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of new delivery systems that enhances bioavailability of 
poorly water soluble compounds may improve the results 
already obtained. Most importantly, available data suggest 
that phytochemicals possess a various degree of modula-
tion of specific signaling pathways, pointing out a need for 
usage of combinations of several hepatoprotective com-
pounds in both experimental studies and clinical trials.
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Abbreviations
4E-BP	� eIF4E-binding protein
A2AR	� Adenosine A2A receptor
AA	� Arachidonic acid
ABC	� ATP-binding cassette transporter
ACAT	� Acyl-CoA:cholesterol acyltransferase
ACC	� Acetyl-CoA carboxylase
ACE	� Angiotensin-converting enzyme
ACOX	� Acyl-coenzyme A oxidase
ACS	� Acetyl-CoA synthetase
AdipoR	� Adiponectin receptor
AhR	� Aryl hydrocarbon receptor
AIF	� Apoptosis-inducing factor
AKR	� Aldo–keto reductase
ALT	� Alanine transaminase
AMPK	� 5′ AMP-activated protein kinase
Ang	� Angiotensin
AP	� Activator protein
aP	� Adipocyte fatty acid-binding protein
Apaf	� Apoptotic protease-activating factor
AR	� Amphiregulin
ARE	� Antioxidant response element
ARNT	� Aryl hydrocarbon nuclear translocator

Abstract  Hepatoprotective effects of natural compounds 
have been frequently attributed to their antioxidant prop-
erties and the ability to mobilize endogenous antioxidant 
defense system. Because of involvement of oxidative stress 
in virtually all mechanisms of liver injury, it is a reason-
able presumption that antioxidant properties of these com-
pounds may play a key role in the mechanism of their 
hepatoprotective activity. Nevertheless, growing evidence 
suggests that other pharmacological activities of natural 
compounds distinct from antioxidant are responsible for 
their therapeutic effects. In this review, we discussed cur-
rently known molecular mechanisms of the hepatoprotec-
tive activity of 27 most intensively studied phytochemicals. 
These compounds have been shown to possess anti-inflam-
matory, antisteatotic, antiapoptotic, cell survival and anti-
viral activity through interference with multiple molecular 
targets and signaling pathways. Additionally, antifibrotic 
properties of phytochemicals have been closely associated 
with apoptosis of hepatic stellate cells and stimulation of 
extracellular matrix degradation. However, although these 
compounds exhibit a pronounced hepatoprotective effects 
in animal and cell culture models, the lack of clinical stud-
ies remains a bottleneck for their official acceptance by 
medical experts and physicians. Therefore, controlled clini-
cal trials have an imperative in confirmation of the thera-
peutic activity of potentially hepatoprotective compounds. 
Understanding the principles of the hepatoprotective activ-
ity of phytochemicals could guide future drug development 
and help prevention of clinical trial failure. Also, the use 
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ASC	� Apoptosis-associated speck-like protein con-
taining a carboxy-terminal CARD

ASK	� Apoptosis signal-regulating kinase
AT1R	� Angiotensin II type 1 receptor
ATF	� Activating transcription factor
BA	� Bile acid
Bambi	� Bone morphogenetic protein and activin mem-

brane-bound inhibitor
Bax	� Bcl-2-associated X protein
Bcl-2	� B-cell lymphoma 2
BDL	� Common bile duct ligation
Bid	� Bcl-2 homology 3 (BH3) interacting-domain 

death agonist
Bim	� Bcl-2-interacting mediator of cell death
BiP	� Immunoglobulin binding protein
C/EBP	� CCAAT/enhancer-binding protein
CAMKK	� Ca2+-calmodulin dependent protein kinase 

kinase
cAMP	� Cyclic adenosine monophosphate
casp	� Caspase
CAT	� Catalase
CBR	� Cannabinoid receptor type
CD	� Cluster of differentiation
Cdk	� Cyclin-dependent kinase
c-FLIP	� (FADD-like IL-1β-converting enzyme)-inhibi-

tory protein
CHOP	� C/EBP homologous protein
cIAP	� Cellular inhibitor of apoptosis
CPT	� Carnitine palmitoyltransferase
CREB	� CAMP-response element-binding protein
CRP	� C-reactive protein
CTGF	� Connective tissue growth factor
Cx43	� Connexin 43
CXCR	� Chemokine (CXC motif) receptor
CXCL	� Including chemokine (C-X-C motif) ligand
CYP	� Cytochrome P450
DAG	� Diacylglycerol
DEN	� Diethyl nitrosamine
DGAT	� Diacylgycerol acyltransferase
ECM	� Extracellular matrix
EGF	� Epidermal growth factor
EGFR	� EGF receptor
EGR	� Early growth response protein
eIF	� Eukaryotic initiation factor
EMR	� EGF-like module-containing mucin-like hor-

mone receptor
eNOS	� Endothelial nitric oxide synthase
ER	� Endoplasmic reticulum
ERK	� Extracellular regulated kinase
ESR	� Estrogen receptor
ET	� Endothelin
FA	� Fatty acid
FABP	� Fatty acid-binding protein

FADD	� Cellular Fas-associated death domain
FAK	� Focal adhesion kinase
FAS	� Fatty acid synthase
FasL	� Fas ligand
FATP	� Fatty acid transport protein
FOXO	� Forkhead box protein O
FXR	� Farnesoid X receptor
GalN	� d-Galactosamine
GCLC	� Glutamate-cysteine ligase, catalytic subunit
GJIC	� The gap junctional intercellular communication
GLI	� Glioma-associated oncogenes
GPx	� Glutathione peroxidase
GR	� Glutathione reductase
GRP78	� 78 kDa glucose-regulated protein
GSH	� Glutathione
GSK	� Glycogen synthase kinase
GST	� Glutathione-S-transferase
H2O2	� Hydrogen peroxide
HAV	� Hepatitis A virus
HBeAg	� Hepatitis B e antigen
HBsAg	� HBV surface antigen
HBV	� Hepatitis B virus
HCC	� Hepatocellular carcinoma
HCMV	� Human cytomegalovirus
HCV	� Hepatitis C virus
HDAC	� Histone deacetylase
HFD	� High-fat diet fed
HGF	� Hepatocyte growth factor
HIF	� Hypoxia-inducible factor
HMGB	� High-mobility group protein box
HMGCR	� HMG-CoA reductase
HNF	� Hepatocyte nuclear factor
HO	� Heme oxygenase
HSCs	� Hepatic stellate cells
HSL	� Hormone-sensitive lipase
ICAM	� Intracellular adhesion molecule
IFN	� Interferon
IGF	� The insulin growth factor
IGF-1R	� IGF 1 receptor
IKK	� IkappaB kinase
IL	� Interleukin
iNOS	� Inducible nitric oxide synthase
IP3	� Inositol 3-phosphate
IR	� Insulin receptor
IRAK	� IL-1R-associated kinase
IRE	� Inositol-requiring enzyme
IRES	� Internal ribosome entry site
IRF	� IFN regulatory factor
IRS	� IR substrate
IκBα	� IkappaBalpha
JAK	� Janus-activated kinase
JNK	� c-Jun N-terminal kinase
Keap	� Kelch-like ECH-associated protein
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KLF	� Krueppel-like factor
LC3	� Microtubule-associated protein light chain 3
LDL	� Low-density lipoprotein
LDLR	� LDL receptor
LKB	� Liver kinase B
LPS	� Lipopolysaccharide
LXR	� Liver X receptor
MAPK	� Mitogen-activated protein kinase
MCP	� Monocyte chemoattractant protein
MD	� Myeloid differentiation factor
Mdm2	� Mouse double minute 2 homolog
MDR	� Multidrug resistance protein
MEK	� Mitogen-activated protein/extracellular signal-

regulated kinase kinase
MKK	� Mitogen-activated protein kinase kinase
MMP	� Matrix metalloproteinase
MRP	� Multidrug resistance protein
mTOR	� Mammalian target of rapamycin
MT	� Metallothionein
MTTP	� Microsomal triglyceride transfer protein
MyD	� Myeloid differentiation factor
MYPT	� Myosin phosphatase target subunit
NAFLD	� Nonalcoholic fatty liver disease
NALP	� NACHT, LRR and PYD domains-containing 

protein
NAMPT	� Nicotinamide phosphoribosyltransferase
NASH	� Nonalcoholic steatohepatitis
NFAT	� Nuclear factor of activated T cells
NO	� Nitric oxide
NQO	� NAD(P)H:quinone oxidoreductase
Nrf	� Nuclear factor-erythroid-2-related factor
NS	� Nonstructural protein
OATP	� Organic anion-transporting polypeptide
p70S6K	� 70 kDa ribosomal S6 kinase
PAI	� Plasminogen activator inhibitor
PARP	� Poly (ADP-ribose) polymerase
PCNA	� Proliferating cell nuclear antigen
PC-PLC	� Phosphatidylcholine-specific phospholipase C
PCSK	� Proprotein convertase subtilisin/kexin
PDE	� Phosphodiesterase
PDGF	� Platelet-derived growth factor
PDGFRβ	� PDGF receptor beta
PERK	� PKR-like ER kinase
PG	� Prostaglandin
PGC	� PPARγ coactivator
PGF	� Placental growth factor
PI3K	� Phosphoinositide 3-kinase
PKA	� Protein kinase A
PKC	� Protein kinase C
PKD	� Protein kinase D
PKR	� Protein kinase R
PLA	� Phospholipase A
PP2A	� Protein phosphatase 2A

PPAR	� Peroxisome proliferator-activated receptor
Prx	� Peroxiredoxin
PTP	� Protein tyrosine phosphatase
PUMA	� p53-up-regulated modulator of apoptosis
PXR	� Pregnane X receptor
RAGE	� Receptor for advanced glycation end-products
RAS	� Renin–angiotensin system
ROCK	� Rho-associated coiled coil-forming protein kinase
ROS	� Reactive oxygen species
RSK	� Ribosomal S6 kinase
RXR	� Retinoid X receptor
S1P	� Sphingosine-1-phosphate
SCD	� Stearoyl-CoA desaturase
SESN	� Sestrin
SIRT	� Silent mating type information regulation 2 

homolog
Smo	� Smoothened
SOCS	� Suppressor of cytokine signaling
SOD	� Superoxid dismutase
SP	� Specificity protein
SphK	� Sphingosine kinase
SREBP	� Sterol regulatory element-binding protein
STAT	� Signal transducers and activators of transcription
TAB	� TGF-β-activated kinase
TAG	� Triacylglycerol
TAK	� TGF-β-activated kinase
TGF	� Transforming growth factor
TIMP	� Tissue inhibitor of matrix metalloproteinase
TLR	� Toll-like receptor
TNFR	� TNF-α receptor
TNF	� Tumor necrosis factor
TRADD	� Receptor-associated death domain
TRAF	� TNFR-associated factor
TRPV	� Transient receptor potential vanilloid subfamily
Trx	� Thioredoxin
TrxR	� Thioredoxin reductase
TXNIP	� Thioredoxin-interacting protein
Tβ-R	� TGF-β receptor
UCP	� Uncoupling protein
ULK	� UNC-51-like kinase
uPA	� Urokinase-type plasminogen activator
VEGF	� Vascular endothelial growth factor
VEGFR	� VEGF receptor
XBP	� X-box binding protein
XIAP	� X-linked inhibitor of apoptosis protein
SMA	� Smooth muscle actin

Introduction

The liver has a crucial role in the regulation of multiple 
metabolic functions and physiological processes, such as 
the metabolism of nutrients, bile secretion and synthesis of 
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proteins, lipids and carbohydrates as well as vitamin stor-
age. Its ability to detoxify xenobiotics makes it particularly 
important in the maintenance of body health. Hepatic dis-
eases are among leading causes of morbidity and mortal-
ity worldwide. Unhealthy lifestyles, related to obesity and 
the excessive consumption of alcohol, drugs and soft drinks 
are a common cause of hepatic injury. Hepatic diseases can 
also be induced by biological factors (bacteria, virus and 
parasites) and autoimmune disorders (immune hepatitis and 
primary biliary cirrhosis) (Nseir et al. 2010). However, this 
is just one arm of the balance, which is counterweighted by 
liver’s capacity to metabolize toxic compounds and prevent 
liver impairment. Moreover, the self-healing and regenera-
tive potential of the liver could result in an excessive accu-
mulation of extracellular matrix (ECM) proteins such as 
collagen, followed by progressive tissue scarring, develop-
ment of cirrhosis and loss of liver function.

Despite advances in modern medicine, there is no suc-
cessful therapeutical approach regarding stimulation of 
hepatic function, liver protection or enhancement of hepatic 
cell regeneration (Madrigal-Santillan et  al. 2014). Current 
drugs, such as pegylated interferon-alpha (IFN-α) and riba-
virin used in the treatment of hepatitis virus infection, are not 
effective in all patients and some of them will not tolerate 
this therapy. Similarly, silymarin, the most known hepato-
protective substance, has shown limitations regarding treat-
ment of chronic liver impairment such as cirrhosis. Thus, it 
is imperative to identify highly effective pharmaceuticals for 
the treatment of hepatic disorders, with the accent on their 
low toxicity. The use of natural products in the treatment of 
hepatic diseases has a long history. These products emerged 
as a promising source of relatively nontoxic hepatoprotec-
tive compounds. However, despite the numerous evidence 
of hepatoprotective effects of these compounds in vitro and 
in  vivo, it should be emphasized that studies using animal 
models of diseases, although generally accepted by the sci-
entific community, cannot be easily translated to humans due 
to differences between species, such as genomic response to 
acute inflammatory stresses (Seok et al. 2013) or the activ-
ity of hepatic metabolizing enzymes (Cheung and Gonzalez 
2008). Similarly, in vitro studies could not completely reflect 
in  vivo metabolic conditions. Therefore, controlled clinical 
trials have an imperative in defining the therapeutic activity 
of potentially hepatoprotective compounds.

In this review, we gathered data based on studies con-
ducted in animal models of hepatic disease as well as liver 
cell cultures, which explored hepatoprotective properties 
of naturally occurring phytochemicals. We focused on the 
possible molecular mechanisms of hepatoprotective activ-
ity of pure substances and standardized formulas, such as 
silymarin, rather than crude plant extracts or their fractions, 
which contain numerous constituents, making it difficult to 
attribute biological activity and its mechanism to a specific 

compound. Data were collected by using search engines Pub-
Med and Scopus, with keywords “compound name”[Title/
Abstract] AND (liver*[Title/Abstract] OR hepato*[Title/
Abstract] OR hepati*[Title/Abstract]). Also, we excluded 
studies on tumor-bearing animals or tumor cell lines, since 
we have not reviewed antitumor properties of natural com-
pounds, although chemopreventive activity was discussed. 
Additional reason to exclude such studies was ambivalent 
use of human hepatocellular carcinoma (HCC) cell lines for 
studying both cytotoxic and cytoprotective effects of tested 
compounds, resulting in controversial results. Some stud-
ies demonstrated a beneficial effect of natural compounds 
through the proapoptotic effect or sensibilization of HCCs to 
apoptosis, promoting these compounds as “promising chem-
otherapeutic agents”(Abou El Naga et  al. 2013; Gao et  al. 
2014; Nishikawa et al. 2006; Yan et al. 2015a) while others 
showed antiapoptotic activity and were suggested as “protec-
tive against hepatocyte apoptosis” (Wu et al. 2008; Jung et al. 
2014; Wang et al. 2014a). This imposes a following question: 
is it a goal to destroy or preserve HCCs in the culture? More-
over, some studies demonstrated opposed effects of tested 
compounds on apoptosis induced in primary hepatocytes and 
HCC cells, suggesting the potential use of the compound as 
both “hepatoprotective drug and adjuvant in anti-cancer ther-
apy” (Ansorena et al. 2002; Karimian et al. 2012). Similarly, 
HCCs are frequently used as a research model for study of 
hepatoprotective effect of natural compounds against oxida-
tive stress-induced hepatocellular damage (Al-Sheddi et  al. 
2015; Wang et al. 2015b). However, oxidative stress, includ-
ing increased generation of lipid peroxidation products, is 
involved in both cell proliferation and growth arrest of cancer 
cells (Barrera 2012). Moreover, manipulation with intracellu-
lar reactive oxygen species (ROS) level is proposed as a way 
to selectively kill cancer cells without causing a significant 
toxicity to normal cells (Schumacker 2006).

We also commented on the effect of natural compounds 
discussed in this review on the cytochrome P450 (CYP) 
induction. The cytochromes P450 (CYPs) are a multigene 
family of microsomal hemoproteins. These enzymes are most 
prominent in the liver, where they play the vital role in the 
biotransformation of exogenous compounds such as drugs, 
pesticides and carcinogens (Watkins et  al. 1987). However, 
these enzymes are involved in metabolical activation of bio-
logically inert compounds to electrophilic derivatives that can 
cause toxicity and liver pathologies from alcoholic liver dis-
ease to nonalcoholic steatohepatitis, but also cellular transfor-
mation which could result in cancer (Gonzalez 2005).

Virtually all classes of natural compounds have their 
representative compounds which exhibit a beneficial 
effect against liver diseases. We reviewed 27 most inten-
sively studied natural compounds for the mechanisms 
of hepatoprotective activity, belonging to nine classes, 
including flavonoids, terpenoids, phenolic acids, stilbenes, 
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alkaloids, antraquinones, curcuminoids, capsaicinoids and 
chromenes. The mechanisms of their hepatoprotective 
actions are summarized in Figs. 1, 2, 3 and 4.

Flavonoids

Flavonoids are the largest group of naturally occurring phe-
nolic compounds present in high concentrations in many 
foods, such as tea, apples, grapes and their processed bev-
erages (Parvez et  al. 2006). Flavonoids share a common 
15-carbon skeleton consisting of two benzene rings linked 
via a heterocyclic pyrane ring. These compounds can be 

divided into several classes, including flavones, isoflavones, 
flavanones, flavonols (including flavan-3-ols and polymeric 
flavonolos, proanthocyanidins), flavanonols and anthocya-
nins. They are generally considered nontoxic for humans, 
exhibiting numerous pharmacological effects in  vitro and 
in vivo. Still, their ability to modulate the activity of xeno-
biotic-metabolizing enzymes, particularly phase I enzymes, 
may have pharmacological and/or toxicological significance.

