 2013) as well as quantitative risk assessment, the 
majority of ITS approaches address hazard only. Why is 
predicting potency so difficult? As measured by the murine 
local lymph node assay (LLNA), skin sensitization potency 
may span four orders of magnitude (Gerberick et al. 2005). 
Existing alternative test methods may be suitable to pre-
dict sensitization hazard, but are deemed as not appropriate 
for potency predictions (Adler et al. 2011; Basketter et al. 
2012) partly due to insufficient dynamic range. Further, 
there is no agreement on what measurements, other than 
reactivity, are necessary to predict potency (Basketter and 
Kimber 2009). ITS potency assessment approaches devel-
oped to date predict four classes of the LLNA EC3 (Tsu-
jita-Inoue et al. 2014, 2015), or the molar equivalent pEC3 
(Natsch et al. 2015b). The authors of the former approach 
reported 66 % accuracy for the four classes, while the latter 
approach predicts the pEC3 within two- to fourfold of the 
experimental values for the training set; however, the per-
formance of either approach on an external validation set is 
unknown.

Our approach to construct an ITS started with analyses 
of the needs and resulting conceptual requirements for ITS 
(Jaworska et al. 2010; Jaworska and Hoffmann 2010). Hav-
ing these requirements, we identified Bayesian network 
(BN) approach as the best suited to meet these needs. In 
short, the BN ITS framework formulates a probabilistic 
hypothesis about the target variable (in our case, the induc-
tion of skin sensitization) based on cumulative evidence 
from initial data and guides subsequent testing by value 
of information (VoI) calculations. The rationale to use a 
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BN approach is summarized in Table  1. We have applied 
the BN ITS framework to skin sensitization hazard and 
potency prediction first in a proof of concept study (Jawor-
ska et al. 2011) and then as a more mature approach dem-
onstrating its readiness for practical applications (Jaworska 
et al. 2013).

Practical applications of ITS approaches are lagging 
behind because investigators often neglect evaluation of 
the approaches with an external validation (test) set (De 
Wever et  al. 2012). Performance of the test batteries and 
testing strategies reviewed above cannot be adequately 
compared to one another because the investigators used dif-
ferent chemical sets to evaluate the methods. Evaluations 
based on an external dataset were lacking except for the 
approaches from the Interagency Coordinating Commit-
tee on the Validation of Alternative Methods (ICCVAM) 
(Strickland et al. manuscript in preparation) and our work 
(Jaworska et  al. 2011, 2013). The ITS-2 demonstrated 
a very good balanced accuracy of 88  % on the external 
test set (n = 21). The external dataset was fairly large for 
those that contain animal data in the toxicological litera-
ture; however from a statistical point of view, it had low 
power and therefore is not very robust. Frequently differ-
ent accuracy is obtained on a different chemical sets, which 
leads to disappointments of the interested users. Other fac-
tors inhibiting the practical application of ITS is the lack 
of hands-on guidance in implementing ITS and the lack 
of regulatory guidance regarding the acceptability of ITS 
approaches (De Wever et al. 2012). Another hurdle is broad 
accessibility of the ITS approaches to interested users. A 
unique effort was undertaken by the National Toxicology 
Program Interagency Center for the Evaluation of Alterna-
tive Toxicological Methods (NICEATM), which provides 
support to the ICCVAM, to facilitate data and information 
exchange among stakeholders and encourage the further 
development, evaluation, and acceptance of these types of 

non-animal approaches. NICEATM collaborated with us to 
reproduce and distribute the ITS-2 in an open source ver-
sion (Pirone et  al. 2014) at http://ntp.niehs.nih.gov/pub-
health/evalatm/integrated-testing-strategies/index.html.

The primary goal of the present work was to increase 
accuracy, precision, and robustness of the BN ITS predic-
tions for the entire range of potency beyond the results 
achieved in ITS-2. We aimed to achieve this goal by a bet-
ter integration of chemistry and biology as well as a refine-
ment of the manner in which bioavailability is considered 
in the BN ITS. Further, large efforts in data generation 
were undertaken. As the result, the ITS-3 database includes 
207 chemicals (training plus test sets), an almost 50  % 
increase over the ITS-2 database of 145 chemicals (Natsch 
et al. 2013).

The second goal was to refine the prediction process. 
Specifically, we wanted to exploit the fact that the BN ITS 
framework can build hypotheses with partial data. This fea-
ture can be used to apply the applicability domains of the 
individual assays in the process of gathering evidence by 
eliminating evidence if it was outside of the applicability 
domain of a particular assay. The intention was to feed to 
the ITS only relevant data to avoid mispredictions.

The third goal was to increase the standardization of 
inputs and use only validated assays to increase the prac-
tical utility of ITS-3. To this end, we replaced the in vitro 
U937 test related to Key Event 3, activation of dendritic 
cells, with the human cell line activation test (h-CLAT), 
which has been validated by the European Union Refer-
ence Laboratory for alternatives to animal testing (EURL 
ECVAM) (Joint Research Centre of the European Union 
2015). In addition, we simplified bioavailability inputs to 
just physico-chemical properties and eliminated the need to 
run Kasting’s skin penetration model (Dancik et al. 2013).

The fourth goal was to carry out an extensive evaluation 
of the ITS-3 performance. For this purpose, tremendous 

Table 1   Rationale for Bayesian network ITS approach

Feature Function

The structure of the BN ITS represents the underlying mechanistic 
processes leading to an in vivo adverse effect while recognizing  
the uncertainty of the exact formalism

The AOP sequence of key events (KE 1, 2, 3), bioavailability, and 
chemistry are encoded in the network structure

Allows interpretation in the biological context and is chemical specific

ITS framework uses only data as inputs Eliminates potential inconsistency and uncertainty propagation due to 
use of the prediction models of multiple individual assays

Information overlap between individual assays regarding adverse 
effect is accounted for

Reduces false positives and false negative classifications

Can build a hypothesis with partial data in any sequence Flexible and adaptive. Data outside the applicability domain of indi-
vidual tests can be eliminated

Quantifies uncertainty for the hypothesis with any partial data Facilitates consistent prediction acceptance criteria. Guides testing 
strategy using value of information

http://ntp.niehs.nih.gov/pubhealth/evalatm/integrated-testing-strategies/index.html
http://ntp.niehs.nih.gov/pubhealth/evalatm/integrated-testing-strategies/index.html
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effort was spent in preparing a large database that allowed 
us to use a 60-chemical external validation (test) set. In 
addition to evaluating the model with a large external 
dataset, we demonstrate how the ITS-3 could be used in 
practice with several case studies. First, we demonstrate a 
prediction when all evidence is in agreement. Second, we 
illustrate use of ITS-3 for a chemical that is exclusively 
reactive with lysine and not with cysteine. The third exam-
ple deals with a potency prediction where alternative data 
appear to be in conflict due to testing beyond applicabil-
ity domain limits. In the fourth example, we demonstrate a 
post-processing step to correct the potency prediction for a 
direct Michael acceptor (MA).

The ITS-3 developed here provides potency information 
which can be used for:

1.	 Hazard identification and classification and labeling 
under the Globally Harmonized System of Classifica-
tion and Labelling of Chemicals (GHS) scheme (UN 
2013)

2.	 Quantitative risk assessment (QRA) especially when 
combined with in vivo evidence on analogs.

3.	 Development of an efficient testing strategy, thus it is a 
decision strategy. There is no one best, predefined, test-
ing strategy for all chemicals, but the optimal sequence 
of tests depends on the information at hand, and is 
chemical specific (Jaworska et  al. 2011). The ITS 
guides testing by VoI, expressed as mutual information 
(MI), and measures progress by uncertainty reduction 
in the probability distribution. VoI informs on whether 
the prediction class will change once the new informa-
tion is added.

Materials and methods

The target variable: LLNA potency classes

Although LLNA potency is typically expressed as a per-
cent weight per volume of the concentration required to 
produce a threshold positive response (e.g., a stimulation 
index = 3; EC3), in this work we express in vivo potency 
data in molar units. The driving force for toxic effects is a 
function of the number of molecules present at the target 
sites, not the mass of these molecules. For the same rea-
sons, we express both in vitro assay results in molar con-
centrations. Also, from the potency modeling perspective, 
mixing inputs expressed in molar and weight units lead to 
compromised results. To this end, we converted all the data 
into mol/L concentrations.

The ITS-3 estimates skin sensitization potency in the 
LLNA, TG 429, (OECD 2010), expressed as probabil-
ity distribution of LLNA pEC3 spread among 4 potency 

classes (C1–C4), where pEC3 = Log
(

MW
250∗EC3%

)

. For non-
sensitizing chemicals, for which EC3 was not determined, 
EC3 % was set to 101 % to provide a corresponding pEC3 
value. Next, the pEC3 cutoffs to obtain C1–C4 classes were 
set to −1.9, −1.1, −0.35. These cutoffs were chosen to fol-
low closely the weight-based classification representing 
non-sensitizer (NS), weak sensitizer (W), moderate sensi-
tizer (M), and strong or extreme sensitizer (S) classes based 
on EC3 % (Kimber et al. 2003) (NS, 100-10, 10-1, <1 %). 
Molecules for which this relationship is not maintained are 
the ones with very low/high MW or those for which the 
EC3 % value was close to a cutoff, i.e., EC3 % = 90 (see 
training and test set).

The LLNA data were compiled from published litera-
ture and from previously unpublished data from several 
laboratories. The chemicals were chosen based on the qual-
ity of the LLNA studies. The dataset is comprised of 207 
chemicals including fragrances, preservatives, dyes, dye 
precursors, halogenated alkanes, and solvents and covers a 
wide range of physico-chemical properties. The training set 
(n = 147) includes 36 NS, 28 W, 35 M, and 25 S sensitiz-
ers. The test set (n = 60) contains 12 NS, 21 W, 13 M, and 
14 S chemicals. Distribution in the pEC3 space, i.e., C1–C4 
classes, is 39, 39, 40, 29 for the training set and 14, 19, 12, 
15 for the test set. To facilitate reading, equivalence of C1 
and NS, C2 and W, C3 and M, and C4 and S is suggested as 
it does not compromise the interpretation.

Further, after prediction of the pEC3 class distribution is 
made, it is always possible to convert it to EC3 % distribu-
tion, and eventually to specific EC3 % percentiles (Sheet 2 
Supplementary file). Usually the most representative sum-
mary for the distribution is the 50th percentile, albeit other 
percentiles can be chosen for a given application. The con-
version is provided in the Appendix 2. We discuss the util-
ity of different percentiles later in the manuscript.

Data inputs

The ITS-3 uses the following data sources as inputs 
(Table  2): (1) bioavailability-related variables (physico-
chemical properties: distribution coefficient at pH = 7 log-
DpH=7, water solubility WspH=7, fraction ionized at pH = 7, 
% plasma protein binding (PB)—ACDlabs Percepta 2014); 
(2) in silico potency prediction which considers metabo-
lism and potential for auto-oxidation (TIMES); (3) Key 
Event 1: peptide reactivity [OECD 442 C: Direct peptide 
reactivity test (DPRA) (OECD 2015c)]; (4) Key Event 2: 
keratinocyte activation [OECD 442 D: ARE-Nrf2 lucif-
erase test method (KeratinoSens™) (OECD 2015d)]; (5) 
Key Event 3: dendritic cell activation [human cell line acti-
vation test (h-CLAT) (OECD 2015b)]. The whole database, 
including SMILES experimental data and in silico predic-
tions, is available online (see Supplementary file A).
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Data sources and relevance

ACD/labs Percepta Platform 2014 (ACD Labs, Toronto, 
Canada) is used to calculate physico-chemical properties 
related to bioavailability.

DPRA (OECD 2015c) addresses Key Event 1, protein 
binding. Haptens applied to the skin covalently bind to the 
nucleophilic residues (i.e., cysteine [Cys] and lysine [Lys]) 
of proteins in the skin. Binding of chemicals to protein 
in the skin is an essential step for a sensitizer to produce 
allergenicity (OECD 2012). Because reactivity is important 
for the molecular initiating event (MIE), intrinsic or meta-
bolically triggered reactivity has key biological relevance. 
Binding to the cysteine and lysine peptides provides two 
measures of the MIE. DPRA data were generated by meas-
uring the reactivity of a test chemical with model hepta-
peptides containing lysine or cysteine (Gerberick et  al. 
2007, 2004). Peptide reactivity is reported as percent of 
free peptide remaining in the sample, which is opposite to 
the original method reporting percent depletion. The data 
were generated at Procter & Gamble laboratories.

