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Abbreviations
ALD	� Alcohol liver disease
α-SMA	� Alpha smooth muscle actin
BDL	� Bile duct ligation
CCl4	� Carbon tetrachloride
CFSC	� Cirrhotic fat-storing cells
CYP2E1	� Cytochrome P450 2E1
DEN	� Diethylnitrosamine
DMN	� Dimethylnitrosamine
ECM	� Extracellular matrix
GFP	� Green fluorescent protein
GFAP	� Glial fibrillary acidic protein
HBV	� Hepatitis B virus
HCC	� Hepatocellular carcinoma
HCV	� Hepatitis C virus
HF	� High-fat
HSCs	� Hepatic stellate cells

Abstract  Hepatic fibrosis is a wound healing response 
to insults and as such affects the entire world population. 
In industrialized countries, the main causes of liver fibro-
sis include alcohol abuse, chronic hepatitis virus infection 
and non-alcoholic steatohepatitis. A central event in liver 
fibrosis is the activation of hepatic stellate cells, which is 
triggered by a plethora of signaling pathways. Liver fibro-
sis can progress into more severe stages, known as cirrho-
sis, when liver acini are substituted by nodules, and fur-
ther to hepatocellular carcinoma. Considerable efforts are 
currently devoted to liver fibrosis research, not only with 
the goal of further elucidating the molecular mechanisms 
that drive this disease, but equally in view of establishing 
effective diagnostic and therapeutic strategies. The present 
paper provides a state-of-the-art overview of in vivo and in 
vitro models used in the field of experimental liver fibrosis 
research.
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hTERT	� Human telomerase reverse transcriptase
IL	� Interleukin
LX	� Lieming Xu
MCD	� Methionine-deficient and choline-deficient
Mdr2	� Multidrug resistance-associated protein 2
MMPs	� Matrix metalloproteinases
NAFLD	� Non-alcoholic fatty liver disease
NASH	� Non-alcoholic steatohepatitis
NFSC	� Normal fat-storing cells
PCLS	� Precision-cut liver slices
PDGF	� Platelet-derived growth factor
ROS	� Reactive oxygen species
TIMPs	� Tissue inhibitors metalloproteinases
TGF	� Transforming growth factor
TNF	� Tumor necrosis factor
TSV40	� Large T-antigen of simian virus 40

Introduction

Liver fibrosis basically is a wound healing response to 
various types of injury, which can progress into liver cir-
rhosis and even to hepatocellular carcinoma (HCC). The 
most common causes of liver fibrosis in industrialized 
countries are alcohol abuse, viral hepatitis B (HBV) and 
C (HCV) infections and metabolic syndromes due to obe-
sity, insulin resistance and diabetes (Blachier et al. 2013). 
In non-industrialized countries, parasitic infections, such as 
Schistosoma species, are also included in liver injury cases 
(Stensgaard et al. 2013). In the European Union, 0.1 % of 
the population is affected by cirrhosis, the most advanced 
stage of liver fibrosis with full architectural disturbances, 
leading to 170,000 deaths each year (Blachier et al. 2013). 
According to the World Health Organization, HCC cur-
rently is the fifth most common cause of cancer, result-
ing in 47,000 deaths each year in Europe (Blachier et  al. 
2013). Besides the epidemiological relevance, liver fibrosis 
and hence cirrhosis also impose a considerable economic 
burden on society. Indeed, when conventional treatment 
fails, the only curative therapy for decompensated cirrho-
sis is liver transplantation (Pedersen et al. 2015). More than 
5,500 orthotopic liver transplantations are currently per-
formed in Europe on a yearly basis, costing up to €100,000 
the first year and €10,000 yearly thereafter (van Agthoven 
et  al. 2001). Thus, it is clear that there is an urgent need 
for new therapies for the treatment of liver disease, in casu 
fibrosis (Kisseleva and Brenner 2011) as well as for novel 
strategies allowing early diagnosis of this disease (Karsdal 
et  al. 2014; Sharma et  al. 2014). This has been, and still 
is, a major driver for many fundamental and translational 
researchers in the hepatology field to devote their work to 
liver fibrosis. As a result, a variety of in vitro and in vivo 
models are nowadays used in this area. The purpose of the 

present paper is to provide an overview of these experimen-
tal settings.

Pathogenesis of liver fibrosis

General overview

The process following liver injury involves an acute and a 
chronic response (Bataller and Brenner 2005). When acute 
liver injury is not severe, neighboring adult hepatocytes 
are able to regenerate and to replace apoptotic and necrotic 
cells (Bataller and Brenner 2005). If the insult persists, the 
regenerative process fails and hepatocytes become substi-
tuted by extracellular matrix (ECM) proteins, accompanied 
by inflammation (Fig. 1). Furthermore, during chronic dis-
ease, the composition of the ECM changes from collagen 
types IV and VI, glycoproteins and proteoglycans into col-
lagen types I and III and fibronectin (Brown et  al. 2006; 
Hahn et  al. 1980; Rojkind et  al. 1979). In healthy liver, 
quiescent hepatic stellate cells (HSCs), residing in the 
space of Disse, serve as storehouses of vitamin A in the 
form of retinol esters and express glial fibrillary acidic pro-
tein (GFAP) (Geerts 2001; Niki et  al. 1996). A key event 
in liver fibrosis includes the activation of HSCs, whereby 
these cells adopt a myofibroblast-like phenotype. Activated 
HSCs are proliferating and contractile and are character-
ized by the loss of vitamin A storage and GFAP expression 
(Neubauer et  al. 1996; Niki et  al. 1996), high production 
of alpha smooth muscle actin (α-SMA) (Ramadori et  al. 
1990; Schmitt-Gräff et  al. 1991), secretion of collagen 
types I and III (Maher and McGuire 1990) and expres-
sion of matrix metalloproteinases (MMPs) and their spe-
cific tissue inhibitors (TIMPs) (Benyon and Arthur 2001). 
The activation of HSCs involves a complex process that 
consists of two major phases, namely initiation and per-
petuation, followed by resolution of fibrosis if the injury 
subsides (Fig.  2) (Friedman 2008). The initiation stimuli 
involve the generation of apoptotic bodies, reactive oxygen 
species (ROS) and paracrine activation in conjunction with 
the release of lipopolysaccharide from the gut after liver 
injury (Lee and Friedman 2011). These stimuli sensitize 
cells, and if persistent, HSCs maintain the activated pheno-
type, promoting ECM accumulation and chronic inflamma-
tion. In this scenario, other ECM-producing cells contribute 
to scar formation in the liver, including portal fibroblasts 
(Lemoinne et al. 2013), myofibroblasts derived from bone 
marrow (Kisseleva et  al. 2006) and epithelial cells that 
undergo epithelial-to-mesenchymal transition (Zeisberg 
et  al. 2007). Regarding the latter, some in vitro evidence 
has highlighted the possibility that in the presence of trans-
forming growth factor (TGF)β, oval cells can enter epithe-
lial-to-mesenchymal transition to enhance the expression 



1027Arch Toxicol (2016) 90:1025–1048	

1 3

of HSC markers (Wang et  al. 2009). Nevertheless, this 
mechanism is surrounded by quite some controversy, as it 
has been shown that hepatocytes and cholangiocytes do not 
follow this process during liver fibrosis (Chu et  al. 2011; 
Taura et  al. 2010). In contrast, the resolution of fibrosis 
refers to pathways involved in HSC apoptosis or reversion 
into a more quiescent phenotype (Gaça et al. 2003; Iredale 
et al. 1998; Issa et al. 2001; Kisseleva et al. 2012). In par-
allel, the recruitment of inflammatory cells plays a crucial 
role in the initiation and persistence stages as well as in the 
resolution phase. The presence of macrophages leads to the 
development of the fibrotic response in the liver (Ide et al. 
2005), while the enhanced production of cytokines, such as 
interleukin (IL)-13, has been proven to induce fibrosis in 
a Schistosoma mansoni model (Chiaramonte et  al. 2001). 
Alternatively, macrophages may regulate the reversibility 
of the disease by ECM degradation, production of tumor 
necrosis factor (TNF)α-related apoptosis-inducing ligand, 
phagocytosis of the apoptotic myofibroblasts and recruit-
ment of other inflammatory cells (Pellicoro et al. 2014).

