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Introduction

One of the first examples of genetic variation in drug 
metabolism was the N-acetylation of the anti-tubercular 
agent isoniazid, and it later turned out that NAT2 is mainly 
driving this variation (Sim et al. 2008). Enzyme activity 
is divided into three main categories as slow, intermediate 
and rapid acetylation, with some studies combining inter-
mediate and rapid acetylation. Furthermore, NAT2 plays 
an important role in N-acetylation of carcinogenic aromatic 
amines, and slow acetylation status is a risk factor for uri-
nary bladder cancer (Hein 2002).

The coding exon of NAT2 is polymorphic, and the fre-
quencies of the identified mutations are highly variable 
across the world (Sabbagh et al. 2011). A common genetic 
variant tagging NAT2 acetylation status, rs1495741, had 
several findings in genome-wide association studies in 
recent years; the allele representing slow acetylation sta-
tus was associated with risk of urinary bladder cancer 
(Figueroa et al. 2014; Rothman et al. 2010), lower lipid lev-
els (Teslovich et al. 2010; Willer et al. 2013) and increased 
skin fluorescence (Eny et al. 2014).

The first humans arrived in the North American Arctic 
around 6000 years ago, and Greenland was populated by Eski-
mos in several migration waves (Raghavan et al. 2014). Today 
the Greenlandic population is characterized by this Inuit 
ancestry and European ancestry introduced by immigration 
mainly from Denmark and Norway over the last 300 years. 
Comparing Greenlandic genomes with genomes from the 
three major global population groups (Africans, Asians and 
Europeans) showed that they are quite distinct (Pereira et al. 
2015).

Greenland has a high incidence of tuberculosis with 
annually more than 100 new cases per 100,000 individuals 
(Statistics Greenland 2014), and isoniazid is widely used in 
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both prevention and treatment of tuberculosis. Individual 
differences in drug metabolism result in substantial vari-
ation of isoniazid blood levels (Mitchell and Bell 1957). 
Slow NAT2 acetylation status is a risk factor for anti-
tuberculosis drug induced liver injury (Wang et al. 2012), 
a severe side effect of treatment. A study on the pharma-
cokinetics of isoniazid suggested that standard doses are 
only appropriate for intermediate acetylators, while a 50 % 
decrease for slow acetylators and a 50 % increase for rapid 
acetylators could improve both the safety and the efficacy 
of treatment (Kinzig-Schippers et al. 2005), and a subse-
quent clinical trial was able to prove these effects (Azuma 
et al. 2013). We therefore decided to determine the NAT2 
acetylation status of 1556 Greenlandic individuals based on 
genetic data from the NAT2 region to investigate the poten-
tial of NAT2 screening in Greenlandic tuberculosis patients.

Materials and methods

Subjects

In 2013, we recruited individuals from seven of the twelve 
largest towns in Greenland, with populations ranging from 
1181 (Upernavik) to 16,454 (Nuuk) (Statistics Greenland 
2013). Together, more than 31,000 individuals of the total 
population of 57,000 were living in these seven towns. Par-
ticipants had to be born in Greenland and had to be older 
than 16 years. Individuals were identified through the 
Greenlandic Civil Registration System and received a letter 
inviting them to participate. This study was based on 1556 
individuals with genotype information available. Basic 
demographic information of the participants is given in 
Table 1. The Commission for Scientific Research in Green-
land (approval No. 2013-17) and the Danish Data Protec-
tion Agency approved the study. Written and informed 

consent was given by all participants and by parents for 
participants under 18 years.