KeratinoSens™ ARE-Nrf2 Luciferase Test Method 
[OECD TG 442d (OECD 2015d)] addresses Key Event 
2, activation of the keratinocyte. Based on recent data (El 
Ali et  al. 2013; van der Veen et  al. 2013), the Nrf2 path-
way is a key pathway of defense triggered by sensitizers 
in vivo. According to current knowledge, it is the key com-
mon molecular pathway which triggers gene expression in 
response to electrophilic chemicals at sub-toxic concentra-
tions (Dinkova-Kostova et  al. 2005; Natsch 2010). Sensi-
tizers with an exclusive reactivity toward lysine might be 
negative in the KeratinoSens™ assay. Data were gener-
ated using the transfected HaCaT keratinocyte cell line 

KeratinoSens™. The average concentrations (in µM) 
inducing a 1.5-fold or a threefold enhanced luciferase 
activity (KEC1.5 or KEC3.0, respectively) and the con-
centration leading to 50  % cytotoxicity after 24  h (IC50) 
are determined. KEC3 data are used in addition to KEC1.5 
data, because KEC1.5 may be too low a threshold for some 
reactive chemicals (Emter et  al. 2010). KeratinoSens™ 
data were obtained from Natsch et al. (2013) or generated 
at Givaudan laboratories.

h-CLAT  (Ashikaga et al. 2006; OECD 2015b) addresses 
Key Event 3, dendritic cell (DC) activation. When a hap-
ten is applied to the skin, surface molecules (i.e., CD54, 
CD86) on skin DCs are upregulated through the activa-
tion process. Since CD54 is involved in DC migration to 
draining lymph nodes and CD86 stimulates T cell activa-
tion during antigen presentation by DC, both molecules are 
essential in the induction of skin sensitization. The h-CLAT 
data were obtained using the THP-1 cell line. The aver-
age test chemical concentrations (in µM) inducing 150 % 
of vehicle control CD86 cell surface marker expression or 
200 % of control cell surface CD54 expression (EC150 or 
EC200, respectively) and the concentration leading to 25 % 
cytotoxicity after 24 h (CV75) are determined. Data were 
mainly generated in Kao and Shiseido laboratories.

Tissue Metabolism Simulator for predicting skin sensiti‑
zation (TIMES) Software V.2.27.13 (Dimitrov et  al. 2005) 
is an in silico hybrid expert system that (1) generates a 
reactivity alert, (2) assesses potential auto-oxidation, (3) 
assesses metabolic transformation potential, and (4) semi-
quantitatively classifies chemicals into the three categories: 
non-sensitizers, weak, and strong sensitizers (Dimitrov 
et al. 2005; Patlewicz et al. 2014b). Intrinsic or metaboli-
cally triggered reactivity has a key biological relevance. 

Table 2   In vitro, in chemico, and in silico data used in the ITS-3

Input type Endpoint Unit

Bioavailability Ws—Water solubility at pH = 7
Log D—Distribution coefficient at pH = 7 
PB—Plasma protein binding fraction
Fraction ionized at pH = 7

M
[−]
[−]
[−]

In silico prediction of potency in vivo:  
TIMES

1. Mechanistic alert for direct reactivity (including direct Michael accep-
tor) and auto-oxidation

2. Prediction of 3 classes (non-sensitizer, weak, or moderate/strong) 
based on the most potent among parent and metabolites

Classes (NS, W, S)

Key Event 1: DPRACys, DPRALys % of the cysteine-(Cys), and lysine-(Lys) peptide remaining in the DPRA 
assay

% remaining peptide

Key Event 2: KeratinoSens™
KEC1.5, KEC3, IC50

Concentration yielding 1.5-fold (KEC1.5); threefold (KEC3) induction of 
Nrf2-dependent luciferase activity in the KeratinoSens™ assay; 50 % 
reduction in cell viability in the KeratinoSens™ assay

µM

Key Event 3: h-CLAT EC150, EC200, CV75 Concentrations yielding 150 % induction of the cell surface activation 
marker CD86 in the h-CLAT; 200 % induction of the cell surface 
activation marker CD54 in the h-CLAT; 25 % reduction in cell viability 
in the h-CLAT

µM



2361Arch Toxicol (2015) 89:2355–2383	

1 3

Since we differentiate between moderate and strong, the 
strong class from TIMES is mapped onto the C3 and C4 
classes in the ITS-3 training set. The most potent molecule 
among the parent and metabolites is used for the quantita-
tive prediction.

Bayesian network construction

We continue to pursue a BN-based ITS approach which we 
identified as the most suitable ITS framework that allows 
us to capture all of the biology and chemistry, with the abil-
ity to combine multiple, heterogenous data streams and use 
advanced decision-making tools (Jaworska et al. 2010). A 
BN is a probabilistic graphical model of a problem domain. 
It is uniquely suited to represent uncertain knowledge when 
one knows which variables, not necessarily all, are impor-
tant in the process of interest, but where the relationships 
between the variables are not well characterized, or com-
plex, or both. In a BN, each node represents one of the 
features of the problem domain and the arcs between the 
nodes represent the direct dependencies between the cor-
responding variables.

In BN parlance, the variable for which we develop a 
hypothesis (in this study, LLNA potency) is the target vari-
able, while the variables providing evidence (in this study, 
all listed test results and data in Table 2) are referred to as 
the manifest variables. In addition to manifest variables, 
we use latent variables in the network structure. The latent 
variables are not directly observable—they combine infor-
mation from similar tests and allow communicating sum-
mary results obtained from the parent nodes of the latent 
variable. From the computational perspective, they simplify 
the structure of the network by reducing the number of arcs 
between conditionally dependent variables, and they sim-
plify the numerical computations for the joint probabilities. 
We divide learning a BN into two iterative sub-tasks: First 
we learn the structure and then learn the parameters for that 
structure.

The structure of the ITS-3 model was developed man-
ually from mechanistic knowledge of the endpoint fol-
lowing the approach outlined in Lucas et  al. (2004). The 
AOP structure (i.e., sequence of events, MIEs) as well as 
data related to AOP Key Events 1, 2, and 3 is encoded in 
the ITS-3. Aligning ITS-3 model structure with the AOP 
structure is a critical element of our approach. It makes the 
ITS-3 gain mechanistic model characteristics: (1) Interpre-
tation of the results is possible in the biological context, 
i.e., the hypothesis generated by the ITS-3 model can be 
explained based on known mechanisms; and (2) mechanis-
tic models are more robust and extrapolate better beyond 
data used to develop the model.

Both the construction method and the resulting struc-
ture of ITS-3 are similar to ITS-2 (Jaworska et  al. 2013), 

but there are several refinements. First, as in ITS-2, the 
mechanistic scheme of the skin sensitization induction 
process (Basketter and Kimber 2009) with the AOP events 
of stratum corneum penetration, protein binding, keratino-
cyte activation and DC activation (Basketter and Kimber 
2010) was translated into a Naïve Bayes network struc-
ture. Naïve Bayes structure assumes that these events are 
independent. In the network the Bioavailability latent node 
relates to stratum corneum penetration potential as well as 
free concentration in  vitro. The Cys latent node and Lys 
nodes relate to AOP Key Events 1, peptide binding, and 2, 
keratinocyte activation (for Cys only). The h-CLAT latent 
node relates to Key Event 3, DC activation, and combines 
information from all h-CLAT readouts. Second, the tests 
used to observe the above process were mapped onto the 
initial network as manifest variables. There are tests that 
clearly measure different key events, and there are also 
tests that measure the same key event or part of the process 
but in different ways. Capturing this information is criti-
cal to the proper mapping of tests onto the initial network 
structure and is described below.

There are two possible MIEs: reaction with cysteine 
(Cys) and reaction with lysine (Lys), which are repre-
sented by two independent nodes. This allows identifica-
tion of chemicals that act via both MIEs as well as only 
through one MIE. The Cys latent variable represents the 
event of cysteine haptenation that can be observed via the 
DPRA-Cys measurement and/or the KeratinoSens™ assay 
[a bias toward cysteine-reactive chemicals in Nrf2-depend-
ent assays has been discussed previously (Natsch 2010)]. 
Reactivity toward cysteine is also measured indirectly in 
TIMES as electrophilicity molecular descriptors. Further, it 
has been postulated that the molecular basis of DC stimula-
tion by electrophilic chemicals is a reflection of their abil-
ity to bind to sensor proteins (such as Keap1 or others). 
Therefore, it was even argued that DC-based assays might 
be a complicated measure of cysteine reactivity (Kimber 
et al. 2011). The fact that we observed a high shared infor-
mation between CD86 and Cys nodes in ITS-2 seemed to 
support this postulate. To reflect this, arcs connecting Cys 
latent with h-CLAT, as well as Cys latent and TIMES, 
were introduced exactly as in ITS-2. The only difference 
is that h-CLAT is a latent variable as it combines informa-
tion from two separate readouts (CD86 and CD54 surface 
marker induction).

The new elements of the ITS-3 relate to bioavailability 
and cytotoxicity. Despite the obvious fact that a chemical 
must pass through the skin’s stratum corneum barrier, most 
authors did not find bioavailability, usually expressed as log 
Kow, to be a significant contributor to explain skin sensiti-
zation hazard (Alves et al. 2015) or even potency (Roberts 
and Aptula 2008). Our own efforts to express bioavailabil-
ity using absorbed dose, as well as maximum epidermal 
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concentration, from the skin penetration simulation of the 
LLNA dosing scenario using the model developed by Kast-
ing and coworkers (Dancik et al. 2013) showed a somewhat 
stronger relationship, especially for maximum epidermal 
concentration, but the effect was still small except for weak 
sensitizers (Jaworska et al. 2013).

While the role of skin penetration kinetics in in  vivo 
skin sensitization potency remains to be further elucidated, 
another kinetic component, kinetics in  vitro, should also 
be considered in the ITS framework. Kinetics in vitro aims 
to assess the free concentration of a tested chemical in an 
in vitro test. The need for consideration of in vitro kinet-
ics and the importance of using free instead of nominal 
concentration in the interpretation of the in vitro result has 
been demonstrated (Groothuis et  al. 2015; Kramer et  al. 
2012) but remains to be routinely used. To this end, we 
decided to generalize the bioavailability latent variable to 
consider both skin penetration in vivo and kinetics in vitro 
in the ITS-3 framework structure. The bioavailability latent 
variable is constructed from the following physico-chemi-
cal properties: water solubility at pH = 7, distribution coef-
ficient, log D at pH = 7, fraction ionized at pH = 7, and % 
plasma protein binding (PB). These variables are relevant 
determinants of skin penetration, cell membrane penetra-
tion, and free concentration. The bioavailability latent vari-
able is connected by arcs to LLNA pEC3, Cys, Lys, and 
h-CLAT nodes. The pEC3-bioavailability arc represents 
bioavailability in  vivo, while the arcs with Cys, Lys and 
h-CLAT represent the respective bioavailabilities in  vitro 
and in chemico.

In order to trigger the sensitization response in  vivo 
there is, after hapten formation, the need for a danger sig-
nal in the form of local trauma triggering the emigration 
of DC. This danger signal appears to involve the formation 
of extracellular ATP and breakdown products of hyaluronic 
acid generated by sensitizers (Esser et  al. 2012; Weber 
et  al. 2010). The release of ATP from cells is, at least 
under certain circumstances, triggered by cytotoxicity. For 
example, cytotoxic surfactants have the ability to provide 
this local trauma. In the LLNA, which we model in our 
analysis, no such adjuvant is given. Thus, in the LLNA, a 
chemical must provide both the hapten and the danger sig-
nal in order to trigger the response. Therefore, the LLNA 
measures both the haptenic potential and the danger signal 
provided by the chemical, and a chemical with stronger 
danger signal potential in principle will generate a stronger 
LLNA response. To account for the presence of the dan-
ger signal in the network, we connect the cytotoxicity and 
pEC3 nodes. The cytotoxicity latent variable is constructed 
from cytotoxicity measured in h-CLAT assay (CV75) and 
cytotoxicity measured in the KeratinoSens™ assay (IC50). 
The arcs connecting IC50 with KEC1.5, KEC3, as well as 
CV75 with EC150 and EC200, inform about cell viability 

in relation to the sensitization-specific response. Cytotoxic-
ity in cell-based assays to a certain extent may mimic the 
‘danger’ signals elicited by skin sensitizers in vivo, which 
might explain why cytotoxicity can partly explain LLNA 
potency for some chemicals. However, it is important to 
keep in mind that this reasoning specifically applies to the 
experimental situation of the LLNA test which is modeled 
in this work.

Discretization

All input data were discretized using k-means algorithm 
weighed by MI with the target node, i.e., LLNA pEC3. The 
number of bins per variable was aimed to be at least four 
for the latent variables and up to six for the manifest vari-
ables. The process of establishing the final number of bins 
was iterative with the objective to optimize performance of 
the network on the training set across all potency classes.

Learning parameters of the network

Once the network structure was set, the parameters of the 
network, i.e., conditional probability tables (CPT), and the 
resulting joint distributions, were learned from data (the 
details are described in the Supplementary file B available 
online). The final network was constructed using the Taboo 
algorithm in BayesiaLab 5.4 software (Bayesia SAS, Laval 
Cedex, France).

Learning the network involves calculating a joint prob-
ability distribution over all of the variables in the network. 
As a result, every node of the network has its own joint 
probability distribution conditioned on the other network 
variables. Parameters of the network that characterize the 
arcs, the CPTs, are derived directly from data. CPT are 
matrices in general form p(A|B)—the probability of data A 
occurring, given that data B occurs. Associated with each 
node is a CPT that gives the probability of the node being 
in a particular state, given the values of the parent nodes.