Initiation of hepatic stellate cell activation

Stimuli triggering HSC activation originating from injured 
hepatocytes, sinusoidal endothelial cells, Kupffer cells and 

platelets lead to a morphological changes in HSC shape, 
loss of vitamin A and the expression of cell surface recep-
tors for growth factors and cytokines. Hepatocytes are the 
main source of lipid peroxides and apoptotic bodies in 
injured liver, thus stimulating the expression of collagen 
I (Bedossa et  al. 1994), and increase in ROS production 
(MacDonald et  al. 2001), in turn inducing collagen syn-
thesis and chemotaxis in a dose-dependent manner (Novo 
et  al. 2006). ROS generation by cytochrome P450 2E1 
(CYP2E1) in hepatocytes can also induce collagen synthe-
sis and proliferation of HSCs (Nieto et al. 2002a, b), which 
is typically seen in alcoholic liver disease (ALD) (Niemelä 
et al. 2000). Hepatocellular apoptosis after injury may also 
contribute to liver inflammation and fibrosis (Canbay et al. 
2002; Ogasawara et  al. 1993). The engulfment of apop-
totic bodies by HSCs induces intracellular signaling cas-
cades that promote the expression of collagen type I secre-
tion, monocyte chemo-attractant protein-1 and TGFβ (Lee 
et al. 2011). The latter is considered as the main fibrogenic 
molecule involved in the induction of collagen I by HSCs 
(Bissell et  al. 2001; Breitkopf et  al. 2006). Nevertheless, 
TGFβ can act synergistically with platelet-derived growth 
factor (PDGF) to promote collagen I expression (Yoshida 
and Matsuzaki 2012) and the migration of HSCs to the 
site of injury (Yoshida et al. 2005). Early injury promotes 

Fig. 1   Pathogenesis of liver fibrosis. In healthy liver, hepatocytes 
are studded with microvilli, HSCs store retinol, and sinusoidal 
endothelial cells display fenestrae. During liver injury by a variety 
of causes, hepatocytes lose microvilli and may undergo apoptosis. 
The sinusoidal endothelial cells become devoid of fenestrae allow-

ing inflammatory lymphocytes to infiltrate in the hepatic parenchyma. 
Furthermore, Kupffer cells are activated, which in turn trigger HSC 
activation. As a result, large amounts of ECM proteins, including 
fibrillar collagens, are deposited in the space of Disse
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the secretion of fibronectin by sinusoidal endothelial cells, 
which has an activating effect on HSCs (Jarnagin et  al. 
1994). In addition, the activation of Kupffer cells facili-
tates HSC activation by secretion of TGFβ and ROS in the 
extracellular environment (Kolios et al. 2006). This parac-
rine activation induced by platelets is mediated by PDGF, 
TGF-β and epidermal growth factor (Bachem et al. 1989). 
These autocrine and paracrine signals contribute to tran-
sient HSC activation that corresponds to an initial inflam-
matory reaction and collagen deposition in the liver.

Perpetuation of hepatic stellate cell activation

In this second step, HSCs acquire a more myofibroblastic 
phenotype and become more proliferative and contractile, 
leading to enhanced production of ECM proteins, angio-
genesis regulation and the amplification of the immune 
response. The proliferative stage that accompanies activa-
tion of HSCs is governed by PDGF, which signaling under-
lies the activation of the Ras/mitogen-activated protein 
kinase and the phosphatidylinositol 3 kinase/Akt pathways 
involved in HSC growth and chemotaxis (Chen et al. 2008; 
Marra et al. 1997). This has been observed in patients with 
non-alcoholic fatty liver disease (NAFLD) in conjunction 
with collagen I production (Svegliati-Baroni et  al. 1999). 

There is some evidence that PDGF may act in concert with 
TGFβ to activate HSCs during liver fibrosis (Yoshida et al. 
2005). Other mitogens that can modulate HSC proliferation 
via paracrine signaling are TGFα, epidermal growth factor 
(Lee et al. 1995; Svegliati-Baroni et al. 2005) and the HBV 
proteins c and x (Bai et al. 2012). In parallel to this prolif-
erative stage, the acquisition of contractility is a determi-
nant in intrahepatic vascular resistance during liver fibrosis 
(Rockey 1997). This contraction capacity leads to modula-
tion of the blood flow via sinusoidal constriction. Activated 
HSCs express receptors from a variety of vasoconstrictor 
substances, especially endothelin-1 (Rockey and Weisiger 
1996; Shibamoto et al. 2008), which may induce cell con-
traction through calcium-dependent and calcium-sensitiz-
ing mechanisms (Iizuka et al. 2011). Additionally, the con-
tractibility can also be regulated by nitric oxide synthase, 
which is involved in the relaxation of HSCs and that can 
be inhibited by TGFβ (Rockey and Chung 1995). TGFβ is 
a key molecule during the progression of chronic liver dis-
ease, as it is the most potent stimulus for the production of 
collagen I (Breitkopf et al. 2006) and other ECM compo-
nents, including fibronectin (Date et al. 2000) and proteo-
glycans (Krull et al. 1993). Moreover, in cases of chronic 
HCV infection, TGFβ expression levels can be modulated 
by the presence of the HCV core protein, which triggers 

Fig. 2   Process of hepatic stellate cell activation. Upon insult, the 
stimuli that involve hepatic stellate cell (HSC) activation come from 
the injured hepatocytes, sinusoidal cells, Kupffer cells and plate-
lets. Due to this interaction, HSCs are able to produce transforming 
growth factor β. The perpetuation of the injury leads to more active 
cells with the ability to contract, proliferate, produce extracellu-
lar matrix proteins, migrate and interact with the immune system. 

This triggers inflammatory and fibrogenic responses and decreases 
blood supply. Withdrawal of the injury may lead to the resolution of 
the disease by apoptosis of the activated HSCs and the reversion of 
the active into an inactivated HSC phenotype. (ECM, extracellular 
matrix; EGF, epithelial growth factor; PDGF, platelet-derived growth 
factor; ROS, reactive oxygen species; TGFβ, transforming growth 
factor β)
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HSC activation (Wu et al. 2013). The maintenance of these 
ECM proteins in the fibrotic liver is due to the interplay 
between MMPs and TIMPs secreted by activated HSCs, 
resulting in the deterioration of the healthy ECM and con-
comitant fibrous scar formation (Benyon and Arthur 2001). 
In chronic disease, activated HSCs play a role in inflamma-
tory and immune-mediated responses, which can enhance 
hepatocellular necrosis and apoptosis, and perpetuate the 
stimuli of fibrogenesis (Czaja 2014; Friedman 2008). In this 
context, activated HSCs are characterized by the production 
of chemokines, the expression of adhesion molecules and 
the presentation of antigens to T lymphocytes and natural 
killer cells. Chemokines promote the migration of activated 
HSCs to the site of injury, thereby boosting the inflamma-
tory response (Seki et  al. 2009). Other chemokines, such 
as vascular endothelial growth factor, PDGF, monocyte 
chemo-attractant protein-1 and chemokine C-X-C recep-
tor 3, are also involved in cell chemotaxis. On the other 
hand, degradation of the basement membrane-like matrix 
through MMPs and the interaction mediated by α1β1 inte-
grin may assist in cell migration within the space of Disse 
during liver injury (Yang et al. 2003). In contrast, activated 
HSCs secrete pro-inflammatory cytokines that behave as 
chemo-attractants in the recruitment of inflammatory cells 
(Kharbanda et  al. 2001; Marra et  al. 1998). This produc-
tion of pro-inflammatory cytokines is promoted by ethanol 
consumption (Kharbanda et al. 2001) and by the presence 
of lipopolysaccharide secreted by gut bacteria upon bind-
ing to Toll-like receptor 4 (Paik et  al. 2003). The gather-
ing of immune cells at the site of injury together with the 
interaction of activated HSCs with T lymphocytes via anti-
gen-presenting receptors and co-stimulatory proteins may 
result in the modulation of lymphocyte proliferation (Viñas 
et al. 2003), which triggers the perpetuation of the immune 
response. The chronicity of the injury allows full transdif-
ferentiation of HSCs into myofibroblastic cells, which 
interact with a number of factors and cells to enhance scar 
formation, the reduction in liver blood flow and the amplifi-
cation of the immune response.

