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remodeling and heart failure. Treatment strategies for heart 
failure commonly include diuretics, angiotensin convert-
ing enzyme inhibitors, angiotensin II receptor blockers and 
β-blockers; however, mortality rates remain high. Here, we 
discuss new therapeutic approaches (e.g., RNA-based thera-
pies, dietary supplementation, small molecules) either enter-
ing clinical trials or in preclinical development. Finally, we 
address the challenges that remain in translating these discov-
eries to new and approved therapies for heart failure.
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Overview and clinical implications

Heart failure (HF) is a debilitating condition in which the heart 
cannot sustain the supply of oxygenated blood to the body. 
This can result as a consequence of exposure to a chronic car-
diac stress or injury including pressure or volume overload 
(e.g., hypertension, valvular heart disease), myocardial infarc-
tion (MI) or ischemia, as well as inherited diseases. The heart 
initially undergoes a compensatory response to the additional 
load or cardiac insult by increasing in size and mass to nor-
malize wall stress and allow normal cardiovascular function at 
rest (Grossman et al. 1975). This cardiac enlargement is typi-
cally referred to as pathological cardiac hypertrophy (as a con-
sequence of MI, the heart undergoes regional hypertrophy). 
During the compensatory stage of hypertrophy, the increase in 
heart size and mass is considered to be accompanied by bio-
chemical, molecular, structural and metabolic changes in order 
to maintain cardiac function. Over time, however, chronic 
stress or disease will result in ventricular dilation, fall in con-
tractile function and eventually progress to HF (Fig. 1).

Abstract The onset of heart failure is typically preceded 
by cardiac hypertrophy, a response of the heart to increased 
workload, a cardiac insult such as a heart attack or genetic 
mutation. Cardiac hypertrophy is usually characterized by an 
increase in cardiomyocyte size and thickening of ventricular 
walls. Initially, such growth is an adaptive response to main-
tain cardiac function; however, in settings of sustained stress 
and as time progresses, these changes become maladap-
tive and the heart ultimately fails. In this review, we discuss 
the key features of pathological cardiac hypertrophy and the 
numerous mediators that have been found to be involved in 
the pathogenesis of cardiac hypertrophy affecting gene tran-
scription, calcium handling, protein synthesis, metabolism, 
autophagy, oxidative stress and inflammation. We also discuss 
new mediators including signaling proteins, microRNAs, long 
noncoding RNAs and new findings related to the role of cal-
cineurin and calcium-/calmodulin-dependent protein kinases. 
We also highlight mediators and processes which contribute to 
the transition from adaptive cardiac remodeling to maladaptive 
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Cellular, molecular and biochemical changes associated 
with cardiac hypertrophy

The heart contains multiple cell types including cardio-
myocytes (heart muscle cells, approximately 30 % of total 
cell number but account for 70–80 % of the heart’s mass), 
fibroblasts, vascular smooth muscle cells, endothelial cells 
and immune cells (Bernardo et al. 2010). As most car-
diomyocytes are unable to divide, cardiac hypertrophy is 
associated with cardiomyocyte enlargement (Porrello et al. 
2011; Soonpaa and Field 1998). As described in subsequent 
sections, cardiac hypertrophy is accompanied by alterations 
within cardiomyocytes including calcium handling, metab-
olism and gene expression, as well as cell death (e.g., apop-
tosis and autophagy), and changes in extracellular matrix 
(ECM) (fibrosis) and angiogenesis (Figs. 1, 2).

Calcium handling

Contraction of the heart is regulated by cyclic changes in 
calcium (Ca2+) within cardiomyocytes. During cardiac 
excitation–contraction coupling, a high action potential 
causes Ca2+ to enter the cardiomyocyte via L-type Ca2+ 
channels (LTCC) located within t-tubules (Fig. 2). Binding 
of Ca2+ to type 2 ryanodine receptors (RyR2) in oppos-
ing sarcoplasmic reticulum (SR) membranes leads to Ca2+ 
release from the SR, a process known as Ca2+-induced 
Ca2+ release (Bers 2014). An increase in intracellular Ca2+ 
concentration ([Ca2+]i) enhances binding of Ca2+ to tro-
ponin C within the thin filament of sarcomeres (basic con-
tractile unit of the heart). This alters protein–protein inter-
actions within the thin filament, promoting the formation 
of cross bridges between the thick and thin filaments and 

resulting in contraction (Solaro 2010). Relaxation occurs 
when Ca2+ is pumped back into the SR by sarco/endoplas-
mic reticulum Ca2+-ATPase (SERCA2a) or out of the cell 
by the Na+/Ca2+ exchanger (NCX) (Bers 2006). SERCA2a 
activity is regulated by phospholamban (PLN), a protein 
that inhibits SERCA2a when in its dephosphorylated form. 
Upon phosphorylation by protein kinase A (PKA) or Ca2+/
calmodulin-dependent protein kinase II (CaMKII), PLN 
alleviates the inhibitory effects of PLN on SERCA2a pump 
function (Kranias and Hajjar 2012).

In the failing heart, calcium-handling abnormalities 
contribute to contractile dysfunction (Feldman et al. 1987; 
Gwathmey et al. 1987; Lindner et al. 2002; Yeh et al. 
2008). Impaired SERCA2a function resulting from reduced 
expression of SERCA2a (Hasenfuss 1998) or reduced PLN 
phosphorylation (Schwinger et al. 1999) leads to accumu-
lation of Ca2+ in the cytosol, which prevents relaxation 
and reduces the pool of Ca2+ available for release from the 
SR during systole. Downregulation of SERCA2a has been 
observed in numerous experimental models of HF (Kawase 
et al. 2008; Kiss et al. 1995; O’Rourke et al. 1999) as well 
as in the failing human heart (Arai et al. 1993; Hasenfuss 
et al. 1994).

Ca2+ leak from the SR due to dysfunctional RyR2 
may contribute to contractile dysfunction by depleting SR 
Ca2+ stores, elevating [Ca2+]i, increasing the incidence of 
arrhythmias and increasing the cell’s energy requirements 
(to extrude the leaked Ca2+ or pump it back into the SR) 
(Bers 2014). Hyperphosphorylation of RyR2 has been 
observed in the failing human heart (Marx et al. 2000; Res-
press et al. 2014); however, the precise role of RyR2 phos-
phorylation in the pathogenesis of HF and arrhythmias is 
the subject of intense debate (Dobrev and Wehrens 2014; 

Fig. 1  Processes and main 
signaling pathways involved 
in cardiac remodeling. A 
schematic displaying the 
morphological, molecular and 
biochemical changes and altered 
signaling pathways associ-
ated with the transition from 
compensated hypertrophy to 
decompensated hypertrophy and 
heart failure. β-AR β-adrenergic 
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calmodulin-dependent protein 
kinase, ERK extracellular 
signal-regulated kinase, gp130 
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Houser 2014). Enhanced phosphorylation of RyR2 may 
result from increased phosphorylation by CaMKII or PKA, 
or reduced activity of protein phosphatase 1 (PP1) or pro-
tein phosphatase 2A (PP2A), all of which target RyR2 and 
are dysregulated in HF (Ather et al. 2013).

Dysregulation of t-tubules also appears to contribute to 
contractile dysfunction in settings of HF, as close associa-
tion of LTCC in t-tubules with RyR2 in opposing SR mem-
branes is necessary for rapid, synchronized Ca2+ release 
from the SR (Ibrahim et al. 2011). Crossman and col-
leagues used high-resolution fluorescence imaging to inves-
tigate t-tubule organization in healthy and failing human 
hearts (Crossman et al. 2011). In healthy myocardium, the 
t-tubular network was highly organized, with t-tubules uni-
formly spaced along the length of the cardiomyocyte. In 
contrast, the t-tubular system in failing myocardium was in 

disarray and was associated with a reduction in the density 
of RyR2 clusters as well as reduced colocalization between 
RyR2 and LTCC.

Metabolism in the normal heart and stressed heart

Metabolism in the normal heart

Each day the normal adult heart consumes 15–20 times 
its weight in adenosine triphosphate (ATP) (Kolwicz et al. 
2013). Mitochondria are the organelles within cardiomyo-
cytes responsible for generating ATP, allowing cardiomyo-
cytes and the heart to continuously contract. Due to this 
high energy demand on the heart, mitochondria constitute 
at least 30 % of the cardiomyocyte volume (Schaper et al. 
1985). The heart derives the majority (60–90 %) of its 
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energy source from fatty acids (FAs), with glucose and lac-
tate providing the remaining 10–40 % (Stanley and Chan-
dler 2002). As conditions such as cardiac workload, oxygen 
supply and nutritional supply are altered, the heart is able 
to adapt and rely on varying proportions of substrates as a 
source of ATP to ensure that a constant supply of energy 
can be generated (Hue and Taegtmeyer 2009).

Circulating FAs are supplied to the heart via two sources 
(Fig. 3). The first form is as a component of triacylglyc-
erol (TAGs) contained in circulating chylomicrons from 
the liver or very low density lipoprotein (VLDL) from the 
gut, or secondly as free fatty acids (FFAs) bound to plasma 

albumin. Chylomicron and VLDL-TAGs undergo lipopro-
tein lipase (LpL)-mediated lipolysis to release the FFAs, 
which enter the cardiomyocyte either through fatty acid 
translocase (CD36) or passive ‘flip-flop’ (Bharadwaj et al. 
2010). FFAs from albumin can enter the cardiomyocyte 
either by passive diffusion or via a protein carrier-mediated 
pathway such as CD36 fatty acid binding protein or fatty 
acid transport protein 1/6 (Lopaschuk et al. 2010).

Upon entry into the cytosol, the majority of FFAs 
undergo β-oxidation in the mitochondria for ATP produc-
tion, while the remaining FFAs undergo esterification to 
TAGs and are stored in lipid droplets (Kienesberger et al. 
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2013). Myocardial TAGs serve as a critical fuel storage 
depot and are also an important endogenous source of FAs 
utilized for ATP generation (Saddik and Lopaschuk 1991).

Metabolism in a setting of pathological cardiac 
hypertrophy

Pathological cardiac hypertrophy is associated with a 
decline in FA oxidation and a shift to glucose utiliza-
tion (Figs. 1, 3). This is often referred to as a ‘substrate 
switch’ (Taegtmeyer 2002). Concurrent to this switch is 
the change in expression and activity of transcriptional 
proteins involved in glycolysis and FA oxidation such as 
peroxisome proliferator-activated receptor-α (PPARα), 
PPARγ co-activator-1α (PGC1-α) and hypoxia-inducible 
factor 1-α (HIF1-α) (Allard et al. 1994; el Alaoui-Talibi 
et al. 1992; Lopaschuk et al. 2010; Morissette et al. 2003). 
These changes act in concert leading to an increase in glu-
cose uptake, glycolysis rates and decrease in FA oxidation. 
It has been noted in several studies, however, that glucose 
oxidation does not increase, leading to elevated uncoupling 
of glycolysis and glucose oxidation (Akki et al. 2008; Lyd-
ell et al. 2002; Sorokina et al. 2007). This creates a severe 
limitation in acetyl-coA availability for the TCA cycle to 
sustain sufficient ATP production. Anaplerosis is a mecha-
nism suggested to occur as a ‘quick fix’ to maintain meta-
bolic homeostasis by introducing carbons at various sites in 
the tricarboxylic acid (TCA) cycle (Sorokina et al. 2007). 
In the long run, however, as this process consumes ATP, it 
will result in net energy loss.

Hypertrophy results in increased cardiac workload and 
the need for additional ATP. It also increases the diffusion 
distance of oxygen and other substrates, eventually result-
ing in hypoxia (Friehs and del Nido 2003). The substrate 
switch noted earlier is hence thought to be more favora-
ble and provides a protective mechanism as ATP genera-
tion from glucose requires less oxygen (6 mol oxygen per 
mol glucose) as compared to FAs (23 mol oxygen per mol 
palmitic acid) (Stanley et al. 2005). This resembles what 
occurs in fetal cardiac development, where glucose is used 
as the primary source of energy due to underdeveloped FA 
transport and metabolism enzymes as well as limited oxy-
gen supply (Bernardo et al. 2010).

Eventually, the increased energy demands of pathologi-
cal hypertrophy lead to the depletion of the energy reserve 
compound observed in reduced phosphocreatine (PCr)/ATP 
ratios (Liao et al. 1996; Tian et al. 1997). PCr is a small 
molecule that is part of the creatine kinase energy shuttle 
that transfers energy from ATP generated from the mito-
chondria to myofibrils (Fig. 3). Mitochondrial creatine 
kinase catalyzes the transfer of the high-energy phosphate 
bond from ATP to creatine to form PCr and adenosine 
diphosphate (ADP). PCr diffuses from the mitochondria 

into the myofibrils where the myofibril isoform of cre-
atine kinase reforms ATP from PCr. Free creatine which is 
created from the removal of phosphate from PCr diffuses 
back into the mitochondria (Neubauer 2007). In a set-
ting of pathological hypertrophy when increased energy 
requirements outstrip energy supply, the creatine kinase 
system serves as an energy buffer. PCr levels decrease in 
order to maintain ATP levels at the cost of elevated levels 
of ADP, which have been shown to inhibit many intracel-
lular enzymes leading to an impairment of cardiac contrac-
tility (Neubauer 2007). This results in the progression into 
HF, where myocardial ATP levels are significantly reduced 
to 30–40 %. Factors including a decrease in creatine, PCr 
levels and creatine kinase activity contribute to impaired 
energy delivery to the myofibrils, further exacerbating con-
tractile dysfunction and loss of ATP reserves. Decreased 
PCr/ATP ratios are observed in patients with HF and have 
been reported to be better predictors of mortality than ejec-
tion fraction (Neubauer et al. 1997).