Flavones

Hepatoprotective activity of luteolin (3′,4′,5,7-tetrahy-
droxyflavone) (1), as well as virtually all hepatoprotective 

Fig. 1   Mechanisms of antioxidant and anti-inflammatory activities 
of phytochemicals in the liver. (1) luteolin, (2) baicalein, (3) baicalin, 
(4) genistein, (5) naringenin, (6) quercetin, (7) rutin, (8) troxerutin, 
(9) morin, (10) (–)-epigallocatechin-3-gallate, (11) silymarin, (12) 
thymoquinone, (13) andrographolide, (14) ginsenosides, (15) glycyr-
rhizin, (16) 18β-glycyrrhetinic acid, (17) betulinic acid, (18) ursolic 

acid, (19) chlorogenic acid, (20) salvianolic acid, (21) resveratrol, 
(22) berberine, (23) caffeine, (24) emodin, (25) curcumin, (26) cap-
saicin, (27) ellagic acid. Red circle denotes inhibitory effect; green 
circle denotes stimulatory effect. For abbreviations, see the abbrevia-
tion list
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compounds reviewed in this article, has been associated with 
improvement in antioxidant defense, such as the increase 
in superoxid dismutase (SOD), catalase (CAT) and glu-
tathione peroxidase (GPx) activity and glutathione (GSH) 
levels (Domitrovic et  al. 2008, 2009a; Balamurugan and 
Karthikeyan 2012). It has been suggested that luteolin and 
other flavones, such chrysin and apigenin, inhibit hepatic 
oxidative stress through up-regulation of the extracellular 
signal-regulated kinase (ERK) 2/nuclear factor-erythroid-
2-related factor 2 (Nrf2)/antioxidant response element 
(ARE) pathway (Huang et al. 2013). Luteolin has also been 
shown to modulate the expression of xenobiotic-induced 
phase I and phase II drug-metabolizing enzymes in several 
liver cell lines (Zhang et  al. 2014f). Thus, luteolin inhib-
ited the expression of NAD(P)H:quinone oxidoreductase-1 
(NQO1) and aldo-keto reductases (AKRs) through the Nrf2 
pathway and the expression of CYP1A1 and glutathione-
S-transferase (GST) through the aryl hydrocarbon receptor 
(AhR) pathway. Moreover, luteolin inhibited CYP3A4 and 
CYP3A5 enzymes in human liver microsomes, suggesting 
a potential of pharmacokinetic interaction with co-adminis-
tered drugs (Quintieri et al. 2008). Furthermore, this flavone 
attenuated chemically induced endoplasmic reticulum (ER) 

stress through suppression of activating transcription factor 
(ATF) 4 and CCAAT/enhancer-binding protein (C/EBP)-
homologous protein (CHOP) signaling (Tai et al. 2015).

Hepatic fibrosis is a pathological condition that occurs 
as response to persistent liver injury, resulting in progres-
sion toward cirrhosis or resolution if an insult has been with-
drawn. The reversion of hepatic fibrosis by luteolin has been 
accompanied by enhanced expression of matrix metallopro-
teinase (MMP)-9 and removal of collagen deposits, with 
attenuation of hepatic stellate cells (HSCs) activation (Dom-
itrovic et  al. 2009b). Li et  al. (2015a) showed that luteolin 
may also induce apoptosis and G1 arrest in HSCs through 
inhibition of the platelet-derived growth factor (PDGF) and 
transforming growth factor-beta (TGF-β) signaling path-
ways, potent stimulators of fibrogenesis. Luteolin inhib-
ited PDGF-BB-stimulated expression of phosphorylated 
Akt, its downstream target mammalian target of rapamycin 
(mTOR), as well as the mTOR substrate 70 kDa ribosomal 
S6 kinase (p70S6K). Additionally, luteolin attenuated TGF-
β1-stimulated hepatic Smad2 phosphorylation, suggesting 
its potential to inhibit synthesis of fibrogenic mediators, 
such as connective tissue growth factor (CTGF). Moreover, 
these changes led to increased p53 expression and caspase-3 

Fig. 2   Mechanisms of antiapoptotic activity of phytochemicals in 
injured liver tissue. (1) luteolin, (2) baicalein, (3) baicalin, (4) gen-
istein, (6) quercetin, (7) rutin, (8) troxerutin, (9) morin, (10) (–)-epi-
gallocatechin-3-gallate, (11) silymarin, (13) andrographolide, (16) 
18β-glycyrrhetinic acid, (17) betulinic acid, (18) ursolic acid, (19) 

chlorogenic acid, (20) salvianolic acid, (21) resveratrol, (22) berber-
ine, (24) emodin, (25) curcumin, (26) capsaicin. Red circle denotes 
inhibitory effect; green circle denotes stimulatory effect. For abbre-
viations, see the abbreviation list
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activity, with concomitant inhibition of the cell cycle through 
decrease in the expression of cyclin E and phosphorylated 
cyclin-dependent kinase (Cdk) 2, resulting in HSCs apopto-
sis and cell cycle arrest. On the other hand, luteolin protected 
against lipopolysaccharide (LPS)/d-galactosamine (GalN)-
induced apoptotic liver damage in mice, which was accom-
panied by decrease in hepatic expression of tumor necrosis 
factor-alpha (TNF-α) receptor-associated death domain 
(TRADD) (Lee et al. 2011). Protection of hepatocytes was 
achieved by suppression of caspase-3 and caspase-8 activity 
and expression of proapoptotic B-cell lymphoma 2 (Bcl-2) 
family, including Bcl-2-associated X protein (Bax), Bcl-2 
homology 3 (BH3) interacting-domain death agonist (Bid) 
and Bcl-2-interacting mediator of cell death (Bim).

The potential of luteolin to inhibit hepatic lipogenesis 
and improve hepatosteatosis was demonstrated in ethanol 
and high-fat diet fed (HFD) mice (Liu et al. 2014a; Kwon 
et al. 2015). Activation of peroxisome proliferator-activated 

receptor gamma (PPARγ) has emerged as a potential strat-
egy for blocking HSCs activation and differentiation. In 
both models, luteolin increased PPARγ protein expression 
in adipose tissue and reduced hepatic expression of lipo-
genic genes, including sterol regulatory element-binding 
protein (SREBP)-1c, the master regulator of lipid synthe-
sis, fatty acid synthase (FAS), acetyl-CoA carboxylase 
(ACC) and stearoyl-CoA desaturase (SCD) 1. Luteolin 
abrogated ethanol-induced SREBP-1c phosphorylation via 
stimulation of 5′ AMP-activated protein kinase (AMPK) 
activity, the negative regulator of lipogenesis. In addition, 
luteolin improved hepatic insulin sensitivity in diet-induced 
obese mice by suppressing the expression of SREBP-1c 
and up-regulating insulin receptor (IR) substrate (IRS)-2 
expression through its negative feedback (Kwon et  al. 
2015). Moreover, luteolin supplementation in diethylnitro-
samine (DEN) and ethanol-intoxicated mice significantly 
reversed reduced silent mating type information regulation 

Fig. 3   Mechanisms of antisteatotic activity of phytochemicals in 
fatty liver disease. (1) luteolin, (2) baicalein, (3) baicalin, (4) gen-
istein, (5) naringenin, (6) quercetin, (7) rutin, (8) troxerutin, (9) 
morin, (10) (–)-epigallocatechin-3-gallate, (11) silymarin, (12) 
thymoquinone, (13) andrographolide, (14) ginsenosides, (16) 

18β-glycyrrhetinic acid, (17) betulinic acid, (18) ursolic acid, (19) 
chlorogenic acid, (20) salvianolic acid, (21) resveratrol, (22) berber-
ine, (23) caffeine, (24) emodin, (25) curcumin. Red circle denotes 
inhibitory effect, green circle denotes stimulatory effect. For abbre-
viations see the abbreviation list
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2 homolog 1 (SIRT1) activity assessed by modulating the 
expression of forkhead box protein O (FOXO) 1 and SIRT1 
target PPARγ coactivator 1 alpha (PGC1α), substantially 
preventing pre-neoplastic lesions in the liver (Rafacho et al. 
2015). Usage of the phospholipid complex of luteolin has 
been proposed as an enhanced drug delivery system for 
oral administration of luteolin with increased bioavailabil-
ity and hepatoprotective potential (Khan et al. 2015).

Flavones baicalein (5,6,7-trihydroxyflavone) (2) and 
baicalin (baicalein 7-O-glucuronide) (3) inhibited pro-
oxidant-induced liver injury in  vitro by scavenging ROS 
in hepatocytes (Zhao et  al. 2006). Baicalein improved 
metabolic syndrome induced by HFD in mice through 
the inhibition of ERK1/2 and c-Jun N-terminal kinase 
(JNK)1/2/3 mitogen-activated protein kinases (MAPKs) 
phosphorylation and activation of the IRS-1/phospho-
inositide 3-kinase (PI3K)/Akt pathway (Pu et al. 2012b). 
The lipid-lowering effect was attributed to the suppres-
sion of SREBP-1c, PPARγ and their target genes, includ-
ing FAS, ACC, uncoupling protein (UCP) 2 and adipocyte 

fatty acid-binding protein (aP), with concomitant induc-
tion of lipolytic enzymes such as PPARα, cluster of dif-
ferentiation (CD) 36 and carnitine palmitoyltransferase 
(CPT) 1. All these effects were dependent on AMPK 
activation. Interestingly, the same effect was observed 
by flavanone naringin (Pu et  al. 2012a). Baicalein also 
prevented nonalcoholic steatohepatitis (NASH) through 
enhancement of Nrf2/heme oxygenase (HO)-1 pathway 
and suppression of NF-κB activation (Xin et  al. 2014). 
In LPS/D-GalN-induced acute liver failure in mice, bai-
calein ameliorated gene expression of TNF-α, inducible 
nitric oxide synthase (iNOS), vascular endothelial growth 
factor (VEGF), VEGF receptor (VEGFR) and mono-
cyte chemoattractant protein (MCP)-1, inhibiting hepatic 
inflammation and HSCs migration (Cheng et al. 2007; Wu 
et al. 2010; Chen et al. 2013a). Concomitantly, it inhibited 
hepatic apoptosis by suppressing phosphorylation of ERK 
and JNK (Wu et al. 2010). Moreover, baicalein activated 
cellular Fas-associated death domain (FADD)-like IL-1β-
converting enzyme-inhibitory protein (c-FLIP), X-linked 

Fig. 4   Mechanisms of antifibrotic activity and HSCs apoptosis by 
phytochemicals in liver fibrosis. (1) luteolin, (2) baicalein, (3) baica-
lin, (4) genistein, (5) naringenin, (6) quercetin, (7) rutin, (9) morin, 
(10) (–)-epigallocatechin-3-gallate, (12) thymoquinone, (13) andro-
grapholide, (14) ginsenosides, (16) 18β-glycyrrhetinic acid, (18) 

ursolic acid, (19) chlorogenic acid, (20) salvianolic acid, (21) res-
veratrol, (23) caffeine, (24) emodin, (25) curcumin, (26) capsaicin. 
Red circle denotes inhibitory effect; green circle denotes stimulatory 
effect. For abbreviations, see the abbreviation list
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inhibitor of apoptosis protein (XIAP) and cellular inhibi-
tor of apoptosis (cIAP) 2 proteins while reducing nuclear 
levels of RelA, suggesting attenuation of the NF-κB sign-
aling. Similarly, the inhibition of MAPKs activation by 
this compound significantly improved the survival of mice 
with polymicrobial sepsis-induced liver injury (Liu et al. 
2015a). Furthermore, baicalein prevented CCl4-induced 
liver fibrosis in rats and inhibited HSCs activation and 
proliferation by down-regulation of PDGF receptor 
beta (PDGFRβ) (Sun et  al. 2010). In addition, baicalein 
increased gene expression of TGF-α, hepatocyte growth 
factor (HGF) and epidermal growth factor (EGF), well-
known regulators of liver regeneration.

Similarly to baicalein, its glucoronide conjugate, baica-
lin, exhibited protection against oxidative liver injury (Kim 
et al. 2010c; Zhang et al. 2012). Baicalin also suppressed 
toll-like receptor (TLR) 4-mediated inflammatory response 
after ischemia/reperfusion-induced liver injury in rats (Kim 
and Lee 2012) which was associated with the inhibition of 
myeloid differentiation factor 88 (MyD88) protein expres-
sion and the nuclear translocation of NF-κB. Additionally, 
baicalin up-regulated cytoprotective HO-1 expression, 
which is suggesting the activation of the Nrf2 pathway 
(Kim et  al. 2010c). Moreover, baicalin suppressed apop-
tosis in concanavalin A-treated mice livers by inhibiting 
TNF-α-induced JNK phosphorylation and suppressing cas-
pase-3 and caspase-9 activation (Liu et al. 2007). Studying 
the antifibrotic potential of baicalin, several authors showed 
attenuation of CCl4-intoxication in rats through suppres-
sion of TGF-β1 and PPARγ activation (Peng et  al. 2009; 
Qiao et al. 2011). Yang et al. (2012) showed that the mech-
anism of PPARγ-mediated suppression of fibrotic response 
by baicalin, as well as rosmarinic acid, could be mediated 
through the suppression of signaling by canonical Wnts. 
Furthermore, Guo et al. (2009) demonstrated that baicalin 
had beneficial effect on development of hepatic steatosis by 
reducing hepatic lipid accumulation through enhancement 
of AMPK phosphorylation and down-regulation of genes 
involved in lipogenesis, including FAS and its upstream 
regulator SREBP-1c. Additionally, baicalin could attenu-
ate HFD-induced obesity and fatty liver disease through 
the inhibition of Ca2+-calmodulin dependent protein kinase 
kinase (CAMKK)/AMPK/ACC pathway (Xi et al. 2015).

Both compounds, baicalein and baicalin, were able to 
modulate the activity of hepatic CYP system. Baicalein 
inhibited CYP1A2 and CYP3A4 activity in human liver 
microsomes and CYP2E1 and CYP3A expression in mice 
liver (Ueng et  al. 2000; Kim et  al. 2002). Baicalin inhib-
ited hepatic CYP3A and CYP2D activity in rats (Tian et al. 
2013; Gao et  al. 2014) and CYP1A2 in both human and 
rat livers (Cheng et  al. 2014). These findings suggest that 
baicalein and baicalin may modulate the activity of drug-
metabolizing enzymes.

Isoflavones

The inhibition of NF-κB and MAPK signaling was sug-
gested as a mechanism of the anti-inflammatory activity of 
genistein (4′,5,7-trihydroxyisoflavone) (4) (Ji et  al. 2011; 
Lin et al. 2014b; Saleh et al. 2014; Ganai et al. 2015). This 
soy estrogenic isoflavone showed the ability to improve 
liver fibrosis induced by chronic CCl4 administration 
through the increase in expression and proteolytic activity 
of urokinase-type plasminogen activator (uPA), a potent 
inductor of collagenases and ECM degradation (Salas et al. 
2007). Antifibrotic activity of genistein has also been asso-
ciated with reduced levels of PDGF-BB (Demiroren et al. 
2014), which acts via its cell surface tyrosine kinase recep-
tors, inducing proliferation of HSCs via PI3K/Akt and ERK 
pathways (Fang et al. 2013). In hepatic fibrosis induced by 
chronic administration of alcohol in rats, genistein pro-
moted extracellular matrix (ECM) degradation by reducing 
tissue inhibitor of matrix metalloproteinase (TIMP)-1 and 
increasing MMP-2 mRNA levels, with concomitant inhi-
bition of TGF-β1 expression. In addition, genistein exhib-
ited potency to attenuate PDGF-induced c-Fos, c-Jun and 
cyclin D1 expression and inhibit HSCs proliferation (Liu 
et al. 2002d). Genistein also acted as a selective agonist for 
the beta isoform of the estrogen receptor (ESRβ), which is 
highly expressed by active HSCs (McCarty et al. 2009).

Genistein has also been shown to possess inhibitory 
effect on hepatic steatosis in HFD-induced nonalcoholic 
fatty liver disease (NAFLD) in mice through down-reg-
ulation of genes associated with lipogenesis, including 
SREBP-1c, liver X receptor alpha (LXRα), retinoid X 
receptor alpha (RXRα), PPARγ and ACC2, with concomi-
tant up-regulation of genes involved in β-oxidation, includ-
ing AMPK and PPARα (Kim et  al. 2010b). Additionally, 
genistein augmented the expression of anti-steatohepatitic 
adiponectin, an adipocyte-derived hormone, and reduced 
levels of pro-inflammatory cytokine TNF-α. Moreover, this 
isoflavone inhibited expression of TLR4, a member of a 
class of proteins involved in regulation of IkappaB kinase 
(IKK) activity and downstream NF-κB activation (Ambade 
and Mandrekar 2012), leading to attenuation of production 
of proinflammatory cytokines in diet-induced NAFLD (Yoo 
et al. 2015). Concomitant reduction in CHOP, X-box bind-
ing protein 1 (XBP-1) and ER chaperone immunoglobulin 
binding protein (BiP) mRNA expression suggested attenu-
ation of ER stress in hepatocytes. Genistein-treated young-
lings showed lower hepatic expression of FAS and SREBP-
1, but higher expression of PPARα, indicating lower rates 
of lipid synthesis and higher rates of β-oxidation (Huang 
et  al. 2011). Moreover, genistein was able to sensitize 
hepatic insulin signaling by improving insulin-stimulated 
tyrosine phosphorylation of IR-β and IRS-1 as well as 
downstream PI3K and Akt phosphorylation in the mouse 
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model of metabolic syndrome (Arunkumar et  al. 2013). 
Genistein treatment also resulted in the increase in AMPK 
and the decrease in p70S6K phosphorylation, suggesting its 
beneficial effect in amelioration of both hepatic steatosis 
and metabolic syndrome.