Resolution of liver fibrosis

The resolution of liver fibrosis and cirrhosis observed in 
animals and humans has been well studied (Iredale et  al. 
1998; Marcellin et al. 2013). This process may be explained 
by the HSC reversion into a quiescent stage and/or apopto-
sis. The reversibility of activated HSCs after eradication of 
hepatic injury has been assessed in vitro (Gaça et al. 2003) 
and in vivo (Kisseleva et  al. 2012; Troeger et  al. 2012). 
Nevertheless, full recovery is not achieved, and the cells 
remain in a stage that predisposes them to rapidly reactivate 
into myofibroblasts in the presence of a deteriorative stim-
ulus with facilitated development of a more severe stage 

of fibrosis (Kisseleva et  al. 2012; Troeger et  al. 2012). A 
body of evidence supports the role of HSC apoptosis in the 
regression of fibrosis (Iredale et al. 1998; Issa et al. 2001). 
Signals mediating HSC apoptosis include Fas ligand (Saile 
et  al. 1997) and TNFα-related apoptosis-inducing ligand 
(Taimr et al. 2003). The latter can be released from Kupffer 
cells (Tang et  al. 2009) and natural killer cells (Radaeva 
et al. 2006), yet the signaling pathway inducing HSC apop-
tosis remains largely unknown. Recent studies suggest the 
importance of endoplasmic reticulum stress in this process 
because of the relationship between calpain/caspase activa-
tion and c-Jun N-terminal kinases/p38 mitogen-activated 
protein kinase phosphorylation (Huang et al. 2014) and by 
the downregulation of heat-shock protein 47 (Kawasaki 
et al. 2014). On the other hand, Kupffer cells and activated 
natural killer cells can also cause HSC apoptosis. The for-
mer may involve caspase-9-dependent and receptor-inter-
acting protein-dependent mechanisms (Fischer et al. 2002), 
while the latter is related to the natural killer group 2D 
receptor pathway (Radaeva et al. 2006).

In vivo models of liver fibrosis

Chemical‑based models

A number of chemicals are known to induce liver fibro-
sis and hence are commonly used to set up experimental 
animal models to study this particular pattern of lesions. 
In most cases, intraperitoneal injection of these chemicals 
triggers liver fibrosis on a relatively short-term basis (Smith 
2013). When administered orally or via inhalation, fibrosis 
is limited and takes more time to develop (Smith 2013). 
These chemical-based animal models are popular because 
of their high reproducibility, ease of use and appropriate 
reflection of the mechanisms involved in human liver fibro-
sis (Smith 2013) (Table 1).

Ethanol

Alcohol consumption is a worldwide cause of chronic 
liver disease. ALD usually starts with hepatic steatosis 
that may progress into fibrosis and subsequent cirrho-
sis. In the liver, ethanol is mainly metabolized by alco-
hol dehydrogenases and CYP450 enzymes. This process 
is associated with several deleterious events, such as the 
production of ROS, glutathione depletion, lipid peroxida-
tion and increased collagen synthesis (Beier and McClain 
2010; Lieber 1997). Collectively, these mechanisms induce 
hepatocyte apoptosis, inflammation and the activation of 
HSCs. Although rodents have a natural aversion for alco-
hol consumption, with the exception of HAP-2 (Lopez 
et al. 2011) and C57BL/6 (Metten and Crabbe 2005) mice, 
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they remain the most routinely used model in the study of 
ALD. Mice are more prone to alcohol-induced ALD than 
rats (Shinohara et al. 2010), with female mice being most 
susceptible (Melón et  al. 2013). There is, however, not 
a single rodent model that fully mirrors human ALD by 
alcohol consumption. The Lieber–DeCarli full liquid diet 
(DeCarli and Lieber 1967; Leo and Lieber 1983), alcohol 
administration in drinking water (Best and Hartroft 1949; 
Keegan et  al. 1995) and Tsukamoto–French intragastric 
feeding model (French 2001; Tsukamoto et al. 1984) failed 
to develop liver fibrotic stages. In order to overcome these 
limitations, new techniques have been introduced, such as 
the combination of ethanol administration with a second 
stimulus, including specific diets, pharmacological agents, 
CYP450 inducers, hormones, Toll-like receptor ligands, 
genetic manipulation or viral infection (Brandon-Warner 
et al. 2012; Enomoto et al. 1998). However, these combina-
tional models are driven by a plethora of mechanisms that 
can complicate the interpretation of results.

Carbon tetrachloride

Carbon tetrachloride (CCl4) is the most widely used hepa-
totoxin in the study of liver fibrosis and cirrhosis in rodents. 
In many aspects, it mimics human chronic disease asso-
ciated with toxic damage. Hepatic biotransformation of 
CCl4 relies on CYP2E1 and yields the trichloromethyl 
radical, which is involved in several free radical reactions 
and lipid peroxidation processes (Basu 2003; Weber et al. 
2003) that contribute to an acute-phase reaction charac-
terized by necrosis of centrilobular hepatocytes, the acti-
vation of Kupffer cells and the induction of an inflamma-
tory response (Heindryckx et  al. 2009). This sequence is 
associated with the production of several cytokines, which 
promote activation of HSCs and hence liver fibrosis (Iwai-
sako et al. 2014). The CCl4 model can be applied to both 
rats and mice. However, mice are preferred, because of a 
higher metabolic rate of CCl4 compared with rats (Thrall 
et  al. 2000). The susceptibility of mice to CCl4-induced 
liver fibrosis is strain dependent. Thus, BALB/c mice 
manifest more liver fibrosis upon CCl4 administration com-
pared with C57BL/6 and DBA/2 counterparts (Shi et  al. 
1997; Walkin et  al. 2013). In the most routinely followed 
strategy, CCl4 is injected intraperitoneally 2–3 times per 
week during 4–6  weeks at a dose range of 300–1000  µl/
kg (Constandinou et al. 2005). Recently, a C57BL/6 mouse 
model was standardized relying on intraperitoneal admin-
istration of CCl4 in a concentration range between 0.5 and 
0.7  µl/g body weight two times per week for 6  weeks or 
three times per week for 4 weeks. Alternatively, CCl4 can 
be administered orally, subcutaneously or through inhala-
tion two times per week 10 weeks, between 4 and 8 weeks 
or between 2 and 6  weeks, respectively. There is a lot of Ta
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discussion about oral administration of CCl4, as some 
authors claim to show the highest reproducibility of liver 
fibrosis with acceptable animal survival rates (Jang et  al. 
2008), while others do not recommend the oral administra-
tion unless it is strongly required due to high rates of early 
mortality (Scholten et  al. 2015). Subcutaneous injection 
represents a decrease in mouse mortality. However, animals 
grow granulomas at the site of injection (Domenicali et al. 
2009; Geerts et al. 2008). Although administration through 
inhalation carries a number of disadvantages, including the 
necessity of appropriate equipment and operator training 
(Tsujimura et al. 2008), it was described as the best model 
to study complications of cirrhosis, such as portal hyperten-
sion and ascites formation (Domenicali et al. 2009; Liedtke 
et al. 2013).