Value of information (VoI) analysis

VoI, expressed as mutual information, MI (X, Y) between 
variable X and Y was used to characterize the relationship 
between variables. MI measures the amount of uncertainty 
in Y (equal to entropy), which is removed by knowing X. 
We expressed fraction of entropy of the parent node Y, H 
(Y), reduced by knowledge of X, i.e., MI (X,Y)/H(Y), and 
expressed it in percent. The one-step look-ahead hypoth-
esis is used as the methodology to guide testing (Kjaerulff 
and Madsen 2013). The one-step look-ahead hypothesis 
calculates the VoI from all possible individual information 
sources and chooses the one for which the information gain 
about the target variable is maximized. The foundation of 
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this reasoning is the analysis of the changes in the prob-
ability distribution of the information target, given a set of 
existing data versus a set of existing and new data.

Assessment of applicability domain for in vitro and in 
chemico assays

Consideration of applicability domain is recognized as 
very important in interpretation of the assay results. How-
ever, this is most often done a posteriori usually in  situa-
tions when there is a conflict in results. We introduced the 
consideration of applicability domain in pretreatment of the 
data based on (1) biological domains; (2) physico-chemical 
properties such a water solubility at pH =  7 and fraction 
ionized at pH = 7. Based on the guidance from the devel-
oper, all TIMES predictions were accepted whether or not 
the structure of interest was considered in domain of the 
model.

Biological domains

We consider the potential for metabolic activation (pro-
hapten) and auto-oxidation (pre-hapten) by examination of 
TIMES predicted sensitization potential for a parent mol-
ecule and metabolites. The following information from the 
TIMES model is taken into consideration: the predicted 
skin sensitization potency for parent and predicted metabo-
lites, comments on the metabolite prediction (e.g., biotic or 
abiotic (auto-oxidation) activation), the nature of the meta-
bolic transformation (chemical functionality for protein 
interaction), and the protein binding alert. Currently, the 
sensitivity and predictivity of the abiotic transformations 
in TIMES is 88 and 85  %, respectively (Patlewicz et  al. 
(2014a). We flag the potential pre- and pro-hapten chemi-
cals for more careful examination during the process of 
hypothesis building.

Water solubility cutoffs

A unifying limitation of the cell-based assays and, to a 
lesser degree, the in chemico assay, is water solubility 
(Joint Research Centre of the European Union 2013, 2014, 
2015). Traditionally the solubility limitation of an assay 
has been expressed as a function of log Kow. The pub-
lished cutoff for h-CLAT is log Kow up to 3.5 for nega-
tive h-CLAT results (Takenouchi et al. 2013), and for Kera-
tinoSens™ it is log Kow up to 5 (OECD 2015d). However, 
log Kow is a good surrogate of water solubility only for 
neutral chemicals. Partially or fully ionized chemicals are 
much more soluble in water than their neutral counterparts. 
In general, water solubility is pH dependent. In order to 
generalize the solubility cutoff to chemicals that are ion-
ized at physiological pH, we calculated water solubility at 

pH = 7 and express the minimum cutoff based on this vari-
able. Water solubility at pH = 7 was calculated using ACD 
labs Percepta software. It is worth noting that the majority 
of software solutions calculate only solubility of the neutral 
molecule without clearly explaining this fact. As expected, 
chemicals with log Kow up to 3.5 for h-CLAT and log Kow 
up to 5 for KeratinoSens™ revealed a wide range of solu-
bility values (see supplementary material) as these chemi-
cals have diverse degrees of ionization. The cutoffs were 
chosen as the highest solubility value among the chemi-
cals with log Kow >3.5 and log Kow >5 for h-CLAT and 
KeratinoSens™, respectively. This resulted in very close 
cutoff values for h-CLAT and KeratinoSens™ (Table  3). 
Our result of very similar solubility cutoffs makes sense as 
both assays require similar medium composition but have 
slightly different buffer capacity. Till now, the DPRA assay 
was considered not to have a solubility cutoff because for 
poorly soluble chemicals the protocol allows to add DMSO 
up to 10 % of the volume in contrast to 1 % for KS and 
0.2 % for h-CLAT. In this work, the choice for the DPRA 
cutoff was established based on the intersection of the 
most soluble and potent chemical in the database that had 
0  % depletion values for both lysine and cysteine—7,12-
dimethylbenz[α]anthracene.

Only data records with solubility greater than the solu-
bility cutoff were considered in the analysis of the test set. 
Solubility cutoffs were not considered in the training set as 
this would require removal of all the chemicals with solu-
bility less than 2.1e−4M and would result in a loss of valu-
able information. Instead, we chose to keep all the chemi-
cals and retain all records below solubility limits that may 
introduce noise to the data. We say ‘may’ because some 
of these records do not influence the model parameters. 
For chemicals with water solubility <2.5e−08M, only the 
TIMES input was used with the physico-chemical inputs 
(i.e., no assay data were used).

Fraction ionized

Chemicals that were 100  % ionized at pH  =  7 were 
deemed not to be suitable for cell-based assays due to poor 
bioavailability, i.e., due to their inability to cross the cell 
membrane. For partially ionized chemicals, we assumed 

Table 3   Water solubility at pH =  7 cutoffs for DPRA, KeratinoS-
ens™, and h-CLAT

Ws@pH7 [M] DPRA KeratinoSens™ h-CLAT

<2.5e−08 x x x

2.5e−08 to 1.7e−04 Ok x x

1.7e−04 to 2.1e−04 Ok Ok x

>2.1e−04 Ok Ok Ok
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that while bioavailability is impaired in terms of the rate 
of crossing cell membranes, the testing period is sufficient 
for the chemical to cross and reach the target. Among test 
set chemicals there are two that are 100 % ionized: squaric 
acid and tartaric acid. The KeratinoSens™ and h-CLAT 
data records were removed from the test set file for these 
chemicals. It is worth noting that these chemicals do not 
exert any reactivity in either KeratinoSens™ or h-CLAT. 
Fraction ionized was calculated with the formula

where || means an absolute value.

Post‑processing steps after making pEC3 class 
probability distribution prediction

Michael acceptor (MA) alert

An alert for directly acting MA triggers an additional post-
processing step. The general structure of the alert is shown 
below, i.e., α,β-unsaturated ketones and aldehydes with an 
unbranched β-position (Fig. 1).

The direct MA alert is identified by TIMES as chemicals 
with the following transformation or active alert:

•	 alpha, beta-carbonyl compounds with polarized double 
bonds

•	 alpha, beta-aldehydes
•	 conjugated systems with electron withdrawing groups
•	 alpha, beta-carbonyl compounds with polarized triple 

bond
•	 conjugated alkenyl pyridines, pyrazines, pyrimidines or 

triazines
•	 di-substituted alpha, beta-unsaturated aldehydes

Natsch et al. (2011) noted that chemicals with this sub-
structure are less sensitizing in vivo than would be inferred 
from chemical reactivity data, due to the anti-inflammatory 
action of MA. Further, Natsch et al. (2011) showed that the 
anti-inflammatory activity increases with chemical reac-
tivity for this class of molecules. Since this MA alert does 
not translate to potency a priori, we have not included it in 
the structure of the network. However, we use information 
about this alert in the predictions by manually modifying 
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the hypothesis toward a weaker class in the following 
manner:

where n = 1, 2, 3, 4.
This modification corresponds to the direct MA effect 

presented in Natsch et  al. (2011) in graphical abstract 
and was applied only to the MA test set chemicals. The 
conversion is available on sheet 1 in Supplementary file 
(Table 4).

Bayes factors

The predicted probability distribution is converted to Bayes 
factors to: 1) remove prediction bias introduced by the 
training set class distribution, and 2) express prediction 
uncertainty, which allows transparent and consistent crite-
ria for accepting the prediction (see Table 5). The conver-
sion is done using the following formula:

where: Prior distribution (distribution of the chemicals in 
the training set):P(H = x) probability that a chemical is in 
class x (x = C1–C4) in the training set, P(H = not x) prob-
ability that a chemical is not in class x; Posterior distribu-
tion (chemical and evidence provided specific prediction 
distribution): P(H = x|e) probability that a chemical is in 
class x (x = C1–C4) given the evidence provided to ITS-3, 
P(H = not x) probability that a chemical is not in class x 
given the evidence provided to ITS-3.

Success criteria

Previously established success criteria (Jaworska et  al. 
2013) were reapplied here. First, an ITS framework should 
be transparent, consistent, and objective in terms of the 
decision process, as well as mechanistically interpretable 
for every prediction made. These are conceptual require-
ments and have been discussed previously (Jaworska and 
Hoffmann 2010). Second, the ITS-3 should produce higher 
accuracy than individual tests on an external test set. Third, 

P(Cnnew) =
∑

i=1,2,3,4

Ai · P(Ci)

B =
P(H = x|e)/P(H = not_x|e)

P(H = x)/P(H = not_x)
=

posterior odds

prior odds

Fig. 1   A structural alert for directly acting Michael acceptors

Table 4   Coefficients A of probability transformation for Michael 
acceptors for the post-processing step

Old\new C1new C2new C3new C4new

C1 1 0 0 0

C2 0.6 0.4 0 0

C3 0 0.6 0.4 0

C4 0 0.2 0.5 0.3
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the ITS-3 should predict equally well, or better, on both the 
training and the external tests set. Fourth, if no prediction 
can be made with the available data, the BN ITS should be 
able to determine whether additional testing will reduce 
uncertainty about the prediction.

Process applied to derive the prediction for a new 
chemical

The process of deriving a prediction for a new chemical 
consists of two steps: gathering evidence and developing 
a quantitative hypothesis. This process was applied to all 
chemicals in the test set and in the case studies and it is 
summarized below:

1.	 Gathering evidence

(a)	 Calculation of physico-chemical properties of 
chemicals

(b)	 Prediction of sensitization potency category using 
TIMES:

(i)	 Potency is based on the highest potency among parent 
molecule and predicted metabolites;

(ii)	 Assessment of potential of metabolic activation (pro-
hapten) and auto-oxidation (pre-hapten) to facilitate 
interpretation of DPRA, KeratinoSens™, and h-CLAT 
assay results;

(iii)	Determine whether a chemical is a direct MA based on 
reactivity alerts.
(c)	 Evaluation of the completeness of the evidence 

for MIEs: Does the dataset have evidence for both 
cysteine and lysine reactivity?

(d)	 Assessment of applicability domains:

(i)	 If the chemical is deemed a potential pre- or pro-hapten 
via TIMES prediction, then DPRA, KeratinoSens™, 
and h-CLAT data are examined with caution, against 
potential conflict with other data. A hypothesis without 
these data is considered.

(ii)	 Solubility domain. Only data records not exceed-
ing solubility cutoffs are considered in the analy-
sis (Table  3). For chemicals with water solubility 

<2.5e−08M, only TIMES and physico-chemical inputs 
characterizing bioavailability are used.

(iii)	Ionization: chemicals that are completely ionized were 
not considered suitable for the in vitro assays.

2.	 Integration of all relevant in-domain evidence via 
ITS-3 and prediction of the pEC3 probability distribu-
tion

(a)	 Post-processing correction of the probability dis-
tribution for MA, if applicable. See supplemen-
tary information.

(b)	 Analysis of the hypothesis based on cumulative 
evidence from combinations of relevant assays.

(c)	 Conversion of probability distribution to Bayes 
factors for final interpretation and acceptance of 
prediction.

Results

Network structure

Figure 2 shows the structure of the network in ITS-3 (2b) 
in comparison with the previous version of the network 
(2a). The biggest change is integration of the h-CLAT assay 
and the new latent variable Cytotox. The key differences 
between the networks are presented in Table 6.

Assessing value of a single test using mutual information

MI is a useful measure of interdependence between two 
variables. Using MI we quantified the values of the indi-
vidual tests to assess the entire range of LLNA potency 
(Table 7 first column, MI potency) as well as their values 
for predicting individual potency classes (Table 7 columns 
2–5, MI for NS, W, M, and S, respectively). Ranking of 
the assays depends on the prediction target. This has an 
important implication for ITS/WoE. It demonstrates that 
the assays have very different contributions or ‘weights’ 
when predicting different potency classes. Models that 
use only one weight per assay, such as regressions and 
decision trees, are not able to capture this robust ‘weight’ 
representation.

Similar to earlier findings with ITS-2, TIMES appears 
to be the most dominant variable in the ITS-3 model. We 
know that this is inflated because the training set of TIMES 
partially overlaps with the training set of the ITS-3 model. 
However, in our work we always use model predictions 
and not data. TIMES has the highest MI in global ranking 
as well as for the C1, C2 and C3 categories. The fact that 
TIMES has a lower MI for the C4 class is the result of two 
factors. When mapping the TIMES class 3 onto the C3 and 
C4 classes, there are fewer strong sensitizers than moderate 

Table 5   Interpretation of Bayes factors in terms of strength of evi-
dence (Goodman 1999)

Bayes factor Strength of evidence for acceptance of prediction

<1 Negative (supports alternative)

1–3 Barely worth mentioning (weak)

3–10 Substantial

>30 Strong
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sensitizers (40/60  %). In addition, S is the smallest class 
(19 % of the 147 chemicals) in comparison with the other 
classes (ca 27 % each of the 147 chemicals).