Genotyping, quality control, imputation and haplotype 
estimation

All 1556 individuals were genotyped on the Illumina 
Human Omni Express Exome chip. A total of 640,842 SNPs 
passed quality control; the other SNPs were excluded based 
on a missing rate >2 %, deviation from Hardy–Weinberg 
equilibrium (P < 1 × 10−6), minor allele frequency <1 % or 
discrepancies (P < 1 × 10−6) in allele frequencies between 
sexes. Subsequently, we imputed unobserved genotypes 
using phased haplotypes from the integrated phase I release 
of the 1000 Genomes Project (http://www.1000genomes.
org/) with the software packages SHAPE- 
IT (Delaneau et al. 2012) and IMPUTE2 (Howie et al. 
2009). This study focused on imputed variants on chromo-
some 8p22. Accuracy of the estimated allele counts was 
assessed by SNPTEST (Marchini and Howie 2010), and all 
reported SNPs had average maximum posterior probabili-
ties of 1 (indicating that there was no uncertainty) and an 
information measure of 1 (indicating perfect information). 
Haplotype frequencies were estimated with the expecta-
tion–maximization algorithm implemented in PLINK (Pur-
cell et al. 2007).

Assessment of NAT2 acetylation status

We studied acetylation status based on previously described 
NAT2 SNP panels (Hein and Doll 2012). For the 2-, 3- and 
4-SNP panels and the tag-SNP rs1495741, acetylation 
status was determined by directly counting the number 
of slow haplotypes/alleles per individual. For the 7-SNP 
panel, we retrieved acetylation status probabilities for the 
21 observed genotype combinations from reference data 
(Kuznetsov et al. 2009). All slow and intermediate acetyla-
tors were assessed with a probability of at least 99.6 %; for 
rapid acetylation status, all probabilities were >97.9 %.

Determination of Inuit ancestry

The Greenlandic population has become genetically 
admixed over the last centuries after Northern European 
visitors settled on the island. Therefore, we investigated 
admixture with the software tool ADMIXTURE (Alex-
ander et al. 2009) based on a genome-wide set of 43,336 
independent SNPs. The results confirmed admixture with 
two major components referring to Inuit and European 
ancestry. We estimated the proportions of Inuit and Euro-
pean ancestry of all individuals to investigate differences in 
NAT2 acetylation status between groups with different lev-
els of Inuit ancestry.

Table 1  Demographics of 1556 Greenlandic individuals in the study

Variable N Percentage

Sex: female 964 61.0

Age (years) Mean 33.7 (SD 10.1)

Median 32.0 (range 16–69)

Recruitment site

Upernavik 85 5.5

Uummannaq 86 5.5

Sisimiut 374 24.0

Nuuk 480 30.8

Qaqortoq 196 12.6

Nanortalik 168 10.8

Tasiilaq 167 10.7

http://www.1000genomes.org/
http://www.1000genomes.org/


885Arch Toxicol (2016) 90:883–889 

1 3

Results

Coverage of NAT2 variants

The current NAT2 nomenclature describes human NAT2 
alleles/haplotypes based on combinations of 38 exonic 
variants (Arylamine N-acetyltransferase Gene Nomencla-
ture Committee 2013). Imputation provided high-accuracy 
information for 13 of the described SNPs and the tagging 
SNP rs1495741 (Table 2); seven SNPs were monomorphic 
in our study group. Genotype frequencies for the 14 SNPs 
are given in Supplementary Table 1.

Tagging of NAT2 acetylation status and comparison 
of different SNP panels

We investigated the accuracy of several previously stud-
ied NAT2 SNP combinations (Hein and Doll 2012) in 
assessing NAT2 status, i.e., the tag-SNP rs1495741 
and the panels comprised of two SNPs (rs1041983 
and rs1801280), three SNPs (rs1799929, rs1799930 
and rs1799931), four SNPs (rs1801279, rs1801280, 
rs1799930 and rs1799931) and seven SNPs (rs1801279, 
rs1041983, rs1801280, rs1799929, rs1799930, rs1208 
and rs1799931). The SNP rs1801279 was monomor-
phic in our samples, but we kept the naming 4-SNP and 
7-SNP panel. Supplementary Table 2 provides the link-
age disequilibrium between the seven polymorphic SNPs 
in all Greenlandic samples.