Thioacetamide

Like CCl4, thioacetamide requires metabolic activation to 
become toxic. This bioactivation process, which is cata-
lyzed by CYP450 isoenzymes, results in the formation of 
thioacetamide sulfur dioxide, responsible for the overall 
toxicity. The mechanisms underlying the induction of liver 
fibrosis through thioacetamide sulfur dioxide are not fully 
understood, but may imply downregulation of enzymes 
involved in fatty acid β-oxidation, branched chain amino 
acids and methionine breakdown, and upregulation of pro-
teins related to lipid peroxidation and oxidative stress (Low 
et  al. 2004). Anyhow, the final outcome includes severe 
oxidative damage associated with HSC activation. Rats are 
the first-rank species for establishing thioacetamide-medi-
ated liver fibrosis models, yet it is also frequently applied 
to mice. Typically, thioacetamide is administered intraperi-
toneally in doses between 100 and 200 mg/kg body weight 
three times per week for a period of 6–8 weeks. These ani-
mals show an enlarged liver with centrilobular necrosis 
and mild inflammatory cell infiltration along with elevated 
alanine aminotransferase and aspartate aminotransferase 
serum levels (Chen et al. 2012). More recently, this model 
has been standardized at a dose of 150 mg/kg 3 times per 
week for a period between 8 and 12 weeks (Wallace et al. 
2015). When administered orally, higher doses of 200–
300  mg/kg body weight are used for 16  weeks (Salguero 
Palacios et  al. 2008). Moreover, C57BL/6 mice require 
2–4  months to develop significant fibrosis when orally 
administered 300  mg/l in drinking water (Wallace et  al. 
2015).

Dimethylnitrosamine and diethylnitrosamine

Dimethylnitrosamine (DMN) and diethylnitrosamine 
(DEN) are carcinogenic compounds that are frequently 
used to experimentally induce liver fibrosis in animals. As 

a consequence of their biotransformation, ROS are abun-
dantly produced, all of which react with nucleic acids 
(Verna et al. 1996), proteins (Aparicio-Bautista et al. 2013) 
and lipids (Sánchez-Pérez et  al. 2005), causing cell mal-
function and triggering the development of centrilobular 
necrosis (Oh et  al. 2009). The susceptibility of mice to 
develop HCC due to DEN administration is determined, 
at least in part, by the strain. In this respect, C3H and 
B6C3F1 mice are most likely to develop tumors compared 
with C57BL mice (Buchmann et al. 1991). In rats, the R16 
strain is most susceptible to carcinogenic chemicals (Mel-
hem et  al. 1989). DEN is routinely administered orally 
to mice at a dose of 100 µl/kg body weight for 12 weeks 
(Starkel and Leclercq 2011). DEN is administered to rats 
with weekly oral gavage of 5 ml of 1.5 %/kg DEN during 
3–11 weeks (Jin et al. 2010) or intraperitoneally once per 
week for 2 weeks, applying doses between 40 and 100 mg/
kg (Starkel and Leclercq 2011). DMN is administered 
intraperitoneally to mice 10 µg/g three times per week dur-
ing 3 weeks (Yoshida et al. 2004).

Diet‑based models

A number of specific diets can be used to induce progres-
sion of NAFLD to non-alcoholic steatohepatitis (NASH) in 
experimental animals (Anstee and Goldin 2006). It seems 
that the rodent strain is the major determinant of liver fibro-
sis caused by dietary ingredients. Overall, C57BL/6 mice 
are more susceptible to develop diet-induced fibrosis com-
pared with the BALB/c strain (Farrell et al. 2014; Walkin 
et  al. 2013). Nevertheless, these diet-based models fail to 
mimic the typical characteristics of the human pathology, 
thus restricting interspecies extrapolation of results (Anstee 
and Goldin 2006) (Table 1).

Methionine‑deficient and choline‑deficient diet

Mice fed a methionine-deficient and choline-deficient 
(MCD) diet constitute a frequently addressed model to 
study NASH. However, this dietary model lacks some of 
the major human pathological features, including obesity 
and pronounced peripheral insulin resistance (Rinella and 
Green 2004). MCD diets mimic the hepatic stress caused 
by the fatty acid flux from adipose tissue to the liver as 
well as increased production of triglycerides, resulting in 
liver steatosis and lipotoxicity (Jha et  al. 2014). Kupffer 
cells may play a role in the initiation and progression of 
MCD diet-induced liver steatosis, as they are the firsts 
to respond to hepatocyte injury. Activated Kupffer cells 
increase the production of TNFα and the recruitment of 
monocytes (Tosello-Trampont et  al. 2012) and may con-
trol collagen deposition by secreting high levels of MMP-
13 (Itagaki et  al. 2013). In addition, the infiltration of 
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these macrophages can also promote the upregulation 
of pro-inflammatory pathways and mediators, including 
nuclear factor kappa-light-chain-enhancer of activated B 
cells, intracellular adhesion molecule 1, cyclooxygenase 
2, monocyte chemo-attractant protein-1 and IL6 (Rama-
dori et  al. 2015). In a following next step, HSCs become 
activated, which directs the pathology into a more fibrotic 
stage. Mice fed a MCD diet present steatohepatitis after 
8  weeks, whereas the more fibrotic stage, in particular 
affecting the portal and bridging areas, is only observed 
after 16 weeks (Itagaki et al. 2013).

High‑fat diet

High-fat (HF) diets overcome the shortcomings of the 
MCD diet, since animals gain body weight and develop 
peripheral insulin resistance. Although this model has 
phenotypic hallmarks similar to human NASH, it requires 
50 weeks to develop steatohepatitis with merely mild fibro-
sis in mice (Ito et  al. 2007). Male inbred C57BL/6 mice 
are the most suitable rodents to develop NASH using a HF 
diet (Ganz et al. 2014). This is in contrast to rats, which are 
not responsive to HF diets. Because of this flaw, an alterna-
tive high-cholesterol diet has been proposed for rats. This 
high-cholesterol diet induces fibrotic NASH in 9  weeks, 
whereby the rats occasionally develop cirrhosis, reminis-
cent of human NASH (Ichimura et al. 2014). Nonetheless, 
the main disadvantage of this high-cholesterol diet model is 
the lack of both obesity and insulin resistance.

Choline‑deficient l‑amino acid‑defined diet

The choline-deficient l-amino acid-defined diet causes a 
similar phenotype as the MCD diet, though animals also 
gain weight and develop peripheral insulin resistance (De 
Minicis et  al. 2014; Denda et  al. 2002). Choline-deficient 
l-amino acid-fed rats and C57BL/6J mice frequently pro-
duce liver tumors associated with fibrosis (Denda et  al. 
2002; Nakae et al. 1992), rendering these models eligible to 
study the progression from NAFLD to NASH and further 
to HCC (Denda et al. 2002). Mice fed this diet develop evi-
dent liver fibrosis after 22 weeks and HCC after 84 weeks 
(Denda et al. 2002).

Surgery‑based models

Common bile duct ligation (BDL) is well known to cause 
cholestatic injury and periportal biliary fibrosis. This 
model was first established in rats and was later applied to 
mice (Miyoshi et  al. 1999; Rodríguez-Garay et  al. 1996). 
As such, BDL consists of a doubly ligated bile duct tran-
sected between two ligatures (Rodríguez-Garay et  al. 
1996). The obstruction of the bile duct evokes increases 

in biliary pressure, mild inflammation and cytokine secre-
tion by biliary epithelial cells, thus generating cholesta-
sis. This results in proliferation of biliary epithelial cells, 
an increase in expression of fibrogenic markers, including 
TIMP-1, α-SMA, collagen 1 and TGFβ1, and accumulation 
of B cells and T cells in the portal tracts (Georgiev et  al. 
2008), generating ROS and liver damage. A recent report 
claims that, besides the relevant role of HSCs in fibrogen-
esis, portal fibrosis might be produced by another cell type, 
active portal fibroblasts (Iwaisako et  al. 2014). The latter 
are a source of myofibroblasts in BDL and may activate 
HSCs through IL13 (Iwaisako et  al. 2014). These events 
are reversible up to 2 weeks after relief of the obstruction 
(Abdel-Aziz et al. 1990; Aronson et al. 1993). The applica-
bility of BDL in mice is restricted by frequent perforation 
of the bilioperitoneum and the variability in the dilatation 
of the gall bladder, which induces different parenchyma 
responses (Starkel and Leclercq 2011). In general, early 
mortality in rodents may ensue after BDL due to bile leak-
age, rupture of biliary cysts or gall bladder. The mortality 
rate 5–6 weeks after BDL in rats is about 20 % and peaks 
in mice after 10  days. BDL can be particularly used for 
short-term studies of liver fibrosis associated with choles-
tatic injury (Chang et al. 2005; Iwaisako et al. 2014; Park 
et al. 2014).