Cardiac fibrosis

Fibrosis is the net accumulation of ECM proteins (consist-
ing of collagens, fibronectin, matrix metalloproteinases 
(MMPs) and tissue inhibitor of matrix metalloproteinases 
(TIMPs)) in the heart which is a common feature of patho-
logical cardiac conditions (Kong et al. 2014) (Fig. 2). In a 
normal heart, cardiac fibroblasts which are located within 
the ECM surrounding cardiomyocytes, produce the ECM 
components, primarily collagen type I and III. This is a 
constant process in the heart, with new collagen being 
synthesized and old collagen being degraded. Fibroblasts 
maintain the fine balance in collagen levels via the secre-
tion of cytokines, growth factors and MMPs (Baum and 
Duffy 2011). The ECM provides an organized network 
around the cardiomyocytes, which not only serves as scaf-
folding for the cellular components, but also helps support 
a range of mechanical, chemical and electrical processes 
that maintain homeostasis and coordinate contractile func-
tion and electrical coupling between cardiomyocytes (Mar-
tin and Blaxall 2012).

Cardiomyocyte death (e.g., in response to MI) as well 
as pathological stimuli (such as chronic pressure or vol-
ume overload) will trigger pro-fibrotic pathways. There 
are various cell types that can contribute to fibrosis directly 
by producing matrix proteins (fibroblasts) or indirectly by 
secreting fibrogenic mediators [macrophages, mast cells, 
lymphocytes, cardiomyocytes and vascular cells, e.g., 
secretion of tumor necrosis factor α (TNF-α), transforming 
growth factor β (TGF-β) and endothelin-1 (ET-1)]. The dif-
ferentiation of cardiac fibroblasts to myofibroblasts is also 
a crucial event that drives the fibrotic response (Kong et al. 
2014). Myofibroblasts have enhanced proliferative and 
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secretory properties that migrate to sites of injury, playing 
an important role in tissue repair and wound healing (Mar-
tin and Blaxall 2012). Chronic stress, however, results in 
the persistent activation and proliferation of myofibroblasts, 
leading to the aberrant deposition (interstitial/replacement) 
and subsequent accumulation of collagen in the heart. This 
causes mechanical stiffening, contributing to diastolic dys-
function and can progress to systolic dysfunction. Fibrosis 
also promotes arrhythmogenesis by impairing conduction, 
which induces slowing of electrical conduction velocities 
and subsequently generating re-entry circuits (Khan and 
Sheppard 2006).

Oxidative stress

Oxidative stress occurs when there is an imbalance between 
reactive oxygen species (ROS) produced and the heart’s 
ability to detoxify or remove the reactive intermediates by 
intrinsic antioxidant systems (e.g., superoxide dismutase, 
catalase and glutathione peroxidase) (Nordberg and Arner 
2001). Excessive ROS production has been associated 
with pathological cardiac hypertrophy and HF in humans 
and animal models (Huynh et al. 2014; Keith et al. 1998; 
McMurray et al. 1993; Murdoch et al. 2006). The three 
major sources of ROS in the heart include: (1) the mem-
brane-bound enzyme complex nicotinamide-adenine dinu-
cleotide phosphate (NADPH) oxidase, (2) mitochondrial 
respiratory chain and (3) uncoupled endothelial nitric oxide 
synthase (eNOS). Elevated ROS from each of these sources 
have been associated with cardiac disease, and studies in 
which ROS have been genetically or pharmacologically 
regulated suggest elevated ROS contribute to adverse car-
diac remodeling (Huynh et al. 2014).

Studies have demonstrated that hypertrophic stimuli 
such as angiotensin II (Ang II), ET-1, catecholamines, 
cytokines and biomechanical stretch can induce increased 
ROS production in cardiomyocytes (Laskowski et al. 2006; 
Liu et al. 2004), and this can activate a range of hyper-
trophic signaling mediators and transcription factors such 
as ERK1/2 and nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) (Takimoto and Kass 2007). 
Elevated ROS produced by NADPH oxidase or the mito-
chondria in settings of cardiac pathology can contribute to 
(or are associated with) the development of pathological 
hypertrophy, fibrosis, depressed contractility and apopto-
sis (Dai et al. 2011; Murdoch et al. 2006; Schwarzer et al. 
2014; Takimoto and Kass 2007) (Fig. 2).

Balance between cardiomyocyte survival 
and death-apoptosis, necrosis and autophagy

Depending on the type of stress and severity, cells will 
respond by activating pathways/mechanisms, which 

promote cell survival or elicit cell death to remove dam-
aged cells. A key feature which characterizes the transi-
tion from compensated heart growth to decompensated 
heart growth and HF is cardiomyocyte cell death. Thus, it 
has been proposed that inhibiting modes of cell death may 
represent a promising therapeutic approach. Types and/or 
processes associated with cell death include necrosis, apop-
tosis and autophagy (Diwan and Dorn 2007; Konstantinidis 
et al. 2012) (Fig. 2).

Apoptosis is morphologically defined by cell shrinkage, 
fragmentation into membrane-enclosed dense apoptotic 
bodies (Martelli et al. 2001) and phagocytosis of these bod-
ies without inducing an inflammatory response (Diwan and 
Dorn 2007; Konstantinidis et al. 2012). In the normal heart 
where cellular regeneration is limited, apoptosis occurs at 
extremely low rates (Soonpaa and Field 1998). However, in 
a setting of heart disease, the rate of cardiomyocyte apop-
tosis can increase in the human heart (Hein et al. 2003; 
Narula et al. 1996; Olivetti et al. 1997) and based on animal 
studies contributes to decompensated hypertrophy and HF 
(Hayakawa et al. 2003; Wencker et al. 2003). In contrast 
to apoptosis, necrosis is associated with loss of membrane 
integrity, swelling of organelles and cells, and an inflamma-
tory response (Diwan and Dorn 2007; Konstantinidis et al. 
2012). Mediators of apoptosis and necrosis by death recep-
tor pathways (extrinsic, e.g., binding of cytokines such as 
tumor necrosis factor α (TNF-α) to cell surface receptors 
and subsequent activation of caspases), mitochondrial path-
ways (intrinsic, involving proapoptotic mitochondrial pro-
teins, e.g., Bax and Bak, and release of cytochrome C) and 
interactions have previously been reviewed in detail (Kon-
stantinidis et al. 2012).

Autophagy is a cellular process recognized to degrade 
and recycle aged proteins and clear damaged organelles 
via a lysosomal-mediated pathway (Bernardo et al. 2010; 
Wang et al. 2012). In a setting of cardiac stress, autophagy 
levels are considered to increase to account for the synthe-
sis of additional proteins, contributing to increased myo-
cyte size and sarcomeric remodeling (Rothermel and Hill 
2008). The increased autophagy protects cardiomyocytes 
by clearing ubiquitinated protein aggregation that would 
otherwise accumulate when the degradative capacity of the 
proteasome is surpassed and proteotoxicity would occur 
(Tannous et al. 2008). Regulation of key autophagy pro-
teins (Atg5 and Atg7) in the heart using genetic mouse 
models suggest that autophagy protects against pathologi-
cal remodeling and contractile dysfunction (Bhuiyan et al. 
2013; Nakai et al. 2007). Furthermore, knockout (KO) of 
atrogin-1, a muscle-specific ubiquitin ligase that targets 
signaling proteins involved in cardiac hypertrophy for deg-
radation in mice, leads to impaired autophagy, and accumu-
lation of intracellular protein aggregates eventually leading 
to cardiomyocyte death (Zaglia et al. 2014). However, it 
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has also been suggested that excessive levels of autophagy 
may lead to cellular dysfunction and cell death (Maejima 
et al. 2014).

Initially, acute cellular responses to a stress including 
the heat shock protein (Hsp) response, unfolded protein 
response, DNA damage response and response to oxidative 
stress are elicited to provide protection (Fulda et al. 2010). 
However, chronic and/or excessive exposure leads to cell 
death. The mechanism by which the cell dies appears to be 
dependent on the type of stress, intensity and time frame 
of exposure (Fulda et al. 2010). Below, we provide one 
example of the balance between adaptive and maladaptive 
responses related to ROS produced by the mitochondria.

As described earlier, mitochondria are responsible for 
providing cardiomyocytes with a continuous supply of 
ATP, but also participate in regulating cell death due to the 
production of ROS (Kubli and Gustafsson 2012). Mito-
chondria produce ATP largely from the electron transport 
chain located on the inner mitochondrial membrane during 
oxidative phosphorylation. However, electron leakage from 
the electron transport chain together with the production of 
byproducts of ATP synthesis (O2

− and H2O2) makes mito-
chondria a source of ROS (Wallace 1999, 2005). Under 
normal physiological conditions, ROS act as mediators to 
induce adaptive responses in the heart (Song et al. 2014), 
and the formation of excessive ROS is prevented by intrin-
sic antioxidant systems within the cell (Giordano 2005). 
However, in settings of chronic cardiac stress which dam-
age mitochondrial proteins, ROS production increases 
leading to mitochondrial dysfunction. To adapt to the cel-
lular stress, mitochondria will undergo fusion, fission and 
mitochondrial autophagy (mitophagy, a specialized form of 
autophagy to eliminate damaged mitochondria). Increased 
mitophagy is considered an early response to promote 
survival by removing damaged mitochondria. However, 
in a setting of excessive mitochondrial damage, apoptosis 
becomes dominant and is followed by cell death (Dorn and 
Kitsis 2015; Kubli and Gustafsson 2012).

Inflammation

A pathological insult such as pressure overload or MI can 
activate the innate immune system and trigger inflamma-
tion (Baumgarten et al. 2002; Vanderheyden et al. 2005) 
(Fig. 2). Many studies have demonstrated increased levels 
of the pro-inflammatory cytokine TNF-α in animal models 
of cardiac disease (Aker et al. 2003; Marin-Garcia et al. 
2001; Recchia et al. 2000) and patients with HF (Aukrust 
et al. 1999; Kubota et al. 1998; Levine et al. 1990; Munger 
et al. 1996; Petretta et al. 2000; Torre-Amione et al. 1996). 
More recently, other cytokines such as toll-like receptors 
(TLR) and interleukin (IL) were shown to be involved 
in pathological cardiac remodeling and contribute to 

impairment of contractile function, increased generation of 
ROS, apoptosis and fibrosis (Gonzalez et al. 2015; Klein-
bongard et al. 2011; Mann 2011). However, evidence sug-
gests that the initial short-term inflammatory response is 
an adaptive response, which is important for cardiac repair 
(Mann 2002). For example, TLR-2 was shown to be crucial 
for the cardiac adaptation in response to pressure overload 
(Higashikuni et al. 2013). Chronic inflammation, however, 
is considered detrimental and will lead to tissue damage, 
maladaptive cardiac remodeling and HF (Mann 2011).

Angiogenesis

Angiogenesis is a key component of cardiac remodeling, 
arising from paracrine signaling between cardiomyocytes 
and the vasculature (Oka et al. 2014; Walsh and Shiojima 
2007). Myocardial angiogenesis is thought to be critical 
for maintaining perfusion and an adequate nutrient supply 
to hypertrophying myocytes, as disruption of angiogenesis 
during adaptive hypertrophy leads to contractile dysfunc-
tion (Izumiya et al. 2006; Shiojima et al. 2005), while stim-
ulation of angiogenesis during pressure overload is protec-
tive and prevents the transition from compensatory cardiac 
hypertrophy to HF (Friehs et al. 2006). Maintained or 
enhanced myocardial capillary density has been observed 
in experimental models of beneficial physiological hyper-
trophy (Weeks et al. 2012; White et al. 1998), and there 
was a strong correlation between myocardial blood ves-
sel density and left ventricular (LV) mass index in patients 
with aortic stenosis and preserved ejection fraction (i.e., 
compensatory hypertrophy) (Lee et al. 2014). In contrast, 
advanced pathological remodeling and HF are associated 
with significant reductions in myocardial capillary density 
(Karch et al. 2005; Rengo et al. 2013).

The importance of adequate angiogenesis in a setting 
of cardiac hypertrophy was highlighted by a key study by 
Shiojima and colleagues (Shiojima et al. 2005). Increased 
expression of Akt1, a key mediator of adaptive physiologi-
cal cardiomyocyte growth (see section on the IGF1–PI3K–
Akt pathway) for 2 weeks, led to adaptive heart growth 
with preserved contractile function. In contrast, 6 weeks 
of Akt1 expression induced pathological cardiac hypertro-
phy, characterized by cardiac fibrosis, depressed systolic 
function and reduced capillary density. Utilizing tools to 
regulate vascular endothelial growth factor (VEGF), a fac-
tor critical for regulating angiogenesis, it was demonstrated 
that maintenance of cardiac function during short-term 
Akt expression (i.e., 2 weeks) was dependent on adequate 
angiogenesis, which was inadequate with longer-term Akt 
expression (i.e., 6 weeks). In this context, enhancing myo-
cardial angiogenesis during pathological remodeling has 
been shown to improve outcome in preclinical models of 
HF (Banquet et al. 2011; Huusko et al. 2012).
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Typical cardiac gene expression changes associated 
with pathological cardiac hypertrophy

Alongside morphological changes noted earlier, the devel-
opment of pathological cardiac hypertrophy is commonly 
associated with the reinduction of fetal genes not usu-
ally expressed in the adult heart (Fig. 1). Studies in both 
human and animal models (Arai et al. 1993; Iemitsu et al. 
2001; Takahashi et al. 1992) have shown increased mRNA 
expression of atrial natriuretic peptide (ANP), B-type 
natriuretic peptide (BNP) and α-skeletal actin. Other typi-
cal changes, particularly in a setting of established cardiac 
dysfunction, include the downregulation of SERCA2a and 
a shift in expression from α-myosin heavy chain (α-MHC, 
fast contractile isoform) to β-MHC (slow MHC isoform) 
(Bernardo et al. 2010).