Table 3 lists inferred slow, intermediate and rapid acety-
lation status for the 1556 individuals. Concordance between 
the different panels was high; the 2-SNP and 4-SNP pan-
els agreed perfectly with the reference 7-SNP panel, while 
slow acetylation status agreed in 98.9 and 97.8 % of indi-
viduals for the tag-SNP rs1495741 and the 3-SNP panel, 
respectively. Supplementary Table 3 additionally provides 
estimated haplotype frequencies for the six polymorphic 
SNPs of the 7-SNP panel.

Variation of NAT2 acetylation status in Greenland

Overall, we observed 17.5 % slow acetylators in the study 
group. The Greenlandic population is admixed with two 
major components: an Inuit part reaching back to the first 
migration waves from North America and a Northern 
European part resulting from interaction with Denmark 
and Norway in the last 300 years (Table 4). We split the 
study group in three parts according to the percentage of 
Inuit ancestry and observed a frequency of 12.2 % slow 
acetylators among individuals with a high percentage of 

Table 2  Imputed allele frequencies for 14 NAT2 SNPs imputed with 
high accuracy based on 1000 Genomes reference data

* Position given according to the 19th version of the human reference 
genome from the Genome Reference Consortium (hg19)

** Frequency is given for the variant (second) allele in the base-pair 
change column

*** Number of individuals with genotype calls, “–” indicates SNPs 
not on the chip

Base-pair change rs name Position* Frequency** N***

70T>A rs45477599 18,257,583 0.000 –

191G>A rs1801279 18,257,704 0.000 1556

282C>T rs1041983 18,257,795 0.163 1555

341T>C rs1801280 18,257,854 0.243 1554

403C>G rs12720065 18,257,916 0.000 –

481C>T rs1799929 18,257,994 0.240 1555

578C>T rs79050330 18,258,091 0.000 –

590G>A rs1799930 18,258,103 0.150 1556

609G>T rs45618543 18,258,122 0.000 –

683C>T rs45518335 18,258,196 0.000 –

766A>G rs55700793 18,258,279 0.000 –

803A>G rs1208 18,258,316 0.246 1551

857G>A rs1799931 18,258,370 0.012 1556

+14 kb G>A rs1495741 18,272,881 0.406 1552

Table 3  Inferred NAT2 
acetylation status of 1556 
Greenlandic individuals based 
on different tagging SNP panels 
and concordance between status 
determined by the 7-SNP set 
and the other sets

* Percentage of individuals with specific NAT2 status based on the 7-SNP set who are grouped in the same 
category by the other SNP set

Panel NAT2 status Concordance*

Slow Intermediate Rapid Slow Intermediate Rapid

7-SNP 273
17.5 %

716
46.0 %

567
36.4 %

Ref. Ref. Ref.

4-SNP 273
17.5 %

716
46.0 %

567
36.4 %

100 % 100 % 100 %

3-SNP 267
17.2 %

718
46.1 %

571
36.7 %

97.8 % 99.4 % 100 %

2-SNP 273
17.5 %

716
46.0 %

567
36.4 %

100 % 100 % 100 %

rs1495741 273
17.5 %

716
46.0 %

567
36.4 %

98.9 % 99.3 % 99.6 %
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Inuit ancestry, which is substantially lower than the 25.6 % 
observed in individuals with <50 % Inuit ancestry.

Figure 1 illustrates the distribution of NAT2 acetylation 
status in Greenland. Slow acetylation status was less fre-
quent in East Greenland, where there was also a larger frac-
tion of Inuit ancestry. This can be explained by the fact that 
East Greenland was more isolated over the last 300 years, 
with European visits concentrating on the West Coast; 

especially, Tasiilaq stood out with an Inuit ancestry of 94 % 
and only 10 % slow acetylation status.

Discussion

Greenland has an admixed population with a dominat-
ing Inuit and an additional European component. The 
frequency of specific genetic variants in Greenland can-
not easily be inferred from public databases of the major 
human populations. The global variation in NAT2 acetyla-
tion status has important implications for the metabolism 
of the anti-tuberculosis drug isoniazid, and the high Green-
landic incidence of tuberculosis motivated us to investigate 
NAT2 gene variants. The fraction of 17.5 % slow acetyla-
tors observed in Greenland is one of the lowest frequencies 
in the world, driven by the Inuit ancestry. The observed 
NAT2 acetylation frequencies were close to figures from 
North-East Asia (Sabbagh et al. 2011), which fits with the 
current opinion that Greenland was populated from North 
America and the first humans coming to North America 
originally came from Siberia (Raghavan et al. 2014).