Nevertheless, caution with intake of higher doses of gen-
istein has been suggested, since they can produce several 
undesirable effects by affecting multiple cellular pathways 
(Okazaki et al. 2002; Singh et al. 2014). Specific tyrosine 
kinase inhibitory properties of genistein resulted in dose-
dependent inhibition of the recombinant human HGF-medi-
ated stimulation of DNA synthesis by hepatocytes, which 
could have negative impact on liver repair and regeneration 
(Arakaki et al. 1992; Kaibori et al. 2006). The potential for 
diet–drug interactions of genistein and several other dietary 
flavonoids has also been demonstrated. Thus, these flavo-
noids acted as modulators of organic anion-transporting 
polypeptide (OATP) 1B1, a liver-specific uptake transporter 
important in hepatic drug disposition (Wang et  al. 2005). 
In addition, genistein was shown to inhibit the activity of 
several CYPs, including CYP1A2 and CYP2E1, in a non-
competitive manner (Roberts-Kirchhoff et al. 1999).

Flavanones

The most intensively studied citrus flavonoid, naringenin 
(4′,5,7-trihydroxyflavanone) (5), exhibited protective activ-
ity against hepatic oxidative injury (Pari and Gnanasound-
ari 2006; Lv et al. 2013). Naringenin has been showing a 
potential to attenuate inflammation in several experimental 
models of liver injury. The suppression of CCl4- and cho-
lesterol-induced hepatic inflammation in rats was mediated 
by down-regulation of proinflammatory genes, including 
NF-κB, TNF-α, IL-1 β, IL-6, iNOS and EGF-like module-
containing mucin-like hormone receptor 1 (EMR1, the 
macrophage-specific gene) (Esmaeili and Alilou 2014; 
Chtourou et al. 2015). In addition, naringenin up-regulated 
the cytoprotective Nrf2/HO-1 pathway. Several studies 
showed that naringenin may be useful in preventing the 
ECM accumulation and development of hepatic fibrosis. 
This flavone inhibited gene expression of the antifibrotic 
targets MMP-2 and MMP-9 and prevented ECM remod-
eling (Liu et  al. 2006). Mechanistically, the antifibrotic 
activity of naringenin was accompanied by inhibition of 
TGF-β1-induced production of Smad3 at both mRNA 
and protein levels. In HFD-fed mice, naringenin reduced 
hepatic triglyceride concentration and gene expression of 
hepatic lipogenic enzymes and up-regulated hepatic fatty 
acid oxidation genes, suggesting inhibition of SREBP-1c 
and induction of SIRT1/PGC-1α pathways (Assini et  al. 
2015). In docking study, naringenin and quercetin exhibited 
minimum binding energy with nonstructural hepatitis C 
virus (HCV) NS2 protease, suggesting inhibitory potential 

against the viral replication (Lulu et al. 2015). As seen in 
similar studies, usage of naringenin-loaded nanoparticles 
system could improve hepatoprotective effects of the fla-
vonoid after oral administration (Yen et  al. 2009). Nano-
formulation improved the bioavailability of the compound, 
which resulted in more potent antioxidant and antiapoptotic 
activities.

The ability of naringenin to modulate the activity of 
CYPs has also been demonstrated. Naringenin was potent 
inhibitor of CYP1A1, CYP1A2, CYP2B1, CYP2D6, 
CYP2E1 and CYP3A1/2 and relatively weak inhibitor of 
CYP3A4 activity in vitro (Fuhr et al. 1993; Bear and Teel 
2000; Ho et al. 2001; Motawi et al. 2014; Arinc et al. 2015). 
Thus, the possibility of modulation of drug and other xeno-
biotic metabolism exists, which should be further investi-
gated, particularly in light of protection against xenobiotic-
induced carcinogenesis.

Flavonols

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) (6) is one 
of the most studied natural products, showing numerous 
beneficial effects, such as hepatoprotection. It has been 
found that quercetin could ameliorate oxidative livery 
injury by reducing lipid peroxidation and increasing GSH 
levels and the activity of antioxidant enzymes (Casella 
et  al. 2014; Surapaneni and Jainu 2014; El-Shafey et  al. 
2015). Several studies demonstrated that protective activ-
ity of quercetin against oxidative hepatocyte injury was 
mediated through activation of the Nrf2/HO-1 pathway 
(Liu et  al. 2012, 2015b; Li et  al. 2013c). The mecha-
nism of induction involved p38 and ERK activation and 
nuclear translocation of Nrf2. Antioxidant activity of 
quercetin was also associated with expression of other 
oxidative stress-related genes, including peroxiredoxin 
(Prx) 1, 2, 3, 5, 6, thioredoxin reductase (TrxR) 1 and 2 
and thioredoxin (Trx) 1 and 2 (Zhang et  al. 2014c). We 
showed that expression of Nrf2 and HO-1 was more 
potently suppressed by rutin, quercetin 3-O-rutinoside, 
than its aglycone quercetin (Domitrovic et  al. 2012). In 
contrast, quercetin more potently attenuated the expres-
sion of TGF-β1, suggesting strong impact of structure–
activity relationship between these two compounds on 
amelioration of liver injury. Several studies also demon-
strated antiapoptotic activity of quercetin in chemically 
intoxicated rats (de David et al. 2011; Sekaran et al. 2012; 
Sarkar and Sil 2014). The mechanism involved down-
regulation of p53-inducible apoptotic proteins (Bax, cas-
pase-9, caspase-3) and up-regulation of the pro-survival 
ERK1/2 pathway. In contrast, quercetin initiated proap-
optotic events in DMN-induced hepatocarcinogenesis in 
rat livers (Casella et al. 2014) and induced the cell cycle 
arrest by reducing expression of cyclins and Cdk1.
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Quercetin suppressed nuclear import of NF-κB in diet-
induced hepatic inflammation in mice (Das et al. 2013; Sik-
der et al. 2014). The inhibition of NF-κB was accompanied 
by suppression of TNF-α, iNOS, cyclooxygenase-2 (COX-
2), interleukin (IL)-1β and C-reactive protein (CRP), as 
well as suppression of IKKα and prevention of IkappaBal-
pha (IκBα) degradation, both involved in NF-κB activation 
(Dias et al. 2005; Martínez-Flórez et al. 2005; García-Med-
iavilla et al. 2007; Ponmari et al. 2014). Moreover, querce-
tin has been shown to decrease protein expression of TLR4, 
an upstream inductor of NF-κB (Marcolin et  al. 2013). 
Quercetin also suppressed arsenite-induced expression of 
COX-2 and PGE2 production by blocking the activation of 
the PI3K/Akt/p70S6K signaling pathway and phosphoryla-
tion of ERK1/2 (Lee et al. 2010b). The inhibition of heavy 
metal-induced hepatic injury could be, at least in part, attrib-
uted to inhibition of the p38/STAT1/NF-κB signaling path-
way (Liu et  al. 2015b). Furthermore, quercetin suppressed 
nonalcoholic steatohepatitis in mice induced by methionine/
choline-deficient diet, which was associated with the reduc-
tion of the mRNA levels of inflammatory mediators and 
the decrease in protein expression of JNK and p65 NFκB 
subunit (Marcolin et  al. 2012). Zhang et  al. (2015b) dem-
onstrated that quercetin could ameliorate high-fructose 
diet-induced caspase-1 expression in rat hepatocytes and 
activation of proinflammatory cytokines, such as IL-18 and 
IL-1β, through inhibition of thioredoxin-interacting pro-
tein (TXNIP)-mediated NACHT, LRR and PYD domains-
containing protein 3 (NALP-3) inflammasome. In addition, 
quercetin inhibited activation of janus-activated kinase 2/
signal transducers and activators of transcription 3 (JAK2/
STAT3)-mediated inflammatory signaling and altered the 
expression of lipid metabolism-related enzymes, including 
PPARα, SREBP1 and SCD1, thus preventing lipid accumu-
lation in the liver. An amelioration of metabolic syndrome in 
rats by this phenolic was mediated through the suppression 
of NF-κB and caspase-3 activation, with increased expres-
sion of Nrf2, HO-1 and CPT1 (Panchal et al. 2012).

Antifibrotic potential of quercetin has been shown in 
rat common bile duct ligation (BDL) and CCl4 models 
of hepatic damage (Bona et  al. 2012; Lin et  al. 2014a). 
Quercetin attenuated BDL-induced NF-κB activation and 
the expression of MyD88 and TGF-β-activated kinase 1 
(TAK1), critical for linking TLR and NF-κB. Quercetin also 
reduced Smad2/3 activity critical for the fibrogenic poten-
tial of TGF-β1 and HSCs activation (Lin et al. 2014a; Wan 
et al. 2014). In addition, this compound down-regulated the 
expression of inflammatory genes and proteins related to 
precancerous conditions, such as glioma-associated onco-
genes (GLI)-1 and -2 (Cuevas et al. 2011). Suppression of 
amphiregulin (AR)/EGF receptor (EGFR) axis was associ-
ated with the inhibition of Akt and ERK1/2, major survival 
signals. In CCl4-induced cirrhosis model in rats, quercetin 

was shown to decrease MMP-2 levels (Bona et  al. 2012) 
and ameliorate HSCs activation by reducing the levels of 
inflammatory cytokines. Moreover, quercetin decreased 
the hepatic gene expression of PDGF-BB, HSCs mitogen, 
CTGF and TGF-β1, potent stimulators of ECM production, 
and the EGFR ligand AR, suggesting inhibition of multi-
ple profibrotic gene pathways (Marcolin et al. 2012). Fur-
ther, quercetin induced G1 arrest and impaired the prolif-
eration of activated rat HSCs by increasing levels of p53, 
p21 and p27 and decreasing expression of cyclins D1, D2, 
A and E (Wu et  al. 2011). Additionally, quercetin pre-
vented HSCs activation by reducing the levels of inflamma-
tory cytokines, including chemokine (C-X-C motif) ligand 
(CXCL)-1 and midkine. Quercetin also stimulated HSCs 
apoptosis, which was accompanied by increased expression 
of Fas/Fas ligand (FasL) and caspase-3 activity. Previously, 
Kawada et  al. (1998) showed that resveratrol, and more 
potently, quercetin, may suppress inositol phosphate (IP3) 
production, receptor-tyrosine kinase phosphorylation and 
ERK1/2 activation in PDGF/BB-stimulated HSCs, indicat-
ing a complex role of quercetin in hepatoprotection.

Further, quercetin showed inhibitory effect on HCV rep-
lication in vitro, which was attributed to inhibition of HCV 
nonstructural protein (NS) protease activity and reduction 
of HSP40 and HSP70 expression (Gonzalez et  al. 2009; 
Bachmetov et  al. 2012). The HCV genome is translated 
through an internal ribosome entry site (IRES) before its 
conversion into individual mature viral proteins and NS5A 
has been implicated in the regulation of viral genome rep-
lication. Quercetin has been shown to reduce IRES activ-
ity and its augmentation by NS5A (Gonzalez et al. 2009). 
Interestingly, inhibition of the PI3K/Akt/LXRα-dependent 
lipogenesis also contributed to suppression of the viral rep-
lication (Pisonero-Vaquero et al. 2014).

It should be mentioned that some studies indicated 
that quercetin may exhibit prooxidant activity and exac-
erbate toxic liver injury (Meng et  al. 2013; Pietsch et  al. 
2014). Nevertheless, doses used in these studies were rela-
tively high compared to average dietary intake. Quercetin 
has been mostly shown to inhibit the activity of various 
CYPs, including CYP1A1, CYP1A2, CYP2A6, CYP2C8, 
CYP2C9, CYP2C19 and CYP3A4 (Walsky et al. 2005; He 
et al. 2006; Tiong et al. 2010; Rastogi and Jana 2014; Arinc 
et  al. 2015). It also reduced CYP2E1 levels and activ-
ity and decreased CYP1B1 expression (Choi et  al. 2012; 
Tang et  al. 2013; Surapaneni et  al. 2014). The inhibitory 
potential against gene expression of CYP2B9, CYP2B10, 
CYP2B13 and CYP3A59 in mice livers has also been dem-
onstrated (Marcolin et  al. 2012). In addition, among sev-
eral flavonoids tested, including resveratrol and curcumin, 
only quercetin induced accumulation of CYP3A4 mRNA 
in primary human hepatocytes (Raucy 2003), indicating the 
potential for adverse reactions by this compound.
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Rutin, a quercetin-rutinoside (7), exhibited the hepato-
protective effect through modulation of the antioxidant 
genes expression and improvement in antioxidant status in 
several models of liver injury (Khan et al. 2012; Al-Rejaie 
et  al. 2013). In mice fed high-cholesterol diet, rutin, as 
well as quercetin, attenuated the increase in expression of 
redox sensitive transcription factor NF-κB and inflamma-
tory markers such as CRP and TNF-α (Sikder et al. 2014). 
Similarly, inflammatory response in cyclophosphamide-
intoxicated mice was inhibited through down-regulation 
of COX-2 and p38 MAPK expression (Nafees et al. 2015). 
Rutin administration also attenuated the increase in expres-
sion of hepatic iNOS in ischemia-/reperfusion-injured rat 
livers, while increasing endothelial nitric oxide synthase 
(eNOS) expression (Lanteri et  al. 2007) and nitric oxide 
(NO) production (Yagnik et al. 2002). Moreover, rutin sup-
plementation completely reversed CCl4-induced increase in 
the gene expression of EGF, FADD, Bcl-xL, IL-6, STAT3 
and JAK and decrease in Bcl-2 expression, suggesting 
attenuation of hepatotoxicity through several signaling 
pathways (Hafez et al. 2015). The beneficial effects of rutin 
in cholestatic liver injury were associated with down-reg-
ulation of inflammatory NF-κB and profibrotic TGF-β1/
Smad2/3 signaling pathways, most likely via suppression 
of ERK and AMPK activation as well as enhancement of 
Nrf2 and HO-1 expression (Pan et  al. 2014). Additional 
suggestion for antifibrotic mechanism of rutin came from 
another study, which demonstrated that rutin, as well as 
curcumin, may stimulate microtubule-associated protein 
light chain 3 (LC3) protein expression and autophagy of 
activated HSCs via stimulation of the PI3K/Akt/mTOR-
dependent pathway (Lee et  al. 2014c). The hepatoprotec-
tive effects of rutin against fatty acid-induced inflammation 
and obesity were associated with the suppression of tran-
scriptional activation of SREBP-1c and CD36 in the liver 
and amelioration of fatty liver disease (Gao et al. 2013a).

Troxerutin, a trihydroxyethylated derivative of rutin (8), 
has been shown to exert hepatoprotective activity through 
amelioration of hepatic oxidative stress and inflammation 
by restoring the activity of antioxidant enzymes and sup-
pressing NF-κB, iNOS and COX-2 expression (Zhang et al. 
2009, 2015e). Troxerutin could reduce hepatic oxidative 
stress-mediated NAD+-depletion in intoxicated mice and 
restored SIRT1 protein expression and activity (Zhang 
et  al. 2015e), which was accompanied by suppression 
of NF-κB nuclear translocation and inflammatory genes 
induction. The same authors demonstrated that troxerutin 
could inhibit hepatocyte apoptosis by alleviating oxidative 
stress-mediated proteasome dysfunction and restoring ER 
stress-mediated apoptotic pathway (Zhang et  al. 2015d). 
Mechanistically, troxerutin blocked TNF-α receptor 
(TNFR)-associated factor (TRAF) 2/apoptosis signal-regu-
lating kinase (ASK) 1/JNK and CHOP-mediated signaling. 

Troxerutin could also prevent liver steatosis by blocking 
oxidative stress and restoring dysfunction of lipin 1 signal-
ing in high-fat diet-treated mice, improving lipid homeosta-
sis by enhancing fatty acid oxidation and triglyceride secre-
tion while suppressing lipogenesis (Zhang et  al. 2014g). 
The authors demonstrated that troxerutin suppressed oxi-
dative stress-mediated NAD+-depletion by increasing 
nicotinamide phosphoribosyltransferase (NAMPT) pro-
tein expression and decreasing poly (ADP-ribose) poly-
merase (PARP)-1 protein expression and activity in mice 
livers. Consequently, troxerutin restored hepatic SIRT1 
protein expression and activity, thus promoting AMPK 
activation and subsequent inhibition of mTOR complex 1 
(mTORC1) signaling. This resulted in reduced cytoplasmic 
and increased nuclear localization of lipin 1, where it could 
serve as a component of a transcriptional complex with 
PPARα and PGC-1α to regulate fatty acid metabolism in 
liver (Finck et al. 2006).

Morin (3,5,7,2′,4′-pentahydroxyflavone) (9), a flavo-
noid isolated from herbs of the Moraceae family, showed 
hepatoprotective activity by reducing hepatic oxidative 
stress (Shankari et  al. 2010; Merwid-Lad et  al. 2014). 
Morin prevented acute liver damage induced by CC4 by 
inhibiting the expression of NF-κB and the production 
of inflammatory cytokines (Heeba and Mahmoud 2014). 
High-glucose-induced oxidative stress and apoptosis in 
primary rat hepatocytes, evidenced by increased Bax, cas-
pase-3 and caspase-9 expression and cytochrome c cyto-
plasmic translocation, were attenuated by morin (Kapoor 
and Kakkar 2012). Morin could also be employed as a 
chemopreventive compound in attenuation of fibrogenesis. 
Morin demonstrated the ability to inhibit hepatic fibro-
sis in rats and induce apoptosis of HSCs by suppressing 
canonical NF-κB signaling (MadanKumar et  al. 2015). 
Those authors demonstrated the inhibition of DEN-induced 
liver fibrosis in rats by this compound through the down-
regulation of glycogen synthase kinase-3 beta (GSK-3β), 
β-catenin and cyclin D1 expressions, which was accompa-
nied by the inhibition of Wnt signaling (MadanKumar et al. 
2014). Using the same model of hepatic fibrogenesis, other 
authors also showed the suppression of TGF-β1 expres-
sion by this compound (Lee et  al. 2009). Moreover, oral 
supplementation of morin down-regulated NF-κB nuclear 
translocation and MMP-2 and MMP-9 expression in DEN-
intoxicated rats, indicating the potential of morin to prevent 
inflammation and carcinogenesis (Sivaramakrishnan and 
Niranjali Devaraj 2009). Morin administration also resulted 
in inhibition of the PI3K/Akt-mediated suppression of 
GSK-3β (Sivaramakrishnan and Devaraj 2010).