Signaling pathways associated with cardiac 
hypertrophy and remodeling

Numerous signaling cascades have been implicated in 
mediating cardiac growth in response to a cardiac stress or 
insult. Signaling within cardiomyocytes as well as the cross 
talk with other cardiac cell types is incredibly complex. In 
addition, the contribution of different signaling cascades in 
contributing specifically/selectively to compensated heart 
growth and the transition to decompensated heart growth 
and HF requires further investigation. Signaling cascades 
within the heart have been extensively reviewed by us and 
others (Bernardo et al. 2010; van Berlo et al. 2013). Below, 
we have focused on signaling pathways, which have been 
associated with different stages of cardiac hypertrophy and/
or have been targeted with therapies (Figs. 4, 5).

Signaling pathways associated with compensated heart 
growth and beneficial processes

IGF1–PI3K–Akt pathway

Our laboratory and others have extensively assessed the 
role of the insulin-like growth factor 1 (IGF1)—phosphoi-
nositide-3-kinase (PI3K)–protein kinase B (Akt) signaling 
pathway in mediating beneficial physiological heart growth 
(e.g., postnatal heart growth and exercise-induced growth) 
(Fig. 4). There are three major classes of PI3K (I, II and 
III). The role of PI3Ks with catalytic subunits p110α and 
p110β (Class1A, coupled to receptor tyrosine kinases, e.g., 
IGF1 receptor, IGF1R) and p110γ (Class 1B, coupled to G 
protein-coupled receptors, GPCRs) has been best character-
ized in the heart (Bernardo et al. 2010). While there are some 

inconsistencies between genetic mouse models and down-
stream signaling (particularly in relation to Akt) (Bernardo 
et al. 2010), the majority of data indicate that IGF1R, PI3K 
(p110α) and Akt1 play critical roles in the induction of adap-
tive physiological heart growth (DeBosch et al. 2006; Kim 
et al. 2008; Luo et al. 2005; McMullen et al. 2003, 2004; 
Shioi et al. 2000). There is also evidence to suggest that this 
pathway is activated during the compensated phase of hyper-
trophy in response to a pathological insult. Increased cardiac 
generation of IGF1 was identified in patients with compensa-
tory hypertrophy due to aortic stenosis or regurgitation, and 
there was a positive correlation between IGF1 formation and 
a measure of cardiac performance. By contrast, IGF1 levels 
were not elevated in patients with inadequate hypertrophy 
and in the transition to HF (Serneri et al. 1999).

IGF1, IGF1R, PI3K (p110α, p110β) and/or Akt have 
been shown to protect the heart and preserve cardiac func-
tion in settings of stress by numerous mechanisms includ-
ing promoting adaptive cardiomyocyte growth, cardio-
myocyte survival, angiogenesis, attenuating fibrosis and 
cell death, favorable electrical remodeling, and providing 
protection against mitochondrial dysfunction and excessive 
ROS generation (Lin et al. 2015; McMullen et al. 2004, 
2007; McMullen 2008; O’Neill et al. 2007; Yang et al. 
2012). Though, of note, not all these properties are neces-
sarily dependent on Akt. The glycogen synthase kinase-3 
(GSK3) family (GSK3α and GSK3β) has also been impli-
cated in mediating cardiac responses downstream of the 
PI3K–Akt pathway (as well as other pathways) and has 
recently been extensively reviewed (Lal et al. 2015). While 
it is recognized that GSK3 plays a role in regulating cardiac 
remodeling, the exact role of each isoform in different car-
diac disease settings has been difficult to dissect (See Lal 
et al. 2015 for a review of numerous genetic mouse models: 
global, conditional, myocyte specific and fibroblast spe-
cific). Nonetheless, collectively it appears that inhibition 
of GSK3α could be a strategy for attenuating maladaptive 
remodeling after MI (Lal et al. 2015).

More recently, other mediators associated with the 
IGF1–PI3K–Akt pathway have been identified including 
CCAAT/enhancer-binding protein β (CEBP/β), proline-rich 
Akt substrate of 40Kda (PRAS40) and PH domain leucine-
rich repeat protein phosphatase 1 (PHLPP1) (Fig. 4).

CEBP/β

Current studies suggest that the transcription factor CEBP/β 
regulates cardiomyocyte proliferation. Exercise-induced 
activation of the PI3K–Akt pathway attenuated expression 
of CEBP/β, which was found to regulate and inhibit CBP/
p300-interacting transactivator 4 (CITED4)-induced pro-
liferation of cardiomyocytes. CEBP/β also interacted with 
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serum response factor (SRF) to regulate protective genes 
such as PGC1-α and genes associated with cardiomyocyte 
proliferation such as Tbx5, Gata and Nkx2.5 (Boström 
et al. 2010) (Fig. 4).

PRAS40

PRAS40 is highly expressed in cardiomyocytes and is phos-
phorylated via activation of Akt. Upon phosphorylation, 

disassociation of PRAS40 relieves inhibition on mTOR 
complex 1 (mTORC1), allowing physiological heart growth 
to occur via downstream mediators, which regulate pro-
tein synthesis including ribosomal S6 kinase 1 (S6K1) and 
eukaryotic translation initiation factor 4E binding protein 
1 (4EBP) (Fig. 4). Cardiac transgenic overexpression of 
PRAS40 was shown to attenuate pressure overload-induced 
hypertrophy and prevent cardiac dysfunction (Volkers et al. 
2013).
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Fig. 4  A schematic of the major signaling pathways involved in mal-
adaptive and adaptive cardiac hypertrophy. Signaling is complex, and 
there is extensive cross talk and integration between various compo-
nents of the pathways. Dashed lines indicate translocation to a differ-
ent intracellular compartment. Proteins in green have been shown to 
be critical for adaptive cardiac hypertrophy. 4E-BP1 eukaryotic trans-
lation initiation factor 4E-binding protein 1, α-MHC α-myosin heavy 
chain, Akt1 protein kinase B, AMPK AMP-activated protein kinase, 
Ang II angiotensin II, ANP atrial natriuretic peptide, AT-R angiotensin 
II receptor, β-AR β-adrenergic receptor, β-ARK β-adrenergic receptor 
kinase, β-MHC β-myosin heavy chain, BNP B-type natriuretic pep-
tide, CAMK Ca2+/calmodulin-dependent protein kinase, cAMP cyclic 
adenosine monophosphate, C/EBPb CCAAT/enhancer-binding pro-
tein b, CITED4 CBP/p300-interacting transactivator 4, Cn calcineu-
rin, DAG diacylglycerol, eIF2B eukaryotic translation initiation fac-
tor 2B, ERK extracellular signal-related kinase, ET-1 endothelin-1, 
ET-R endothelin receptor, GATA GATA binding protein, gp130 gly-
coprotein 130, GSK3 glycogen synthase kinase 3, HDACs histone 
deacetylases, HEXIM1 hexamethylene-bis-acetamide-inducible 1, 

HIF-1α hypoxia-inducible factor 1α, IGF1 insulin-like growth factor 
1, IGF1R insulin-like growth factor 1 receptor, IL-6 interleukin-6, IP3 
inositol trisphosphate, IP3R inositol triphosphate receptor, JAK janus 
kinase, JNK jun amino-terminal kinase, LTCC L-type calcium chan-
nel, PI3K phosphoinositide 3-kinase, MEF2 myocyte enhancer fac-
tor-2, MEKK MAP kinase, mTORC, mammalian target of rapamycin 
complex, NE noradrenaline, NFAT nuclear factor of activated T cells, 
PDE phosphodiesterase, PHLPP1 PH domain and leucine-rich repeat 
protein phosphatase 1, PKA protein kinase A, PKC protein kinase C, 
PKD protein kinase D, PLC phospholipase C, PLN phospholamban, 
PP1 protein phosphatase 1, PP2A protein phosphatase 2, PRAS40 
proline-rich AKT substrate, RYR2 Ryanodine receptor 2, S6K1 ribo-
somal protein s6 kinase 1, SERCA2a sarco/endoplasmic reticulum 
Ca2+-ATPase, SOCS suppressor of cytokine signaling proteins, SRF 
serum response factor, STAT signal transducer and activator of tran-
scription, Raf1 RAF proto-oncogene serine/threonine-protein kinase, 
TEAD transcriptional enhancer factor TEF-1, TR thyroid hormone 
receptor, TSC1/2 tuberous sclerosis complex 1/2, YAP Yes-associated 
protein
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PHLPP1

The novel protein phosphatase PHLPP1 was recently shown 
to dephosphorylate Akt to terminate signaling (Fig. 4). 
Swim training of PHLPP1 KO mice demonstrated accen-
tuated physiological hypertrophy, while also showing an 
attenuated pathological hypertrophic response to pressure 
overload. The protective phenotype observed in PHLPP1 
KO mice subjected to pressure overload was attributed to 
increased angiogenesis, as PHLPP1 KO mice had elevated 
angiopoietin-2 and VEGF-A levels and increased myo-
cardial capillary density compared with control mice, 
and knockdown of PHLPP1 in cardiomyocytes increased 
VEGF-A expression and endothelial tube formation in myo-
cyte/endothelial cell cocultures (Moc et al. 2015).

HEXIM1

Hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) 
is a transcription factor, which has also been implicated in 
mediating adaptive heart growth but may act independently 
of PI3K and Akt (Fig. 4). Inducible transgenic expression of 
HEXIM1 led to heart growth characteristic of physiological 
hypertrophy including increased angiogenesis and improved 
ejection fraction (Montano et al. 2013). HEXIM1-induced 
hypertrophy was associated with the regulation of transcrip-
tion factors, which regulate angiogenesis (e.g., HIF1-α, 
VEGF) and metabolism [PPAR-α, glucose transporter type 4 
(GLUT4)].

ERK1/2

Mitogen-activated protein kinases (MAPKs) are broadly 
divided into three subfamilies: extracellular signal-regulated 
kinases (ERKs), c-Jun amino-terminal kinase (JNK) and p38 
(Fig. 4). Activation of ERK1/2 has been reported to mediate 
both adaptive and maladaptive processes in the heart (Fig. 4). 
As previously reviewed (Bernardo et al. 2010), results from 
in vitro studies and genetic mouse models have been difficult 
to interpret with a range of phenotypes reported (including no 
phenotype or contributions to both adaptive and maladaptive 
processes). For instance, constitutive transgenic expression 
of MEK1 (upstream of ERK1/2) in mice induced an adaptive 
cardiac response (enhanced cardiac function with no fibrosis) 
(Bueno et al. 2000). However, more recently it was shown 
that loss of ERK1 and ERK2 from cardiomyocytes did not 
attenuate cardiac enlargement in response to transverse aortic 
constriction (TAC) or exercise. However, loss of ERK1 and 
ERK2 induced eccentric cardiomyocyte growth (i.e., length-
ening of cardiomyocytes as occurs when the heart decompen-
sates and dilates) (Kehat et al. 2011).

It has been proposed that the adaptive and maladap-
tive roles of ERK1/2 may be related, at least in part, to the 

activation of ERK1/2 at two distinct phosphorylation sites 
via G protein subunits. Adaptive growth has been associ-
ated with the phosphorylation of ERK1/2 within the TEY 
motif (Gαq mediated) and phosphorylation of cytosolic 
targets inducing protein synthesis. In contrast, maladaptive 
processes have been associated with autophosphorylation 
of ERK1/2 at Thr188 (via Gβγ) leading to nuclear localiza-
tion and the transcription of genes associated with pathol-
ogy (Lorenz et al. 2009). Indeed, a follow-up study showed 
that interference of ERK1/2 autophosphorylation at Thr188 
attenuated the hypertrophic response to phenylephrine and 
pressure overload, but did not interfere with the physiologi-
cal hypertrophic growth response (Ruppert et al. 2013).

The other two major subfamilies, JNK and p38, are 
typically activated in settings of stress and injury. Numer-
ous groups have studied the role of these MAPKs under 
basal conditions or in settings of disease by utilizing 
genetic mouse models, which directly or indirectly regu-
late JNK or p38, or by using pharmacological inhibitors. 
Results of these studies have previously been extensively 
reviewed (Bernardo et al. 2010; Martin et al. 2014; Rose 
et al. 2010). Collectively, the findings remain inconclusive 
with some studies suggesting that p38 and JNK contribute 
to pathology and the transition to HF, while others suggest-
ing that these MAPKs are required for protecting the heart 
in settings of stress. Further studies with better tools for 
understanding the complex regulation, activation, localiza-
tion and interaction of MAPKs will be required to target 
MAPKs as therapeutic targets.