Genetically modified models

Genetically modified animals have become powerful 
research models in the past decade. In particular, they allow 
to gain insight into the involvement of specific proteins and 
signaling pathways in the generation of liver fibrosis and 
thus facilitate the identification of potentially new drug tar-
gets (Hayashi and Sakai 2011). Nevertheless, genetic mod-
els rarely develop liver fibrosis due to the genetic manip-
ulation as such and need a second stimulus for disease 
induction (Larter and Yeh 2008; Table  1). This indicates 
interaction between the environment and the genotype to 
manifest the disease, which is the case for NASH.

Multidrug resistance‑associated protein 2‑deficient mice

Mouse multidrug resistance-associated protein 2 (Mdr2) 
is the homolog of the human adenosine triphosphate-
binding cassette subfamily B member 4 gene, which codes 
for P-glycoprotein that is involved in biliary phospholipid 
excretion (Morita et al. 2013). The lack of P-glycoprotein 
impedes phospholipid secretion into the bile. Consequently, 
Mdr2-deficient mice develop a phenotype resembling 
human primary sclerosing cholangitis, including hepato-
cyte necrosis, strong portal inflammation and proliferation, 
destruction of the canalicular and small bile ductular tracts, 
and onion-skin-type periductal fibrosis (Fickert et al. 2004; 
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Morita and Terada 2014). Mdr2-deficient mice develop 
biliary fibrosis at 4–8  weeks of age. Already at 4  weeks, 
increased expression of TGFβ and HSC activation mark-
ers, including α-SMA, MMP-2 and PDGFRβ, is observed 
(Popov et  al. 2005). This is accompanied by periductal 
fibroblast proliferation and fibrosis, granulocytic infiltration 
and partial necrosis of the bile duct (Fickert et  al. 2002). 
Abundant presence of collagen is seen at week 8, leading 
to fibrous scar formation with obliteration of the bile duct 
lumen. Mdr2-deficient mice aged 4–6 months can develop 
HCC (Mauad et al. 1994).

Alms1Fat ausi mutant mice

Fat ausi (foz/foz) mouse present a spontaneous deletion 
of 11 base pair (foz) in the Alms1 gene that is responsi-
ble for Alstrom’s disease in humans. When fed a HF diet, 
these animals show hyperphagic obesity, insulin resistance, 
hepatomegaly, diabetes, hypoadiponectinemia, high serum 
levels of alanine transaminase, inflammatory cells, numer-
ous ballooned hepatocytes and pericellular and pericentral 
fibrosis (Arsov et  al. 2006). After 24  weeks of HF diet, 
Alms1Fat ausi mutant mice develop adipose restriction, 
which promotes the flux of lipids to the liver and a decrease 
in serum adiponectin levels, in turn causing adipose inflam-
mation, hepatocellular injury, hepatomegaly and liver 
inflammation (Larter et  al. 2009). In addition, it has been 
documented that the presence of cholesterol in the diet 
could underlie the transition of the disease from NAFLD 
to NASH (Van Rooyen et  al. 2011). This model relies on 
the interaction between diet and genotype in order to pro-
mote liver injury. Accordingly, this is an attractive model 
for the study of NAFLD progression into NASH due to the 
presence of different factors. In intervention studies, where 
the normal diet is recovered, remaining obesity and adipose 
inflammation has been noticed in this model (Larter et al. 
2013).

Infection‑based models

Infection-based models have aided researchers in the elu-
cidation of the mechanisms mediated by the immune sys-
tem, which occur during liver fibrosis and that cannot be 
reproduced in other models (Starkel and Leclercq 2011). 
Hepatitis virus infection induces liver fibrosis in humans, 
but not in rodents. Therefore, genetically engineered ani-
mals able to express the HBV envelope coding region 
under the constitutive transcriptional control of the mouse 
albumin promoter are typically used (Chisari et al. 1986). 
These mice do not spontaneously develop liver hepatitis 
unless their immune system is compromised and replaced 
by non-transgenic bone marrow cells and spleen cells pre-
viously immunized with the HBV antigen (Chisari et  al. 

1986; Nakamoto et  al. 2004). This model has shown the 
importance of immune reactions in the progression of the 
disease to HCC (Sitia et al. 2012) (Table 1). An alternative 
to this model is the use of immunodeficient mice trans-
fected with a HBV plasmid (McCaffrey et al. 2003). Schis-
tosoma mansoni infection is readily established in mice due 
to high resemblance to human infection and high reproduc-
ibility (Cheever et al. 2002). Nevertheless, different mouse 
strains can show great variations in hepatic fibrosis levels, 
with the C3H/HeN strain being the most prone to develop 
higher levels of fibrosis (Cheever et al. 1987; Chiaramonte 
et al. 2001). Alternatively, animals can be infected by per-
cutaneous administration of 35 cercariae through the tail 
(Chiaramonte et  al. 2001) or by intravenous administra-
tion of 10.000 viable eggs (Cheever et al. 2002). The cer-
cariae evolve into adults and can produce more than 100 
eggs per day, which can be trapped in the liver. This forms 
the main cause for the development of granulomas associ-
ated with liver fibrosis (Cheever et al. 2002; Chiaramonte 
et al. 2001). Development of the latter is mediated by the 
action of T-helper 2 cytokines (Wynn and Cheever 1995), 
especially IL13 in a Schistosoma mansoni model (Chiara-
monte et al. 2001) and IL17A in a Schistosoma japonicum 
infection (Zhang et al. 2015), which highlights the role of 
cytokines in the development of this chronic liver disease. 
Moreover, the presence of activated HSCs in the periphery 
of the egg granulomas from Schistosoma japonicum has 
been observed in rodents and humans (Bartley et al. 2006). 
Collectively, the role of the cytokines in these infection 
models contributes to the activation of the HSCs and thus 
to the progression of liver fibrosis.

In vitro models of liver fibrosis

Primary hepatic stellate cells

Primary HSCs, directly derived from healthy liver tissue, 
provide a good reflection of the hepatic in vivo situation. 
However, primary HSCs cope with a number of issues, 
which originate from isolation and cultivation procedures 
(Table  2). The classical methodology for the isolation of 
HSCs is based on a density gradient centrifugation method 
using Percoll, Nycodenz, Stractan or metrizamide. HSC 
density is low because of the abundant lipid content. This 
facilitates separation from other liver cell types, yield-
ing cell suspensions containing up to 75  % HSCs with a 
high viability (Weiskirchen and Gressner 2005). The den-
sity gradient centrifugation method cannot be used to iso-
late HSCs from young animals or animals suffering from 
liver disease due to low lipid content and poor purity. This 
can be overcome, at least in part, by using fluorescence-
activated cell sorting with an ultraviolet laser able to excite 
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vitamin A and therefore to isolate HSCs with high selec-
tivity (Geerts et  al. 1998; Tacke and Weiskirchen 2012). 
However, this procedure is time-consuming and only pro-
duces limited amounts of HSCs. A possible solution to the 
latter includes intravenous injection of liposome-encapsu-
lated dichloromethylene diphosphatein, which eliminates 
Kupffer cells, in mice prior to HSC isolation (Chang et al. 
2014). This results in higher quantities of pure HSC pop-
ulations upon isolation. When seeded on a plastic culture 
dish, freshly isolated HSCs spontaneously activate and turn 
into myofibroblast-like cells as also occurring during liver 
fibrosis in vivo. This spontaneous in vitro activation trig-
gers a differential gene expression profile in comparison 
with the in vivo counterpart process, which may not reflect 
the pathophysiological mechanisms manifested during 
liver fibrogenesis (De Minicis et  al. 2007). Consequently, 
different strategies have developed to counteract spontane-
ous HSC activation, including culturing primary HSCs on 
Matrigel®, which mimics the ECM scaffold in liver (Gaça 
et al. 2003), or the maintenance of the cells in suspension 
cultures (Friedman et  al. 1994). Like other primary cells, 
the life span of cultured HSCs is limited, which impedes 
their use. Furthermore, despite improvement of isolation 
techniques and increased purity, HSC cultures may be con-
taminated with other liver cell types. Finally, the establish-
ment of human HSC cultures is restricted by the general 
lack of human biological material for research purposes 
(Herrmann et al. 2007).