Further, morin attenuated hepatosteatosis in high-fruc-
tose fed rats by inhibiting NF-κB activation (Wang et  al. 
2013). Fructose feeding activated sphingosine kinase 
1 (SphK1)/sphingosine-1-phosphate (S1P) signaling 
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pathway, which in turn caused activation of the NF-κB 
pathway and inflammation in rat livers. Subsequently, 
hepatic leptin and insulin signaling impairment resulted 
in liver lipid accumulation. Morin restored high-fructose-
induced changes in mice by increasing phosphorylation of 
IR, IRS-1(Tyr), ERK, JAK and reducing phosphorylation 
of the long form of leptin receptor (Ob-RL), STAT3, sup-
pressor of cytokine signaling (SOCS) 3 and IRS-1(Ser), 
with the decrease in SphK1 activity and S1P production. 
Additionally, the level of lipolytic PPARα and CPT1 was 
increased by morin treatment. Taken together, these data 
showed the potential of morin to ameliorate hepatic inflam-
mation and metabolic syndrome.

Flavan‑3‑ols

(–)-Epigallocatechin-3-gallate ((–)-cis-3,3′,4′,5,5′,7-
hexahydroxy-flavane-3-gallate, EGCG) (10), the major 
catechin found in green tea, Camellia sinensis L., showed 
protective effects against oxidative damage in hepatic cells 
through the increase in SOD, CAT, GPx and GR activity 
and vitamin C and E levels (Kaviarasan et  al. 2008; Ren 
et  al. 2011; An et  al. 2014), which was attributed to acti-
vation of the Nrf2 pathway (Wang et  al. 2015a). Numer-
ous studies indicated potentially therapeutic role of EGCG 
against various kinds of impairment of liver function. Thus, 
EGCG reduced caspase-3 expression and apoptosis in the 
ischemia/reperfused rat livers through down-regulation of 
NF-κB and c-Jun expression (Giakoustidis et  al. 2010). 
Pretreatment with EGCG reduced LPS-induced produc-
tion of inflammatory mediators, including TNF-α, Rantes, 
MCP-1, intracellular adhesion molecule (ICAM)-1, VEGF, 
NO and MMP-2 by inhibiting NF-κB, Akt and MAPK 
pathways (Liu et al. 2014c).

EGCG prevented NASH-related preneoplastic lesions 
in obese and hypertensive rats by decreasing the mRNA 
expression of angiotensin-converting enzyme (ACE) and 
angiotensin II receptor type 1 (AT1R), components of the 
renin–angiotensin system (RAS), which is closely associ-
ated with liver fibrosis and carcinogenesis (Kochi et  al. 
2014). Additionally, EGCG attenuated the mRNA expres-
sion of liver fibrosis-related MMP-2, MMP-9, TIMP-1, 
TIMP-2, alpha-smooth muscle actin (α-SMA), TGF-β1 
and plasminogen activator inhibitor type 1 (PAI-1). In 
addition, this compound decreased levels of hepatic phos-
pho-JNK and reduced mRNA expression of inflamma-
tory mediators. EGCG also prevented DEN-induced liver 
steatosis and tumorigenesis in obese and diabetic mice by 
activating AMPK and inhibiting the insulin growth factor 
(IGF)/IGF 1 receptor (IGF-1R) axis (Shimizu et al. 2011). 
EGCG inhibited the phosphorylation of IGF-1R, ERK, 
Akt, GSK-3β, STAT3 and JNK in mice livers. Furthermore, 
EGCG ameliorated hepatic preneoplastic lesions induced 

by DEN and HFD by decreasing hepatic gene expression of 
proinflammatory mediators and cyclin D1 and suppressing 
hepatocyte proliferation (Sumi et al. 2013). In rat liver epi-
thelial cells, the gap junctional intercellular communication 
(GJIC), which is strongly associated with carcinogenesis, 
particularly the tumor promotion process, was inhibited 
by EGCG (Kang et  al. 2008). EGCG treatment increased 
phosphorylation of ERK1/2 and connexin 43 (Cx43), the 
major regulator of GJIC, whereas inhibition of ERK by a 
pharmacological inhibitor U0126 completely reverted inhi-
bition of GJIC. Interestingly, the GJIC inhibitory properties 
of EGCG were attributed to its prooxidant activity. EGCG 
has also been reported as an in  vitro inhibitor of several 
CYP isoforms, including CYP1A1, CYP1A2, CYP2B1/2, 
CYP2B6, CYP2C8 and CYP3A (Yun et  al. 2007; Weng 
et al. 2012; Misaka et al. 2013), which could contribute to 
its cytoprotective potential.

Treatment with EGCG attenuated hepatic inflammation 
and fibrosis in the CCl4, BDL and NASH models in vivo 
and HSCs in  vitro (Zhen et  al. 2007; Tipoe et  al. 2010; 
Xiao et al. 2014; Yu et al. 2015; Ding et al. 2015). EGCG 
ameliorated expression of inflammatory and fibrotic 
markers such as NOS, COX-2, TNF-α, collagen α1(I), 
MMP-2, MMP-9, TIMP-1 and α-SMA, which was associ-
ated with down-regulation of the TGF-β1/Smad2/3, PI3K/
Akt/FOXO1 and NF-κB pathways. Further, EGCG ame-
liorated the mRNA expression of IGF-1R and the mRNA 
and protein levels of PDGFRβ in the liver of fibrotic rats 
(Yasuda et al. 2009). Moreover, EGCG interrupted TGF-β 
signaling by reducing the gene expression of TGF-β 
receptors (Tβ-R) I and II and Smad4, resulting in reduced 
the mRNA levels of CTGF, collagen and fibronectin, 
which was dependent on the induction of de novo synthe-
sis of GSH (Fu et al. 2008b; Yumei et al. 2006). This com-
pound also inhibited HSCs growth, which was attributed 
to the suppression of the tyrosine phosphorylation and the 
gene expression of PDGFRβ by blocking the activation of 
transcription factors AP-1 and NF-κB (Chen and Zhang 
2003). In cultured human HSCs, EGCG inhibited the 
PDGF-BB-induced HSCs proliferation and collagen α1(I) 
and (IV) mRNA expression (Sakata et al. 2004). Further-
more, EGCG regulated HSCs growth through Rho-signal-
ing pathway, which is implicated in activation and prolif-
eration of HSCs (Higashi et al. 2005). Activated Rho (the 
GTP-bound state) was inhibited by ECGC, which was 
accompanied by suppression of phosphorylation of focal 
adhesion kinase (FAK), an regulator of Rho-signaling 
pathways. Moreover, EGCG was found to suppress HSCs 
invasiveness, through inhibition of MMP-2 activation 
(Zhen et  al. 2006). EGCG also interrupted EGF signal-
ing in activated HSCs by reducing the trans-activation of 
early growth response protein (EGR)-1 and suppressing 
gene expression of EGFR (Fu and Chen 2006; Hirsova 
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et al. 2012), which plays an important role in differentia-
tion and mitogenesis.

EGCG administration to hypercholesterolemic rats 
diminished induction of acyl-CoA:cholesterol acyltrans-
ferase ACAT and SREBP-1 mRNA and raised reduced 
levels of ATP-binding cassette transporter (ABC) G5 and 
G8 (Hirsova et  al. 2012). Moreover, EGCG supplementa-
tion reduced the TNF-α-mediated Ca2+-dependent nuclear 
factor of activated T-cell (NFAT) expression and its down-
stream targets, including ICAM-1 and E-selectin, and 
NF-κB-mediated downstream targets such as VCAM-1 and 
P-selectin, thus inhibiting high-cholesterol-induced mac-
rophage infiltration and hepatic steatosis (Krishnan et  al. 
2014). Similarly, the beneficial effects of EGCG on HFD-
induced fatty liver in mice were associated with reduced 
levels of inflammatory cytokines (Chen et  al. 2011) and 
down-regulation of lipogenesis-related genes, including 
ACC, FAS and SCD1 (Friedrich et  al. 2012). The reduc-
tion of hepatosteatosis was accompanied by increased 
expression of LC3-I/II and phosphorylation of AMPK, one 
of major regulators of autophagy (Zhou et  al. 2014). In 
addition, EGCG was shown to down-regulate uncoupling 
protein (UCP) 2 expression (Jamal et  al. 2015), which is 
involved in development of steatohepatitis.

EGCG has been shown to suppress the expression of 
HBV surface antigen (HBsAg) and hepatitis B e antigen 
(HBeAg), the hepatitis B virus (HBV) antigens, and to 
reduce extracellular HBV DNA production and intracellu-
lar HBV DNA replication in vitro, although it had weaker 
efficacy compared to green tea extract (Xu et  al. 2008). 
EGCG also demonstrated inhibitory activity on HCV viral 
protein, NS5B, which possesses the key function of rep-
licating HCV viral RNA (Roh and Jo 2011). Moreover, 
EGCG opposed HBV-induced incomplete autophagy via 
enhancing lysosomal acidification, which seems to be unfa-
vorable for HBV replication (Zhong et  al. 2015). EGCG 
also inhibited HCV attachment to hepatocytes, disrupting 
the initial step of cell entry (Ciesek et al. 2011), which was 
attributed to impairment of HCV envelope glycoproteins 
E1 and E2 (Calland et al. 2012). Other catechins, such as 
(+)-epicatechin and (–)-epicatechin, also showed signifi-
cant anti-HCV activity, protecting against HCV replica-
tion and attenuating virus-induced inflammation (Lin et al. 
2013).

Recent study of Church et  al. (2015) indicated that 
hepatotoxicity reports of green tea extract consumption 
in humans could be related to differences in sensitivity 
to EGCG, which emerge from the genetic background. 
Research conducted by James et al. (2015) may also partly 
explain the observed variation in hepatotoxic response to 
EGCG and green tea-containing dietary supplements. Thus, 
dietary pretreatment with EGCG may limit the bioavail-
ability and hepatotoxicity of successive oral bolus doses of 

the catechin. Most importantly, randomized, double-blind, 
placebo-controlled study demonstrated that oral doses of 
EGCG of up to 800 mg per day for 10 days were safe and 
very well tolerated (Ullmann et  al. 2004). Interestingly, 
the authors found the increase in accumulation factor for 
EGCG in the high-dosage group, suggesting dose-depend-
ent saturation of capacity-limited excretion routes or an 
increase of hepato-duodenal recirculation, which should be 
taken into consideration.

Flavonolignans

Silymarin (11) is a natural substance isolated from Sily-
bum marianum L., commonly known as Milk thistle. This 
substance contains several flavolignans including silybin, 
isosilybin, silychristin and silydianin, and flavonoids such 
as taxifolin and quercetin (Zhu et al. 2013). Silymarin has 
been extensively studied for its hepatoprotective effects 
in the last decade. However, surprisingly small number of 
studies investigated the underlying mechanisms of hepato-
protective activity of silymarin or its components. Gener-
ally, silymarin has been shown to modulate enzymatic 
and nonenzymatic markers of oxidative injury in the liver 
(Pradeep et  al. 2007; Tzeng et  al. 2013) and induce Nrf2 
expression (Kim et al. 2012). Silymarin also exhibited anti-
inflammatory activity in several models of liver damage. 
In the alcoholic fatty liver model in rats silymarin down-
regulated expression of NF-κB, ICAM-1 and IL-6 (Zhang 
et al. 2013a). Silymarin also attenuated chemically induced 
hepatocellular damage by increasing the expression of 
antiapoptotic Bcl-xL protein and reducing p53 expression, 
caspase-3 activity, PARP activity and DNA fragmentation 
(Patel et  al. 2010; Sherif and Al-Gayyar 2013). Inhibition 
of TGF-β1 and PDGF signaling has also been involved in 
the hepatoprotective effects of silymarin (Chen et al. 2012a; 
Clichici et al. 2015). In chronic liver fibrosis in mice sily-
marin down-regulated hepatic TGF-β1, MMP-2, MMP-13, 
TIMP-1, TIMP-2, AP-1, tumor suppressor Krueppel-like 
factor 6 (KLF6) and collagen α1 expression with signifi-
cant reduction of hepatic hydroxyproline content (Chen 
et  al. 2012a; El-Lakkany et  al. 2012). Moreover, Polyak 
et  al. (2010) demonstrated that silymarin could inhibit 
HCV cell infection through suppression of TNF-α-induced 
activation of NF-κB and its nuclear translocation.

Major constituent of silymarin, silybin, exhibited anti-
oxidant effect in nonalcoholic steatohepatitis (Haddad et al. 
2011). Silibinin, a mixture of silybin A and silybin B, and 
more bioavailable silibinin-phosphatidylcholine complex, 
significantly inhibited IL-1β-induced production of proin-
flammatory markers PGE2, IL-8 and MCP-1 in hepatocytes 
(Au et al. 2011). Mechanistically, both compounds attenu-
ated NF-κB activation and its nuclear translocation. Yao 
et  al. (2011) suggested that inhibition of oxidative stress, 
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stabilization of mitochondrial membrane and improved 
insulin resistance may be the key mechanisms for the 
hepatoprotective effect of silibinin against NAFLD.

Silymarin has a good safety profile and is well toler-
ated by patients (National Toxicology 2011). In individu-
als occupationally exposed to hydrogen sulfide, treatment 
with 140 mg of silymarin, three times per day for 1 month, 
resulted in a significant decrease in serum aminotrans-
ferases and alkaline phosphatase levels (Mandegary et  al. 
2013). Nevertheless, the effectiveness of silymarin was 
modulated by the TNF-α polymorphisms. Schrieber et  al. 
(2008) showed the correlation between the severance of 
hepatic disease (HCV noncirrhosis, NAFLD and HCV cir-
rhosis) and the level of total silymarin flavonolignans in the 
blood. Current research provides optimistic data regarding 
improvement of physicochemical property of silymarin. 
Silymarin-loaded solid lipid nanoparticles have been pro-
posed as a useful system for the delivery of poorly water-
soluble compounds such as silymarin, showing enhanced 
antioxidant and hepatoprotective activity compared to a 
crude silymarin (Hsu et al. 2012; Hwang et al. 2014; Cen-
giz et al. 2015).

Interaction between silymarin or its components and 
CYPs activity has not been intensively studied. A few 
data available suggested that silybin ameliorated CYP3A 
expression and activity in thioacetamide-injured rat liver 
(Xie et al. 2013). Studying the effect of the anti-Alzheimer 
drug tacrine and silibinin, Chen et al. (2012c) showed that 
the co-drug administration diminished tacrine-induced 
hepatotoxicity and induction of CYPs. These studies indi-
cated that silymarin or its component may not be involved 
in CYP activation.

Terpenoids

Monoterpenoids

Thymoquinone (12), a monoterpenoid quinone, the major 
active compound derived from the Nigella sativa L. seeds, 
has been reported to protect experimental animals against 
oxidative hepatic injury by improving hepatic antioxidant 
status (Sayed-Ahmed et  al. 2010; Prabhakar et  al. 2014). 
In addition, thymoquinone treatment has been shown to 
significantly suppress CYP1A2, CYP3A4 but not CYP2E1 
activity in rabbits (Elbarbry et al. 2012).

Chemically induced hepatic fibrosis and inflammation 
in mice were attenuated by thymoquinone through sup-
pression of protein and mRNA expression of collagen I and 
TIMP-1 and reduction of ECM accumulation (Bai et  al. 
2014; Ghazwani et  al. 2014). Thymoquinone down-regu-
lated the expression of TLR4 and decreased proinflamma-
tory cytokine levels (Bai et  al. 2014). In addition, it also 

inhibited PI3K phosphorylation, enhanced the phosphoryl-
ation AMPK and liver kinase B (LKB)-1. In rats injected 
with cisplatin, thymoquinone reduced the expression of 
NF-κB and proinflammatory proteins TNF-α, iNOS and 
IL-1β (Al-Malki and Sayed 2014). Investigating the mecha-
nism of antifibrotic activity in several HSC lines, Ghazwani 
et  al. (2014) showed that the inhibition of LPS-induced 
mRNA expression of IL-6 and MCP-1 was associated with 
the inactivation of NF-κB pathway and down-regulation of 
mRNA expression of several fibrosis-related genes. This 
quinone also showed the inhibitory potential toward TLR4 
and PI3K/Akt signaling pathways in activated HSCs and 
proapoptotic activity, as shown by decreased XIAP and 
c-FLIP expression (Bai et al. 2013). Moreover, thymoqui-
none administration in rats fed HFD diminished metabolic 
syndrome by preventing reduction in hepatic mRNA levels 
of PPAR-α and PPAR-γ (Prabhakar et al. 2014).

Diterpenoids

Andrographolide

Andrographolide (13) is a diterpenoid lactone isolated from 
Andrographis paniculata L., which possesses antioxidant 
effects against chemically induced liver injury (Trivedi 
et al. 2007; Chen et al. 2014a). It up-regulated protein and 
gene expression of oxidative stress response genes such as 
hypoxia-inducible factor-1 alpha (HIF-1α), SOD-1, HO-1 
and GST, which was associated with increased nuclear 
Nrf2 content and its DNA-binding activity (Ye et al. 2011; 
Shi et al. 2012; Chen et al. 2014a). Similarly, the anti-HCV 
activity of andrographolide has been mediated by up-regu-
lation of HO-1 via the p38 MAPK/Nrf2 pathway (Lee et al. 
2014a).

Andrographolide suppressed thioacetamide-induced 
hepatic inflammation, angiogenesis and fibrosis in mice 
(Lee et al. 2014a, d). Andrographolide treatment decreased 
TNF-α and COX-2 expression and reduced liver hypoxia, 
as shown by the down-regulation of hypoxia-inducible 
genes, such as VEGF. In addition, andrographolide treat-
ment resulted in the decrease in Tβ-RI expression and 
hepatic fibrogenesis. Similarly, andrographolide attenuated 
hepatic apoptosis and fibrosis after BDL in rats (Lee et al. 
2010c). The compound decreased serum levels of TNF-α 
and IL-1β and hepatic expression of TGF-β, cannabinoid 
receptor type 1 (CBR1) and Bax. The effect was medi-
ated by suppression of JNK and ERK phosphorylation. 
Andrographolide was also able to down-regulate cellular 
lipid accumulation in HFD-fed mice (Ding et  al. 2014). 
The compound reduced the hepatic protein and mRNA lev-
els of SREBP-1 and its downstream targets, such as FAS, 
ACC and SCD-1 as well as SREBP-2 and its target genes 
involved in cholesterol biosynthesis.
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Nevertheless, andrographolide showed a potential 
to induce CYP1A1, CYP2A4, CYP2B9 and CYP2B10 
expression in mice hepatocytes (Chatuphonprasert et  al. 
2009). In a similar way, andrographolide decreased CYP2C 
and CYP3A expression and activity in human hepato-
cytes, but without the effect on CYP2E1 (Pekthong et  al. 
2008, 2009), suggesting a potential to interact with drug 
metabolism.