The Cytox node representing combined information on 
cytotoxicity from KeratinoSens™ and h-CLAT is second 
in the global ranking. In the ITS-3, cytotoxicity provides 
more information about potency than the in chemico and 
biological assays. This result requires a careful explanation. 
There are three potential reasons for this correlation: the 

necessity for a chemical to provide both the hapten and the 
danger signal in order to trigger the response in the LLNA, 
an intrinsic link between cytotoxicity and reactivity, and a 
potential bias in the database toward an exaggerated high 
number of non-cytotoxic non-sensitizers. This will be dis-
cussed in more detail below.

Among assays quantification of Cys-reactivity has the 
highest overall MI, closely followed by h-CLAT. Fur-
ther we confirm a high degree in information overlap in 
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Fig. 2   Comparison of ITS-2 (a) and ITS-3 (b) network structures. 
AUC120 area under the total flux curve for epidermal concentration 
over 120  h of exposure as in LLNA, Bioav bioavailability, CD86 
concentration producing 150  % induction of the CD86 cell surface 
marker in the U937 assay, Cfree maximum free concentration in the 
mid-epidermis, DPRACys remaining cysteine peptide from the direct 
peptide reactivity assay, DPRALys remaining lysine peptide from 
the direct peptide reactivity assay, CV75 concentration that reduces 
cell viability by 25 % in the h-CLAT, EC150 concentration that pro-
duces 150 % induction of the CD86 cell surface activation marker in 
the h-CLAT, EC200 concentration that produces 200 % induction of 

the CD54 cell surface activation marker in the h-CLAT, fion fraction 
ionized at pH = 7, IC50 concentration that reduces cell viability by 
50  % in the KeratinoSens™ assay, KEC1.5 concentration that pro-
duces 1.5-fold induction of Nrf2-dependent luciferase activity in the 
KeratinoSens™ assay, KEC3 concentration that produces threefold 
induction of Nrf2-dependent luciferase activity in the KeratinoSens™ 
assay, log Kow log octanol/water partition coefficient, log D@pH7 
distribution coefficient at pH = 7, TIMES Tissue Metabolism Simula-
tor software for predicting skin sensitization potency, WspH7 water 
solubility (M) at pH = 7

Table 6   Summary of ITS-3 refinements over ITS-2 structure (color figure and table online)

ITS-2 ITS-3 
Key Event 3:U937 Key Event 3: h-CLAT
Bioavailability considered only for neutral 
chemicals: logKow, Cfree, AUC120 a

Generalized Bioavailability inputs applicable for 
both neutral and ionized chemicals (WspH7, 
logDpH7, fion, PB )

Bioavailability in vivo Bioavailability in vivo and in vitro considered in 
the ITS structure

Cytotoxicity impacts KeratinoSensTM Cytotoxicity impacts KeratinoSensTM, h-CLAT, 
and LLNA 

Color-coded new elements match Fig. 2
a  AUC120 area under the total flux curve for epidermal concentration over 120 h of exposure as in LLNA, Cfree maximum free concentration in 
the mid-epidermis
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Cys-reactivity and DC activation measurement as observed 
in ITS-2. MI between h-CLAT and Cys-reactivity is the 
same as U937 and Cys-reactivity in ITS-2–20. Taking 
a closer look h-CLAT is clearly more valuable than Cys-
reactivity in identifying C3 class, while it provides very 
similar information for C1, C2 and C4 classes.

Quantification of uncertainty 
for decision‑making‑converting probability‑based 
predictions to Bayes factors

Since many results below are expressed as Bayes factors, 
the impact of changing from probability to Bayes fac-
tor needs to be explained first. Use of Bayes factors cor-
rects for the distribution of the chemicals in the training 
set and therefore provides a more objective prediction 
than a posterior probability distribution. In the ITS-3 train-
ing set, Class S chemicals are slightly underrepresented 
(compare the probability of the prior distribution of pEC3 
Class 4 with those of the other three classes in Table  8). 
This results in the deflated posterior probabilities for this 
class. In the example of benzo(α) pyrene, this leads to the 

conclusion that this is a C3 chemical based on probabilities 
[Pr(C3) = 0.37]. However, when predictions are based on 
the highest Bayes factor (B), benzo(α) pyrene is predicted 
as C4, which is concordant with experimental data. Since 
B(C4) is only 1.75, we conclude that the evidence for this 
chemical to be C4 is weak. Similarly, for chemical classes 
that are overrepresented, the prediction probabilities are 
inflated.

Corrections for MA chemicals

There were seven direct MA chemicals in the test 
set for which the probability distributions were cor-
rected (Table 9). The correction resulted in class changes to 
the class that was experimentally observed for four chemi-
cals. Class assignments for ethyl and methyl acrylates 
moved from C4 to C3. As discussed later, in vivo data for 
these chemicals are considered not reliable due to the high 
volatility of low molecular weight acrylates. The safranal 
class prediction did not change; however, the Bayes fac-
tor distribution shifted it toward the less potent classes (see 
Example 4 in the case studies).

Table 7   Mutual information of 
individual assays used in ITS-3 
based on the training set

MI potency overall MI for C1 MI for C2 MI for C3 MI for C4

TIMES 28 TIMES 58 TIMES 16 TIMES 18 Cys 21

Cytox 17 Cytox 35 Cys 5.7 h-CLAT 9.6 KEC3 16

Cys 15 CV75 29 Cytox 5.4 EC150 7.4 KEC1.5 15

CV75 14 IC50 28 h-CLAT 4.6 EC200 3.4 h-CLAT 13

IC50 13 Cys 21 KEC1.5 4.5 KEC1.5 1.8 Cytox 12

h-CLAT 13 KEC1.5 20 CV75 3.9 Cytox 1.7 DPRALys 12

KEC1.5 12 KEC3 20 IC50 3.8 Cys 1.5 DPRACys 11

KEC3 12 EC200 17 KEC3 3.5 CV75 1.5 CV75 10

EC150 10 h-CLAT 17 DPRALys 3.0 IC50 1.3 IC50 10

EC200 9.1 EC150 17 EC150 2.3 DPRALys 1.0 TIMES 10

DPRALys 7.5 DPRACys 10 Bioav 2.1 Bioav 0.8 EC150 7.7

DPRACys 7.0 DPRALys 9.0 WspH7 1.8 KEC3 0.5 EC200 7.5

Bioav 2.4 Bioav 3.8 Log DpH7 1.5 Prot Bind 0.3 Bioav 1.5

fion 1.4 fion 2.9 DPRACys 1.1 WspH7 0.3 fion 1.1

Log DpH7 1.3 Log DpH7 2.1 PB 1.1 DPRACys 0.3 Log DpH7 0.5

WspH7 1.3 WspH7 1.7 EC200 1.0 Log DpH7 0.2 WspH7 0.3

PB 0.5 PB 0.2 fion 0.5 fion 0.2 PB 0.0

Table 8   Prior and posterior distribution probabilities and Bayes factors for benzo(α)pyrene, CAS# 50-32-8

Prior distribution as in the training set Posterior distribution predicted by ITS-3 Bayes factors

pEC3 C1 pEC3 C2 pEC3 C3 pEC3 C4 pEC3 C1 pEC3 C2 pEC3 C3 pEC3 C4 B (C1) B (C2) B (C3) B (C4)

0.27 0.27 0.27 0.19 0.04 0.29 0.37 0.30 0.11 1.11 1.60 1.75



2368	 Arch Toxicol (2015) 89:2355–2383

1 3

Predictive capacity

Accuracy and precision with full and partial evidence

The strength of the BN ITS is its ability to reason with 
either all or partial evidence. Therefore only results that are 
within the applicability domains of the individual assays 
are recommended to be used when predicting potency of 
new molecules. When all evidence is entered to the system 
the hazard prediction accuracy for the test set expressed 
as a balanced accuracy (bac) is 100  % (Table  10). Bac 
accounts for uneven distribution of positive and negative 
chemicals in a dataset. For a binary classification, the for-
mula is:

where Se = sensitivity and Sp = specificity.
Extending bac to multiple classes, one gets bac for GHS 

C&L = 96 %; bac for four-class potency = 89 %. The four-
class potency accuracy of 89 % is in excellent agreement 
with accuracy for the training set (85 %). It demonstrates 
that the ITS-3 model is not overfit. The higher accuracy for 
the test set reflects the fact that we have a pre-processing 
step of selecting data only from their physico-chemical 

bac =
Se+ Sp

2

applicability domains and a post-processing step of MA 
correction. The ITS-3 achieved 100 % accuracy for 14 C1 
chemicals. It also reliably predicted the weak and strong 
classes. When the two problematic acrylates are removed 
(Table 9), it predicted C2 chemicals 100 % correctly. How-
ever, the model has a drop in accuracy for C3, correctly 
predicting 75 % of the chemicals. Previously, in ITS-2 we 
observed this drop in accuracy for W and M (Jaworska 
et al. 2013) and attributed it to insufficient dynamic range 
of in vitro assays.

In Table  10 predictions with varying degree of uncer-
tainty are accepted as long Bayes factor (B) > 1. One can 
easily modify criteria for acceptance. For example a non-
sensitizer prediction can be accepted only when B  >  3 
(strong evidence), while B > 1 can be deemed sufficient to 
accept chemical to be a sensitizer.

When using all information, the following seven 
chemicals in the test set were mispredicted (Table  11). 
One should look at the mispredictions from the side of 
in vivo data and alternative data inputs. Among the seven 
chemicals mispredicted, there are four data points where 
the in vivo data are not reliable: 2 acrylates, tocopherol 
and anhydride. Of the remaining three, two chemicals 
are out of the in  vitro assay domains due to poor water 
solubility.

Table 9   Bayes factors before 
and after corrections for 
Michael acceptor chemicals

Bolded numbers denote class attributed based on in vivo data, italicized numbers show the class predicted 
by ITS-3

Chemical Before MA correction After MA correction

B (C1) B (C2) B (C3) B (C4) B (C1) B (C2) B (C3) B (C4)

Methylmethoxy acrylate 156.5 0.0 0.0 0.1 156.6 0.0 0.0 0.0

Ethyl acrylate 0.0 0.3 0.1 33.8 0.2 0.8 2.2 1.5

Methyl acrylate 0.0 0.0 0.1 92.5 0.0 0.8 2.6 1.6

Farnesol 0.0 0.4 6.3 0.9 0.2 2.8 1.6 0.2

Safranal 0.0 0.1 3.6 2.7 0.06 1.7 2.3 0.6

α-Damascone 0.0 0.2 0.6 11.6 0.1 1.1 2.2 1.2

5-Methyl-2-phenyl-2-hexenal 0.0 0.3 1.7 4.21 0.2 1.7 1.8 0.7

Table 10   Predictive capacity 
of the approach given as a 
contingency matrix based on the 
highest Bayes factor

Numbers in parentheses indicate number of chemicals
a  Since the GHS classification cutoff for 1A is ≤2 %, the table provides a more conservative classification. 
Further differences are to be expected due to the conversion from weight to molar units

GHS category Observed

Training set (147) Test set (60)

Class C1(39) C2(39) C3(40) C4(29) Class C1(14) C2(19) C3(12) C4(15)

None C1 36 2 1 0 C1 14 0 0 0

1B C2 2 32 3 3 C2 0 17 3 0

C3a 0 3 38 5 C3 0 2 9 2

1Aa C4 1 2 8 21 C4 0 0 0 13
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Predicting potency without one of the AOP key event 
assays

From the mechanistic point of view, the three assays have 
fairly large information overlap. Many models were pub-
lished, using information on subsets of key events with 
good results. We (Jaworska et al. 2013) and others (Natsch 
et al. 2015a) have shown previously that a correct predic-
tion of potency does not always require entering informa-
tion from all possible assays. Our results in Table 12 further 
confirm this observation.

However, the loss of accuracy when information from 
one of the assays is not provided is more prominent for 
C3 and C4 classes than for C1 and C2. In other words, our 
results indicate that the highest information overlap is in 

predicting NS. This may not be too surprising given that all 
three in vitro assays (and the LLNA) were initially devel-
oped to discriminate sensitizers from non-sensitizers—so 
with the same primary goal to provide this specific infor-
mation. Omitting TIMES has the biggest effect overall 
driven by the loss of accuracy for C1, C3, and C4. This 
result is a combination of the high TIMES predictivity for 
C1 but also the fact that six of 15 chemicals in the C4 class 
have very poor solubility that makes the in vitro data out 
of the applicability domain. Thus these predictions with-
out TIMES use only bioavailability. Omitting h-CLAT and 
KeratinoSens™ has the same effect on accuracy for all the 
classes while DPRA has the smallest effect.