Cell lines

Cell lines appeared as an alternative to primary cells and 
offer advantages, such as ease of use, unlimited supply 
and high interlaboratory reproducibility of results (Her-
rmann et al. 2007). However, cell lines may lose differenti-
ated functionality and morphology, thus questioning their 
in vivo relevance (Herrmann et  al. 2007). Nevertheless, a 
variety of HSC cell lines from murine, rat and human ori-
gin have been developed and are abundantly used by funda-
mental liver fibrosis researchers (Table 2).

Mouse cell lines

One of the first described HSC cell line is the murine cell 
line (GRX) obtained from hepatic fibrotic granulomas of 
C3H/HeN mice infected with Shistosoma mansoni (Boroje-
vic et al. 1985). In culture, GRX cells show a myofibroblas-
tic phenotype and overgrow into typical hills and valleys 
because of low contact inhibition. However, when trans-
ferred to cell culture media containing insulin and indo-
methacin or retinol, GRX cells adopt a fat-storing pheno-
type and are organized in a regular monolayer. Both GRX 
phenotypes are able to express collagen types I, III and IV, 

fibronectin, laminin, vimentin, desmin, GFAP and α-SMA 
(Pinheiro-Margis et al. 1992), yet production of the differ-
ent collagen types, desmin and GFAP in the lipocyte-like 
phenotype is low (Guma et al. 2001; Pinheiro-Margis et al. 
1992). This lipocyte-like phenotype has the ability to take 
up and metabolize retinol similar to HSCs (Guma et  al. 
2001; Pinheiro-Margis et  al. 1992). Therefore, the GRX 
cell line is a useful tool in the study of lipid-related changes 
as also occurring during liver fibrosis (Fortuna et al. 2001; 
Guimarães et al. 2007) and the action of molecules in the 
reversion of the activated phenotype (de Mesquita et  al. 
2013; Stefano et al. 2011).

A640-IS cells are HSCs isolated from male imprinting 
control region (ICR) mice that have been subsequently 
transfected with the large T-antigen of simian virus 40 
(TSV40). This cell line is temperature sensitive, implying 
that cells acquire a myofibroblastic and proliferative phe-
notype at 33 °C and a more HSC-like morphology at 39 °C. 
Both A640-IS phenotypes produce collagen types I, III and 
IV, fibronectin, laminin, vimentin, desmin and α-SMA. 
Desmin is, however, highly expressed at 39  °C, while 
α-SMA is present in low-density cultures at both tempera-
tures (Kitamura et  al. 1997). An alternative cell line with 
similar origin is SV68c-IS. SV68c-IS cells display a myofi-
broblastic shape and express collagen III, desmin, α-SMA 
and GFAP (Horie et al. 2000). Both A640-IS and SV68c-IS 
cells show characteristics reminiscent of activated HSCs in 
rodents (Horie et al. 2000; Kitamura et al. 1997). However, 
none of them fully correlates with liver fibrosis in vivo, 
resulting in their restricted use by researchers.

The M1-4HSC line originates from male p19ARF null 
mice. These cells appear in two different phenotypes 
depending on the presence of TNFβ1. In the absence of 
TNFβ1, M1-4HSC cells resemble quiescent HSCs with 
an epithelial-like phenotype and expression of procollagen 
I, vimentin, desmin, α-SMA and GFAP. In the presence 
of TNFβ1, M1-4HSC cells adopt a more myofibroblastic 
morphology and produce procollagen I, vimentin, α-SMA 
and GFAP (Proell et  al. 2005). However, these cells do 
not manifest other markers of HSC activation (Proell et al. 
2005).

The immortalized cell lines JS1, JS2 and JS3 were 
obtained from isolated HSCs from wild-type, Toll-like 
receptor 4-deficient and myeloid differentiation primary 
response gene 88-deficient C57BL/6 mice, respectively. 
These cells were subsequently transfected with the cyto-
megalovirus promoter TSV40. They were created in order 
to explore the different pathways involved in HSC activa-
tion due to the presence of lipopolysaccharide (Guo et al. 
2009). Their most important characteristic lies in their high 
capacity to be transfected. Although three lines were devel-
oped, only JS1 cells are extensively used. Because of the 
high transfection potential, the JS1 cell line is considered 
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as a useful tool to test the efficiency in the expression of 
different vectors (Ghiassi-Nejad et  al. 2013), but also in 
the selectivity-induced expression or inhibition of specific 
genes (Guo et  al. 2009; Lim et  al. 2011). Consequently, 
this has helped researchers in the elucidation of apoptotic 
mechanisms of activated HSCs (Lim et al. 2011).

More recently, a new mouse cell line, called Col-green 
fluorescence protein (GFP), has been described. Col-GFP 
cells are HSCs isolated from transgenic mice expressing 
GFP under the control of the collagen I gene promoter 
and treated with CCl4 for 8  weeks (Meurer et  al. 2013). 
To immortalize these cells, a lentivirus vector containing 
the TSV40 and the hygromycin resistance gene has been 
used (Meurer et  al. 2013). The resulting cells are charac-
terized by expression of collagen types I and IV, fibronec-
tin, desmin, α-SMA, GFAP, the fibrosis-associated protein 
connective tissue growth factor (CTGF) and the inhibitor of 
differentiation-2 (Id2) (Meurer et al. 2013). These Col-GFP 
cells are considered promising for the screening of poten-
tial anti-fibrogenic drugs (Meurer et al. 2013).

Rat cell lines

Normal fat-storing cells (NFSC) and cirrhotic fat-storing 
cells (CFSC) arose from spontaneous immortalization of a 
normal and cirrhotic liver, respectively, from male Wistar 
rats. Both cell lines show a fusiform phenotype and express 
collagen types I and III, fibronectin, laminin, vimentin, 
desmin and TGFβ1 (Greenwel et  al. 1991). Unlike CFSC 
cells, NFSC cells produce IL6. Because of collagen expres-
sion, both lines can be addressed to investigate collagen 
secretion by HSCs. The selection of four clones from the 
CFSC line, named CFSC-8B, CFSC-2G, CFSC-3H and 
CFSC-5H, resulted in the heterogeneous expression of α 
1 (I), α 1 (III) and α 1 (IV) procollagen, IL6, TGFβ and 
connexin 43 (Greenwel et al. 1993), suggesting that genetic 
differences define the ECM composition. This phenomenon 
can also occur in vivo, and thus, different clones might be 
useful in the study of the role of defined ECM scaffolds 
(Greenwel et al. 1993).

The HSC-T6 cell line was developed by transfection of 
HSCs from male retired breeder Sprague–Dawley rats with 
TSV40 (Vogel et al. 2000). These cells present a myofibro-
blastic phenotype and are able to form lipid droplets and 
accumulate retinyl esters in the cytoplasm in the presence 
of retinol. The expression of collagen types I, III and IV, 
fibronectin, laminin, vimentin, desmin, α-SMA, GFAP, 
TIMP-1, TIMP-2 and TGFβ1, suggests a link with acti-
vated HSCs (Kim et  al. 1998; Li et  al. 2013; Vogel et  al. 
2000). Furthermore, six nuclear retinoid receptors, includ-
ing retinoid acid receptor α, β and γ, and retinoid X recep-
tor α, β and γ, can be detected in HSC-T6 cells (Vogel 
et al. 2000), which is a typical hallmark of quiescent HSCs. 