Triterpenoids

Ginsenosides (14) are the major steroid compounds in gin-
seng root, which belong to the genus Panax of the family 
Araliaceae. These compounds reduced ROS generation in 
chemically injured hepatocytes by increasing SOD, GPx 
and CAT activity and restoring GSH levels (Park et  al. 
2012; Li et  al. 2014b), while suppressing ERK and JNK 
MAPKs. Ginsenoside Rg3, but not other tested ginseno-
ides (Rb1, Rc and Rg1), increased acetaminophen-induced 
GSTA2 protein expression and the transcriptional activa-
tion by the multiple cellular signaling, including PI3K, 
JNK and protein kinase A (PKA) (Gum and Cho 2013b). 
Ginsenoside Rg3 ameliorated chemical toxicity in hepatic 
cells by inducing Nrf2-mediated gene expression of mul-
tidrug resistance protein (MRP) 1 and 3, involved in a 
detoxification process (Gum and Cho 2013a). Further, gin-
senosides were effective in attenuation of hepatic fibrosis 
induced by alcohol and CCl4. Ginsenoside Rb1 attenu-
ated liver inflammation and fibrosis by suppressing hepatic 
PGE2 and TIMP-1 expression (Hou et  al. 2014). Simi-
larly, ginsenoide Rg1 protected against hepatic fibrosis by 
increasing nuclear translocation of Nrf2 and the expression 
of antioxidant enzymes, including HO-1 and NQO1 (Li 
et al. 2014b). In addition, ginsenoside Rg1 down-regulated 
the expression of PDGFRβ in cultured HSCs by reduc-
ing the NF-κB activity, which resulted in the inhibition 
of PDGF-BB-stimulated cell proliferation and activation 
(Geng et  al. 2010). In H2O2-activated HSCs, ginsenoside 
Rb1 suppressed the mRNA and protein expression of TGF-
β1, MMP-2, TIMP-1 and collagen (Lo et  al. 2011), sug-
gesting that Rb1 may exert an antifibrotic effect by inhibit-
ing HSCs activation and proliferation.

Ginsenoside Rb1 reduced fatty liver in obese rats by 
activating hepatic AMPK (Shen et  al. 2013). In primary 
rat hepatic cells, activation of AMPK consistently stimu-
lated the expression of genes encoding fatty acid oxida-
tive enzymes, including PGC-1α, PPARα, and peroxisomal 
acyl-coenzyme A oxidase 1 (ACOX1) and increased the 
activity of CPT1, a key enzyme in fatty acid β-oxidation. 
In a similar fashion, ginsenoside Re lowered hepatic lipid 
levels via activation of the AMPK pathway and protected 
against hepatic steatosis in HFD-fed mice (Quan et  al. 
2012).

Furthermore, ginsenoides were shown to suppress 
hepatic inflammation through the inhibition of NF-κB sign-
aling in several experimental models. Ginsenosides Rd1 
and Rg1 protected mouse liver against ischemia–reperfu-
sion injury through down-regulation of NF-κB expression 
and reduced production of proinflammatory cytokines, 
including TNF-α and ICAM-1 (Wang et al. 2008; Tao et al. 
2014). Similarly, ginsenoside Rg1 attenuated concanavalin 
A-induced hepatitis in mice through the inhibition of IκBα 
and p65 phosphorylation as well as ICAM-1 and CXCL-10 
mRNA expression and cytokine secretion (Cao et al. 2013). 
Ginsenoides Rd and Rg3 also attenuated hepatic NF-κB, 
COX-2 and iNOS protein expression in LPS-challenged 
murine (Kang et al. 2007; Kim et al. 2013). Moreover, gin-
senoside Rd suppressed NO production and PGE2 synthesis 
(Kim et al. 2013).

Ginsenoside Rg1 and Rb1 showed the potential to 
decrease hepatitis A virus (HAV) titer in infected hepato-
cytes (Lee et  al. 2013b). Moreover, ginsenoside Rg3 was 
shown to attenuate HBV replication (Kang et  al. 2013). 
Rg3 inhibited the expression of TRAF6 and TAK1, adaptor 
molecules that signal through the TLR/MyD88-dependent 
pathway. Furthermore, Rg3 inhibited MAPK signaling in 
hepatic cells by inhibiting JNK phosphorylation. In addi-
tion, it reduced the expression of AP-1 transcription fac-
tors c-Jun and JunB and inhibited AP-1 promoter activity, 
resulting in reduced gene and protein expression of proin-
flammatory cytokines.

It has been shown that ginsenoside Rd, as well as 
quercetin, have a potential to inhibit CYP2C9 and CYP3A4 
in human liver microsomes (He and Edeki 2004). However, 
available data suggest that ginsenosides Rb1, Rb2, Rc and 
Rd are not likely to interact with conventional medicines 
that are metabolized by CYP2C19 and CYP2D6 (He et al. 
2006). Similarly, in another study, ginsenosides Rb1, Rb2, 
Rc, Rd, Re, Rf and Rg1 showed only weak inhibition of 
CYP1A1, CYP1A2 and CYP1B1 activity (Chang et  al. 
2002). These data suggest that ginsenosides have relatively 
low CYP-modulating effect.

Glycyrrhizin (15), a triterpenoid glycoside isolated 
from the roots of licorice plant (Glycyrrhiza glabra L.), 
has been shown to increase antioxidant defense in the liver 
(Rahman and Sultana 2006; Orazizadeh et al. 2014). Gly-
cyrrhizin may also protect against liver injury by reduc-
ing the expression of high-mobility group protein box 1 
(HMGB1), an early mediator of inflammation (Mabuchi 
et  al. 2009; Ogiku et  al. 2011) and interrupting HMGB1 
binding to GSTO1 promoter region (Kuroda et  al. 2014). 
Glycyrrhizin and its metabolite, glycyrrhetinic acid, inhib-
ited collagen αI(I) gene expression and progression of liver 
fibrosis induced by CCl4 (Moro et  al. 2008). The com-
pounds significantly decreased mRNA expression of TGF-
β1, Smad2/3 and specificity protein-1 (SP-1) in the liver 
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(Qu et al. 2015). Further, glycyrrhizin down-regulated pro-
inflammatory mediators and induced expression of HO-1 
(Lee et al. 2007a). The potential of this compound to accel-
erate recovery from hepatic injury has been demonstrated 
in  vitro. Glycyrrhizin suppressed activation of HSCs and 
induced their apoptosis by blocking nuclear translocation 
of NF-κB (Qu et al. 2012). Importantly, glycyrrhizin and its 
metabolites may induce growth of hepatocytes by binding 
to EGFR and stimulating ERK2-mediated hepatocyte DNA 
synthesis and proliferation (Kimura et  al. 2001), which 
could contribute to acceleration of liver regeneration.

Antiviral activity of glycyrrhizin has been demon-
strated both in  vitro and in  vivo. Glycyrrhizin treatment 
of HCV-infected hepatic cells resulted in reduced release 
of infectious HCV particles through inhibitory effect on 
phospholipase A2 (PLA2), whereas a co-treatment with 
glycyrrhizin augmented antiviral effect of IFN-α (Matsu-
moto et al. 2013). A similar effect on HAV antigen expres-
sion and infectivity has also been reported (Crance et  al. 
1990). Moreover, glycyrrhizin modified the intracellular 
transport and suppressed sialylation of HBsAg in  vitro 
(Takahara et al. 1994), which was also observed in patients 
with chronic HBV infection (Sato et al. 1996).

Although mechanistically modestly investigated, gly-
cyrrhizin has been intensively studied in clinical trials. In 
patients who failed previous IFN-α-based therapy, intrave-
nous administration of glycyrrhizin significantly reduced 
serum alanine transaminase (ALT) level after 12 weeks of 
therapy and improved necro-inflammation and fibrosis after 
52-week treatment (Manns et al. 2012). In another study, a 
6-month co-treatment with IFN-α2b and glycyrrhizin was 
less effective in reducing ALT levels compared to IFN-α2b 
and ribavirin co-administration; however, the treatment 
was associated with significantly lower frequencies of leu-
kopenia and anemia (Acharya et  al. 2012). Interestingly, 
the decrease in ALT levels after 26 months treatment in a 
smaller group of patients treated with glycyrrhizin did not 
translate in a significant histological improvement (Orlent 
et  al. 2006). Nevertheless, glycyrrhizin injection therapy 
showed effectiveness in prevention of progression from 
HCV-related cirrhosis to HCC, particularly in a group of 
older patients (Ikeda 2007; Ikeda et al. 2014). Similar effect 
of this compound was observed in another study on 1093 
patients nonresponding to IFN (Veldt et  al. 2006). Impor-
tantly, usage of the suppositories of glycyrrhizin improved 
quality of life for chronic hepatitis C patients similarly to 
intravenously treated patients, with greater benefit in those 
who did not respond to IFN therapy (Fujioka et al. 2003).

18β-Glycyrrhetinic acid (16), a hydrolytic product of 
glycyrrhizin, has also been shown to possess a wide range 
of pharmacological and biological activities, including 
hepatoprotection (Hasan et  al. 2015). 18β-Glycyrrhetinic 
acid decreased oxidative stress and expression of 

inflammatory markers both in vivo and in vitro models of 
hepatocyte injury, which coincided with down-regulation 
of NF-κB and up-regulation of Nrf2 target genes (Chen 
et  al. 2013b; Hasan et  al. 2015). Importantly, this com-
pound inhibited hepatic expression and activity of CYP2E1 
in CCl4-intoxicated mice (Jeong et al. 2002) and the activ-
ity of CYP2C9, CYP2C19 and CYP3A4 in rat and human 
liver microsomes (Zhao et  al. 2012). 18β-Glycyrrhetinic 
acid but not glycyrrhizin inhibited PARP, caspase-3, cas-
pase-9 and caspase-10 activation and suppressed phos-
phorylation of JNK in a model of cholestatic liver injury, 
protecting hepatocytes against necrosis and apoptosis 
(Gumpricht et al. 2005). In human and rat HSCs, the com-
pound inhibited mRNA and protein expression of collagen 
type I and III, which was attributed to down-regulation of 
Smad3, up-regulation of Smad7 and inhibition of DNA-
binding activities of NF-κB as well as SP-1 and AP-1, both 
involved in the synthesis of ECM (Moro et al. 2008; Zong 
et  al. 2012). Additionally, proliferation of activated HSCs 
was inhibited and apoptosis was induced, as evidenced by 
decreased expression of cyclin D1 and the pro-survival 
Bcl-2 homolog A1/Bfl-1, with simultaneous increase in 
Bax and PPARγ-mediated expression of p27 (Zong et  al. 
2013).

Betulinic acid (17), a natural pentacyclic lupane-type 
triterpenoid found in various plants, especially bark of 
the birch tree (genus Betula, family Betulaceae), showed 
hepatoprotection against ethanol-induced oxidative 
stress and steatohepatitis in mice (Wan et  al. 2013b; Yi 
et  al. 2014). The amelioration of steatohepatitis involved 
decrease in TLR4 expression and increased phosphoryla-
tion of STAT3, signaling molecule involved in regulation of 
cell survival (Wan et al. 2013b). Furthermore, the potential 
role of betulinic acid in prevention of hepatic inflammation 
and fibrosis has also been demonstrated in thioacetamide-
intoxicated rats (Wan et  al. 2012). Mechanistically, betu-
linic acid induced suppression of the TLR4/MyD88/NF-κB 
signaling pathway.

Other studies showed that betulinic acid and betulin 
could inhibit ethanol-induced activation of HSCs at dif-
ferent levels (Szuster-Ciesielska et  al. 2011; Wan et  al. 
2013b). Both compounds inhibited the production of ROS 
by HSCs, inhibited their migration and down-regulated 
ethanol-induced TIMP-1, TIMP-2 and MMP-2 activity 
(Szuster-Ciesielska et al. 2011). Additionally, betulin inhib-
ited the activation of the p38 MAPK and the JNK trans-
duction pathways, while betulinic acid inhibited the JNK 
transduction pathway only. Nevertheless, both compounds 
inhibited phosphorylation of IκB and Smad3 and attenu-
ated the activation of TGF-β1 and NF-κB transduction 
signaling. Betulinic acid also showed several other hepato-
protective activities. This compound was also able to pre-
vent hepatic apoptosis induced by LPS/D-GalN through 
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suppression of apoptosis-related JNK1/2 and ERK1/2 sign-
aling (Zheng et al. 2011). Further, the inhibitory effect of 
betulinic acid on lipid accumulation and amelioration of 
NAFLD in mice involved suppression of SREBP-1 activ-
ity via down-regulation of the CAMKK/AMPK/mTOR/
p70S6K signaling pathway (Quan et  al. 2013b). Moreover, 
betulinic acid exhibited antiviral properties. In hepatocytes 
from HBV-transgenic mice, betulinic acid mediated inhibi-
tory effect on HBV replication through down-regulation 
of manganese SOD expression via attenuation of cAMP-
response element-binding protein (CREB) phosphoryla-
tion and inhibition of its transcriptional activity (Yao et al. 
2009). Moreover, betulinic acid inhibited HCV replication, 
acting synergistically with IFN-α and NS5B polymerase 
inhibitor. The compound down-regulated HCV-induced 
COX-2 expression through reducing the phosphorylation of 
NF-κB and ERK1/2 (Lin et al. 2015a), suggesting betulinic 
acid as a promising compound for treatment of hepatitis 
virus-infected patients.

Ursolic acid (18), a pentacyclic triterpenoid acid found 
in various plants, suppressed oxidative stress in various 
models of liver injury (Kazmi et al. 2013; Ma et al. 2014). 
Ursolic acid modestly inhibited CYP2C19 in  vitro, while 
other CYPs, including CYP2C8, CYP2C9, CYP3A4, 
CYP2E1, CYP1A2 and CYP2D6, showed weak inhibition 
by this triterpene or no inhibition at all (Kim et al. 2004), 
suggesting low potential of interaction with drugs and acti-
vation of pro-carcinogens.

Ursolic acid was shown to activate autophagy in mice 
model of hepatic steatosis in the NAFLD model in rodents, 
by inducing the expression of LC3-II and beclin 1 (Jia et al. 
2015). It also activated PPARα and expression of genes 
involved in fatty acid uptake and β-oxidation, such as fatty 
acid transport protein 4 (FATP4), acetyl-CoA synthetase 
1 (ACS1), CPT1 and peroxisomal acyl-coenzyme A oxi-
dase 1 (ACOX1), while down-regulating genes involved in 
lipogenesis, such as SREBP-1c, FAS and ACC1 (Li et al. 
2014e; Sundaresan et  al. 2014; Jia et  al. 2015). Moreo-
ver, ursolic acid treatment significantly decreased hepatic 
steatosis in db/db mice by modulating β-oxidation and 
ER stress in the liver (Li et al. 2015b). Mechanistically, it 
reduced expression of the unfolded protein response sen-
sor inositol-requiring enzyme-1alpha (IRE-1α) expression 
and activation of ERK, JNK and CHOP, while increasing 
PPARα levels. In addition, ursolic acid decreased palmitic 
acid-induced intracellular lipid accumulation in L02 cells, 
with concomitant inhibition of ATF6, IRE-1α and CHOP 
gene expression.

Wang et al. (2011) and Yang et al. (2015) demonstrated 
the beneficial effect of ursolic acid against hepatic fibro-
sis. In culture-activated HSCs, ursolic acid activated cas-
pase-3 and caspase-9, decreased phosphorylation of Akt 
and diminished nuclear localization of NF-κB (Wang et al. 

2011), suggesting their apoptosis and suppression of sur-
vival mechanisms. Treatment of hepatocytes with ursolic 
acid in the presence of LPS dose-dependently inhibited 
ROS production and NF-κB activation. The improvement 
of liver functions in mice was associated with activation 
of the LKB1/AMPK pathway, involved in cell growth and 
control of metabolism. Ursolic acid also prevented CCl4-
induced hepatotoxicity and fibrosis in mice, at least in part, 
through modulation of the Nrf2/ARE signaling pathway 
(Ma et  al. 2015a). In addition, this compound suppressed 
hepatic production of proinflammatory and proapoptotic 
markers, including TNF-α, IL-1β, COX-2 and caspase-3, 
while increasing antiapoptotic Bcl-2 expression (Ma et al. 
2014). The underlying mechanisms of ursolic acid action 
involved suppression of MAPKs activation and the sup-
pression of immunoregulatory transcription factor NF-κB. 
Ursolic acid also enhanced hepatic cell proliferation in 
partially hepatectomized mice, which was associated with 
increased cyclin D1, cyclin E and C/EBPβ protein expres-
sion (Jin et  al. 2012), suggesting its potential to facilitate 
liver regeneration.

Phenolic acids

Chlorogenic acid (5-O-caffeoylquinic acid) (19) ame-
liorated liver injury in several models of experimentally 
induced oxidative stress (Shi et al. 2013a; Koriem and Soli-
man 2014). It should be also mentioned that chlorogenic 
acid may exhibit in  vitro inhibitory effect on the activ-
ity of hepatic metabolizing enzymes, including CYP1A1, 
CYP1A2 and CYP2B (Baer-Dubowska et al. 1998).