Accuracy presents only one aspect of the predictive value 
of the system. Accuracy refers to the agreement between 

Table 11   List of chemicals mispredicted by ITS-3 using full datasets

a  Similar chemical (phthalic anhydride [CAS# 85-44-9], a known misclassified extreme sensitizer, hydrolyzes in water at pH 6.8–7.24 with 
half-lives of 0.5–1 min at 25 °C, forming phthalic acid, and is therefore not within the applicability domain of the in vitro assays (UNEP 2005). 
Phthalic acid [CAS# 88-99-3] is classified as a non-sensitizer by a modification of the Maguire method and the LLNA (ECHA database on regis-
tered substances, searched on 25.07.2014). Bolded numbers denote class based on experimental in vivo data

Chemical EC3 % B (C1) B (C2) B (C3) B (C4) Explanation

Ethyl acrylate 28.0 0.2 0.8 2.2 1.5 High vapor pressure, in vivo results likely under-
predicted due to evaporation

Methyl acrylate 20.0 0.0 0.8 2.6 1.6 High vapor pressure, in vivo results likely under-
predicted due to evaporation

Dihydroeugenol(2-methoxy-4-propyl-phenol) 6.8 0.0 5.4 0.7 0.6 Pro-hapten, however removal of DPRA yields 
class S

Farnesol 4.1 0.3 2.0 1.6 0.4 Predicted by TIMES as pre-hapten, however 
removal of DPRA yields class S. KeratinoS-
ens™ and h-CLAT out of solubility domain

Tocopherol 7.4 0.4 5.1 0.4 0.5 logP = 10.6, result based on TIMES only, DPRA, 
KeratinoSens™ and h-CLAT out of solubility 
domain. Tocopherol/vitamin E is not a human 
sensitizer and LLNA may be false positive

1,2-Cyclohexane dicarboxylic anhydride (hexa-
hydrophthalic anhydride)

0.8 0.1 0.3 4.6 1.3 This chemical quickly hydrolyzes in water. How-
ever, in DPRA reactivity is so fast that it is even 
faster than hydrolysis (if peptide added first). 
KeratinoSens™ and h-CLAT out of solubility 
domain for the parent molecule however it is 
more likely that an acid is tested. Because the 
acid is very strong it will fall out from applica-
bility domain based on fiona

Squaric acid diethyl ester 0.9 0.4 1.1 3.9 0.1 This chemical quickly hydrolyzes in water, 
in vitro assays test not the parent chemical but 
acid and alcohol (Cohen and Cohen 1966)

Table 12   Accuracy of potency 
predictions for the test set in % 
for either full data input or with 
omission of one of the key event 
assays

GHS C&L Potency class All data w/o DPRA w/o Ksens w/o h-CLAT w/o TIMES n

All 89 82 77 75 74 60

None C1 100 100 93 93 87 14

1B C2 90 83 83 83 89 19

C3 75 58 50 45 58 12

1A C4 87 87 80 80 60 15
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measured and predicted value. The other aspect of the pre-
dictive value, independent from accuracy, is provided by 
precision. It tells us about uncertainty of the prediction. 
Bayes factors are expressions of precision. To this end, we 
provide prediction precision information in Table 13.

Assessment of precision varies greatly with a class and 
evidence. When all data are used, the system indicates that 
NS are predicted with highly decisive strength of evidence 
(B  >  100). For other classes, there is a remarkable, over 
20-fold drop in the precision. When using all of the data, 
the system concludes that strength of evidence for W and S 
is strong (B > 3). The ITS-3 system has the smallest preci-
sion predicting class M where the median strength of evi-
dence is weak (1 < B < 3).

When the system makes predictions without DPRA, 
there is a drop in the strength of evidence by about 30 % in 
predicting C1. There is no drop in the strength in predicting 
C2 and C3, while the strength of evidence in predicting S is 
reduced by 70 %. Not entering KeratinoSens™ data halves 
the strength of evidence for predicting NS and S, has no 
practical effect on predicting W, and slightly improves pre-
diction reliability for M. Lack of h-CLAT had the weakest 
effect on the reliability of predictions of NS, with reduction 
of only 20 %. There is no significant reduction for W, and 
25  % for M and S. Strength of evidence without TIMES 
for NS is reduced by 95 % but nevertheless remains strong, 
in fact well above the Bayes factor threshold for strong. 
Exclusion of TIMES halves strength of evidence for W 
class and had little effect on M and S.

Omitting TIMES has the largest effect on prediction pre-
cision of the system. We know that this is somewhat biased 
because the training set of TIMES partially overlaps with 
the training set of the ITS-3 model. Interestingly, leaving 
out TIMES has a marginal effect on the prediction preci-
sion for class S, while it had the highest impact on accu-
racy. To determine C1, leaving out KeratinoSens™ results 
in the largest loss in precision, followed by DPRA, and 
eventually h-CLAT. Leaving out DPRA results in the high-
est loss of precision for the C4 class.

Only while analyzing accuracy and precision together 
one can make a choice about the evidence needed to make 
a decision. For example one needs all three assays and 
TIMES to conclude in a highly decisive manner (B > 100) 

whether a chemical is a C1. With incomplete records, one 
can still make a correct prediction but with a lower preci-
sion. Analysis of changes in accuracy and precision when 
providing partial evidence can be also explained by MI val-
ues of individual tests (Table 7).

Case studies

Four chemicals were selected from the test set and are pre-
sented here as case studies. These case studies illustrate the 
steps described in the Methods section under the heading 
‘Process applied to derive the prediction for a new chemi-
cal’ and they indicate how considerations regarding appli-
cability domain, MA correction and conflicting information 
are handled.

Example 1: octanenitrile CAS# 124‑12‑9; LLNA EC3 
not determined, non‑sensitizer

1.	 Prediction of physico-chemical properties of chemicals
Calculated (see Table 14).

2.	 Prediction of TIMES:

(a)	 TIMES prediction results—parent NS, metabolite 
NS

(b)	 Not identified to be a pre/pro-hapten
(c)	 No direct MA alert

3.	 Completeness of MIE evidence check: Does the dataset 
have evidence on both: cysteine and lysine?

Data are available for Cys and Lys MIEs. Complete 
dataset.

4.	 Assessment of applicability domains

(a)	 Not identified to be a pre/pro-hapten by TIMES
(b)	 Water solubility within acceptable range for all 

assays
(c)	 Chemical mostly in a non-ionized form (f_

ion = 0.06)

Table 13   Precision of the 
predictions for the test set 
expressed as the median Bayes 
factor in a given class

Class All w/o DPRA w/o KS w/o h-CLAT w/o TIMES n

C1 133.1 95.4 64.5 107.2 6.9 14

C2 4.0 4.1 4.3 4.2 2.7 18

C3 2.2 2.1 2.3 1.7 2.0 12

C4 7.7 2.1 3.6 5.9 7.1 15
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5.	 Integration of all the in-domain evidence via 
ITS-3 and prediction of the pEC3 probability 
distribution(Table 15).

(a)	 All individual assays predict this chemical a non-
sensitizer with a substantial strength of evidence 
(B ≥ 3)

(b)	 Bioavailability has a negative but weak effect on 
the hypothesis that the chemical is a non-sensi-
tizer because of relatively high protein binding 
and low water solubility.

(c)	 All combinations of assays predict the chemical 
to be a non-sensitizer with increasing strength of 
evidence as data is added in a stepwise manner. 
This means that there no data conflicts.

6.	 Post-processing step of probability distribution correc‑
tion for MA, if applicable.

Not needed. This chemical is not a direct MA.

7.	 Conversion of probability distribution to Bayes factors 
for final interpretation and decision.

Taking into account all input parameters according to the 
AOP, this chemical is deemed to be a non-sensitizer with 
very strong strength of evidence (B = 130). All data are in 
agreement (Table 15). Bolded number indicates Bayes fac-
tor that drives the decision.

Example 2: 2‑methyl‑4H‑3,1‑benzoxazin‑4‑one CAS# 
525‑76‑8, LLNA EC3 = 0.7 %, strong sensitizer 
illustrating the need for checking both Lys and Cys 
MIEs

1.	 Prediction of physico-chemical properties of chemicals
Calculated (see Table 16)

2.	 Prediction of TIMES:

(a)	 Predicted to be strong sensitizer based on parent 
structure

(b)	 Not identified to be a pre/pro-hapten
(c)	 No direct MA alert

3.	 Completeness of MIE evidence check: Does the dataset 
have evidence on both: cysteine and lysine?

DPRA data are available only for Lys, due to technical 
problem with Cys-reactivity measurement (e.g., co-elution 
of the Cys-peptide with the chemical). MIE of cysteine 
binding is reflected by KeratinoSens™ (KS) and probably 
h-CLAT.

4.	 Assessment of applicability domains

(a)	 Not considered to be a pre/pro-hapten
(b)	 Water solubility within acceptable range for all 

assays. Chemical is neutral.

Table 14   Input data overview for octanenitrile

EC150 
μM

EC200 
μM

CV75 
μM

DPRA-Cys
% rem

DPRA-Lys
% rem

KEC1.5 
μM

KEC3 
μM

IC50 
μM

TIMES fion Log D@pH7 PB Ws@pH7

10000 10000 3430 100 96.4 2000 1512 2000 1 0.06 2.72 79.2 0.013

Table 15   pEC3 probability distribution and Bayes factors for individual and combinations of inputs for octanenitrile

Bold values indicate Bayes factor that drives the decision

Evidence pEC3 C1 pEC3 C2 pEC3 C3 pEC3 C4 B(C1) B(C2) B(C3) B(C4)

TIMES 0.93 0.03 0.00 0.03 38.3 0.1 0.0 0.1

DPRA (Cys + Lys) 0.52 0.24 0.21 0.03 3.0 0.9 0.7 0.1

KS (KEC1.5, KEC3, IC50) 0.71 0.11 0.16 0.02 6.8 0.4 0.5 0.1

h-CLAT (EC150, EC200, CV75) 0.69 0.14 0.12 0.05 6.1 0.5 0.4 0.2

DPRA + KS 0.79 0.09 0.11 0.00 10.5 0.3 0.3 0.0

h-CLAT + KS 0.76 0.12 0.09 0.02 9.0 0.4 0.3 0.1

h-CLAT + KS + DPRA(Cys + Lys) 0.83 0.10 0.06 0.00 13.8 0.3 0.2 0.0

h-CLAT + KS + DPRA(C + L) + bioav. 0.71 0.18 0.09 0.01 6.9 0.6 0.3 0.0

h-CLAT + KS + DPRA(Cys + Lys) +bioav. + TIMES 0.98 0.02 0.00 0.00 129.1 0.1 0.0 0.0
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5.	 Integration of all the in-domain evidence and prediction 
of the pEC3 probability distribution (Table 17)

(a)	 The chemical is predicted as a moderate or strong 
sensitizer by TIMES.

(b)	 Based on Lys-peptide depletion values, the chemi-
cal is predicted to be a strong allergen.

(c)	 The KS or h-CLAT data, however, are in conflict 
with Lys-reactivity and TIMES data. KS points 
toward a NS or maybe weak sensitizer. The results 
from the h-CLAT activation assay are clearly indi-
cating a NS.

(d)	 Combination of KS with h-CLAT data strongly 
supports the NS class (B = 5.4), while the com-
bination of TIMES and DPRA-Lys supports 
hypothesis that the chemical is a strong sensitizer 
(B =  3.4). The latter hypothesis is a bit weaker. 
This is an example where statistics alone would be 
misleading; the chemical is acting via lysine as the 
only MIE, which is rare. KS and h-CLAT which 
are preferential toward detecting chemicals acting 
via the cysteine MIE did not detect this chemical 
in the context of ITS-3. The KS stand-alone pre-
diction model, which does not use cytotoxicity as 
an input, would detect it, but rate it rather weak 
(data not shown).

(e)	 Combination of all data (including bioavailability) 
results in a clear hypothesis that the chemical is a 
strong sensitizer (B = 5.1).

6.	 Post-processing step of probability distribution correc‑
tion for MA, if applicable.

Not needed, this is not a MA chemical.

7.	 Conversion of probability distribution to Bayes factors 
for final interpretation and decision.

Taking into account all input parameters according to the 
AOP, this chemical is considered to be a strong sensitizer with 
substantial strength of evidence (B = 5.1 > 3). The strong sen-
sitization potency is driven by strong reactivity toward lysine 
because this chemical is not reactive with cysteine (Table 17).