Hence, HSC-T6 cells can behave both as activated and qui-
escent HSCs. HSC-T6 cells have been successfully used for 
examining signaling pathways involved in collagen expres-
sion and for identifying novel targets for liver fibrosis ther-
apy (Fang et al. 2014; Li et al. 2013; Yang et al. 2008). This 
cell line was also evaluated to express chemotactic, prolif-
erative, adhesion molecules and inflammatory genes in the 
presence of lipopolysaccharide (Liu and Huang 2014).

The biliary stellate cell (BSC) line came from isolated 
HSCs from rats with biliary liver fibrosis (Sung et  al. 
2004). One of the BSC clones generated by spontaneous 
immortalization includes BSC-C10, which expresses mark-
ers of HSC activation, such as α 1 procollagen, desmin, 
α-SMA, GFAP, neural cell adhesion molecule, vascular cell 
adhesion molecule and synaptophysin (Sung et  al. 2004). 
The BSC line has been used to investigate the molecular 
pathways involved in HSC activation (Ramani and Tomasi 
2012; Sung et al. 2004).

PAV-1 cells are immortalized cells with a myofibroblas-
tic appearance. PAV-1 cells express the same HSC activa-
tion markers as HSC-T6 cells, but lack production of colla-
gen III, GFAP, TIMP-1 and TIMP-2 (Sauvant et al. 2002a, 
b). Moreover, PAV-1 cells also express RARα and RXRα 
and are able to take up and metabolize retinol present in 
cell culture media, which can be improved by adding free 
fatty acids (Abergel et  al. 2006; Sauvant et  al. 2002a, b). 
This cell line has been used in ALD research. In the pres-
ence of ethanol, retinol metabolism in PAV-1 cells is dis-
rupted, thereby decreasing levels of lipid droplets in the 
cytoplasm, in turn leading to a more active phenotype (Sau-
vant et al. 2002a, b). Therefore, this cell line is of use for 
studying the role of free fatty acids in ALD.

The immortalized T-HSC/Cl6 cell line was created 
in view of unveiling the apoptotic mechanisms involved 
in HSC activation. These cells express collagen type I, 
desmin, α-SMA, GFAP and TGFβ (Kim et al. 2003). Over 
the years, T-HSC/Cl6 cells have been particularly used for 
investigating molecular actions of anti-fibrotic drugs (Bai 
et al. 2013; Kim et al. 2003; Yin et al. 2007).

Spontaneously immortalized MFBY2 cells have been 
isolated from a cirrhotic rat liver and show typical HSC 
activation markers, including neural cell adhesion mol-
ecule, α-SMA, collagen types I and III, fibronectin and 
TIMP-1 (Isono et  al. 2003). When transfected with an 
adenovirus containing the terminal latency-associated pep-
tide of TGFβ1, MFBY2 cells present a HSC-like cell shape 
with arrested proliferation. In this transduced cell line, pro-
duction of collagens, fibronectin and TIMP-1 levels drasti-
cally decreases, while GFAP production, uptake and esteri-
fication of retinol become manifested (Isono et al. 2003).

The immortalized HSC-PQ cell line arose from ultra-
violet illumination of confluent rat HSC cultures. The 
myofibroblastic phenotype together with the expression of 
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collagen types I and III, fibronectin, laminin, desmin and 
α-SMA (Pan et al. 2005) indicates similarity with activated 
HSCs.

The RNPC cell line was immortalized according to a 
protocol identical to that used for T-HSC/Cl6 cells; how-
ever, this cell line only expresses α-SMA and desmin in 
low levels (Takenouchi et al. 2010), thus limiting their use 
for liver fibrosis research.

More recently, two rat portal myofibroblast cell lines were 
established from male Sprague–Dawley rats, namely RGF-
N2 and RGF. Both cell lines express myofibroblasts markers, 
such as collagen types I and XV, elastin, vimentin, α-SMA, 
TIMP-1, fibulin-2, lysyl oxidase-like 1–4 and cytoglobin. In 
contrast, they lack of the expression of HSC markers, includ-
ing desmin and lecithin–retinol acyltransferase. Moreo-
ver, they also express membrane receptors characteristic of 
myofibroblasts, including the TGFβ receptor 1, PDGF recep-
tor β, epidermal growth factor receptor, insulin growth factor 
1 receptor, TNF receptor 1a and 1b and other receptors, such 
as IL4 receptor α, IL13 receptor α1, Cd200 and Cd9. The 
difference between both cell lines lies with the expression of 
vascular endothelium growth factor receptor 2, which is only 
present in RGF cells (Fausther et al. 2015).

Human cell lines

The LI90 cell line was the first human HSC immortalized 
cell line originating from an epithelioid hemangioendo-
thelioma from the right liver lobe of 55-year-old Japanese 
female following cholecystectomy. LI90 cells display a 
polygonal shape and a high proliferation rate and have the 
ability to overgrow because of the lack of contact inhibi-
tion. LI90 cells produce collagen types I, III, IV, V and 
VI, fibronectin, laminin, vimentin and α-SMA. Moreover, 
upon addition of vitamin A to the cell culture medium, 
LI90 cells form lipid droplets in the cytoplasm (Murakami 
et  al. 1995). This cell line constitutes a promising model 
for the characterization of drug targets in HSC activation. 
However, after a number of passages, these cells undergo 
senescence. This can be counteracted by introduction of 
the human telomerase reverse transcriptase (hTERT) gene 
using a retroviral vector. By doing so, a new cell line, 
called TWNT-4, was generated. TWNT-4 cells express sev-
eral HSC activation markers, including collagen I, α-SMA 
and PDGFβR (Shibata et  al. 2003). TWNT-4 cells have 
been utilized in anti-fibrotic drug testing (Zhen et al. 2006).

Spontaneously immortalized GREF-X cells are HSCs 
isolated from the explants of a normal human liver. These 
myofibroblast-like cells express collagen types I, IV, V and 
VI, fibronectin, laminin, vimentin and α-SMA, and secrete 
MMP-2 (Weill et  al. 1997). In addition, they retain the 
capacity to take up and esterify retinol present in the cell 
culture medium (Weill et al. 1997).

The hTERT-HSC line was developed to tackle the 
senescence of HSCs in culture. This cell line comes from 
HSCs isolated from surgical specimens of normal human 
liver, which have been infected with a VSV-G pseudotyped 
vector encoding hTERT with a cytomegalovirus promoter 
(Schnabl et al. 2002). hTERT-HSC cells produce IL6, IL8, 
IL10, PDGFRα and β, GFAP, vimentin, fibulin 2 and vas-
cular cell adhesion molecule-1. These cells maintain retinol 
uptake and metabolism capacity (Schnabl et al. 2002).

Undoubtedly, the most commonly used human HSC cell 
line is the Lieming Xu (LX)-2, which was created together 
with the LX-1 line. LX-1 and LX-2 cell lines were gener-
ated by TSV40 transfection and, in the case of LX-2, by 
subsequent propagation in low serum conditions (Xu et al. 
2005). Both cell lines show a phenotype similar to activated 
HSCs in vivo and express collagen types I and IV, fibronec-
tin, endoglobin, vimentin, desmin, α-SMA, GFAP, CTGF, 
survivin, p21, βPDGFR, TGFβ receptor types I and II, 
DDR2 and Ob-RL (Weiskirchen et al. 2013; Xu et al. 2005). 
LX-2, but not LX-1, secretes MMP-2 as well as TIMP-1 
upon stimulation with leptin (Xu et  al. 2005). LX-2 cells 
have been recently used to study secretion of ECM com-
pounds. Despite the active phenotype, LX-2 and LX-1 cells 
display a quiescent behavior when grown in Matrigel® (Xu 
et  al. 2005). Because of the capacity to resemble in vivo 
HSC activation, LX-2 cells are considered as a model of 
first choice for investigating the signaling pathways in HSC 
activation (Cao et al. 2006).