Treatment of animals with this compound inhibited 
acetaminophen-induced activation of caspase-3 and cas-
pase-7, ERK1/2, JNK and p38 MAPKs upstream molecu-
lar signals, including ASK1, c-Raf and mitogen-activated 
protein kinase kinases MEK1/2, MKK4 and MKK3/6 (Ji 
et al. 2013), suggesting inhibition of apoptosis. Concomi-
tantly, chlorogenic acid restored glutamate-cysteine ligase, 
catalytic subunit (GCLC), Trx1/2 and TrxR1 expression 
(Ji et  al. 2013). Several studies demonstrated anti-inflam-
matory action of chlorogenic acid in the liver (Xu et  al. 
2010; Yun et al. 2012; Park et al. 2015). Chlorogenic acid 
inhibited various TLR agonist-, IL-1α- and HMGB1-stim-
ulated activation of IL-1R-associated kinase 4 (IRAK4) 
in mice peritoneal macrophages of LPS-intoxicated mice 
via directly affecting the kinase activity of IRAK4, a sig-
nal transducer in the TLR/MyD88-mediated signaling 
cascade (Park et  al. 2015). In addition, it significantly 
suppressed the expression of phospho-IκBα, phospho-
TAK1, phospho-JNK1/2 and phospho-p38. This resulted 
in reduction of protein and mRNA levels of NF-κB/AP-1 
target genes encoding TNF-α, IL-1α, IL-6 and HMGB-1, 
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resulting in attenuation of acute hepatic inflammation. 
Chlorogenic acid also suppressed hepatic expression of 
TLR3 and TLR4-dependent nuclear translocation of NF-κB 
in inflammatory liver injury (Yun et al. 2012; Zheng et al. 
2015). Concomitantly, the compound restored mRNA 
level of transcriptional coactivator PGC-1α and inhibited 
activity of IFN regulatory factor-1 (IRF-1), with enhanced 
Nrf2 nuclear translocation and HO-1 expression. Chloro-
genic acid ameliorated the development of HFD-induced 
hepatic steatosis and insulin resistance in mice by suppress-
ing the expression of genes for fatty acid-binding protein 
(FABP), PPARγ and CD36, a scavenger receptor that medi-
ates internalization of low-density lipoprotein (LDL) par-
ticles (Ma et al. 2015b). In addition, treatment by chloro-
genic acid attenuated hepatic inflammation by decreasing 
the mRNA levels of macrophage inflammatory genes. The 
gene expression of PPARα in diet-induced hypercholester-
olemia in rats was up-regulated by this compound, suggest-
ing decreased risk for development of complications such 
as NAFLD (Wan et al. 2013a). Moreover, the expression of 
adiponectin receptors (AdipoR) 1/2, the phosphorylation of 
AMPK and the mRNA and protein levels of PPARα in the 
liver were significantly higher in chlorogenic acid-treated 
diabetic db/db mice, suggesting a potential to alleviate obe-
sity-related metabolic syndrome (Jin et al. 2015).

Chlorogenic acid has also been shown to attenuate CCl4-
induced liver inflammation and fibrosis in rats via inhibi-
tion of the TLR4/MyD88/NF-κB pathway, which coin-
cided with the inhibition of collagen I, α-SMA, iNOS and 
COX-2 expression and concomitant increase in bone mor-
phogenetic protein and activin membrane-bound inhibitor 
(Bambi) expression, which is expressed in quiescent HSCs, 
blocking Tβ-RI activity (Shi et  al. 2013b). In addition, 
chlorogenic acid suppressed mRNA levels of profibrotic 
inductors such as VEGF and TGF-β1 (Shi et  al. 2009). 
In cultured HSCs, this compound inhibited LPS-induced 
IκBα phosphorylation, nuclear translocation of NF-κB and 
the gene expression of inflammatory mediators (Shi et  al. 
2013a). Chlorogenic acid, as well as quinic acid and caffeic 
acid, also showed inhibitory potential against HBV DNA 
replication and HBsAg production (Wang et  al. 2009a), 
suggesting a potential against viral hepatitis infection.

A combined nutraceutical containing chlorogenic acid, 
berberine and tocotrienols improved a large number of 
metabolic and liver parameters in a double-blind cross-over 
trial in 40 overweight subjects with mixed hyperlipidaemia 
(Cicero et al. 2015).

The antioxidant activity of salvianolic acid (20) (Salvia 
miltiorrhiza L. active component), a rosmarinic acid dim-
mer, has been associated with amelioration of drug-induced 
hepatotoxicity (Gao et al. 2012; Lin et al. 2015b). Salvia-
nolic acid B attenuated hepatocyte apoptosis by regulat-
ing ER stress, death receptor-mediators and mitochondrial 

pathways (Yan et  al. 2015b). The compound markedly 
decreased TNF-α/D-GalN-induced levels of phospho-
eukaryotic initiation factor (eIF) 2α, ATF4, 78 kDa glucose-
regulated protein (GRP78), CHOP, cleaved-caspase-3 and 
caspase-9, apoptosis-inducing factor (AIF) and apoptotic 
protease-activating factor 1 (Apaf-1), with concomitant 
increase in cytochrome c release. In addition, salvianolic 
acid B reduced TNFR1 and restored Bcl-2 expression in 
apoptotic cells (Yan et al. 2010). In acetaminophen-intox-
icated mice, salvianolic acid B pretreatment induced the 
expression of Nrf2 and phase II enzymes via activation of 
the PI3K and protein kinase C (PKC) pathways (Lin et al. 
2015b). Further, pretreatment with salvianolic acid A and 
B ameliorated ethanol and concanavalin A-induced liver 
injury in murine by SIRT1-dependent mechanism (Xu et al. 
2013; Li et  al. 2014d). Mechanistically, salvianolic acid 
B increased the expression of SIRT1, a NAD+-dependent 
deacetylase which plays an important role in protection 
against acute hypoxia damage and metabolic liver diseases 
through modulation of NF-κB and p53 expression. The 
increase in SIRT1 by salvianolic acid B was accompanied 
by the decrease in acetyl-p53 expression (Li et al. 2014d) 
and down-regulation of the p66 isoform of the growth fac-
tor adapter Shc (Xu et al. 2013). Additionally, both salvia-
nolic acid A and B decreased cytotoxic cytokine levels and 
abrogated the increase in NF-κB and cleaved caspase-3 as 
well as decrease in Bcl-xL expression. Interestingly, in both 
type 1 and type 2 diabetic animals, salvianolic acid A acti-
vated AMPK phosphorylation through CaMKKβ/AMPK 
signaling pathway, independent of LKB1/AMPK pathway 
(Qiang et al. 2015).

Both salvianolic acid A and B showed the inhibitory 
effect on the PDGF-BB-induced signaling in HSCs through 
different signaling pathways (Tsai et  al. 2011). Thus, sal-
vianolic acid A and B diminished PDGF-induced activa-
tion of protein kinase D (PKD), Nrf2, Trx and HO-1. In 
addition, salvianolic acid A inhibited an expression of Akt, 
p70S6K and related proteins such as eIF-4E and transla-
tion repressor eIF-4E-binding protein 1 (4E-BP1). In con-
trast, salvianolic acid B attenuated PDGF-induced JNK, 
p38 and PKC-δ phosphorylation. Further, salvianolic acid 
A attenuated PDGF-BB-stimulated proliferation of HSCs 
by inducing the cell cycle inhibitory proteins p21 and p27, 
down-regulating cyclins D1 and E and suppressing Akt and 
PDGFRβ phosphorylation (Lin et  al. 2006). The inhibi-
tion of TGF-β1 signaling by the compound in isolated rat 
HSCs was associated with down-regulation of Smad2/3 
protein expression and suppression of collagen production 
(Liu et al. 2002a; Zhao et al. 2004). The down-regulation 
of Tβ-RI activity in vitro and TGF-β1 autosecretion were 
contributing mechanism of salvianolic B antifibrotic activ-
ity (Liu et al. 2002c; Tao et al. 2013). In primary rat HSCs, 
this compound inhibited ERK1/2 and p38 MAPK pathways 
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via inhibition of MEK and MKK3/6 phosphorylation (Lv 
et  al. 2010). Interestingly, the effect was independent on 
TGF-β1 stimulation. The antifibrotic effect of salvianolic 
acid B was mediated by direct inhibition of p38 signaling 
and inhibition the cross-talk between the Smad and ERK 
signaling (Lv and Xu 2012). Furthermore, salvianolic acid 
B abrogated DMN-induced hepatic fibrosis in rats, which 
coincided with down-regulation of angiotensin (Ang) II-
stimulated HSCs activation and proliferation (Li et  al. 
2012). The mechanism involved down-regulation of TGF-β 
gene and AT1R protein expression, as well as suppression 
of ERK1/2 and c-Jun phosphorylation. Moreover, salvia-
nolic acid B reduced portal hypertension in rats with DMN-
induced cirrhosis (Xu et  al. 2012). In vitro study showed 
that this compound decreased endothelin (ET) 1-induced 
contraction of activated HSCs by reducing intracellu-
lar Ca2+ increase, the actin cytoskeleton regulator RhoA 
expression and activation of Rho-associated coiled coil-
forming protein kinase (ROCK) II, a major downstream 
effector of the RhoA. This resulted in reduced phosphoryl-
ation of the myosin phosphatase target subunit 1 (MYPT1), 
which is involved in regulation of the contraction and 
relaxation of vascular smooth musculature. In addition, 
salvianolic acid B reduced CCl4-induced hepatic fibrosis 
in rats by inhibiting nuclear translocation of NF-κB (Wang 
et al. 2012b).

In the double-blind randomized study, salvianolic acid 
B reversed serum markers of liver fibrosis in patients with 
chronic hepatitis B, more effectively than IFN-γ after 
6  months of treatment, with no obvious side effects (Liu 
et  al. 2002b). The drug delivery system based on salvia-
nolic acid B loaded mesoporous silica nanoparticles was 
significantly more effective than free salvianolic acid B 
in suppressing the ROS level and proliferative activity of 
LX-2 cells (He et al. 2010), suggesting a promising novel 
application route of this compound in patients. Salvianoic 
acid B was found as a relatively weak inhibitor of CYP1A2 
(Qiu et al. 2008), suggesting low impact on hepatic drug-
metabolizing enzymes.

Stilbenes

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) (21), well 
known as grape polyphenol, has been shown to possess 
hepatoprotective activity through attenuation of oxida-
tive stress in the liver (Das 2011; Dalaklioglu et al. 2013; 
Ahmad and Ahmad 2014). Resveratrol protected hepato-
cytes against oxidative injury by modulating the expression 
of nuclear transcription factors Nrf2 and NF-κB and down-
regulating HO-1 and iNOS gene expression (Sahin et  al. 
2012), which led to increased expression of antioxidant and 
phase II enzymes (Rubiolo et al. 2008; Cerny et al. 2009). 

Interestingly, resveratrol behaved as an antioxidant during 
the dark span and as a pro-oxidant during the light span, 
suggesting a day/night rhythm-dependent antioxidant activ-
ity of the compound (Gadacha et  al. 2009). Wong et  al. 
(2009) demonstrated that resveratrol treatment attenuated 
oxidative stress in mice tissues with prominent age-related 
oxidative damage accumulation, but prolonged treatment 
resulted in nephrotoxicity.

Resveratrol possesses the ability to modulate a number 
of signaling pathways involved in liver diseases, emerging 
as a promising therapeutic agent for prevention or treat-
ment of hepatic disorders in humans.

Pretreatment with resveratrol was able to ameliorate 
the pathologic effects of concanavalin A-induced autoim-
mune hepatitis, significantly inhibiting proinflammatory 
cytokines such as IL-2, IL-6 and TNF-α (Zhou et al. 2015). 
In addition sonic hedgehog (Shh), patched (Ptch) and 
GLI-1 expression was decreased, suggesting suppression 
of the Shh-Ptch-GLI pathway that is involved in regula-
tion of the cell cycle, apoptosis and angiogenesis. Admin-
istration of resveratrol resulted in decreased accumulation 
of bile acids through up-regulation of hepatic transporters 
gene expression, including farnesoid X receptor (FXR) and 
MRP2, which play a central role in the bile acid metabo-
lism (Wang et al. 2014c). The protective effect of resvera-
trol in cholestatic liver injury was mediated by up-regula-
tion of autophagy and suppression of proapoptotic proteins 
Bax and caspase-3 and caspase-8 (Chan et  al. 2011; Lin 
et al. 2012b; Chan et al. 2014). Further, resveratrol, a well-
known SIRT1 agonist, ameliorated hepatic inflammation 
in vivo and in vitro by reducing NF-κB activation (Andrade 
et  al. 2014). Resveratrol also enhanced SIRT1-mediated 
suppression of HMGB1 translocation, which is an essen-
tial step in response to sepsis-induced liver injury (Xu et al. 
2014b). Further, hepatotoxicity induced by isoniazid and 
rifampicin was reduced with resveratrol by modulating 
SIRT1 mRNA expression in mice liver, which was accom-
panied by decreased hepatic oxidative stress, cytokine pro-
duction and PPARγ gene expression (Nicoletti et al. 2014). 
Resveratrol also prevented acetaminophen-induced hepato-
toxicity through induction of SIRT1expression and nega-
tive regulation of p53 signaling, inducing cyclin D1, Cdk4 
and proliferating cell nuclear antigen (PCNA) expression 
and promoting hepatocyte proliferation and liver regenera-
tion (Wang et al. 2015d). Moreover, resveratrol modulated 
HFD-induced alterations in SIRT pathway and activation of 
NALP-3 inflammasome, involved in maturation of proin-
flammatory cytokines (Yang and Lim 2014). Interestingly, 
resveratrol reduced COX-2 expression and mRNA levels of 
NALP-3 inflammasome components, including NALP-1, 
NALP-3, apoptosis-associated speck-like protein contain-
ing a carboxy-terminal CARD (ASC) and its downstream 
target caspase-1 in old but not young mice (Tung et  al. 
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2015), suggesting its beneficial effect in elderly population. 
Other researchers showed that prevention of NAFLD devel-
opment by resveratrol in rats fed a HFD was associated 
with up-regulated expression of hepatic UCP2, the inhibi-
tor of mitochondrial ROS production and oxidative stress 
regulator (Poulsen et al. 2012). In human hepatocytes, res-
veratrol ameliorated ethanol-induced activation of signal-
ing pathways associated with ER stress, including GRP78, 
IRE-1α, eIF2α, translational regulator RNA-dependent pro-
tein kinase R (PKR)-like ER kinase (PERK) and ATF4 (Liu 
et  al. 2014b). In addition, resveratrol inhibited apoptosis 
by decreasing cleaved caspase-3 as well as CHOP and Bax 
expression, which was associated with restoration of SIRT1 
levels and suppression of phosphodiesterase (PDE) activity. 
Similarly, resveratrol prevented hepatic steatosis and dys-
lipidemia by attenuating ER stress in rat livers (Pan et al. 
2015). Mechanistically, the compound down-regulated 
HFD-induced increase in ATF4, CHOP and BiP levels.

Resveratrol also showed a potential to inhibit cell 
growth of activated HSCs by inducing cell cycle arrest 
in sub-G1 phase and to modulate the SIRT1/PPARγ ratio 
(de Souza et al. 2015). This compound reduced collagen I, 
TGF-β and NF-κB mRNA expression in cirrhotic rat liv-
ers (Di Pascoli et al. 2013) and decreased the secretion of 
MMP-2 in human liver myofibroblasts (Godichaud et  al. 
2000), suggesting the ability to deactivate HSCs. Never-
theless, the up-regulation of profibrotic genes in human 
HSCs by resveratrol in the presence of free fatty acids, sug-
gests the possibility of fibrogenic activity in obese patients 
(Bechmann et al. 2009).

SIRT-1 has also been identified as a regulator of hepato-
cyte lipid metabolism via activation of AMPK. Activation 
of the SIRT1/LKB1/AMPK pathway has been suggested as 
a key mechanism by which resveratrol counteracts hepatic 
lipid accumulation, hyperlipidemia and atherosclerosis 
(Hou et  al. 2008). Resveratrol ameliorated HFD-induced 
hepatic steatosis and decrease in gene expression of SIRT1 
in mice liver, with a concomitant suppression of liver 
lipogenic genes, including ACC, PPARγ and SREBP-1 
(Andrade et  al. 2014). The SREBP-1 inhibitory effect of 
resveratrol was accompanied by activation of PGC-1α, 
increased circulating levels of adiponectin and enhanced 
mRNA expression of hepatic AdipoR1/2 (Ajmo et  al. 
2008). Jin et al. (2013) demonstrated that resveratrol may 
inhibit SREBP-1c-inducing ability of LXRα, a regulator 
of de novo fatty acid synthesis, consequently impairing the 
expression of target genes and hepatic steatosis. This effect 
was not dependent on AMPK and SIRT1 but involved up-
regulation of sestrin 2 (SESN2) expression. Interestingly, in 
normally fed mice, resveratrol treatment did not change the 
expression of LXR target genes but activated AMPK and 
increased phosphorylation of ACC (Gao and Liu 2013). In 
contrast to steatosis, resveratrol treatment had no consistent 

therapeutic effect on amelioration of experimental steato-
hepatitis (Heeboll et  al. 2015). Furthermore, resveratrol 
showed the ability to inhibit the expression of SREBP1 
via SIRT1-FOXO1 signaling pathway in vitro (Wang et al. 
2009b). Members of the FOXO family of transcription fac-
tors have been shown to regulate the expression of numer-
ous genes involved in the cell cycle, apoptosis, differentia-
tion and cellular response to oxidative stress. Resveratrol 
treatment could attenuate hepatic steatosis and lipid met-
abolic disorder in mice by up-regulating the levels of 
SIRT1, phospho-AMPK and phospho-FOXO1 expression 
(Zhu et  al. 2014). It should be mentioned that treatment 
with this compound enhanced ethanol-induced expres-
sion of autophagy-related genes in mouse hepatocytes via 
increased deacetylation of FOXO3a, which seems to play a 
critical role in ethanol-induced autophagy (Ni et al. 2013). 
Experimental NAFLD in a murine was also improved 
through regulation of autophagic mediator UNC-51-like 
kinase 1 (ULK1) and NF-κB pathways, which coincided 
with amelioration of inflammation and insulin resistance 
(Li et  al. 2014c). Moreover, most recent study demon-
strated resveratrol-mediated induction of autophagy in the 
steatotic liver via the cAMP-PKA-AMPK-SIRT1 signaling 
pathway (Zhang et al. 2015c).