Adaptive PKC isoform: PKCε

Protein kinase C (PKC) is a family of serine/threonine 
kinases that regulate a multitude of signaling cascades. PKC 
is activated in settings of cardiac stress and lies downstream 
of GPCR. Numerous PKC isoforms exist, but the four iso-
forms which appear to play key roles in regulating cardiac 
hypertrophy and/or contractility are PKCα, PKCβ, PKCδ and 
PKCε. A description of each isoform has previously been 
reviewed extensively (Dorn II and Force 2005). Here and 
in subsequent sections, we focus on those isoforms which 
have been linked with the compensatory response of cardiac 
hypertrophy or pathology associated with the transition to 
HF (refer to section on maladaptive PKC isoforms—PKCα 
and PKCβ). PKCε, a Ca2+-independent isoform, appears to 
play an adaptive role in the heart (Dorn II and Force 2005). 
Cardiac-specific transgenic mice overexpressing a constitu-
tively active mutant of PKCε developed mild cardiac hyper-
trophy associated with preserved cardiac function (Takeishi 
et al. 2000). Interestingly, ANP was not elevated in hearts of 
PKCε transgenic mice (consistent with an adaptive response) 
but β-MHC was elevated. Transgenic mice with increased 
subcellular PKCε translocation attenuated pathological 
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hypertrophy induced by Gq and improved cardiac func-
tion (Wu et al. 2000). By contrast, PKCε KO mice devel-
oped more fibrosis and diastolic dysfunction than wild-type 
mice in response to TAC; cardiac hypertrophy was similar 
between the two groups (Klein et al. 2005). Studies in PKCε 
KO mice have also shown that PKCε confers protection in a 
setting of ischemia (Gray et al. 2004).

Hsps and HSF1

Hsps are a family of molecular chaperones that are induced 
by heat shock or other stresses (De Maio 1999), and are also 
elevated in the heart in response to exercise training (Hamil-
ton et al. 2003; Melling et al. 2007; Sakamoto et al. 2006). 
Heat shock transcription factor 1 (HSF1), which regulates 
Hsps, was identified in a genetic profiling screen as being 
elevated in the rat heart in response to exercise training but 
not pressure overload-induced hypertrophy, suggesting that 
HSF1 may play a distinct role in adaptive physiological 
heart growth versus growth in a disease setting (Sakamoto 
et al. 2006). Interestingly, exercise-induced hypertrophy was 
comparable in HSF1+/− and wild-type mice but HSF1+/− 
mice displayed cardiac dysfunction. Supporting a role for 
HSF1 playing an adaptive role, transgenic mice with consti-
tutive activation of HSF1 developed less hypertrophy, fibro-
sis, apoptosis and cardiac dysfunction in response to TAC 
compared with wild-type mice (Sakamoto et al. 2006).

Of the Hsps, Hsp70 has been the most comprehensively 
studied in settings of cardiac stress (Kim et al. 2006; Marber 
et al. 1995; Plumier et al. 1995). Studies in Hsp70 genetic 
mouse models suggest that Hsp70 plays a protective role in 
settings of ischemic injury (Kim et al. 2006; Marber et al. 
1995). However, whether Hsp70 provides any protection in a 
setting of pressure overload-induced hypertrophy is less clear 
(Weeks et al. 2012). More recently, the role of other Hsps 
in mediating cardioprotection has been explored. HspB2/
Hsp27 KO mice and wild-type mice showed a similar hyper-
trophic and functional response to pressure overload, but loss 
of Hsp27 resulted in a decrease in mitochondrial respiration 
and ATP production rates. This suggests a role for Hsp27 in 
the energetics of compensatory hypertrophy (Ishiwata et al. 
2012). HspB6/Hsp20 is another small Hsp, which has been 
implicated in mediating protection in the heart (Fan et al. 
2005). Hsp20 was demonstrated to confer cardioprotection 
by enhancing contractile function and suppressing pro-apop-
totic pathways in settings of ischemia/reperfusion injury and 
β-adrenergic receptor (β-AR)-induced hypertrophy. Enhanced 
contractile function was mediated in part by phosphorylating 
PLN, relieving its inhibition of SERCA2a and also by inhib-
iting the activity of PP1, a known regulator of PLN (Qian 
et al. 2011). In other studies using a model of β-AR-induced 
hypertrophy and remodeling, Hsp20 provided protection by 
attenuating apoptosis by preventing the translocation of Bax 

to the mitochondria to trigger mitochondrial death (Fan et al. 
2004) and via the inhibition of the apoptosis signal-regulating 
kinase 1 (ASK1) pathway (Fan et al. 2006).

Thyroid hormone receptor signaling

Thyroid hormone (TH) plays a critical role in the matura-
tion of the myocardium after birth (Hudlicka and Brown 
1996; Mai et al. 2004) and appears to induce cardiac 
growth in adults, which is more similar to adaptive physi-
ological hypertrophy (e.g., exercise-induced heart growth) 
than pathological hypertrophy (Bernardo et al. 2010; Jans-
sen et al. 2014). Studies have demonstrated that increas-
ing TH, thyroxine (T4, prohormone) or triiodothyronine 
(T3, active form of TH) in animal models or patients with 
hyperthyroidism induces hypertrophy, which is not mala-
daptive or associated with pathological features such as 
fibrosis (Bedotto et al. 1989; Bernardo et al. 2010; Ghose 
Roy et al. 2007; Janssen et al. 2014). T3 binds to nuclear 
thyroid hormone receptors including TRα1 (predominant 
isoform), TRα2 and TRβ1, and regulates the transcription 
of a number of cardiac genes including α-MHC, β-MHC, 
SERCA2a and PLN (Arsanjani et al. 2011; Belakavadi 
et al. 2010; Bernardo et al. 2010) (Fig. 4).

Animal studies suggest that low levels of TH/T3 in car-
diac disease settings are associated with cardiac dysfunc-
tion, and restoration improves outcome including more 
favorable expression of MHC isoforms. However, very 
high levels of TH may have an adverse effect (Henderson 
et al. 2009; Mourouzis et al. 2012; Pantos et al. 2011). It 
has also been shown that cytosol-localized TRα1 can inter-
act with the p85α subunit of PI3K and that T3 regulates 
microRNAs (miRNAs) with targets that could promote 
physiological growth (Janssen et al. 2014; Kenessey and 
Ojamaa 2006). This represents potential mechanisms via 
which TH could mediate adaptive physiological growth. 
Consistent with these reports, it was suggested that TRα1 
may play a role during the compensatory phase of cardiac 
hypertrophy. Following acute MI, nuclear TRα1 expression 
in rat hearts was increased alongside activation of ERK1/2 
and mammalian target of rapamycin (mTOR, downstream 
of PI3K–Akt) during the compensatory growth phase. As 
the hearts regressed into HF, TRα1, pERK1/2 and phospho-
mTOR levels were reduced (Pantos et al. 2010).

Gp130/JAK/STAT pathway

The gp130/JAK/STAT pathway is activated by the IL-6 
family of cytokines (IL-6, cardiotrophin 1, leukemia inhibi-
tory factor), which are produced by cardiomyocytes in 
response to a cardiac stress (Shi and Wei 2012) (Fig. 4). In 
general, genetic models or gene transfer of gp130, STAT 
and suppressors of cytokine signaling (SOCs, a negative 
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regulator of the JAK/STAT pathway) in rodents suggest 
that activation of the JAK/STAT pathway is initially impor-
tant for mediating protection by inducing anti-apoptotic 
genes, ROS scavengers, and promoting angiogenesis (Cit-
tadini et al. 2012; Hirota et al. 1999; Kunisada et al. 2000). 
However, chronic excessive activation of this pathway may 
lead to oxidative stress and inflammation, and contribute to 
the progression to HF (Shi and Wei 2012).

AMPK

Adaptive heart growth requires the coordination of increased 
cardiomyocyte size with changes in metabolism. Adenosine 
monophosphate-activated protein kinase (AMPK) is a key 
regulator of energy metabolism in the heart and is activated 
by stimuli that increase AMP and deplete ATP production. 
AMPK is also activated by increased ROS production or 
alterations in the concentration of calcium and is phospho-
rylated by upstream kinases LKB1-STRAD-MOD25 com-
plex and calcium-/calmodulin-dependent protein kinase 
kinase-β (CaMKK2β) (Hardie et al. 2012; Kim and Dyck 
2015). It is also known to activate multiple downstream tar-
gets (e.g., PGC-1α, FoxO proteins, PPARγ, GLUT4) to reg-
ulate cardiac energetic homeostasis, as well as act on several 
signaling cascades that limit cell growth (reviewed in Har-
die et al. 2012; Kim and Dyck 2015) (Fig. 4).

Activation of AMPK has been reported in numerous 
rodent models of cardiac injury (including pressure over-
load, hypoxia and ischemia) as an adaptive response and 
was associated with enhanced glucose uptake (Huang et al. 
2014; Nishino et al. 2004; Tian et al. 2001). Elevated AMPK 
protein expression and activity have been demonstrated 
in human failing hearts, although AMPK expression has 
not been extensively studied in all forms of HF (Kim et al. 
2012). Pharmacological activation of AMPK has been shown 
to inhibit the mTOR pathway and attenuate pressure over-
load-induced hypertrophy (Chan et al. 2004, 2008; Li et al. 
2007). Conversely, mice with depleted AMPK activity had 
an exacerbated degree of LV hypertrophy, adverse remod-
eling and dysfunction following cardiac injury (Shibata et al. 
2004; Xu et al. 2014; Zarrinpashneh et al. 2008; Zhang et al. 
2008). Collectively, these studies suggest an important role 
of AMPK in controlling the growth processes in hypertrophy 
and in controlling cardiac energy metabolism.

Signaling pathways associated with processes 
contributing to cardiac pathology and transition to HF

Signaling via GPCR pathways

GPCRs are a family of transmembrane proteins activated 
by multiple factors which are typically elevated in settings 

of cardiac stress and HF. Signaling via GPCR occurs via 
the interaction of GPCR with heterotrimeric G proteins 
made up of three subunits, Gα (including Gαq, Gαi, Gαs), 
Gβ and Gγ. In the heart, Gαq has been shown to play a 
major role in regulating pathological cardiac hypertrophy. 
Hormones/factors including Ang II, ET-1 and α-adrenergic 
agonists (e.g., noradrenaline) bind to GPCR [Ang II recep-
tor type 1 (AT1 receptor), endothelin receptors (ETA and 
ETB) and α1-adrenergic receptors (ARs), respectively] and 
activate numerous downstream signaling proteins includ-
ing phospholipase C (PLC), PKC and MAPKs (Bernardo 
et al. 2010) (Fig. 4). Gαq has also been associated with ele-
vated CaMKII signaling as a consequence of increases in 
intracellular calcium (Anderson et al. 2011). The key role 
of Gαq in mediating maladaptive heart growth was demon-
strated by studies in genetic mouse models. Mice with car-
diac-specific overexpression of Gαq developed HF and died 
prematurely (D’Angelo et al. 1997; Mende et al. 1998). By 
contrast, reduced cardiomyocyte Gαq/11 signaling was asso-
ciated with an attenuated hypertrophic response in a setting 
of pressure overload (Wettschureck et al. 2001).

As discussed in a later section (see current pharmacolog-
ical therapeutics targeting maladaptive processes associated 
with pathological cardiac hypertrophy and remodeling), 
current drug therapies including angiotensin converting 
enzyme (ACE) inhibitors, angiotensin receptor blockers 
(ARBs) and β-blockers target GPCR and the role of these 
receptors (e.g., Ang II receptors and β-ARs) in regulating 
pathological cardiac hypertrophy and maladaptive pro-
cesses has been studied in animal models using genetic 
approaches and pharmacological agents. While it has been 
well demonstrated that treatment with ACE inhibitors 
attenuates pressure overload-induced cardiac hypertrophy 
in animal models (Lijnen and Petrov 1999; Modesti et al. 
2000; Sadoshima et al. 1996; Yamazaki et al. 1999; Zhu 
et al. 1997), results from genetic models involving global 
or cardiac-specific overexpression/KO of the Ang II recep-
tor isoforms AT1A, AT1B and AT2 have been difficult to 
interpret. Some studies have suggested a role for specific 
Ang II receptor subtypes but others observed no clear phe-
notype. This may be due, in part, to compensation by other 
Ang II receptor subtypes and confounding factors such as 
differences in blood pressure (Bernardo et al. 2010).

ARs are activated by catecholamines and have previ-
ously been extensively studied and reviewed (Du 2008; 
O’Connell et al. 2014). ARs are broadly classified into 
three subfamilies: α1-AR, α2-AR and β-AR. Subtypes pre-
sent within the heart which have been well characterized 
include α1A, α1B, α1D (couple to Gαq) and β1, β2 (couple to 
Gαi and/or Gαs). β1-AR represents the predominant isoform 
in the healthy heart (Xiang and Kobilka 2003). Human and 
mouse studies suggest that acute activation of β/β1-AR may 
initially be adaptive because it increases contractility (Du 
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2008; Engelhardt et al. 1999; Lefkowitz et al. 2000; Rock-
man et al. 2002). However, chronic activation results in 
cardiac dysfunction and HF associated with desensitization 
and downregulation of β-ARs (Bristow 2000). The contri-
bution of ARs in regulating cardiac hypertrophy and the 
transition to HF has previously been extensively reviewed 
(Du 2008). In brief, in a setting of pressure overload, β1-
AR and β2-AR contribute to cardiac enlargement, α1B-AR 
and β2-AR contribute to the transition to HF, and α1A-AR 
may play a protective role (Du 2008; Kiriazis et al. 2008).