Co‑cultures

Although useful, cultures consisting of only one cell type 
are merely of limited use for studying HSC activation and 
liver fibrosis. These monocultures indeed do not consider 
interactions between different cell types, which are criti-
cal for disease progression. Therefore, co-cultures, joining 
two cell types, have been developed (Table 2). These mixed 
cultures typically maintain functionality over extended 
periods of time. The use of co-cultures consisting of pri-
mary hepatocytes and primary HSCs is rare (Krause et al. 
2009; Thomas et al. 2005). Rather, HSC cell lines are used 
to set up such co-culture systems with hepatocytes (Abu-
Absi et  al. 2004). The co-culture configuration keeps the 
HSCs in a quiescent state (Abu-Absi et  al. 2004; Krause 
et  al. 2009; Thomas et  al. 2005). These hepatocyte-HSC 
co-culture systems have been improved by applying a num-
ber of strategies, including seeding between two layers 
of ECM compounds or by culturing in spheroids, both of 
which favor the tridimensional architecture of cells (Bha-
tia et al. 1999). In spheroid co-cultures of rat hepatocytes 
and HSCs, abundant expression of ECM proteins has been 
observed, which supports phenotypic hepatocyte stability 
(Thomas et al. 2005). The latter has also been observed in 
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the spheroid co-culture on a chip model (Lee et al. 2013). 
Recently, the use of co-culture systems based on hepato-
cytes and HSC cell lines demonstrated that the cell-to-cell 
proximity is of high importance to initiate the fibrotic pro-
cess induced by fatty accumulation (Giraudi et  al. 2014). 
By contrast, co-cultures based on primary HSCs and 
Kupffer cells reflect the role of immune cells in the regu-
lation of fibrotic responses (Nieto 2006), while co-cultures 
consisting of HSCs and endothelial cells have shown the 
importance of HSCs in angiogenesis (Wirz et al. 2008).

Precision‑cut liver slices

Precision-cut liver slices (PCLS) are appropriate systems 
for the in vitro study of liver fibrosis, as they maintain the 
complex and many cellular interactions that occur in vivo, 
which also lack in co-cultures. PCLS are liver explants 
with a normal thickness of 100–250 µm and a diameter of 
5 mm, which allows oxygen and nutrients to diffuse. PCLS 
can be incubated in cell culture dishes, which in turn may 
be incorporated in dynamic organ culture systems (Fisher 
and Vickers 2013; Olinga et  al. 1997). In such dynamic 
cultures, PCLS are intermittently exposed to a gas phase or 
cell culture medium by placing them in a glass vial. PCLS 
prepared from healthy and fibrotic livers can be used for 
investigating the early and late phases, respectively, of liver 
fibrosis (Guo et  al. 2007; van de Bovenkamp et  al. 2006; 
Westra et al. 2014b). PCLS are particularly interesting for 
scrutinizing the different mechanisms involved in chemi-
cal induction and reversion of fibrosis (Olinga and Schup-
pan 2013). A general shortcoming of PCLS is the limited 
viability, thus restricting their use to short-term purposes 
(Westra et al. 2014a) (Table 2).

Conclusions and perspectives

Liver fibrosis results from a sustained wound healing 
response to chronic injury. The progression of the disease 
is commonly related to hepatitis virus infection, alcohol 
abuse and NAFLD (Blachier et  al. 2013). The only treat-
ment currently available is liver transplantation, which is, 
however, hampered by high treatment costs and the limited 
number of liver donors (van Agthoven et  al. 2001). Thus, 
there is an urgent need for clinical strategies to manage 
liver fibrosis. Such research necessitates the establishment 
of experimental systems to study liver fibrosis. Today, dif-
ferent in vivo and in vitro models are available that try to 
mimic the complex hepatic cell–cell interactions and sign-
aling pathways, which are involved in all aspects of the dis-
ease. Ideally, each liver fibrosis model should reflect major 
pathological and molecular features of the human dis-
ease, such as parenchymatous centered fibrosis in chronic 

hepatitis. Moreover, in vivo models of liver fibrosis should 
be easy to set up and should be highly reproducible. Unfor-
tunately, such model is presently lacking. The available 
chemical-induced fibrosis models are the closest to these 
ideal characteristics (Smith 2013). They are commonly 
obtained by administration of CCl4 to mice and rats and are 
popular among researchers because of their reproducibil-
ity and ease of handling. Furthermore, these models show 
great similarities with human liver fibrosis, which can pro-
gress from a fibrotic into a cirrhotic stage, and reverse the 
fibrotic process upon withdrawal of the insult (Jiang et al. 
2004). Diet-based animal models are not able to reproduce 
human NAFLD progression into NASH. The absence of 
reproducibility of the main human disease features, namely 
obesity and insulin resistance, renders these models unsuit-
able to study the development of liver fibrosis caused by 
dietary ingredients (Anstee and Goldin 2006). Genetically 
modified animals have been routinely used to confirm 
results obtained with other models and have great potential 
for drug target discovery (Zhang et al. 2014). By contrast, 
the generation of liver fibrosis due to genetic manipulation 
is not possible, with the exception of Mdr2-deficient mice 
that develop biliary fibrosis (Fickert et al. 2002). Neverthe-
less, upon a second insult, such as provided by a HF diet, 
genetically modified animals develop characteristics of 
human NAFLD (Sahai et  al. 2004; Wouters et  al. 2008), 
suggesting a close link between the environment and the 
genetic background of the animals, which has also been 
noticed in humans (Naik et al. 2013). Due to the high prev-
alence of hepatitis virus infections worldwide, infection-
based models have become increasingly important. These 
models are valuable tools to study the involvement of the 
immune system in liver fibrosis and have even been suc-
cessfully used in drug target discovery (McCaffrey et  al. 
2003). In recent years, the use of humanized animal models 
has allowed researchers to gain more mechanistic and clini-
cally relevant insight into the development of liver fibrosis. 
In this context, a protocol to generate humanized mice with 
human immune and liver cells has been described, enabling 
the establishment of viral infections, including HCV (Bil-
ity et al. 2012) and long-term HBV infection that induces 
human immune and fibrotic responses (Bility et  al. 2012, 
2014). Although these models closely resemble human 
liver disease during hepatitis infection, they present several 
limitations, including low hepatocyte repopulation of the 
liver and limited anti-viral immune response in comparison 
with the human situation (Bility et al. 2012).

In vitro models are indispensable for in-depth investiga-
tion of the mechanisms that drive liver fibrosis. Monocul-
ture HSC systems possess a number of limitations, includ-
ing the restricted primary cell supply and the absence of 
heterotypic crucial cell–cell interactions. Co-cultures may 
be better in vitro systems in this regard, as they allow 
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interaction between HSCs and other hepatic cells, neces-
sary to initiate the fibrotic process. Such co-cultures should 
preferably consist of quiescent primary HSCs rather than 
activated HSC cell lines. The latter can be used to study 
the reversibility of the disease in vitro. It can be anticipated 
that new in vitro models of liver fibrosis will be introduced 
in the upcoming years. In this light, a very promising group 
includes stem cell-based systems, involving differentia-
tion of stem cells of different origin into mature and inacti-
vated HSCs (Asahina et al. 2009; Baba et al. 2004; Miyata 
et al. 2008). Furthermore, great promise lies in the use of 
tridimensional human bio-artificial devices that reproduce 
all aspects of liver physiology and hence of liver pathol-
ogy (Nedredal et al. 2007; Wen et al. 2008). Such sophis-
ticated models are of utmost fundamental and translational 
research interest. Indeed, these systems will undoubtedly 
assist in the development of efficient strategies for the 
clinical therapy of liver fibrosis, which in turn will benefit 
human health worldwide.
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