In HBV X protein (HBX) transgenic mice, resveratrol 
exhibited chemopreventive activity by reducing the inci-
dence of HBV-associated HCC (Lin et al. 2012b). It inhib-
ited LXRα expression and down-regulated lipogenic genes, 
with concomitant stimulation of AMPK and SIRT1 activity. 
In human hepatic cells HBX up-regulated β-catenin, which 
plays important role in cell–cell adhesion and maintenance 
of epithelial cell layers, by sequestering SIRT1 deacety-
lase (Srisuttee et  al. 2012). Interestingly, resveratrol sig-
nificantly enhanced HCV RNA replication and attenuated 
antiviral effects of IFN-α2b and ribavirin (Nakamura et al. 
2010), suggesting a need for further investigation of HCV 
therapeutic potential in patients.

Finally, resveratrol was found to exert a chemopreven-
tive activity against DEN-induced rat liver tumorigenesis. It 
reduced gene expression and production of hepatic inflam-
matory cytokines (Mbimba et al. 2012), while up-regulat-
ing protein and mRNA expression of Nrf2 (Bishayee et al. 
2010). The stilbenoid also attenuated HSCs activation and 
reduced hydroxyproline content and TGF-β1 gene expres-
sion in DEN-treated rats (Lee et  al. 2010a). Administra-
tion of resveratrol after warm ischemia and reperfusion in 
rat liver attenuated gene expression of HIF-1α and VEGF, 
associated with development of tumors and their metas-
tases (Zhang et  al. 2014d). Moreover, resveratrol blocked 
phosphorylation of ERK1/2 and ERK1/2-induced connexin 
43 (Cx43), a critical regulator of GJIC, which has been 
involved in carcinogenesis (Kim et al. 2009). Interestingly, 
resveratrol has been shown to prevent deregulation of GJIC 
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by toxicants that act only through MEK1/2- or phosphati-
dylcholine-specific phospholipase C (PC-PLC)-dependent 
pathways (Sovadinova et  al. 2015). The inhibitory effect 
of resveratrol on chemically induced hepatocarcinogenesis 
may be also attributed to down-regulation of CYPs, such as 
CYP2E1 (Wu et al. 2013). Interestingly, Kim et al. (2009) 
showed that protective effect of resveratrol against H2O2-
induced inhibition of GJIC in rat epithelial cells is not 
mediated through its free radical-scavenging activity.

The inhibition of CYP activities as a common feature of 
resveratrol has been demonstrated in a number of studies. 
Among several flavonoids, including quercetin, naringenin, 
hesperidin and rutin, resveratrol was the most potent inhibi-
tor of CYP1A1 in vivo (Arinc et al. 2015). Resveratrol sup-
pressed pregnane X receptor (PXR)-mediated CYP3A4 and 
CYP3A11 mRNA and protein expression in primary mouse 
hepatocytes (Deng et  al. 2014) and CYP2D2 activity in 
isolated rat livers (Zendulka et  al. 2009). It also inhibited 
CYP1A1 and CYP1A2 mRNAs in primary human hepat-
ocytes (Dvorak et  al. 2008). The inhibition of expression 
of CYP1A1 and CYP1B1 by resveratrol was mediated by 
inhibition of the recruitment of AhR and aryl hydrocarbon 
nuclear translocator (ARNT) (Beedanagari et  al. 2009). 
Resveratrol inhibited chemically induced human CYP1 
enzymes in vitro by two distinct mechanisms: direct inhi-
bition of CYP1B1 and CYP1A1 and irreversible NADPH-
dependent inactivation in case of CYP1A2 (Chang et  al. 
2001). Interestingly, resveratrol showed over 50-fold selec-
tivity for CYP1A1 over CYP1A2 (Chun et al. 1999).

Double-blind, randomized, placebo-controlled trial in 
relatively small group of patients indicated that resvera-
trol supplementation decreased serum alanine aminotrans-
ferase, HOMA-IR, TNF-α, cytokeratin 18 fragment and 
FGF21 levels, while increasing adiponectin level, suggest-
ing a beneficial effect in amelioration of NALFD in humans 
(Chen et al. 2015).

Alkaloids

Berberine (22), a quaternary ammonium salt from the pro-
toberberine group of isoquinoline alkaloids, possesses 
antioxidant properties which could suppress oxidative 
stress in the liver (Li et  al. 2014a; Othman et  al. 2014). 
DEN- and CCl4-induced HCC development was prevented 
by berberine and even more potently with a combination 
of berberine and S-allyl-cysteine (Sengupta et  al. 2014). 
Carcinogen-stimulated induction of Akt-dependent mouse 
double minute 2 homolog (Mdm2)/histone deacetylase 1 
(HDAC1) interaction led to p53 deacetylation and its sub-
sequent degradation. This resulted in increased expression 
of antiapoptotic Bcl-xL and decreased levels of proapop-
totic p53-up-regulated modulator of apoptosis (PUMA), 

Bax and Bak proteins. Berberine alone or in combination 
with S-allyl-cysteine diminished these effects and induced 
apoptosis by stimulating protein phosphatase 2A (PP2A) 
and inhibiting JNK activation. Furthermore, amelioration 
of the early phase of DEN and phenobarbital-induced hep-
atocarcinogenesis by berberine was accompanied by sup-
pression of iNOS expression and inhibition of CYP2E1 
and CYP1A2 activities (Zhao et  al. 2008). Berberine also 
ameliorated apoptosis in ischemia-/reperfusion-injured 
rat livers by increasing the Bcl-2/Bax ratio and inhibiting 
caspase-3 cleavage. The mechanism of its action involved 
up-regulation of Akt, with concomitant inhibition of mTOR 
expression (Sheng et  al. 2015). Moreover, berberine pro-
tected against ethanol-induced steatosis in mice by restor-
ing PPARα/PGC-1α and hepatocyte nuclear factor 4 alpha 
(HNF4α)/microsomal triglyceride transfer protein (MTTP) 
pathways, involved in secretion of lipoproteins (Zhang 
et al. 2014e).

Berberine pretreatment in LPS-induced inflamma-
tion in mice reduced the expression of hepatic proprotein 
convertase subtilisin/kexin type 9 (PCSK9), a cholesterol 
homeostasis regulator, and decreased IFN-γ, TNF-α, IL-1α 
and 8-isoprostane levels (Xiao et  al. 2012). CCl4-induced 
acute liver injury was ameliorated by berberine through 
suppression of TNF-α, COX-2 and iNOS expression, with 
concomitant attenuation of oxidative/nitrosative stress 
(Domitrovic et  al. 2011). In experimental liver fibrosis, 
berberine decreased TGF-β1 expression, increased MMP-2 
levels and stimulated elimination of fibrous deposits (Dom-
itrovic et al. 2013). Moreover, berberine treatment attenu-
ated liver fibrosis via activation of AMPK and decreased 
expression of NOX4 and phosphorylated Akt (Li et  al. 
2014a).

In hyperlipidemic patients with HBV, HCV and liver cir-
rhosis, treatment with 500 mg of berberine hydrochloride 
orally twice a day for 3 months has been shown to mark-
edly improve serum indicators of liver injury and lipid 
parameters (Zhao et  al. 2008), suggesting its beneficial 
potential in hepatic viral infections.

Caffeine (1,3,7-trimethylxanthine) (23), is a well-known 
ingredient of coffee, a brewed drink prepared from roasted 
coffee (genus Coffea) beans. Caffeine has been recognized 
as a protector against hepatic oxidative damage since 1990s 
(Devasagayam et al. 1996). It has been shown that conven-
tional coffee and caffeine intake provide better beneficial 
effects than decaffeinated coffee against liver injury in male 
animal model (Furtado et al. 2012). However, the hepato-
protective effects of coffee cannot be directly attributed to 
caffeine but also to other compounds present in the coffee, 
such as diterpenes kahweol and cafestol (Lee et al. 2007b). 
Thus, inflammatory cytokine IL-1β gene expression in the 
liver of mice fed HFD was reduced by simultaneous intake 
of either regular of decaffeinated coffee (Fukushima et al. 
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2009). Most of the studies investigating hepatoprotection 
by this compound were focused on its antifibrotic potential 
and prevention of steatohepatitis. Second line of studies 
was oriented toward CYP-modulating effects of caffeine 
and a possible risk of indicating activation of carcinogens. 
Caffeine has been frequently reported as CYP1A2 inductor 
in mice and rats (Goasduff et  al. 1996; Kuribayashi et  al. 
2006); however, this induction was not observed in human 
hepatocytes (Vaynshteyn and Jeong 2012). Interestingly, a 
recent study in mice demonstrated that caffeine acted as an 
inhibitor of CYP1A2 activity and an enhancer of CYP3A 
activity, decreasing APAP hepatotoxicity (Wolf et al. 2005).

Caffeine protected against alcoholic liver injury by 
attenuating production of ROS and TNF-α in Kupffer cells 
(Lv et  al. 2010). It also inhibited TNF-α-induced apopto-
sis of hepatocytes but had no significant effect on anti-Fas 
antibody-induced hepatitis and apoptosis, which suggest 
that caffeine differentially affects TNFR- and Fas-medi-
ated liver injury in mice (Sugiyama et  al. 2001). Further, 
caffeine reduced hepatosteatosis in mice fed a HFD and 
concomitantly stimulated the autophagy-lysosomal path-
way. Caffeine inhibited mTOR and its downstream targets 
p70S6K and 4E-BP1 (Sinha et al. 2014). 4E-BP1 acts as a 
repressor of mRNA translation, suggesting restoration of 
transcriptional activity in hepatic cells. Inhibition of mTOR 
was closely associated with increased LC3-II levels and 
enhanced lipid accumulation in autolysosomes. Caffeine 
also attenuated lipid accumulation in hepatic cells by inhib-
iting lipogenesis and stimulating lipolysis through modula-
tion of the AMPK signaling pathway. Mechanistically, caf-
feine increased phosphorylation of AMPK and decreased 
the mRNA level of lipogenesis-associated genes, including 
SREBP-1c, SREBP-2, FAS, SCD and HMG-CoA reduc-
tase (HMGCR) (Quan et  al. 2013a). Caffeine could also 
improve high-energy diet-induced hepatic steatosis by 
promoting lipid metabolism via the cAMP/CREB/SIRT3/
AMPK/ACC pathway (Zhang et al. 2015a).

Caffeine was found to increase HSCs apoptosis and 
cyclic adenosine monophosphate (cAMP) expression in 
human HSCs (Shim et al. 2013). However, although phar-
macological activity of caffeine was usually attributed to 
inhibition of phosphodiesterase enzymes and elevation of 
cAMP levels, some studies have shown that caffeine may 
act via inhibition of receptor-stimulated inositol 3-phos-
phate (IP3) formation and direct inhibition of the IP3-sen-
sitive Ca2+-release channel in a cAMP-independent way 
(Combettes et  al. 1994). Other mechanisms of hepatopro-
tective actions of caffeine were also investigated. Thus, 
caffeine protected against alcohol-induced liver fibrosis, 
which was associated with inhibition of the cAMP/PKA-
dependent activation of CREB, one of the major stimulators 
of liver fibrosis (Wang et al. 2015c). CREB acts as a regu-
lator of PPARγ expression, which in turn down-regulates 

CTGF expression. Caffeine down-regulates TGF-β-induced 
expression of CTGF in hepatocytes by stimulating degra-
dation of TGF-β effector Smad2, inhibition of Smad1/3 
phosphorylation and up-regulation of PPARγ-receptor 
(Gressner et  al. 2008). Study in rats demonstrated that 
caffeine could also diminish thioacetamide-induced liver 
fibrosis by impairing the expression of profibrogenic and 
proinflammatory genes such as TNF-α, PDGF and TGF-β1 
(Gordillo-Bastidas et al. 2013; Arauz et al. 2014). Concom-
itantly, caffeine reduced expression of transcriptional fac-
tor Snail1, which is involved in fibrotic processes. Further, 
caffeine inhibited activation of HSCs and reduced levels of 
collagen mRNA, with concomitant inhibition of MMP-2 
and MMP-9, main tissue remodelators (Arauz et al. 2014). 
Moreover, this compound inhibited HSCs activation via 
adenosine A2A receptor (A2AR) mediated by the cAMP/
PKA/Src/ERK1/2 and p38 MAPK signaling pathways 
(Wang et  al. 2014b), which play an important role in the 
pathogenesis of hepatic cirrhosis (Chan et al. 2006).

Investigating dietary behavior in NAFLD patients, an 
association between caffeine intake and lower risk for 
NAFLD (Birerdinc et  al. 2012), reduced liver fibrosis 
among patients with NASH or chronic hepatitis C virus 
infection (Modi et  al. 2010; Molloy et  al. 2012; Khalaf 
et  al. 2015), as well as reduced risk of HCC (Johnson 
et al. 2011), the severity of chronic hepatitis C (Costentin 
et  al. 2011) or chronic liver disease (Ruhl and Everhart 
2005) was established. Hepatoprotective effect of caffeine 
was clearly dependent on daily intake, showing beneficial 
effects in patients consuming more than two cups of coffee 
per day.

In HBV-infected HCC cells, ROS accumulation induced 
DNA damage that activated the ATM-Chk2 pathway, 
resulting in the inhibitory phosphorylation of Cdc25C 
phosphatase and Cdk1 (Kim et  al. 2015), suggesting the 
inhibitory potential of caffeine against the viral replication.

Antraquinones

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) (24), 
is an anthraquinone derivative isolated from Rheum spe-
cies. Emodin protected against acetaminophen and CCl4-
induced oxidative stress and acute liver injury in rats (Dang 
et al. 2008; Bhadauria 2010). Attenuation of fulminant hep-
atitis and proinflammatory response by this compound was 
associated with inhibition of the p38 MAPK/NF-κB path-
way and blockade of TLR4/myeloid differentiation factor 
(MD) 2 complex expression (Yin et  al. 2014; Xue et  al. 
2015). Emodin partially protected against cholestatic injury 
in rats (Zhao et  al. 2009) by exerting anti-inflammatory 
activity through decreased nuclear translocation of NF-κB 
(Ding et al. 2008). Emodin also alleviated alcohol-mediated 
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oxidative stress and liver steatosis in mice by down-regulat-
ing hepatic CYP2E1 expression (Liu et al. 2014d).

Emodin has been shown to ameliorate dyslipidemia in 
HFD-fed rats by activating AMPK and its downstream 
targeting enzyme, ACC (Tzeng et  al. 2012). Concomitant 
up-regulation of gene expression of CPT1 and down-reg-
ulation of SREBP-1 and FAS protein levels in hepatocytes 
suggested attenuation of lipid accumulation by decreasing 
lipogenesis and increasing fatty acid β-oxidation. Emo-
din also ameliorated NAFLD in rats induced with a high 
caloric diet by suppressing GRP78-mediated SREBP-1c 
pathway in the liver and restoring reduced expression of 
PPARγ gene expression (Dong et al. 2005; Li et al. 2015c). 
In steatotic hepatic cells, emodin down-regulated HMGCR 
and diacylgycerol acyltransferase 1 (DGAT1), key enzymes 
in the synthesis of cholesterol and triglycerides, while up-
regulating expression of CYP7A, involved in hepatic bile 
acid biosynthesis (Wang et al. 2014d).

Protection against CCl4-induced fibrogenesis by emodin 
was mediated by the reduction of the mRNA levels of TGF-
β1 and Smad4 and inhibition of myofibroblastic differenti-
ation (Dong et al. 2009). In immortalized rat HSCs, emodin 
reduced AP-1 DNA-binding activities and attenuated JunD 
mRNA expression (Gui et al. 2007). Emodin also markedly 
inhibited TGF-β1-induced ERK1/2 phosphorylation as well 
as the expression of TIMP-1.

However, some concerns arise from available data on 
chronic usage of this compound. A comprehensive study 
by National Toxicology (2001) showed that chronic admin-
istration of emodine resulted in sex and species-dependent 
low but significant carcinogenic activity of emodin and 
increased incidences of nephropathy in female mice. CYP-
modulating activity of emodin was not intensively studied. 
However, one available study demonstrated activation of 
the metabolism of midazolam, a CYP3A4/5 substrate, in 
human liver microsomes by emodin (Li et al. 2014f). Bio-
transformation of emodin by the microsomal enzymes, 
which resulted in several metabolites, demonstrated that at 
least one of them, 2-hydroxyemodin (1,2,3,8-tetrahydroxy-
6-methyl-anthraquinone), possessed a direct mutagenic 
activity to the test strain, Salmonella typhimurium (Masuda 
and Ueno 1984). These findings suggest potential adverse 
effects of emodin by long-term exposure in patients. In 
addition, emodin showed severe cytotoxicity against human 
liver cell line L-02 (Yu et al. 2011).

Curcuminoids

Curcumin, diferuloylmethane (25), is a major polyphenolic 
compound of the spice turmeric obtained from rhizomes 
of Curcuma species. The mechanism of hepatoprotection 
seems to be related at least in part to antioxidant activity 

and activation of the Nrf2/Kelch-like ECH-associated pro-
tein 1 (Keap1)/ARE pathway, with concomitant induction 
of phase II detoxifying/antioxidant enzymes such as HO-1 
and NQO1 (Farombi et al. 2008; Gao et al. 2013b; Garcia-
Nino and Pedraza-Chaverri 2014; Xu et al. 2014a). More-
over, curcumin administration in diet-induced oxidative 
stress reduced CYP2E1 as well as Prx1 expression, while 
up-regulating Prx6 expression (Lee et  al. 2015). Oxida-
tive stress induced with hepatotoxins is closely related to 
hepatic inflammatory response through activation of several 
signaling pathways, including MAPKs, NFκB and STAT3 
(Ambade and Mandrekar 2012). Nevertheless, numer-
ous studies demonstrated decreased hepatic expression 
of NF-κB and its downstream targets by curcumin (Bisht 
et  al. 2011; Tu et  al. 2012b; Xu et  al. 2014a). It has also 
been shown that curcumin could decrease the expression of 
TLR2 and TLR4 and their ligand molecule HMGB1 in the 
rat model of fibrogenesis (Tu et al. 2012b) and T-cell-medi-
ated hepatitis in concanavalin A-challenged mice (Tu et al. 
2012a, 2013), suggesting a potential to attenuate inflamma-
tory processes in the liver. Moreover, curcumin could ame-
liorate LPS/D-GalN-induced liver injury through reduction 
of hepatic mRNA levels of SIRT1 (Zhang et al. 2014b).