Example 3: (ethoxymethoxy)cyclododecane CAS# 
58567‑11‑6; LLNA EC3 = 25.1 %, weak sensitizer, 
illustrating importance of considering cytotoxicity 
and applicability domains

1.	 Prediction of physico-chemical properties of chemicals
Calculated (see Table 18).

2.	 Prediction of TIMES:

(a)	 Predicted to be weak sensitizer based on metabo-
lite, while parent was predicted as NS

(b)	 Identified to be a pre-hapten due to auto-oxida-
tion

(c)	 No direct MA alert

Table 17   pEC3 probability distribution and Bayes factors for individual and combinations of inputs for 2-methyl-4H-3,1-benzoxazin-4-one

Bold values indicates Bayes factor that drives the decision

Evidence  pEC3 C1 pEC3 C2 pEC3 C3 pEC3 C4 B(C1) B(C2) B(C3) B(C4)

TIMES 0.05 0.24 0.42 0.29 0.1 0.9 1.9 1.7

DPRA (Lys) 0.10 0.10 0.40 0.40 0.3 0.3 1.8 2.7

KS (KEC1.5, KEC3, IC50) 0.43 0.33 0.19 0.05 2.1 1.4 0.7 0.2

h-CLAT (EC150, EC200, CV75) 0.68 0.14 0.12 0.05 6.0 0.5 0.4 0.2

h-CLAT + KS 0.66 0.17 0.13 0.04 5.4 0.6 0.4 0.2

TIMES + DPRA(Lys) 0.01 0.07 0.46 0.45 0.0 0.2 2.3 3.4

h-CLAT + KS + DPRA(Lys) + bioav. + TIMES 0.28 0.15 0.01 0.56 1.1 0.5 0.0 5.1

h-CLAT + KS + bioav. + TIMES 0.44 0.34 0.01 0.21 2.2 1.4 0.0 1.1

Table 16   Input data overview for 2-methyl-4H-3,1-benzoxazin-4-one

EC150 
μM

EC200 
μM

CV75 
μM

DPRA-Cys
% rem

DPRA-Lys
% rem

KEC1.5 
μM

KEC3 
μM

IC50 
μM

TIMES f_ion Log D@pH7 PB Ws@pH7 

10000 1980 3530 Co-elution 65.7 135 688 2000 3 0 1.5 69.8 0.01
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3.	 Completeness of MIE evidence check: Does the dataset 
have evidence on both: cysteine and lysine?

Data are available for Cys and Lys MIEs. Complete 
dataset.

4.	 Assessment of applicability domains

(a)	 Identified to be a pre-hapten by TIMES.
(b)	 Water solubility within acceptable range for all 

assays.
(c)	 Chemical mostly in ionized form (f_ion =  0.9) 

but within acceptable range

5.	 Integration of all the in-domain evidence and predic‑
tion of the pEC3 probability distribution (Table 19)

(a)	 DPRA: based on Cys- and Lys-peptide remaining 
values, the chemical is predicted to be a NS; how-
ever, this result needs to be taken with caution 
because it is also predicted a pre-hapten.

(b)	 Similarly in the KeratinoSens™, based on 
KEC1.5 and KEC3, the chemical is predicted 
to be a NS; however, this result needs to be 
taken with caution because it is predicted a pre-

hapten. In addition, this chemical is cytotoxic 
at a level below reactivity making the reactiv-
ity readouts less reliable. Taking into account 
KEC1.5, KEC3 and IC50, the chemical is pre-
dicted to be most likely a moderate sensitizer 
(B = 2.5). However, the chance that the chemi-
cal is a weak sensitizer is about half of that 
(1.3/2.5 = 0. 5).

(c)	 h-CLAT data show only CD54 and no CD86 
induction, indicating a weak-to-strong sensitizer 
based on the whole h-CLAT evidence.

(d)	 Combination of DPRA, KeratinoSens™, and 
h-CLAT data supports a W class (B =  3.1). By 
addition of TIMES, the combined data strongly 
supports the hypothesis that this chemical is a 
weak sensitizer (B = 6.2).

(e)	 Combination of all data, including bioavailabil-
ity, further confirms hypothesis this chemical is a 
weak sensitizer (B = 6.8). If less reliable data are 
removed due to cytotoxicity (i.e., KS) or viola-
tion of the applicability domain (i.e., DPRA) due 
to the pre-hapten feature, the hypothesis is based 
only on cytotoxicity, TIMES and bioavailability, 
which suggests the chemical is a weak sensitizer 
(B = 4.6)

Table 18   Input data overview for (ethoxymethoxy)cyclododecane

EC150 
μM

EC200 
μM

CV75 
μM

DPRA-Cys
% rem

DPRA-Lys
% rem

KEC1.5 
μM

KEC3 
μM

IC50 
μM

TIMES Log D@pH7 PB Ws@pH7  fion

10000 38.99 88.70 96.1 99.4 2000 2000 24.34 2 4.71 89.73 9.77e-04 0.9

Table 19   pEC3 probability distribution and Bayes factors for individual and combinations of inputs for (ethoxymethoxy)cyclododecane

Bold values indicate Bayes factor that drives the decision

Evidence pEC3 C1 pEC3 C2 pEC3 C3 pEC3 C4 B(C1) B(C2) B(C3) B(C4)

TIMES 0.14 0.60 0.14 0.11 0.5 4.2 0.5 0.5

DPRA (Cys + Lys) 0.52 0.24 0.21 0.03 3.0 0.9 0.7 0.1

KEC1.5, KEC3 0.50 0.20 0.24 0.06 2.7 0.7 0.9 0.3

KEC1.5, KEC3, IC50 0.01 0.32 0.49 0.19 0.0 1.3 2.5 0.9

h-CLAT EC150, EC200 0.01 0.29 0.34 0.36 0.0 1.1 1.4 2.3

EC150, EC200, CV75 0.01 0.33 0.29 0.37 0.0 1.4 1.1 2.4

DPRA +KS 0.01 0.40 0.51 0.08 0.0 1.8 2.8 0.3

h-CLAT + KS 0.01 0.39 0.37 0.23 0.0 1.8 1.6 1.2

DPRA +TIMES 0.20 0.56 0.21 0.02 0.71 3.5 0.7 0.1

h-CLAT + KEC + DPRA(Cys + Lys) 0.01 0.53 0.38 0.08 0.03 3.1 1.7 0.4

h-CLAT + KEC + DPRA(Cys + Lys) + TIMES 0.00 0.69 0.26 0.05 0.00 6.2 0.9 0.2

h-CLAT + KEC+
DPRA(Cys + Lys) + bioav.

0.01 0.55 0.34 0.10 0.01 3.8 1.4 0.5

h-CLAT + KEC + DPRA(Cys + Lys) +bioav. + TIMES 0.00 0.71 0.22 0.06 0.00 6.8 0.8 0.3
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6.	 Post-processing step of probability distribution correc‑
tion for MA, if applicable.

Not needed. This chemical is not a direct MA.

7.	 Conversion of probability distribution to Bayes factors 
for final interpretation and decision.

Taking into account all input parameters according to 
AOP, this chemical is deemed to be a weak sensitizer with 
substantial strength of evidence (B =  6.8 > 3). Estimated 
EC3 % 50th percentile is 18 %.

There are two caveats here. TIMES predicts hydroper-
oxide formation. However, this is a transformation hap-
pening upon forced oxidation of chemicals during many 
months, and not in the timescale of the LLNA or product 
application (Bodin et  al. 2003; Skold et  al. 2002), and 
thus it is not relevant to the chemical itself. In addition, 
we need to keep in mind that the LLNA sometimes gen-
erates false positives due to irritation, especially for eth-
oxylated surfactants (Ball et al. 2011), the irritation being 
triggered by the strong cytotoxicity of such chemicals. The 
ITS-3 analysis actually hints at the possibility that a simi-
lar mechanism applies to the chemical investigated here, 
as the prediction is strongly driven by cytotoxicity. When 
evaluating such a result, we need to keep in mind that we 
have trained the model specifically to predict the LLNA 
response.

Example 4: 2,6,6‑trimethylcyclohexa‑1,3‑dienyl 
methanol (safranal) CAS# 116‑26‑7; LLNA 
EC3 = 7.5 %, moderate sensitizer illustrating MA 
correction

1.	 Prediction of physico-chemical properties of chemicals
Calculated (see Table 20)

2.	 Prediction of TIMES:

(a)	 Predicted to be strong sensitizer based on parent 
structure; metabolite by auto-oxidation predicted 
to be weak sensitizer

(b)	 Possible pre-hapten predicted by TIMES
(c)	 Direct MA active alert, di-substituted α,β-

unsaturated aldehyde

3.	 Completeness of MIE evidence check: Does the dataset 
have evidence on both: cysteine and lysine?

Data are available for Cys and Lys MIEs. Complete 
dataset.

4.	 Assessment of applicability domains

(a)	 Considered to be a possible pre-hapten. Despite 
this, all assays indicate reactivity, and thus all 
data can be used as evidence.

Table 20   Input data overview for safranal

EC150 
μM

EC200 
μM

CV75 
μM

DPRA-Cys
% rem

DPRA-Lys
% rem

KEC1.5 
μM

KEC3 
μM

IC50 
μM

TIMES f_ion Log D@pH7 PB Ws@pH7 

176.2 256.2 456.8 8.2 100 5.4 33.5 337.3 3 0 2.8 40 0.008

Table 21   EC3 probability distribution and Bayes factors for individual and combinations of inputs for safranal

Bolded number indicates Bayes factor that drives the decision

Evidence  pEC3 C1 pEC3 C2 pEC3 C3 pEC3 C4 B(C1) B(C2) B(C3) B(C4)

TIMES 0.05 0.24 0.42 0.29 0.1 0.9 1.9 1.7

DPRA (Cys + Lys) 0.12 0.3 0.36 0.22 0.4 1.2 1.5 1.2

KS (KEC1.5, KEC3, IC50) 0.17 0.13 0.23 0.64 0.5 0.4 0.7 4.9

h-CLAT (EC150, EC200, CV75) 0.13 0.25 0.56 0.18 0.4 0.8 2.7 0.8

h-CLAT + KS 0 0.04 0.42 0.53 0.0 0.1 2.0 4.7

TIMES + DPRA(Cys + Lys) 0.02 0.23 0.48 0.27 0.06 0.8 2.5 1.50

h-CLAT + KS + bioav. + TIMES 0 0.02 0.49 0.49 0.0 0.1 2.6 3.9

h-CLAT + KS + DPRA(Cys + Lys) + bioav. + TIMES 0 0.03 0.57 0.4 0.0 0.1 3.6 2.7

h-CLAT + KEC + DPRA(Cys + Lys) + bioav. + TIMES + MA 
correction

0.02 0.35 0.43 0.12 0.06 1.7 2.3 0.6
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(b)	 Water solubility within acceptable range for all 
assays. Chemical is neutral.

5.	 Integration of all the in-domain evidence and predic‑
tion of the pEC3 probability distribution (Table 21)

(a)	 The chemical is predicted as a strong or moderate 
sensitizer by TIMES.

(b)	 Based on Cys and Lys-peptide depletion values, 
the chemical is predicted to be a moderate aller-
gen.

(c)	 The KS data, however, are in conflict with Cys- 
and Lys-reactivity and TIMES data. KS points 
toward a strong sensitizer. The results from the 
h-CLAT activation assay are indicating a moder-
ate sensitizer.

(d)	 Combination of KS with h-CLAT data strongly 
supports a strong potency class (B = 4.7) without 
MA correction and moderate after MA correction 
(data not shown).

(e)	 Combination of all data (including bioavailabil-
ity) results in a clear hypothesis that a chemical is 
a moderate sensitizer (B = 3.6).

6.	 Post-processing step of probability distribution correc‑
tion for MA, if applicable.

In this case, the MA correction does not change the pre-
dicted potency class—Bayes factor is still the largest for 
class C3 (Table  21). However, before the correction the 
ITS-3 predicts the chemical to be a moderate sensitizer, 
but there is still a large probability associated with class 
C4. The prediction changes after MA correction. Based 
on Bayes factors, safranal is 1.3 times more likely to be a 
moderate than a strong sensitizer (3.6/2.7 = 1.3). The MA 
correction shifts the probability mass toward the weak sen-
sitizer class; safranal is 3.8 (2.3/0.6) times more likely to 
be a moderate sensitizer than a strong one. Expressed as 
an estimated EC3 % 50th percentile, predicted EC3 is 2 % 
without and 4.9  % with MA correction.Bolded number 
indicates Bayes factor that drives the decision. 

7.	 Conversion of probability distribution to Bayes factors 
for final interpretation and decision.

Taking into account all input parameters according 
to the AOP, this chemical is considered to be a moder-
ate sensitizer with a weak strength of evidence (B  <  3). 
While application of the MA correction factor reduced the 
strength of evidence for the moderate class, it shifted the 
remaining probability away from the strong sensitizer class 
and toward the weak sensitizer class, which is in a better 
agreement with the EC3 value of 7.5 %.

Discussion

The presented ITS for skin sensitization potency assess-
ment—ITS-3—builds upon previously published work, 
ITS-1 (Jaworska et  al. 2011) and ITS-2 (Jaworska et  al. 
2013), in which we use a Bayesian network as the underly-
ing framework of the ITS.

The main goal of the present work, to increase accu-
racy, precision, and robustness of the predictions for the 
entire range of potency beyond the results achieved in ITS-
2, was met with success. This result was possible by (1) 
refinement of the skin sensitization process representation 
in the network structure, (2) conversion of potency from 
weight to molar units, (3) generation of a large dataset that 
increased size and diversity of the underlying database, (4) 
establishment of a structured prediction process that con-
siders the assays’ applicability domains, and (5) considera-
tion of bioavailability in vivo and in in vitro assays. This 
work demonstrates that skin sensitization potency predic-
tion based on data from 3 key events, and often less, is pos-
sible, reliable over broad chemical classes, and ready for 
practical applications.

First, we improved the integration of biology knowl-
edge into our quantitative BN structure. We believe that our 
approach is uniquely suited to represent a complex biologi-
cal process by coding it to the structure of the ITS. Proper 
representation of the process is very central in the system 
analysis field and regarded critical to achieve robust pre-
dictions (Brase and Brown 2009). BNs in conjunction with 
Bayesian statistical techniques facilitate the combination of 
domain knowledge and data. Importance of prior or domain 
knowledge is critical when data are scarce or expensive as 
is the case with toxicity testing in general. BNs are based 
on causal semantics that makes the encoding of causal 
prior knowledge particularly straightforward. In addi-
tion, BNs encode the strength of causal relationships with 
probabilities.