Even though substantial individual differences in iso-
niazid metabolism related to NAT2 acetylation status are 
known for more than 15 years (Parkin et al. 1997) and 
NAT2 genotypes explain 88 % of the variability in isonia-
zid clearance (Kinzig-Schippers et al. 2005), assessment of 
NAT2 status is not routine clinical practice yet. Increased 
dosages for individuals with rapid acetylation could reduce 
treatment failure rates. On the other hand, a meta-analysis 
found a 4.7-fold increased risk of liver injury after anti-
tuberculosis treatment in slow acetylators compared with 
rapid acetylators (Wang et al. 2012), and a lower dosage 
for these individuals could be indicated. A recent clinical 
trial investigated a NAT2 genotype-guided treatment of 
tuberculosis (Azuma et al. 2013) and found that accounting 
for NAT2 status reduced the rate of early treatment failures 
in rapid acetylators compared with standard treatment (15 
vs. 38 %). In the slow acetylation group, none of the seven 
patients with genotype-guided lower dosage experienced 
liver injury during the 6 month of follow-up, whereas there 
were seven cases of liver injury among the nine patients on 
standard therapy. The clinical trial was carried out in Japan, 
and the study group showed a distribution of NAT2 status 
comparable to Greenland.

Our study relied on a good characterization of NAT2 
acetylation status based on the established 7-SNP panel. 
Additional rare variants associated with slow acetylation 
are known (Arylamine N-acetyltransferase Gene Nomen-
clature Committee 2013), and we cannot rule out that these 
variants and maybe even Inuit-specific variants are pre-
sent in Greenland. Therefore, the agreement between the 
inferred NAT2 acetylation status and actual enzyme activity 

Table 4  NAT2 acetylation status of 1556 Greenlandic individuals 
based on the 7-SNP set in relation to Inuit ancestry

Inuit ancestry mean (SD) N NAT2 status

Slow Intermediate Rapid

High (>70 %)
87.8 % (11.1 %)

574 70
12.2 %

231
40.2 %

273
47.6 %

Medium (50–70 %)
60.0 % (5.5 %)

506 81
16.0 %

248
49.0 %

177
35.0 %

Low (<50 %)
36.1 % (11.3 %)

476 122
25.6 %

237
49.8 %

117
24.6 %

All (0–100 %)
63.0 % (23.4 %)

1556 273
17.5 %

716
46.0 %

567
36.4 %

Fig. 1  Pie charts with frequencies of slow, intermediate and rapid 
acetylation status at the different recruitment sites, and the respective 
percentage of Inuit ancestry (IA). Figure generated with R (www.r-
project.org)

http://www.r-project.org
http://www.r-project.org
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has to be studied before treatment regimens based on geno-
types can be introduced. Several methods are available for 
measuring enzyme activity directly (Hein and Doll 2012), 
and the results showed good concordance with genetically 
determined NAT2 acetylation status (Cascorbi et al. 1995; 
Chen et al. 2006; Grant et al. 1984; Hein and Doll 2012; 
Kinzig-Schippers et al. 2005; Parkin et al. 1997; Selinski 
et al. 2011; Smith et al. 1997).

Overall, we provide a first overview of NAT2 acetyla-
tion status in Greenland. The frequency of rapid acetylation 
is particularly high in East Greenland, where the incidence 
of tuberculosis is highest. Both clinical trial simulations 
(Gumbo et al. 2007) and an actual clinical trial provided 
evidence that increased doses of isoniazid can reduce treat-
ment failure. At the advent of personalized medicine, the 
optimizing of isoniazid dosage based on NAT2 genotypes 
in Greenland might be a practicable example.
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