Furthermore, curcumin treatment resulted in alleviation 
of hepatic inflammation in steatohepatitis. Fructose is a 
dietary compound known to decrease tyrosine phosphoryl-
ation of insulin-induced IRS1 and inhibit activation of Akt 
and ERK1/2 in peripheral tissues. Administration of cur-
cumin in rats increased phosphorylation of hepatic JAK2 
and stimulated Akt and ERK1/2 activation in the model of 
fructose diet-induced steatohepatitis (Li et al. 2010). Over-
expression and hyperactivity of hepatic protein tyrosine 
phosphatase 1B (PTP1B) was reduced by curcumin, with 
subsequent improvement of insulin and leptin signaling. 
Further, this compound suppressed HFD-mediated increase 
in SREBP-1, ACC1, FAS and CD36 expression, thus atten-
uating hepatic steatosis (Um et  al. 2013). Curcumin also 
inhibited gene expression of receptor for advanced glyca-
tion end-products (RAGE) in HSCs in  vitro by elevating 
the PPARγ activity and attenuating oxidative stress, lead-
ing to elimination of the AGE effects on HSCs activation 
(Lin et al. 2012a). Moreover, it decreased the hepatic gene 
expression of inflammatory cytokines, procollagen I and 
TIMP-1 in experimental steatohepatitis in mice (Vizzutti 
et al. 2010).

Curcumin has been shown to target multiple path-
ways to inhibit hepatic fibrosis. Hedgehog (Hh) signaling 
becomes activated in chronic liver injury and plays a role 
in the pathogenesis of hepatic fibrosis. Therefore, target-
ing Hh signaling may represent a novel therapeutic strat-
egy for treatment of liver fibrosis. HSCs are Hh-responsive 
cells and activation of the Hh pathway may promote trans-
differentiation of HSCs into myofibroblasts. Curcumin 
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down-regulated Ptch and smoothened (Smo), two key 
elements in Hh signaling, simultaneously restoring Hhip 
expression in fibrotic rat livers and cultured HSCs (Lian 
et  al. 2015). Curcumin also prevented the nuclear trans-
location, DNA binding, and transcription activity of GLI-
1. Additionally, this compound arrested the cell cycle, 
induced mitochondrial apoptosis, restored lipid accumula-
tion, reduced fibrotic gene expression and inhibited inva-
sion and migration in HSCs. Further, curcumin inhibited 
HSCs activation in CCl4-intoxicated rat livers by acti-
vating PPARγ and reducing expression of mRNA and 
proteins involved in cell proliferation, including PDGF, 
PDGFRβ and EGFR, as well as genes related to fibrogen-
esis, including TGF-β, Tβ-RI/II and fibronectin (Fu et al. 
2008a). As the result, curcumin inhibited proliferation 
of HSCs in the G2/M phase of the cell cycle (Shu et  al. 
2009). Furthermore, this compound activated AMPK and 
increased expression of PGC-1α, a coactivator for PPARγ, 
resulting in increased PPARγ activity and reduced colla-
gen α1(I) gene expression (Zhai et al. 2015). In addition, 
curcumin has been shown to down-regulate Wnt signaling 
pathway, including the expression of Axin2 and Fra1 (Shin 
et al. 2009), both involved in HSCs activation (Jiang et al. 
2006). During hepatic fibrogenesis, suppression of PPARγ 
is negatively associated with PDGF and EGF mitogenic 
signaling in HSCs. Curcumin could interrupt PDGF and 
EGF signaling by inhibiting gene expression and phos-
phorylation of PDGFRβ and EGFR and suppression 
PI3K, ERK and JNK signaling (Zhou et al. 2007; Fu et al. 
2008a; Lin and Chen 2008). Curcumin also impaired pro-
duction of ECM proteins in alcohol-stimulated HSCs and 
CCl4-induced liver by suppressing the TGF-β/Smad2/3 
signaling and inducing Smad7 (Chen et  al. 2014b). Acti-
vation of PPARγ by curcumin was required for inhibi-
tion of both VEGF expression and angiogenic properties 
of HSCs (Zhang et al. 2014a). VEGF plays a crucial role 
in the initial stages of new vessel formation and endothe-
lial cell proliferation (Carmeliet 2005). Mechanistically, 
curcumin inhibited PDGFRβ/ERK and PI3K/Akt/mTOR 
pathways in activated HSCs via PPARγ signaling, thus 
inhibiting VEGF mRNA and protein expression (Zhang 
et  al. 2014a). Inhibition of PDGFRβ also blocked FAK/
RhoA cascade, resulting in reduced HSCs motility. Moreo-
ver, curcumin ameliorated hepatic angiogenesis and sinu-
soidal capillarization in fibrotic livers through suppression 
of proangiogenic factors, including HIF-1α, VEGFR-1, 
placental growth factor (PGF) and COX-2 (Yao et  al. 
2013). The inhibition of HIF-1α expression was at least 
in part mediated through inhibition of the ERK pathway 
(Zhao et al. 2014). Induction of CTGF in activated HSCs 
is another mechanism for increased production of ECM 
during fibrogenesis. Activation of PPARγ by curcumin 
resulted in interruption of TGF-β signaling by suppressing 

gene expression of Tβ-Rs, ultimately leading to inhibi-
tion of CTGF gene expression and decreased production 
of ECM proteins (Zheng and Chen 2006). Moreover, this 
compound inhibited CTGF expression in activated HSCs 
via inhibition of TLR-mediated NF-κB activation (Chen 
and Zheng 2008). Curcumin not only could impair HSCs 
activation and proliferation, but also blocked antiapoptotic 
protein c-FLIP and increased Bax expression, resulting 
in caspase-3 activation and induction of HSCs apoptosis 
(Priya and Sudhakaran 2008; Shin et al. 2009; Bisht et al. 
2011). Curcumin also protected HSCs against leptin-
induced activation in  vitro and increased AMPK activity, 
leading to increased expression of genes relevant to lipid 
accumulation, including PPARγ, SREBP-1 and C/EBPα 
(Tang and Chen 2010). Finally, the inhibition of CBR1 
can be added to a broad spectrum of antifibrotic activities 
of curcumin (Zhang et  al. 2013b). Curcumin reduced the 
mRNA and protein abundance of CBR1 in cultured HSCs 
and inhibited ECM production. This compound also alle-
viated hepatic injury in parasitic infestation. In hamsters 
infected with a trematode parasite Opisthorchis viver-
rini, curcumin decreased the mRNA expression of TIMP-
1, TIMP-2 and TNF-α, while increasing MMP-13 and 
MMP-7 levels (Pinlaor et  al. 2010), suggesting degrada-
tion of ECM and improvement of liver fibrosis.

DEN-induced hepatocarcinogenesis was another patho-
logical process which was prevented by curcumin admin-
istration. Beneficial effect of curcumin was associated with 
decreased levels of oncogenic p21 and p53 as well as cell 
cycle-related proteins, including PCNA, cyclin E and Cdc2 
but not Cdk2 or cyclin D1 (Chuang et  al. 2000a, b). In 
DNE-induced HCC, mice treatment with doxorubicin and 
curcumin co-delivery lipid nanoparticles (doxorubicin/cur-
cumin-NPs) induced increase in caspase-3 activation and 
Bax/Bcl-2 ratio, and PCNA and VEGF (Zhao et al. 2015). 
On the other hand, doxorubicin/curcumin-NPs exhibited 
the synergistic effect on the apoptosis, proliferation and 
angiogenesis of HCC by decreasing the levels of multid-
rug resistance protein 1 (MDR1), P-gp, Bcl-2 and HIF-1α, 
indicating that curcumin might reverse multidrug resist-
ance through these pathways. These findings suggested 
that doxorubicin/curcumin-NPs may be a promising treat-
ment for HCC. Furthermore, curcumin treatment protected 
against acetaminophen-induced hepatocyte apoptosis via 
decreasing expression of pro-apoptotic genes Bax and cas-
pase-3, while inducing antiapoptotic genes such as Bcl-xL 
and increasing Bcl-2/Bax ratio (Bulku et al. 2012; Li et al. 
2013a). Interestingly, curcumin was able to up-regulate 
p53 protein expression and down-regulate Bcl-2 mRNA 
expression in thioacetamide-induced cytotoxicity, forcing 
the damaged cells to undergo apoptosis, thus suppressing 
hepatic inflammatory response and fibrogenesis (Wang 
et al. 2012a).
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Additionally, curcumin protected mice against human 
cytomegalovirus (HCMV) infection through its anti-inflam-
matory and antioxidant effects (Lv et al. 2014). Curcumin 
also inhibited Rift Valley fever virus replication in infected 
human cells by inhibiting phosphorylation of NFκB p65 
subunit via inhibition of kinase activity of the IKKβ2 com-
plex (Narayanan et al. 2012). Curcumin could also inhibit 
HBV and HCV replication via down-regulation of meta-
bolic coactivator PGC-1α and the Akt/SREBP-1 pathway, 
respectively (Kim et  al. 2010a; Rechtman et  al. 2010). 
Additionally, it inhibited HCV entry independently of the 
genotype in primary human hepatocytes, without effect 
on HCV RNA replication or viral assembly/release (Ang-
gakusuma et al. 2014). Nevertheless, another study demon-
strated inhibition of HCV replication through suppression 
of PI3K/Akt and induction of HO-1 (Chen et al. 2012b).

Administration of curcumin has been shown to decrease 
activity of CYP2B1/2 and CYP1A1 in mice liver (Sehgal 
et  al. 2013) and inhibit activation of CYP2E1 in chronic 
alcohol and high-fat diet-induced liver injury in mice (Lee 
et  al. 2013a). Similarly, microsomal CYP2C and CYP3A 
activities in bovine hepatocytes were inhibited by treat-
ment with curcumin (Lemley and Wilson 2010). It has also 
been reported that curcumin inhibited activation of carcino-
gens metabolized by rat CYP isozymes, namely, CYP1A1, 
1A2 and 2B1 (Thapliyal and Maru 2001). Interestingly, 
minimal to no induction of CYP1A2, CYP2B6, CYP3A4, 
CYP2C8/2C9 or CYP2D6 in human hepatocytes studies 
was observed (Price et al. 2008; Mach et al. 2010), with no 
effect on CYP2B1 and CYP2E1-mediated activation of car-
cinogenic N-nitrosamines in mice liver, kidney or intestine 
(Mori et  al. 2006). Taken together, available data suggest 
low potential for CYP-mediated drug interactions at physi-
ological serum concentrations of curcumin.

Capsaicinoids

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) (26) pro-
tected against liver injury by reducing hepatic oxidative 
stress (Manjunatha and Srinivasan 2007; Hassan et  al. 
2012). However, capsaicin was able to induce CYP3A4 
expression via PXR and C/EBPβ activation in rat livers and 
in human liver microsomes (Takanohashi et al. 2010; Han 
et  al. 2012), suggesting a potential of causing drug–drug 
interactions.

Several studies revealed that capsaicin efficiently 
reduced liver fibrosis, inhibited HSCs proliferation and 
promoted cell apoptosis. Thus, capsaicin reduced gene 
expression of TGF-β1 and TIMP-1 in HSCs (Yu et  al. 
2014). Moreover, this compound induced apoptosis of 
HSCs, which was associated with increased expression of 
cytochrome c, Bax and caspase-3 and reduced levels of 

Bcl-2. Capsaicin also inhibited culture-induced activation 
of mouse HSCs by preventing the up-regulation of sev-
eral activation markers such MMP-2, MMP-9 and TIMP-1 
(Bitencourt et  al. 2012). In addition, capsaicin inhibited 
PDGF-induced chemotaxis and proliferation of HSCs. 
Moreover, mice receiving capsaicin after BDL showed a 
significant improvement of liver fibrosis accompanied by 
a decrease in collagen deposition (Bitencourt et al. 2015). 
In CCl4-intoxicated mice, capsaicin prophylactically inhib-
ited up-regulation of profibrogenic markers, but it could not 
attenuate already established fibrosis. Additionally, capsai-
cin inhibited autophagic process during HSCs activation. 
The same authors have shown induction of quiescent phe-
notype in HSCs via PPARγ activation, with the decrease in 
COX-2 and type I collagen mRNA expression (Bitencourt 
et  al. 2012). These events preceded the suppression of 
TGF-β1 and collagen secretion.

Further, capsaicin stimulated hepatic lipolysis by 
increasing levels of phosphorylated hormone-sensitive 
lipase (HSL), CPT1 and PPARδ in mice liver (Li et  al. 
2013b). Activation of transient receptor potential vanil-
loid subfamily, member 1 (TRPV1), a capsaicin-specific 
receptor, and a concomitant PPARδ activation, prevented 
NAFLD through induction of autophagy-related proteins, 
such as LC3-II, Beclin1, Atg5 and Atg7. In addition, capsa-
icin suppressed inflammatory responses in obese mice fed 
a HFD by decreasing mRNA and proteins levels of TNF-
α, MCP-1 and IL-6 in adipose and liver tissue (Kang et al. 
2010). Concomitantly, capsaicin increased hepatic PGC-1α 
and TRPV1 expression in adipose tissue.

Chromenes

Ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]
chromene-5,10-dione) (27), a natural phenol antioxidant, 
also exhibited protection against hepatic oxidative injury 
(Pari and Sivasankari 2008; Girish et  al. 2009). Adminis-
tration of ellagic acid to rats increased NQO1, CAT, GPX 
and GST activity in the liver, while reducing CYP1A, 2B, 
2C and 2E activity, suggesting impact on the metabolism of 
chemical carcinogens and drugs by affecting the activity of 
enzymes involved in xenobiotic activation and detoxifica-
tion (Celik et  al. 2013). Further, administration of ellagic 
acid prevented experimental liver cancer induced by DEN 
through activation of Bax and caspase-9 (Srigopalram et al. 
2014). Concomitant down-regulation of NF-κB, cyclin D1, 
cyclin E1, MMP-2, MMP-9 and PCNA expression sug-
gested inhibition of the cell cycle and activation of tissue 
remodeling process. Ellagic acid also decreased the expres-
sion of MMPs and TIMP-2 induced by alcohol consump-
tion, resulting in amelioration of hepatic fibrosis (Devipriya 
et al. 2007).
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Further, ellagic acid decreased concanavalin A-induced 
expression of TLR2 and TLR4 at both mRNA and pro-
tein level. This led to decrease in phosphorylation of JNK, 
ERK1/2 and p38 and suppression of NF-κB activation (Lee 
et al. 2014b). In addition, ellagic acid treatment decreased 
the expression of proinflammatory cytokines, includ-
ing TNF-α, IL-6 and IL-1β, suggesting protection against 
T-cell-mediated hepatitis through the inhibition of TLR/
MAPK/NF-κB signaling pathway. The suppression of met-
abolic syndrome by ellagic acid was also mediated through 
inhibition of NF-κB activation and induction of hepato-
protective Nrf2, HO-1 and CPT1 enzymes (Panchal et  al. 
2013). In addition, ellagic acid reduced serum resistin level 
and up-regulated mRNA expression of lipolytic genes, 
leading to improvement in hepatic steatosis (Yoshimura 
et al. 2013).

Treatment with ellagic acid has also been shown to 
overcome host immune tolerance induced by HBeAg dur-
ing HBV infection (Kang et al. 2006) and block HBeAg 
secretion in infected hepatic cells, suggesting its ben-
eficial effect on immune tolerance in HBV-infected indi-
viduals (Shin et al. 2005). Moreover, ellagic acid blocked 
the HCV NS3/4A protease activity in  vitro. Structural 
analysis showed that ellagic acid interacted with the cata-
lytic and substrate binding residues of NS3/4A protease, 
leading to its inhibition (Reddy et al. 2014).

Conclusion and future perspectives

Although all reviewed compounds showed a clear poten-
tial to alleviate different liver pathologies through multi-
ple signaling pathways that reach beyond their antioxidant 
activity, the lack of clinical studies could not promote them 
as the hepatoprotective drugs. Interestingly, although sily-
marin gained a reputation as the hepatoprotective gold 
standard, glycyrrhizin has been a clinically most inves-
tigated natural compound, with a considerable amount of 
mechanistical evidence which support its hepatoprotective 
activity.

It is known that natural compound may directly bind 
to cellular molecules such as proteins or DNA (Walle 
et  al. 2003), which could mediate their cellular actions. 
It has been found that quercetin binds directly to the BH3 
domain of Bcl-2 and Bcl-xL proteins, inhibiting their 
activity (Primikyri et  al. 2014). The molecular dock-
ing studies with quercetin showed bonded interaction 
within iNOS active site region, although quercetin ana-
logues exhibited more favorable interaction than querce-
tin (Singh and Konwar 2012). Some natural compounds, 
such as genistein, have been shown to function as inhibi-
tors of tyrosine protein kinases, which play an important 
role in the activation and proliferation of HSCs (Liu et al. 

2002d). Resveratrol has been shown to directly inter-
act with numerous protein molecules involved in signal 
transduction, such as PI3K, IKK and COX-2 (Pirola and 
Frojdo 2008). Dietary flavonoids luteolin, naringenin, 
eriodictyol and daidzein may stimulate the DNA-binding 
activity of NodD1 transcriptional regulator (Peck et  al. 
2006). Similarly, in silico docking studies indicated that 
morin was a better PI3K inhibitor than the classical inhib-
itor LY294002 (Sivaramakrishnan and Devaraj 2010). 
Therefore, the use of computational docking studies could 
lead to development of more potent hepatoprotective 
compounds.

The optimistic data based on the current knowledge 
of the mechanisms of hepatoprotective activity of natu-
ral compounds may result in therapeutic approaches with 
enhanced bioavailability and increased effectiveness of 
these compounds. Nevertheless, these compounds have to 
be evaluated in pre-clinical and clinical assays to determine 
their safety for humans. Generally, natural compounds have 
a low potential of interaction with drugs and activation of 
pro-carcinogens. However, since interaction between these 
compounds and pharmaceutical drugs has not been thor-
oughly examined, particularly at the level of CYPs, co-
administration of these compounds by health-care practi-
tioners requires caution.
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