PI3K (p110γ) signaling

In contrast to PI3K (p110α), PI3K (p110γ) is activated by 
GPCR pathways and negatively regulates cardiomyocyte 
contractility by modulating the activity of phosphodies-
terases (PDEs) and cAMP (Patrucco et al. 2004) (Fig. 4). 
PI3K (p110γ) activity is enhanced in the murine heart in 
response to stress (Naga Prasad et al. 2000); however, the 
role of PI3K (p110γ) in the diseased heart is complex and 
it appears that the response differs depending on the patho-
logical stress. Transgenic mouse models in which PI3K 
(p110γ) was depleted had enhanced basal contractility but 
increased susceptibility to pressure overload and ischemic 
myocardial injury (Crackower et al. 2002; Guo et al. 2010; 
Oudit and Kassiri 2007; Patrucco et al. 2004). However, 
these mice were protected from HF induced by isoprotere-
nol, suggesting that PI3K (p110γ) contributes to pathologi-
cal remodeling downstream of β-AR activation (Oudit et al. 
2003). Similarly, mice expressing a kinase-dead mutant 
of PI3K (p110γ) or cardiac-specific overexpression of an 
inactive mutant displayed less hypertrophy and fibrosis 
than wild-type mice when subjected to pressure overload 
(Nienaber et al. 2003; Patrucco et al. 2004) or were pro-
tected from ischemia–reperfusion injury (Haubner et al. 
2010). A more recent study has demonstrated that long-
term inactivation of both PI3K (p110α) and PI3K (p110γ) 
in the mouse heart activates pathological remodeling result-
ing in cardiomyopathy (Zhabyeyev et al. 2014).

Maladaptive PKC isoforms: PKCα and PKCβ

As previously described, multiple PKC isoforms exist. 
PKCα and PKCβ are the two isoforms, which have been 
associated with maladaptive processes in the heart. PKCα 
and PKCβ expression is elevated in the human failing 
heart (Bowling et al. 1999). Genetic mouse studies sug-
gest that PKCα contributes to contractile dysfunction (Braz 
et al. 2002, 2004; Hahn et al. 2003). PKCα overexpressing 
transgenic mice exhibited depressed contractile function, 
while PKCα null mice displayed improved cardiac con-
tractility (Braz et al. 2004). Similar findings were observed 
when PKCα was modulated in cardiomyocytes using an 

adenoviral-mediated approach (overexpression of PKCα or 
dominant negative mutant) (Braz et al. 2004).

Increased activity of the PKCβ isoform has been shown 
to induce pathological heart growth. A number of groups 
found that cardiac-specific transgenic overexpression of 
PKCβ led to cardiac enlargement associated with dysfunc-
tion, fibrosis and premature death (Bowman et al. 1997; 
Chen et al. 2001; Wakasaki et al. 1997). However, while 
PKCβ is sufficient to induce maladaptive heart growth, it 
does not appear to be required. PKCβ-null mice displayed 
an equivalent hypertrophic response to aortic banding or 
phenylephrine infusion to that of wild-type mice (Roman 
et al. 2001). However, ruboxistaurin (a PKCβ inhibitor) 
was able to attenuate myocyte hypertrophy, fibrosis and 
diastolic dysfunction in a rat model of diabetic cardiomyo-
pathy (Connelly et al. 2009).

Calcineurin and CaMK

Calcineurin and CaMKII are calcium-dependent signal-
ing proteins, which have been proposed to play key roles 
in the development of cardiac hypertrophy and adverse 
remodeling.

Calcineurin dephosphorylates and induces the translo-
cation of cytoplasmic NFAT to the nucleus. Subsequently 
in the nucleus, NFAT activates the transcription of pro-
hypertrophic target genes (Bueno et al. 2002) (Fig. 4). Cal-
cineurin activity was elevated in hearts from patients with 
HF and cardiac hypertrophy (Haq et al. 2001), and trans-
genic mice with cardiac expression of the activated from 
of calcineurin or NFAT3 developed severe pathological 
hypertrophy and HF (Molkentin et al. 1998). Furthermore, 
calcineurin inhibition in mice was shown to attenuate of 
pathological cardiac hypertrophy (Sussman et al. 1998).

CaMKII is a downstream signaling effector of Gq sign-
aling and can also be activated by oxidative stress (Luczak 
and Anderson 2014). Of the four CaMKII isoforms (α, β, δ 
and γ), CaMKIIδc (a splice variant of CaMKIIδ) is the pre-
dominant isoform in the heart. Cardiac-specific transgenic 
overexpression of CaMKIIδc induced cardiac hypertrophy 
associated with dilatation of ventricular chambers and tran-
sitioned to HF (Zhang et al. 2003). In contrast, CaMKIIδ 
KO mice were protected against pressure overload-induced 
pathological hypertrophy and HF. These phenotypes 
closely resemble findings previously observed in Gαq trans-
genic mice and Gαq/11 KO mice (D’Angelo et al. 1997; 
Wettschureck et al. 2001). It was recently demonstrated 
that CaMKIIδ plays a key role in contributing to mitochon-
drial dysfunction and the transition from hypertrophy to HF 
in a setting of increased Gq signaling (Westenbrink et al. 
2015).

Recent studies have also uncovered new findings related 
to the role of calcineurin and CaMKII in the heart and 
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highlight complexities involving cross talk between CaM-
KII and calcineurin in some settings. For instance, in a 
setting of pressure overload and β-AR stimulation, mice 
lacking CaMKII δ and γ in cardiomyocytes were protected 
against cardiac dysfunction, fibrosis and transition to HF, 
but displayed a similar hypertrophic response to control 
mice. The favorable phenotype was attributed to inhibi-
tion of CaMKII-induced maladaptive remodeling and the 
induction of non-maladaptive growth by calcineurin–NFAT 
(Kreusser et al. 2014).

In another study, a new regulatory mechanism for cal-
cineurin–NFAT signaling was identified. Interferon regu-
latory factor 8 (IRF8) is typically found to influence the 
innate immune response. IRF8 was decreased in hearts 
from patients with dilated/hypertrophic cardiomyopathy, 
and cardiac-specific overexpression of IRF8 in mice was 
protective against aortic banding. The authors provide 
mechanistic data to show that IRF8 interacts with NFAT to 
prevent nuclear translocation, thereby inhibiting the hyper-
trophic response. By contrast, in mice that lacked IRF8, 
the hypertrophic response to pressure overload was further 
exacerbated (Jiang et al. 2014).

HDACs

Histone deacetylases (HDACs) are chromatin-remodeling 
enzymes which have been well studied in the heart because 
they have been implicated in the re-expression of the fetal 
gene program which occurs in a setting of pathological 
hypertrophy (McKinsey et al. 2002). HDACs constitute a 
large family of enzymes that catalyze the removal of acetyl 
groups from lysine residues within histone and non-histone 
protein substrates (Choudhary et al. 2009). Histone dea-
cetylation represses gene transcription by stabilizing the 
interaction between histones and DNA, leading to a more 
compact chromatin structure that is less accessible to com-
ponents of the transcriptional machinery. The HDAC super-
family consists of four classes. Class I, II and IV HDACs 
are Zn2+-dependent enzymes (Finnin et al. 1999; Lahm 
et al. 2007), while class III HDACs (also known as sir-
tuins) are an unrelated class of NAD-dependent deacety-
lases (Gregoretti et al. 2004; Landry et al. 2000). Class II 
HDACs can be further divided into two subclasses, class IIa 
and IIb. Compared with class I HDACs (HDAC1, 2, 3 and 
8) and class IIb HDACs (HDAC6 and 10), class IIa HDACs 
(HDAC4, HDAC5, HDAC7 and HDAC9) have very low 
enzymatic activity (Bradner et al. 2010; Lahm et al. 2007) 
and repress gene transcription primarily via protein–pro-
tein interactions with transcription factors, such as mem-
bers of the myocyte enhancer factor-2 (MEF2) family (Lu 
et al. 2000; Miska et al. 1999), and via the recruitment of 
class I HDACs and other co-repressors (Fischle et al. 2002; 
Hohl et al. 2013; Zhang et al. 2002b). Nucleo-cytoplasmic 

shuttling is a key mechanism regulating class IIa HDAC 
function (Grozinger and Schreiber 2000; Harrison et al. 
2004; McKinsey et al. 2000a; Vega et al. 2004).

In contrast to ‘pro-hypertrophic’ class I HDACs, class 
IIa HDACs have been identified as negative regulators 
of cardiac hypertrophy, as genetic deletion of HDAC5 or 
HDAC9 in mice exacerbated the hypertrophic response 
to pressure overload and to transgenic expression of acti-
vated calcineurin (Chang et al. 2004; Zhang et al. 2002a). 
Interestingly, however, nuclear export (i.e., inactivation) 
of class IIa HDACs is required for cardiomyocyte hyper-
trophy in vitro (Harrison et al. 2004; Zhang et al. 2002a). 
Thus, it seems likely that dynamic regulation of class IIa 
HDACs is required to mount an appropriate hypertrophic 
response to hemodynamic overload. In this context, acute 
β-adrenergic stimulation leads to PKA-mediated cleavage 
of HDAC4, accumulation of the resulting N-terminal frag-
ment in the nucleus and subsequent inhibition of MEF2 
(Backs et al. 2011). This may be a protective mechanism 
to prevent pathological remodeling in response to transient 
elevations in catecholamines, which occur during exercise 
or in settings of acute stress (Backs et al. 2011).

Class IIa HDACs are subject to various posttranslational 
modifications, such as phosphorylation, oxidation and 
proteolytic cleavage (Weeks and Avkiran 2014). Among 
these, phosphorylation is the best studied. Phosphorylation 
of class IIa HDACs by CaMKII [following InsP3-induced 
Ca2+ release from the nuclear envelope (Wu et al. 2006)] or 
PKD [downstream of PKC or following activation by dia-
cylglycerol (DAG) at the plasma membrane (Bossuyt et al. 
2011; Vega et al. 2004)] leads to association with 14-3-3 
proteins and exclusion from the cell nucleus (McKinsey 
et al. 2000b). This, in turn, alleviates the repressive inter-
action of class IIa HDACs with transcription factors and 
allows the recruitment of other epigenetic regulators, such 
as histone acetyltransferases and histone demethylases, to 
gene promoter regions (Hohl et al. 2013; Wei et al. 2008).

Role of noncoding RNAs in regulating pathological 
hypertrophy and remodeling

Noncoding RNAs

Noncoding RNAs have emerged as new mediators in the 
pathophysiology of the heart. miRNAs and long noncod-
ing RNAs (lncRNAs) have been implicated in multiple 
biological processes and diseases such as development, 
cell cycle, cancer, apoptosis and cardiovascular diseases 
(CVDs) (Batista and Chang 2013; Sayed and Abdellatif 
2011). Protein-coding sequences constitute <2 % of the 
human genome, while the vast majority of the remain-
ing sequences are transcribed as nonprotein-coding RNAs 
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in many cell types and tissues. Among noncoding RNAs, 
miRNAs and lncRNAs have received the most attention 
and will be the focus in this review.

MiRNAs

miRNAs are short single-stranded RNAs approximately 
22 nucleotides in length. miRNAs are evolutionarily con-
served and repress gene expression through base pairing 
to the 3′ untranslated region of target mRNA (leading to 
mRNA cleavage) and/or translational repression (Bernardo 
et al. 2012a; Olson 2014; Papoutsidakis et al. 2013). miR-
NAs can target single/multiple mRNAs and often act by 
suppression of functionally related gene networks.

The first miRNA (lin-4) was discovered to regulate the 
development of Caenorhabditis elegans almost 20 years 
ago (Lee et al. 2004; Wightman et al. 1993). In the heart, 
several studies highlight the importance of miRNAs. Mice 
with cardiac deletion of Dicer, the enzyme involved in 
miRNA processing, developed HF and died 4 days after 
birth (Chen et al. 2008). Targeted Dicer deletion in the 
postnatal myocardium (3- and 8-week-old mice) induced 
spontaneous adverse cardiac remodeling and activation of 
fetal cardiac genes (da Costa Martins et al. 2008). In addi-
tion to functional data, Thum et al. (2007) used genome-
wide profiling and demonstrated similarities between miR-
NAs expressed in failing and fetal hearts. Thus, reactivation 
of a fetal miRNA program may regulate gene expression 
changes in the failing myocardium, which resembles the 
fetal heart.

Approximately 8 years ago, the first cardiac miRNA 
(miR-208) was discovered to regulate MHC gene expres-
sion and LV cardiac hypertrophy (van Rooij et al. 2007). 
Since then, there has been extensive research investigat-
ing the role of miRNAs regulating numerous processes 
associated with pathological cardiac remodeling in dis-
ease settings including cardiomyocyte hypertrophy, fibro-
sis, calcium handling and angiogenesis; refer to reviews 
(Kumarswamy and Thum 2013; Matkovich 2014; Olson 
2014; Thum 2014). To name a few, multiple groups have 
shown that the expression of miR-24, miR-21 and miR-
199a is upregulated in the LV of mice and human failing 
myocardium (Kumarswamy and Thum 2013; Small et al. 
2010; van Rooij et al. 2006). In contrast, fewer studies have 
set out to identify changes in miRNAs during beneficial 
physiological heart growth or compensated hypertrophy 
(Da Silva Jr. et al. 2012; Lin et al. 2010; Ma et al. 2013; 
Ooi et al. 2014). Most miRNA studies have also focused 
on LV remodeling, and right ventricular failure remains 
understudied. Recently, an unbiased screening of miRNAs 
in a model of decompensated right ventricular hypertro-
phy showed decreased expression of miR-208a in the right 
myocardium (Paulin et al. 2015). This result highlights the 

distinct regulation of miR-208a expression in left and right 
ventricular remodeling and suggests that miRNAs may 
play different roles in different chambers of the heart. As 
miRNAs are aberrantly expressed in disease, many stud-
ies have demonstrated the therapeutic potential of targeting 
stress induced miRNAs using miRNA inhibitors/mimics in 
preclinical models of HF (van Rooij et al. 2012) (discussed 
further in the section on miRNA-based therapeutics).