In the BN ITS, the individual information sources are 
not used as stand-alone assays, but the outcomes are used 
to derive interim conclusions and to select, on the basis 
of VoI, which assays are needed next. The BN ITS uses 
quantitative WoE based on Bayesian statistics to update 
the hypothesis about LLNA potency every time after new 
information is provided. Most importantly, in the BN, 
existing prediction models for individual assays previously 
published are not used, and thus a potential bias from a pre-
diction model which was trained for a stand-alone use of an 
assay is not integrated into the ITS-3. This is a key differ-
ence from most other ITS approaches, which aim at using 
a combination of stand-alone prediction models to arrive at 
improved predictions. The weighing of AOP events during 
model development is accomplished by CPTs. CPTs are 
matrices representing dependency relationships between 



2376	 Arch Toxicol (2015) 89:2355–2383

1 3

discretized variables connected by arcs. The CPTs are pop-
ulated by data from the database that serves as the training 
set for the ITS-3. This is a much more robust representation 
of the dependency between variables than, for example, a 
constant value.

Aligning the ITS-3 network structure with the AOP 
structure allows interpretation of results in the biological 
context and is chemical specific. This issue is currently 
underappreciated in the toxicology community where 
the efforts have been more focused on the development 
of assays representing a single element of the adverse 
outcome process or statistical models using combina-
tions of inputs, including biological assays. It is our 
opinion that further development of AOP frameworks 
will facilitate transition from statistical to mechanistic 
ITS frameworks.

In the ITS-3 the AOP structure (i.e., sequence of events, 
MIEs), as well as data related to AOP Key Events 1, 2 and 
3, is encoded in the ITS-3 network structure. Cysteine and 
lysine reactivity are treated as two separate, independ-
ent MIEs. The need for such a structure is driven by the 
molecular targets of the in vitro assays. The KeratinoSens™ 
assay is a luciferase reporter cell line assay which targets 
activation of a single signaling pathway, the Nrf2 (nuclear 
factor-erythroid 2-related factor 2)-antioxidant response ele-
ment (ARE) pathway. The specific molecular events in this 
pathway are well characterized. The sensor protein Keap1 
(Kelch-like ECH-associated protein 1) contains highly reac-
tive Cys-residues. In an uninduced state, Keap1 is bound to 
the Nrf2 transcription factor. When electrophilic molecules 
covalently bind to the Cys-residues, Keap1 dissociates 
from Nrf2 which then is available to activate ARE-depend-
ent genes such as those coding for phase II detoxifying 
enzymes (Dinkova-Kostova et al. 2005; Natsch 2010). Due 
to this mode of action, the KeratinoSens™ assay is highly 
responsive to Cys-reactive chemicals and not to Lys-only 
reactive chemicals. Specific molecular targets reacting spe-
cifically to Cys or Lys have not been fully described for the 
h-CLAT. The h-CLAT measures the upregulation of two cell 
surface proteins, CD86 and CD54, as markers of DC activa-
tion in THP-1 cells, a human monocytic leukemia cell line. 
The increased expression of these markers can be attrib-
uted to many different cellular pathways which have been 
partially revealed. One key pathway for CD86 activation is 
upregulation of p38 kinase activity (Miyazawa et al. 2008). 
Interestingly, it was shown that p38 is upregulated in pres-
ence of sensitizers due to modifications of Cys-residues on 
the cell surface (Kagatani et  al. 2010). Based on this pro-
posed mechanism, there is, at least for CD86, probably also 
a Cys-dependent pathway at work. This is maybe reflected 
in our network by the fact that we found a relatively high 
MI between the Cys and the h-CLAT nodes. Only DPRA 
assay ability to identify Lys selective chemicals.

Another novel aspect for ITS-3 is handling of bioavaila-
bility. Bioavailability is applied to both in vivo and in vitro 
data. The former estimates the potential of a chemical to 
penetrate the stratum corneum, while the latter aims to cor-
rect the nominal concentration to the free concentration in 
in  vitro assays. Despite the fact that contribution of bio-
availability is relatively small, we found it still a significant 
contributor for predicting potency.

Next, we further integrated chemistry into the ITS-3 
framework by formulating applicability domains for 
DPRA, KeratinoSens™, and h-CLAT assays and then con-
sidering them in the prediction process. The ITS-3 process 
considers metabolic transformation and auto-oxidation 
using TIMES predictions as a way to assess a chemical’s 
potential for being a pre- or pro-hapten. Moreover, phys-
ico-chemical properties (water solubility and fraction ion-
ized) are used to define chemistry-oriented applicability 
domains. We exploit the fact that a BN allows building a 
hypothesis based on partial information to introduce the 
notion of applicability domain in the prediction process, 
i.e., only relevant data are used for predictions. Data out-
side applicability domains are not included in the inte-
grated prediction or are treated with caution according to 
the prediction process.

The next foundational element for refined potency 
prediction was a switch from weight to molar units for 
potency. The prediction is provided as a pEC3 probability 
distribution for four potency classes. They closely represent 
traditional classes based on EC3 in  %. One may ask—was 
it necessary? We strongly believe it was. Predictive mod-
els, especially for potency, need to be grounded in chemis-
try and biology over the entire dynamic range of responses, 
and expression of potency in molar units is necessary to 
achieve this. Till now, many predictive models were con-
structed with the goal to directly predict the in vivo result 
expressed on a weight basis in order to directly meet exist-
ing regulatory needs. While this seems pragmatic, and we 
did this in the past as well (ITS-1, ITS-2), our opinion 
evolved as we are pushing the boundaries of what is pos-
sible in terms of refinement and robustness of potency pre-
diction. In the animal testing paradigm, decisions have been 
based on external dose. In the toxicology of the twenty-first 
century paradigm, we expect an increasing number of stud-
ies to be performed in molar units and to use internal dose 
as the dose metric. This can always be converted to the 
traditional weight-based units to inform chemical manage-
ment decisions.

To increase size and diversity of the underlying database 
large, efforts in data generation were undertaken to create 
the largest dataset to date with full records on DPRA, Kera-
tinoSens™ and h-CLAT. The ITS-3 database includes 207 
chemicals, an almost 50  % increase over the ITS-2 data-
base of 145 chemicals (Natsch et al. 2013), and it integrates 
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all three assays validated by EURL ECVAM. This allowed 
robust estimation of the network parameters, i.e., CPTs, as 
well as to carry out an extensive evaluation of the ITS-3 
performance with an external validation set comprising 60 
chemicals. Test sets in computational toxicology are noto-
riously small, and usually only absolute accuracies are 
reported and characterized by high uncertainty. Yet this 
uncertainty is not reported. This leads to surprises when 
models start to be used in practice because much lower 
accuracies are observed. We analyzed bac values along 
with their respective confidence intervals that take into 
account size of the test sets that provides a more compre-
hensive assessment of predictive capacity of a model for 
ITS-3 and ITS-2 (Jaworska et al. 2013) (Table 22).

As an overall conclusion, incorporation of all these 
novel components summarized above reduces the uncer-
tainty of predictions of all potency classes compared with 
ITS-2.

The most impactful variables

Times

The most impactful input variable is TIMES. TIMES rep-
resents collective expert knowledge, quantitative reactiv-
ity-based relationships and metabolism. Despite the 60 % 
overlap between the ITS-3 and the TIMES training sets, 
there is no inflation of the weight of TIMES for two rea-
sons. First, TIMES is an expert system that makes a pre-
diction based on alerts, reactivity parameters, in vivo data 
and expert mechanistic knowledge. In that sense it is very 
different from a machine learning approach where the 
overlap would be an issue. Second, the weight of TIMES 
in the ITS-3 is based on the accuracies achieved for the 
training set. These are 93  % for C1, 60  % for C2, and 
70  % for C3 and C4. These numbers correspond quite 
well with TIMES external validation using 40 chemicals 
(Roberts et  al. 2007) where accuracies were 88  % for 
NS and 56  % for S. The lower performance for S was 
attributed to the poor prediction of metabolism at that 
time. Since 2007, there has been a lot of development 
to address this topic. A recent paper by Patlewicz et  al. 
(2014b) describes these developments. Therefore the cur-
rent ‘weight’ of TIMES is not strongly inflated by the 
overlap between training sets of TIMES and ITS-3 but is 
a reflection of reality.

Cytotoxicity

We observe a strong contribution of cytotoxicity to the pre-
diction of potency classes, even stronger than the Cys- and 
Lys-reactivity nodes. Does this indicate that cytotoxicity 
is a stronger contributor to sensitization potency as com-
pared to reactivity, contradicting common wisdom? There 
are a number of points to consider here. First there are two 
mechanistic explanations. The first one we used as motiva-
tion to add cytotoxicity as explanatory variable in the net-
work structure.

To recall, in order to trigger the sensitization response 
in  vivo there is, next to hapten formation, the need for a 
danger signal in the form of local trauma triggering the emi-
gration of DC. This danger signal appears to involve forma-
tion of extracellular ATP and breakdown products of hya-
luronic acid (Esser et al. 2012; Weber et al. 2010). Release 
of ATP from cells in particular is triggered by cytotoxic-
ity, and cytotoxic surfactants therefore do have the ability 
to provide this local trauma. Classical maximization tests 
used this ability by amplifying the sensitization reaction to 
chemicals by simultaneous or pretreatment with irritants. In 
the LLNA, which we model in our analysis, no such adju-
vant is given. Thus in the LLNA a chemical must provide 
both the hapten and the danger signal in order to trigger the 
response. Therefore the LLNA measures both the haptenic 
potential and the danger signal provided by the chemical, 
and a chemical with stronger danger signal potential will 
be rated stronger in the LLNA. Based on this reasoning, 
we would expect a lower contribution of cytotoxicity when 
modeling maximization tests, in which the danger signal is 
provided by (co-)treatment with irritating adjuvantia. Unfor-
tunately this hypothesis is difficult to test in detail as the 
guinea pig maximization test yields mainly qualitative and 
only limited quantitative information. Still it is important 
to keep this simple fact in mind—when we model LLNA, 
we model a situation in which the chemical is applied with-
out any concomitant danger or adjuvants, which is different 
from a human exposure situation in which the danger signal 
may come from other chemical or physical insults or from 
preexisting inflammation. Thus, there is a certain risk that 
the strong weight for cytotoxicity identified here is specific 
to the LLNA, which we model here, and not to sensitiza-
tion in general. There is also the risk that cytotoxicity of a 
chemical exaggerates predicted sensitization risk in ITS-3, 
as may be the situation in Example 3 of the case studies.

Table 22   Balanced accuracy 
(bac) for four potency classes 
for ITS-2 (Jaworska et al. 2013) 
and ITS-3

All C3 and C4 (similar to M + S)

n Bac % 95 % CI n Bac % 95 % CI

ITS-2 21 85 70–100 10 80 55–100

ITS-3 60 89 81–97 27 82 68–96
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Secondly, there is an intrinsic link between cytotoxicity 
and reactivity: chemicals with strong cysteine reactivity are 
in general cytotoxic, as modification of cysteine residues 
in enzymes blocks key vital processes and directly leads 
to cytotoxicity (referred to as ‘excess toxicity’ in environ-
mental toxicology as compared to ‘narcotic baseline toxic-
ity’ (Bohme et al. 2009). Thus, part of the good correlation 
between cytotoxicity and sensitization potency must not 
be a causal effect but rather a correlation effect, due to the 
simple fact that strongly cysteine-reactive chemicals are 
always both sensitizing and cytotoxic. Hence, cytotoxicity 
may be a predictor of potency even if it is not cytotoxicity, 
but rather the underlying reactivity, which leads to the sen-
sitization potency.

There is also a caveat that the result may partly be driven 
by the database composition. The publicly available LLNA 
database contains a relatively high number of non-sensitiz-
ers with low molecular weight and very low cytotoxicity 
(such as butanol, propylene glycol, glycerol, benzoic acid, 
lactic acid). The database may not fully represent the distri-
bution of non-sensitizers in the chemical universe, and only 
due to this database bias, has cytotoxicity attained the high-
est weight to predict non-sensitizers in our analysis.

Finally, one needs to keep in mind that the TIMES node 
is also mainly reflecting reactivity, as TIMES predictions 
are based on reactive alerts in the molecules. Thus, taken 
together the cysteine, lysine and TIMES nodes contribute 
more to the predictions as compared to cytotoxicity (which 
itself is partly driven by reactivity)—confirming the com-
mon wisdom.

Practical use

Standardization of inputs

To increase the practical utility of ITS-3, only validated 
assays are used. To this end, we replaced the in vitro U937 
test related to Key Event 3, DC activation, with the h-CLAT 
that has been validated by EURL ECVAM (Joint Research 
Centre of the European Union 2015). Thus, this is the first 
ITS incorporating data of the three assays validated by 
EURL ECVAM (DPRA, KeratinoSens™, and h-CLAT) in a 
quantitative manner. In addition, we simplified bioavailabil-
ity inputs to just physico-chemical properties and eliminated 
the need to run Kasting’s skin penetration model (Dancik 
et al. 2013). This new bioavailability representation allows 
for easier yet more robust characterization of bioavailability 
that handles both neutral and ionized chemicals.