The role of circulating miRNAs has also received con-
siderable attention because they have been detected in 
serum and plasma of animals and patients with failing 
hearts, opening the possibility of using miRNAs as bio-
markers of disease states (Creemers et al. 2012). Despite 
the existence of ribonucleases, extracellular miRNAs 
remain stable in body fluids due to loading of the miR-
NAs into proteins, lipids or lipoprotein complexes such as 
exosomes or microvesicles (Creemers et al. 2012; Olson 
2014). The levels of plasma miR-208b and miR-499 (car-
diac-specific miRNAs) were present after cardiac stress, 
suggesting that these miRNAs are specifically released 
from the heart after myocardial injury (Gidlof et al. 2013). 
In another study, the increase in circulating miR-208 lev-
els in patients with cardiac injury was consistent with the 
time course elevation of cardiac troponin 1 levels, the gold 
standard for the diagnosis of myocardial injury (Ji et al. 
2009).

LncRNAs

Up until approximately 2 years ago, research had largely 
focused on the role of miRNAs in settings of cardiac dis-
ease. In 2013, a novel lncRNA, Braveheart, was identified 
to regulate cardiac development (Klattenhoff et al. 2013). 
This study underscores the significance of other noncod-
ing RNAs in the heart, and since then, many more lncR-
NAs have been shown to play roles in heart physiology and 
disease.

LncRNAs are defined as RNA transcripts larger than 
200 nucleotides with no evidence of protein-coding func-
tion. The term lncRNA is a broad definition that includes 
intergenic sequences, transcripts that overlap with other 
coding regions in either sense or antisense orientation, 
and enhancer RNAs (Batista and Chang 2013; Orom and 
Shiekhattar 2013). Several studies have shown that lncRNA 
expression is more cell type specific than protein-coding 
genes (Cabili et al. 2011; Ravasi et al. 2006), suggesting 
that lncRNAs can play a regulatory role. Unlike miRNAs, 
the mechanism of lncRNA gene regulation involves both 
activation and inhibition of mRNA expression, as well as 
regulation of chromatin architecture (Batista and Chang 
2013; Mercer and Mattick 2013). The precise mecha-
nism of lncRNA action has not been fully elucidated. 
LncRNA can act locally (in cis) to regulate the expression 
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of neighboring genes or distally (in trans) to influence 
the expression across multiple chromosomes (Batista and 
Chang 2013). In addition, they can also interact with pro-
teins (to form scaffolds) and miRNAs (competing endog-
enous RNA) for an additional level of transcription regula-
tion (Batista and Chang 2013; Mercer and Mattick 2013).

Several recent studies have profiled lncRNAs in human 
patients with HF (Yang et al. 2014) and mouse models of 
MI (Ounzain et al. 2015; Zangrando et al. 2014). Using 
RNA profiling, approximately 500–700 lncRNAs were 
dynamically regulated in the LV tissue of patients with HF, 
and 10 % of these transcripts were normalized after LV 
assisted implantation (Yang et al. 2014). This study sug-
gests that lncRNAs not only play a role in the pathogen-
esis of HF but also in reverse remodeling. The lncRNAs 
and myocardial infarction-associated transcripts 1 and 2 
(MIRT1, MIRT2) are upregulated, while novel lncRNA 
Novlnc6 expression is decreased in the hearts of mice with 
MI (Ounzain et al. 2015; Zangrando et al. 2014). Ounzain 
et al. (2015) extended their murine genome-wide studies to 
validate human orthologues in patient samples. The levels 
of Novlnc66 and Novlnc44 were reduced in patients with 
heart pathologies.

The mechanistic function of lncRNA in the heart is 
still unclear. LncRNAs have been reported to function as 
a sponge/sink for miRNA and chromatin-remodeling pro-
teins (Han et al. 2014; Wang et al. 2014). Cardiac hypertro-
phy-related factor (CHRF) sequesters miR-489, therefore 
inhibiting its ability to repress the expression of its target 
mRNA, Myd88. Downregulation of Myd88 expression 
led to cardiomyocyte hypertrophy (Wang et al. 2014). The 
expression of MHC-associated RNA transcript (Myheart 
or Mhrt) was downregulated in response to a cardiac stress 
(Hang et al. 2010), and restoring Mhrt levels in vivo was 
cardioprotective (Han et al. 2014). Mhrt antagonizes the 
role of Brg1 (an ATP-dependent chromatin remodeler), pre-
venting recognition of genomic DNA targets and patholog-
ical gene activation of MHC (Han et al. 2014). These stud-
ies uncovered a novel hypertrophic mechanism, comprising 
the interplay between lncRNAs and miRNAs or nucleo-
some remodeling, acting on hypertrophic gene expression.

Similar to miRNAs, lncRNAs are also detected in body 
fluids and may serve as biomarkers for CVDs. During 
a screen for lncRNA in plasma of patients with MI, the 
investigators reported the circulating mitochondrial long 
noncoding RNA uc022bqs.1, LIPCAR, as a predictor for 
survival in patients with HF (Kumarswamy et al. 2014). In 
an independent study, the group took another approach to 
analyze lncRNA in whole blood of patients with MI and 
identified increased levels of hypoxia-inducible factor 1A 
antisense RNA 2 (aHIF), potassium voltage-gated channel 
KQT-like subfamily member 1 opposite strand/antisense 
transcript 1 (KCNQ1OT1), metastasis-associated lung 

adenocarcinoma transcript 1 (MALAT1) and decreased lev-
els of cyclin-dependent kinase inhibitor 2B antisense RNA 
1 (ANRIL) (Vausort et al. 2014). Using multivariable and 
reclassification analyses, ANRIL and KCNQ1OT1 were 
found to improve prediction of LV dysfunction after MI 
(Vausort et al. 2014).

LncRNA research is still at its infancy, and future studies 
will help us understand the role and molecular mechanisms 
of these noncoding RNAs in the diseased heart. Next-gen-
eration sequencing studies suggest that lncRNAs are highly 
tissue specific and implies that heart-specific lncRNAs have 
potential therapeutic possibilities as targeting molecules in 
CVDs, similar to miRNAs.

A list of miRNAs studied in settings of cardiac disease 
has previously been well summarized (Kumarswamy and 
Thum 2013; Olson 2014). Here, we provide a list of lncR-
NAs studied in cardiac hypertrophy and HF (Table 1).

Current pharmacological therapeutics targeting 
maladaptive processes associated with pathological 
cardiac hypertrophy and remodeling

Treatment options for HF include pharmacologic therapy, 
lifestyle modifications (e.g., exercise), implantable devices 
and surgery. The overall goal of HF therapy is to relieve 
symptoms, decrease hospitalization rates and prevent pre-
mature death. Regular physical activity has been shown to 
improve the quality of life in patients with stable chronic 
HF, reverse pathological remodeling and improve heart 
function of patients with systolic HF, although patient 
non-adherence remains a major challenge (reviewed in De 
Maeyer et al. 2013; Piña et al. 2003; Wisloff et al. 2007). 
Implantable devices such as cardioverter defibrillators and 
LV assist devices have been shown to reduce the risk of 
sudden death or improve survival, but limited economic 
resources affect the usage of device therapy (reviewed in 
McMurray 2010). Although cardiac transplantation has 
been shown to prolong survival and improve quality of life 
in patients with end stage HF (Augoustides and Riha 2009), 
it is limited by insufficient donor organs and contraindica-
tions, as well as other barriers including socioeconomic 
factors, financial resources and is limited to a small num-
ber of patients (Fischer and Glas 2013). Drug therapy is 
more widely available, mainly due to its lower cost. Here, 
we review current pharmacological therapeutics commonly 
prescribed to patients with HF and the mechanisms via 
which they act.

ACE inhibitors

ACE inhibitors are a well-established pharmacotherapy 
for the treatment of hypertension and HF. ACE inhibitors 
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prevent the formation of Ang II and reduce pathological 
signaling through the AT1 receptor (Fig. 5). This causes 
relaxation of blood vessels, facilitation of salt and water 
excretion, and thus, subsequent lowering of blood pressure 
(Sweitzer 2003). ACE inhibitors improve symptoms of HF, 
improve heart function, decrease admissions to hospital 
and enable patients to live longer. These benefits were seen 
in patients irrespective of the severity of HF symptoms and 
in patients with or without coronary artery disease (CON-
SENSUS Trial Study Group 1987; SOLVD Investigators 
1991). In addition, ACE inhibitor therapy has been shown 
to reduce the risk of MI and decrease the risk of asympto-
matic patients with LV dysfunction later developing symp-
toms of HF (AIRE Investigators 1993; Pfeffer et al. 1992; 
SOLVD Investigators 1992).

The efficacy of ARBs is similar to that of ACE inhibi-
tors and is used in HF patients who are ACE inhibitor 
intolerant or those that develop a cough as a result of ACE 
inhibitor therapy (McMurray 2010; Yancy et al. 2013). 
More recently, the dual angiotensin–neprilysin receptor 
inhibitor has been shown to be more effective than the 
current standard treatment (the ACE inhibitor enalapril) 
at preventing the progression of HF (McMurray et al. 
2014; Packer et al. 2015). This dual inhibitor targets both 
neurohormonal systems by preventing peptide degrada-
tion (e.g., natriuretic, bradykinin, adrenomedullin that 
mediate beneficial cardiorenal effects and are impaired 
in HF), while concomitantly blocking the AT1 receptor 
(Langenickel and Dole 2012). ACE inhibitors and ARBs 
may have a direct effect on heart growth via inhibition of 
AT1 receptors (as discussed earlier in section on signal-
ing via GPCR pathways). Therefore, ACE inhibitors and 
ARBs are important components of standard HF therapy 
in patients with HF.

β-Blockers

β-Blockers are administered to control HF symptoms (such 
as shortness of breath or weakness), which occur due to the 
release of catecholamines (Fig. 5). β-Blockers may work 
by slowing heart rate, thus allowing the chambers of the 
heart to fill more effectively and improve function of the 
heart, and also by decreasing blood pressure by dilating 
blood vessels (Frishman 2003).

β-Blockers are often used in conjunction with ACE 
inhibitors and have been shown to be effective for treating 
most people who have HF. Evidence from clinical trials 
shows that β-blocker therapy can improve cardiac function, 
decrease hospitalization, reduce symptoms and reduce the 
risk of death in patients with HF (CIBIS-II Investigators 
1999; MERIT-HR Study Group 1999; Packer et al. 2001).

MRAs

Mineralocorticoid receptor activation in the heart drives 
cardiac fibrosis and inflammation, which leads to HF 
(Bienvenu et al. 2013; Young 2013). Thus, mineralocorti-
coid receptor blockade in the heart represents an attractive 
therapeutic option for the treatment of HF (Fig. 5). Miner-
alocorticoid receptor antagonists (MRAs) are prescribed in 
addition to ACE inhibitors, ARBs and β-blockers. Several 
randomized controlled clinical trials have demonstrated the 
benefits of MRA therapy. The first MRA developed was 
spironolactone and was shown to reduce hospitalization 
and total mortality in patients with severe HF (Pitt et al. 
1999). Subsequently, the more selective MRA eplerenone 
significantly reduced mortality, morbidity and had fewer 
hospitalizations in a wider range of HF patients (e.g., 
patients with mild HF or acute MI complicated by HF) (Pitt 

Table 1  List of lncRNAs studied so far in CVDs

LncRNA Key observation References

CHRF Upregulated in cardiomyocytes in response to Ang II stimulation Wang et al. (2014)

Mhrt Downregulated in response to pressure overload in mice
Downregulated in patients with hypertrophic, ischemic or idiopathic cardiomyopathy
Cardiac-specific Mhrt transgenic mice were protected from pressure overload-induced 

cardiac hypertrophy

Han et al. (2010, 2014)

Novlnc6 Downregulated with MI in mice
Downregulated in patients with dilated cardiomyopathy

Ounzain et al. (2015)

Novlnc44 Downregulated in patients with aortic stenosis Ounzain et al. (2015)

MIRT1 Upregulated with MI in mice Zangrando et al. (2014)

MIRT2 Upregulated with MI in mice Zangrando et al. (2014)

LIPCAR (circulation) Downregulated early but upregulated during later stages in patients with MI Kumarswamy et al. (2014)

aHIF (circulation) Upregulated in patients with MI Vausort et al. (2014)

KCNQ1OT1 (circulation) Upregulated in patients with MI Vausort et al. (2014)

MALAT1 (circulation) Upregulated in patients with MI Vausort et al. (2014)

ANRIL (circulation) Downregulated in patients with MI Vausort et al. (2014)



1418 Arch Toxicol (2015) 89:1401–1438

1 3

et al. 2003; Zannad et al. 2011). The improved outcomes 
may be due to alteration of renal sodium or potassium han-
dling, and beneficial effects on cardiac ECM remodeling 
(Leopold 2011).

Diuretics for the relief of HF symptoms

Diuretics remain a major component of drug therapy 
in both hypertension and HF; however, diuretics only 
relieve symptoms and are combined with an ACE inhibi-
tor, β-blocker or MRA. Diuretics provide rapid relief of 
fluid retention and shortness of breath, but the effect of 

diuretics on morbidity and mortality is not known (Yancy 
et al. 2013). Common side effects associated with the use 
of diuretics include hypotension, electrolyte depletion and 
resistance, and some patients display adverse outcomes to 
diuretics (ter Maaten et al. 2015).

Limitations/risks of current therapies

The use of current pharmacological agents mentioned 
above largely slow down the progression of the disease; 
however, mortality remains high. While these medications 
are generally well tolerated and have been used in patients 
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for a few decades, it is not uncommon for patients to 
experience adverse side effects. ACE inhibitors can lower 
blood pressure, and thus, lightheadedness and dizziness 
may result if blood pressure becomes too low. However, 
the most common side effect is an ACE inhibitor-induced 
cough, experienced by 15–20 % of patients (Sweitzer 
2003; Yancy et al. 2013). Possible side effects for patients 
on β-blockers include fluid retention, bradycardia, fatigue 
and worsening HF during initiation of treatment (Frish-
man 2003; Yancy et al. 2013), and the major risk associated 
with MRA use is hyperkalemia (Maron and Leopold 2010; 
Yancy et al. 2013). Comorbidity is an increasing problem 
as many HF patients commonly present with comorbidi-
ties such as chronic kidney disease, hypertension, diabetes, 
osteoarthritis, depression and anemia. This increases the 
potential for drug intolerance and incompatibility limit-
ing the effectiveness of proven treatments (McMurray and 
Pfeffer 2005).

New pharmacological therapies in clinical trials

Cardiac energetic impairment is a common feature of HF 
and is associated with decreased myocardial PCr: ATP ratio 
(Neubauer 2007; Taha and Lopaschuk 2007). Current phar-
macotherapies (e.g., ACE inhibitors, β-blockers) do not 
directly affect energy metabolism; thus, metabolic inter-
vention for HF represents a promising therapeutic prospect. 
Perhexiline inhibits carnitine palmitoyltransferase I (CPT I) 
and CPT II, thereby shifting substrate utilization to more 
efficient carbohydrate metabolism (Fig. 5) (Ashrafian et al. 
2007; Jeffrey et al. 1995). Results from clinical trials with 
perhexiline have been encouraging. Treatment with perhex-
iline in patients with chronic HF led to significant improve-
ments in aerobic capacity (i.e., VO2max), cardiac function 
and quality of life (Lee et al. 2005). A separate study con-
ducted in hypertrophic cardiomyopathy patients demon-
strated that perhexiline increased the myocardial PCr:ATP 
ratio (i.e., improved cardiac energy metabolism) and 
increased exercise capacity (Abozguia et al. 2010). Side 
effects in these studies were limited to dizziness and nausea 
(Abozguia et al. 2010; Lee et al. 2005). Thus, perhexiline 
represents a promising treatment targeting cardiac energet-
ics, which can be extended to other cardiac disorders that 
have metabolic and energetic dysfunction (e.g., diabetic 
cardiomyopathy). However, extensive clinical trials will 
need to be conducted to assess the efficacy of perhexiline, 
especially effects of long-term use.

The risk of developing HF is greater in diabetic patients 
than nondiabetic patients (Huynh et al. 2014). Metformin, 
an antidiabetic drug, has been shown to reduce mortality 
and morbidity of type 2 diabetic patients with CVD and is 
associated with better prognosis when compared to other 

antidiabetic treatments in diabetic patients with chronic HF 
(Eurich et al. 2013). Metformin is currently recommended 
as the first drug of therapy for diabetic patients with HF; 
however, more clinical trials are required to investigate 
the full cardioprotective effects and safety of metformin 
(Foretz et al. 2014). Studies in HF mouse models suggest 
that metformin protects against adverse cardiac remod-
eling, although the precise mechanism by which metformin 
exerts these cardioprotective effects remains unclear, 
whether it is dependent or independent of the AMPK path-
way (Gundewar et al. 2009; Kim and Dyck 2015; Xu et al. 
2014) (Fig. 5).

Therapeutic agents that target mitochondrial dysfunction 
and oxidative stress (two processes that have a role in the 
pathophysiology of cardiac remodeling and HF) are cur-
rently being explored. Coenzyme Q10 (CoQ10) is an antiox-
idant and a cofactor for mitochondrial energy production, 
and is thought to target oxidative stress and mitochondrial 
dysfunction. A recent clinical trial suggested that long-
term CoQ10 treatment (in addition to standard therapy) of 
patients with chronic HF was safe, improved symptoms and 
reduced adverse cardiovascular events (Mortensen et al. 
2014) (Fig. 5). Despite the limitations of this study (e.g., 
low study population and long duration), a larger clinical 
trial is required to establish safety and efficacy before the 
use of CoQ10 can be recommended to patients with chronic 
HF (Okonko and Shah 2015).

New therapeutic strategies to promote adaptive 
processes and restore heart function

Targeting the adaptive phosphoinositide 3-kinase pathway 
as a novel therapeutic approach

PI3K (p110α) is activated in the heart during exercise (Per-
rino et al. 2006) and is critical for postnatal heart growth 
and exercise-induced physiological hypertrophy (McMul-
len et al. 2003; Shioi et al. 2000). Activation of PI3K 
(p110α) in the heart (utilizing cardiac-specific transgenic 
mouse models with increased or decreased PI3K activ-
ity) has demonstrated that PI3K (p110α) protects the heart 
against cardiac dysfunction and adverse cardiac remod-
eling. Mice with increased PI3K (p110α) activity had 
better cardiac function or lifespan in a setting of MI (Lin 
et al. 2010), pressure overload (McMullen et al. 2007) or 
dilated cardiomyopathy (McMullen et al. 2007); reduced 
atrial fibrosis and improved cardiac conduction in atrial 
fibrillation (AF) (Pretorius et al. 2009); and was associ-
ated with no apoptosis or superoxide generation thus pre-
venting diabetes-induced cardiomyopathy (Ritchie et al. 
2012). While these studies indicate a role of PI3K (p110α) 
in mediating cardiac protection, increased PI3K activity is 
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an important and a common contributor to tumorigenesis 
and cancer progression (Fruman and Rommel 2014). Thus, 
we recently employed a gene therapy approach (recom-
binant adeno-associated viral vectors) to deliver PI3K 
(p110α) specifically to hearts of adult mice with estab-
lished cardiac dysfunction caused by pressure overload. 
We showed that muscle-specific delivery of PI3K (p110α) 
was able to improve function of the failing heart, without 
any transgene expression observed in other tissues (Weeks 
et al. 2012) (Fig. 5). More recently, it was demonstrated 
that AAV9:Pik3cb (p110β isoform of PI3K) acts down-
stream of Yes-associated protein (YAP) (nuclear effector 
of the Hippo cascade) to regulate Pik3ca (p110α isoform 
of PI3K), Akt and p27 in the heart. AAV9:Pik3cb in the 
mouse MI model promoted cardiomyocyte survival after 
MI (Lin et al. 2015).

Therapies that correct abnormal calcium handling in HF

Calcium is essential in the control of contractile function 
and cardiac growth, and regulating excitation–contrac-
tion coupling. Abnormal handling of calcium ions by car-
diomyocytes is a key pathophysiological mechanism in HF 
(Lou et al. 2012). As described previously (see section on 
calcium handling), the SERCA2a pump is responsible for 
calcium re-uptake during excitation–contraction coupling, 
and is regulated by PLN. Diminished reuptake of calcium 
in the failing heart is due to decreased SERCA2a activity 
and decreased PLN phosphorylation. The importance of 
SERCA2a has been reflected in numerous studies that dem-
onstrate reduced SERCA2a activity and expression in HF 
animal models (Kawase et al. 2008; Kiss et al. 1995) and 
in the human failing myocardium (Hasenfuss et al. 1994). 
Thus, therapies that can normalize cardiac SERCA2a activ-
ity and/or expression are being actively explored. Results 
from preclinical HF models have convincingly shown sig-
nificant improvement in cardiac function and remodeling 
as a consequence of overexpression of SERCA2a using 
adenoviral vectors (Byrne et al. 2008; Kawase et al. 2008; 
Miyamoto et al. 2000). Following this, gene therapy clini-
cal trials have been designed to increase SERCA2a in the 
myocardium of patients with HF using recombinant adeno-
associated viral vectors (Greenberg et al. 2014; Hajjar et al. 
2008; Jaski et al. 2009; Jessup et al. 2011; Zsebo et al. 
2014) (Fig. 5). Results from early clinical trials indicated 
that intracoronary infusion of an AAV carrying the SER-
CA2a gene was able to increase SERCA2a protein levels, 
was safe and improved cardiac function (Jaski et al. 2009), 
and after a 12 month follow-up, patients with advanced 
HF displayed improved signs and symptoms of HF and 
cardiac function (Jessup et al. 2011). More importantly, 
after a 3-year follow-up and long-term treatment of AAV-
SERCA2a, no adverse events in patients with HF were 

reported, and SERCA2a vector sequences were present in 
cardiac tissues from patients for at least 31 months (Zsebo 
et al. 2014). A phase 2b clinical trial is underway which 
will evaluate whether increasing SERCA2a activity by 
AAV improves clinical outcome in patients with moderate 
to severe HF (Greenberg et al. 2014). In addition, reduc-
ing the inhibitory effects of PLN on SERCA2a activity via 
AAV- or adenoviral-mediated delivery of a pseudophos-
phorylated mutant of PLN has also been shown to improve 
cardiac contractility in hamster and sheep models of HF, 
respectively (Hoshijima et al. 2002; Kaye et al. 2007). PLN 
activity is also regulated by the inhibitor-1 of PP1 (I-1) 
(Kranias and Hajjar 2012) (Fig. 5). Studies have demon-
strated that activating the expression of the inhibitor I-1c 
using an AAV gene therapy approach enhanced PLN phos-
phorylation, improved contractility and decreased fibrosis 
in murine and porcine models of HF (Pathak et al. 2005; 
Fish et al. 2013; Ishikawa et al. 2014) (Fig. 5).

An alternate way that SERCA2a activity can be manipu-
lated is through modification of small ubiquitin-like modi-
fier-1 (SUMO1), which is required for preserving SER-
CA2a function by SUMOylation (Fig. 5). SUMO1 protein 
expression is decreased in experimental models of HF and 
in cardiomyocytes isolated from failing human hearts (Kho 
et al. 2011). Studies in a murine model of HF induced by 
TAC demonstrated that cardiac restoration of the SUMO1 
gene using AAV gene therapy was able to improve cardiac 
function, reduce mortality and prevent TAC-induced car-
diac hypertrophy (Kho et al. 2011). Further investigation 
in a swine ischemia–reperfusion HF model demonstrated 
that SUMO1 gene therapy improved cardiac contractil-
ity and restored SERCA2a protein levels (Tilemann et al. 
2013). Additional studies are required to determine the pre-
cise mechanism of how SUMO1 treatment exerts beneficial 
cardiac effects, but these results demonstrate a new strategy 
for the treatment of HF that can be further explored.

Targeting cardiac β-adrenergic signaling through GRK2 
inhibition as a novel HF therapy

G protein-coupled receptor kinase 2 (GRK2) is upregu-
lated in HF and regulates β-ARs. In the stressed heart, 
GRK2 initiates the deactivation and down-regulation of 
β-ARs, ultimately impairing myocardial contractility (Can-
navo et al. 2013; Woodall et al. 2014). Studies performed 
in animal models of HF have demonstrated that lowering 
GRK2 could be of therapeutic benefit. Cardiac-specific 
deletion of GRK2 in mice following MI increased sur-
vival, reversed ventricular remodeling and enhanced car-
diac function (Raake et al. 2008). Furthermore, transgenic 
or AAV expression of β-ARKct, a small peptide inhibitor 
of GRK2, in different preclinical models of HF, has been 
shown to improve functional and morphological parameters 
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of the failing heart (Brinks et al. 2010; Raake et al. 2013; 
Rengo et al. 2009; Shah et al. 2001; White et al. 2000) 
(Fig. 5). These studies demonstrate the clinical potential of 
βARKct-mediated gene therapy, and phase I clinical trials 
are being planned (Cannavo et al. 2013).

PKC inhibitors

PKC isoforms regulate a number of cardiac responses, 
including those associated with HF (reviewed in Liu and 
Molkentin 2011; Palaniyandi et al. 2009). Pharmacological 
inhibition of PKCα with either breviscapine, ruboxistaurin, 
Ro-320432 or Ro-318220 enhanced cardiac contractility, 
reduced mortality and improved cardiac pathology in mul-
tiple rodent models of heart disease, providing good evi-
dence that inhibition of PKCα protects the heart following 
injury (see reviews Dhalla and Müller 2010; Liu and Mol-
kentin 2011; van Berlo et al. 2013) (Fig. 5). These findings 
were supported in a larger animal model where ruboxistau-
rin treatment improved cardiac function and attenuated HF 
in pigs following MI (Ladage et al. 2011). Although rubox-
istaurin has been used in clinical trials in patients with dia-
betic retinopathy (Aiello et al. 2011; Sheetz et al. 2011), its 
efficacy has not yet been evaluated in HF patients.