Improved process facilitating optimized testing strategy

We refined the prediction process. We made it a very struc-
tured, step-by-step process and demonstrated how to use it 

with four diverse examples. We exploited the fact that the 
BN ITS framework can build a hypothesis with partial data. 
We introduced consideration of applicability domains of 
individual assays into the process of gathering evidence, 
and elimination of evidence if it was deemed outside the 
applicability domain of a particular assay due to physico-
chemical property limits or biological domain. By feed-
ing to the ITS-3 only relevant data, we reduce mispredic-
tions and frequently occurring input data conflicts. Usually 
when there is no conflict among data, a correct hypothe-
sis is formed. In contrast, predictions based on input data 
which are in conflict with each other always result in a flat 
probability distribution and compromised precision/higher 
uncertainty. Being able to explain data conflict is therefore 
critical to the successful use of ITS. Eliminating data on the 
basis of being outside of the applicability domains is a key 
tool for removing data conflict.

In case of missing evidence on one MIE (i.e., Lys or Cys-
reactivity), we recommend applying additional caution to the 
prediction or collecting data on the lacking MIE. Based on a 
simple statistical analysis, there are many test combinations 
that may lead to a prediction that will be deemed acceptable 
for the purpose of a decision [see e.g., Bauch et al. (2012); 
van der Veen et al. (2014); Urbisch et al. (2015)]. We pro-
pose to separately check the completeness of the evidence 
in a biological sense. Since most assays are cysteine reactiv-
ity oriented, this check is critical for Lys selectively reactive 
chemicals. In cases where evidence on MIE Lys-reactivity is 
missing, one may be misled by an apparent high certainty of 
a prediction, i.e., a high Bayes factor for a particular class 
(see Example 2 in the case studies).

As discussed earlier, in BN ITS, the weight of the indi-
vidual information source is context specific. This adaptive 
nature of Bayesian frameworks has important implications 
for decision-making. It treats the decision-making pro-
cess as a dynamic process. Bayesian frameworks account 
for dynamically changing interrelationships between tests 
based on evidence provided, and thus there is no constant 
weight of for an AOP event. Since the process of adding 
evidence to the BN ITS can be sequential (and not all at 
once), interim predictions and decisions can be generated. 
As a result, BN ITS can also be used to guide and optimize 
a testing strategy before testing is commenced.

Furthermore, there are circumstances when more infor-
mation on a particular chemical is necessary. For those 
situations, the assessor must decide which study—or stud-
ies—would yield the most relevant information for the risk 
decision while being mindful of the applicability domain for 
the input assays. A poorly informed decision could result 
in unnecessary testing. For example, when the outcome of 
TIMES indicates that the chemical of interest is a potential 
pro-hapten (i.e., the parent molecule is predicted to be non-
sensitizing and a metabolite is predicted to be reactive after 
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metabolic transformation), conduct of a DPRA would be 
of limited value as pro-haptens are out of its applicability 
domain. Similarly, results from one of the cell-based assays, 
KeratinoSens™ or h-CLAT, for chemicals with low water 
solubility (e.g., between 2.5e−08 and 1.7e−04M) may not 
be reliable and therefore have little relevance. In addition to 
the decision on the relevance of potential experiments, there 
is the equally complex problem of deciding how data from 
a new experiment, which can address different levels of bio-
logical organization, can be incorporated into the existing 
body of knowledge about the candidate chemical. Using the 
BN ITS, an assessor may explore the impact of the addi-
tional experimental data on the reliability of the BN predic-
tion by observing its effect on the Bayes factor.

Utility of the ITS‑3 output for quantitative risk assessment 
(QRA)

The ultimate goal of the sensitizer potency assessment is 
to use the results for QRA for skin sensitization of chemi-
cals (Api et  al. 2008; Gerberick et  al. 2001). Currently, 
after a No Expected Sensitization Induction Level (NESIL) 
is established, sensitization assessment factors (SAF) are 
used to transform the NESIL into an acceptable exposure 
level (AEL), which is a finite maximal dose considered safe 
for human exposure. When predictions are made for a sen-
sitization potency class, one approach to apply this output 
in a QRA is to assign a conservative default value to each 
class for use as the NESIL (e.g., one may assume a ‘worst 
case’ of NESIL of 100 µg/cm2 for all chemicals predicted 
as moderate by the ITS-3) (Gerberick et al. 2001).

The output of the ITS-3 is a potency probability distri-
bution. In the current framework of QRA, the probabilistic 
readout would need to be transformed to a deterministic 
value, which then could be used as a NESIL. The question 
arises—what would be the most appropriate finite value rep-
resenting the predicted distribution? To this end, we explored 
different pEC3 values derived from 50th, 60th, 70th, 80th 
and 90th percentiles of the pEC3 probability distribution for 
the test set chemicals (Sheet 3 Supplementary file).

To guide us in determining what percentile would be 
acceptable, we examined which chemicals would be under-
predicted by a given percentile. First we considered ‘most 
likely predicted LLNA EC3 values.’ This most likely value 
by definition is the 50-percentile, i.e., the dose at which the 
likelihoods for a lower or higher EC3 values are balanced. In 
two-thirds of the cases, the in vivo LLNA EC3 value is not 
more than a factor of two below this predicted value. As a 
factor of two is considered a typical variability of the LLNA 
EC3 value itself, such a result may be used directly—but for 
one-third of the chemicals there remains a more significant 
underestimation of the sensitization potential as revealed 
by the LLNA. So the assessment may need to be somewhat 

more conservative. One option is to move from a 50 % per-
centile to, e.g., the 90 % percentile, i.e., the concentration at 
which the chance of a lower real EC3 value is only 10 %.

Clearly the 90th percentile is overly conservative, 
attributing very low EC3 values to a number of chemicals 
(Table 1 in the supplementary file). This happens especially 
for chemicals with a relatively flat probability distribution 
or chemicals with a low maximal Bayes factor for any of 
the classes. These include the three polycyclic compounds 
7,12-dimethylbenz[α]anthracene, 1-chloromethylpyrene 
and benzo(α)pyrene. Very poor solubility and a need for 
metabolic activation indicated these specific chemicals are 
out of the applicability domain of all three experimental 
assays. Thus, their prediction was based only on TIMES 
and bioavailability-related physico-chemical variables. As 
such, the evidence for these chemicals to be strong sensitiz-
ers is rather weak, i.e., characterized by large uncertainty 
(Table  8, B(S) =  1.75). In addition, we do not know the 
exact EC3 values for these chemicals, as the reported val-
ues are all extrapolations from experiments done at (much) 
higher concentration. Finally, by design, extreme sensitiz-
ers (four of the nine chemicals that are strongly underpre-
dicted) are not precisely predicted with ITS-3 model, which 
bins strong and extreme chemicals into one class. Due to 
these limitations, we conclude that for extreme and to some 
degree strong class we cannot reliably estimate EC3.

Our analysis indicates that reasonable predictions for 
EC3 values for moderate and weak sensitizers can be made. 
To identify a protective percentile for these classes, we 
need to consider LLNA experimental variability, which is 
considered to vary by a factor of two in both directions. To 
this end, we halved the EC3 predicted by a given percentile 
to represent a conservative prediction of EC3, 0.5* EC3. 
70th percentile corresponded best to 0.5*EC3 (closest yet 
conservative) for the all C2 and C3 chemicals in the test 
set (sheet 3 in Supplementary File). Overall, this discussion 
indicates that a probability distribution for classes predicted 
by the ITS-3 may be transformed into a NESIL for use in a 
skin sensitization QRA, but continued learning for this pro-
cess and comparison to other approaches will be needed.

Uncertainty in the ITS‑3 approach prediction

From a policy perspective, the value of a model-based anal-
ysis lies not simply in its ability to generate a precise point 
estimate for a specific outcome, but also in the systematic 
examination and reporting of uncertainty surrounding the 
prediction and the ultimate decision for which it is applied. 
Below we discuss sources of uncertainty in the ITS-3. 
Next, we discuss how these sources of uncertainty translate 
into prediction uncertainty. Finally, we explain how assess-
ment of uncertainty is quantified in prediction for a new 
chemical.
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The uncertainty in the ITS-3 framework comes from two 
main sources: uncertainty in the model structure and uncer-
tainty in the experimental data. The former is related to 
uncertainty in knowledge and limitation in the coverage of 
AOP key events by the current tests. The latter is associated 
with the inherent variability of biological data. The ITS-3 
model structure aims to correctly represent the mechanisms 
of the skin sensitization process. It is developed purely 
based on mechanistic knowledge with the aim to follow 
the sequence of the mechanistic events in the existing AOP. 
The uncertainties associated with the existing AOP are 
reflected in the ITS-3 model structure.

Inherent variability of data is an important aspect of bio-
logical data. Variability of skin sensitization data is rela-
tively well documented. Regulatory acceptance and low 
cost, combined with the lack of a central repository for 
sharing LLNA data, resulted in several LLNA assays per 
chemical. Due to the freedom to choose a vehicle, as well 
as the inherent biological variability of the response in vivo, 
EC3 values from multiple tests generated in different labo-
ratories may vary by an order of magnitude (ICCVAM 
2011). Expressing potency as a four-class distribution, as in 
our work, partially compensates for EC3 variability. Using 
the traditional five-category system for potency (Kimber 
et al. 2003), Hoffmann (2015) reported that 29 % of such 
repeated LLNA tests may change potency category com-
pared with the median value of the repeat tests when dif-
ferent vehicles are used. Thus, potency categories were 
consistent with the median for 71 % of the tests. The target 
data variability has the largest impact for the moderate sen-
sitizer predictions by the ITS-3 since this class, within the 
chemicals with positive evidence, is the only class flanked 
on both sides by another class with positives. It is followed 
by the weak sensitizer class representing one order of 
potency (but since many chemicals have maximal test con-
centration of 25–50 % it is, in practice, less than one-order-
potency class). Predictions of non-sensitizers and strong 
sensitizers are least impacted. Such impacts are consistent 
with that shown by Hoffmann (2015).

Variability in  vitro is expected to be smaller than vari-
ability in vivo. In vitro assay systems are more biologically 
simple and more standardized than the in vivo systems. The 
between-laboratory reproducibilities for non-sensitizer/sen-
sitizer outcomes for DPRA, KeratinoSens™, and h-CLAT 
were: 75, 86, and 80 %, respectively (Joint Research Centre 
of the European Union 2013, 2014, 2015). Reproducibility 
is defined as the proportion of chemicals tested that had con-
cordant results among the laboratories that participated in the 
validation study, i.e., all laboratories had the same sensitizer/
non-sensitizer classification for this proportion of substances 
tested. While it is not possible to assess reproducibility of 
these assays for four-class potency without assuming a pre-
diction model, it is nevertheless safe to say that it will be 

lower than the one reported for sensitizer/non-sensitizer clas-
sification. Thus it appears that variability in vivo and the vari-
ability of the three considered assays is probably comparable.

Deterministic models have very limited scope for cor-
rectly handling intrinsic data uncertainty, while probabilistic 
models have a naturally built-in capability to handle it. Spe-
cific input data variability can be explicitly considered in the 
ITS-3 prediction. First, the variability of the input data from 
the information source considered must be quantified. Next, 
every piece of evidence is represented as a range. There are 
two possibilities regarding how the evidence fits into bins. 
One possibility is that the evidence range is within one bin 
of the discretized distribution. In such situations, the pre-
diction is not impacted by the variability of this particular 
information source. The other possibility is that the evi-
dence range straddles across two discretization bins (theo-
retically, it could be more, but the principle is the same). In 
this case, the evidence can be entered as two bins so as to 
distribute the probability mass according over the ranges of 
the two bins (i.e., 30 % for x < 10 and 70 % for x > 10). 
Consideration of the uncertainty of the data related to data 
quality can be examined in a similar way.

The ITS-3 prediction for a new chemical, being proba-
bilistic, inherently includes assessment of uncertainty asso-
ciated with this prediction. Further, conversion to Bayes 
factors allows for a consistent acceptance of uncertainty 
in predictions based on fit for purpose criteria. This uncer-
tainty reflects the combined uncertainty associated with 
ITS-3 structure and, in part, uncertainty due to the variabil-
ity of input information sources as well as the target, i.e., 
LLNA pEC3.

Restricting predictions to potency classes and inputs to 
the intervals of the discretized distributions partially com-
pensates for the inherent variability described above. Given 
the accuracy of the test set predictions achieved in this study, 
there is a reason to believe that much more precision in the 
potency prediction is not possible with existing skin sensiti-
zation data. In our opinion, further improvement in the pre-
dictive capability of new models hinges on the reduction of 
variability of experimental methods used both as inputs as 
well as the benchmark and less in generating more data.

ITS‑3 accessibility

To access ITS-3 for a web-based application please contact 
directly Joanna Jaworska.
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