HDAC inhibitors

Both class I and class IIa HDACs have been identified as 
important regulators of cardiac remodeling and poten-
tial therapeutic targets for the treatment of HF (Lehmann 
et al. 2014; McKinsey 2011; Xie and Hill 2013) (Fig. 5). 
Administration of pan-HDAC inhibitors, such as trichosta-
tin A (TSA) or valproic acid, has been shown to prevent, 
attenuate and even reverse LV hypertrophy in rodents sub-
jected to aortic banding or chronic infusion with hyper-
trophic agonists such as Ang II or isoprenaline (Kee et al. 
2006; Kong et al. 2006; Kook et al. 2003). HDAC inhibi-
tors are also anti-fibrotic, reducing interstitial collagen 
deposition in spontaneously hypertensive and DOCA-salt 
hypertensive rats (Cardinale et al. 2010; Iyer et al. 2010; 
Kee et al. 2013). In a recent preclinical study, adminis-
tration of suberoylanilide hydroxamic acid (SAHA), an 
HDAC inhibitor that has been approved by the US Food 
and Drug Administration for the treatment of cutaneous 
T cell lymphoma, reduced infarct size and improved sys-
tolic function in rabbits subjected to ischemia–reperfusion 
injury (Xie et al. 2014). As many HDAC inhibitors func-
tion by chelating the Zn2+ ion required for catalytic activity 
(Finnin et al. 1999), and class IIa HDACs have negligible 
deacetylase activity in vivo (Lahm et al. 2007), the cardio-
protective effects of pan-HDAC inhibitors such as TSA and 
SAHA have been attributed to inhibition of class I and IIb 
isoforms. The development of class- and isoform-selective 

HDAC inhibitors has helped to elucidate which isoforms 
are responsible for mediating pathological processes such 
as fibrosis (Williams et al. 2014), and may be less toxic 
than pan-HDACs in clinical settings (McKinsey 2011).

RNA based therapies

ShRNA

RNA interference (RNAi) is a sequence-specific gene 
silencing event mediated by double-stranded RNA. The 
most common form of RNAi application is the introduction 
of a synthetic short hairpin RNA (shRNA) that binds with 
perfect sequence complementarity to the target gene and 
directs mRNA cleavage of the gene of interest. A number 
of studies have used AAV technology to deliver shRNA in 
vivo. There are numerous serotypes of AAV depending on 
the different cellular receptors that each AAV interacts with 
and the natural tropism of each individual AAV toward dif-
ferent organs (Asokan et al. 2012). AAV type 6 and type 9 
display preferential tropism for skeletal muscle and heart 
when delivered systemically in rodents (Bish et al. 2008; 
Gregorevic et al. 2004). In the heart, AAV shRNA vectors 
have been used to successfully silence PLN in a HF model 
in rats (Suckau et al. 2009) and sheep (Kaye et al. 2007) 
(Fig. 5). Silencing of PLN attenuated preexisting cardiac 
hypertrophy, cardiomyocyte diameter and reduced cardiac 
fibrosis (Kaye et al. 2007; Suckau et al. 2009).

MiRNAs

The expression and function of miRNAs can be pharma-
cologically manipulated through systemic or local deliv-
ery of miRNA mimics (to elevate expression of beneficial 
miRNAs) or anti-miRs (inhibition to block the binding of 
miRNA to their target mRNAs) (Olson 2014; Ooi et al. 
2014; van Rooij et al. 2012). To enhance cellular uptake 
and stability, anti-miRs are subjected to chemical modi-
fications such as covalent attachment of cholesterol and 
locked nucleic acid (LNA) modification. While much of the 
research in the field has focused on anti-miR therapy, data 
on miRNA mimics have been lacking as miRNA mimics 
do not tolerate chemical modifications well (Olson 2014). 
The first miRNA-based therapy that has been successfully 
translated from animal studies and reached the clinic is 
miravirsen, a miR-122 LNA inhibitor to treat hepatitis C in 
a Phase IIa clinical trial (Janssen et al. 2013). Results from 
the clinical trial indicate that the drug was effective, well 
tolerated in patients and the inhibition sustained after ter-
mination of drug treatment (Janssen et al. 2013).

Although miRNA-based therapies have not reached 
clinical trials for CVDs, inhibition of miRNAs by 
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LNA-anti-miRs has shown promising results in preclini-
cal models of cardiac pathology/HF with effective long-
term silencing and no evidence of toxicity (Bernardo et al. 
2012b, 2014a, b; Montgomery et al. 2011; Wahlquist et al. 
2014). Here, we present some examples of miRNAs (miR-
34a/miR-34 family, miR-652, miR-208a and miR-25) that 
have been successfully targeted in preclinical animal stud-
ies. We targeted miR-34a/miR-34 family (miR-34a, miR-
34b, miR-34c) and miR-652 because these miRNAs were 
distinctly regulated in settings of adaptive/physiological 
and pathological heart growth, i.e., decreased in a setting 
of increased PI3K (110α) signaling associated with physio-
logical hypertrophy and increased in a setting cardiac stress 
(Bernardo et al. 2012b, 2014b; Lin et al. 2010) (Fig. 5). 
Inhibition of miR-34a and miR-652 was beneficial in a set-
ting of moderate pressure overload, with favorable effects 
on heart size, fibrosis and function (Bernardo et al. 2012b, 
2014a, b). Boon and colleagues also demonstrated that fol-
lowing acute MI, inhibition of miR-34a reduced apopto-
sis and fibrosis as well as improved recovery (Boon et al. 
2013). However, interestingly, inhibition of miR-34a alone 
was unable to provide significant protection in models of 
severe pressure overload or established MI (Bernardo et al. 
2012b, 2014a). Collectively, this suggests that it may be 
necessary to target a larger panel of miRNAs in more severe 
disease settings. More recently, miRNAs regulated by TH 
which also induces hypertrophy resembling physiological 
hypertrophy were identified. Targets of the TH-dependent 
miRNAs are predicted to enhance physiological signaling 
and suppress pathological signaling (Janssen et al. 2014). 
Thus, regulation of TH-dependent miRNAs may represent 
a future therapeutic approach. Other studies have targeted 
miRNAs that target genes associated with cardiac contrac-
tile function (e.g., miR-208a targets MHC) and calcium 
handling (miR-25 targets SERCA2a) (Montgomery et al. 
2011; Wahlquist et al. 2014). Silencing of miR-208a pre-
vented cardiac remodeling and cardiac dysfunction, as 
well as prolonged survival in hypertension-induced HF rats 
(Montgomery et al. 2011). As noted earlier, restoration of 
SERCA2a levels via gene therapy improved cardiac func-
tion during HF. MiR-25 was identified as a repressor for 
SERCA2a expression. Increasing levels of miR-25 in vivo 
was associated with downregulation of SERCA2a activ-
ity and declining contractile function (Fig. 5). Meanwhile, 
inhibition of miR-25 restored SERCA2a activity, attenu-
ated cardiac remodeling and improved cardiac contractility, 
function and survival in a mouse model of pressure over-
load (Wahlquist et al. 2014).

Since most miRNAs are ubiquitously expressed, and 
miRNA-based therapies are taken up by multiple organs 
upon delivery, AAV vectors have been combined with 
miRNA-based therapies for tissue-selective delivery. This 
approach allows investigators to enhance miRNA function 

or replace miRNAs that are downregulated in preclinical 
models of cardiac diseases (Ganesan et al. 2013; Wahl-
quist et al. 2014). AAV delivery of RNAi provides temporal 
control over gene knockdown and is less subject to com-
pensatory mechanisms that may develop over generations 
of selection in KO mice (Mingozzi and High 2011). The 
safety and efficacy of AAV-based delivery in clinical trials 
are promising, though this approach requires further devel-
opment of strategies to overcome immune responses (Min-
gozzi and High 2013).

LncRNA

LncRNA research is still in its infancy, and few studies 
have explored the potential of targeting lncRNAs as thera-
pies for diseases. A study in 2014 reported that lncRNAs 
can be inhibited by small interfering RNAs in vitro and 
LNA gapmers (DNA oligonucleotides with LNA residues 
at the 3′ and 5′ end which induce RNas-H-mediated degra-
dation of nuclear lncRNA) in vivo (Michalik et al. 2014). 
The investigators inhibited the expression of MALAT1 
and reported impaired endothelial cell proliferation and 
retinal vessel growth in vitro (VEGF-stimulated angiogen-
esis in endothelial cells) and in vivo (mice with hindlimb 
ischemia) (Michalik et al. 2014).

Synthetic chemically modRNA

Modified mRNA (modRNA) is a relatively new approach 
in which one or more nucleotides within an mRNA are 
replaced by modified nucleotides (Chien et al. 2014). The 
modification of nucleotides overcomes the issue of poten-
tial immune responses, which can be encountered with 
AAVs. The modification of nucleotides leads to a change 
in the secondary structure of the mRNA, escaping detection 
by the innate immune response but still being efficiently 
expressed. ModRNA technology is currently a gain-of-
function approach for short-term, localized expression. In 
vivo studies in the mouse heart showed peak expression 
at approximately 8 h after injection with little expression 
after 72 h (Chien et al. 2014). Zangi and colleagues dem-
onstrated that VEGF-A modRNA administered at the time 
of coronary artery ligation in the MI mouse model by direct 
intramyocardial injection improved heart function and sur-
vival after MI (Zangi et al. 2013).

Therapies involving dietary supplementation

While in the past, the general guidelines for reducing 
the risk of CVD were to reduce total fat consumption, it 
is now recognized that the type of fat (fish, plant or ani-
mal derived) consumed is more important (van Bilsen and 
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Planavila 2014). A dietary intervention trial showed that 
a Mediterranean style diet rich in FAs derived from olive 
oil or nuts lowered the incidence of CVD as compared to 
a control, low-fat diet (Estruch et al. 2013). Conversely, 
hydrogenated or trans FAs have been implicated in increas-
ing cardiovascular risk factors (Lichtenstein et al. 1999; 
Willett 2006). As noted previously, a substrate shift occurs 
from FA oxidation to glucose utilization with progression 
of pathological hypertrophy. As such, shifting the dietary 
balance to include more beneficial FAs may drive increased 
FA oxidation and provide an alternate form of therapy to 
attenuate or reverse heart conditions.

N3-PUFA supplementation

Early observational studies of Eskimo and Okinawa 
islander populations with diets high in n-3 long-chain 
polyunsaturated fatty acids (LCPUFAs) such as eicosap-
entaenoic acid (EPA) and docosahexaenoic acid (DHA) 
from oily fish were shown to lower risk of death from 
coronary heart disease (Bang et al. 1976; Kagawa et al. 
1982). Research conducted in the diet and reinfarction trial 
(DART) showed that in men recovering from MI, consump-
tion of two weekly portions (200–400 g) of oily fish had 
a 29 % reduction in 2 year all-cause mortality (Burr et al. 
1989). In the Gruppo Italiano per lo Studio della Soprav-
vivenza nell’Infarto miocardico (GISSI)-Prevenzione tri-
als, patients recently surviving MI that were assigned daily 
n3-polyunsaturated fatty acids (PUFAs) supplements had a 
10 % reduced risk of death, nonfatal MI and nonfatal stroke 
(GISSI-Prevenzione Investigators 1999). Furthermore, a 
cohort from the Kuopio Ischemic Heart Disease Risk Fac-
tor Study showed an association of increased plasma lev-
els of n-3 LCPUFAs to reduced risk of AF (Virtanen et al. 
2009). This association was replicated in rabbits that were 
started on diets containing n-3 LCPUFAs before induc-
tion of combined pressure and volume overload that were 
protected against development of hypertrophy, electrical 
remodeling and arrhythmias (Den Ruijter et al. 2012). EPA 
supplementation also successfully reduced AF and remode-
ling in rabbits after ventricular tachypacing (Kitamura et al. 
2011).

N3-PUFA supplemented diet fed to a transgenic rat 
model of hypertensive heart disease was associated with 
reduced levels of arrhythmia and fibrosis, although the 
rats still developed cardiac hypertrophy. The reduction in 
arrhythmia was associated with normalized expression and 
subcellular localization of connexin-43, a transmembrane 
protein that forms intermyocyte gap junctions (Fischer 
et al. 2008). Dietary supplementation of fish oil to mice 
subjected to TAC attenuated the development of cardiac 
hypertrophy and fibrosis, blocked cardiac fibroblast activa-
tion and improved cardiac function (Chen et al. 2011).

For the human studies described above, there are also 
others that have shown no association between fish oil sup-
plementation and CVD (Belin et al. 2011; Dijkstra et al. 
2009; Jarvinen et al. 2006; Levitan et al. 2009; Nakamura 
et al. 2005). The inconsistency in results highlights the 
limitations of randomized controlled trials and prospective 
cohort studies; thus further studies exploring the therapeu-
tic potential of fish oil supplementation are warranted.

FFAs

Of the circulating FAs used in the production of cardiac 
ATP, some are sourced from the liver and peripheral adi-
pose tissues; however, the majority are derived from die-
tary FAs, mainly palmitate and oleate (Banke et al. 2010) 
(Fig. 3). Palmitate treatment of neonatal rat ventricular 
myocytes was associated with increased apoptosis and oxi-
dative stress, while treatment with oleate was able to atten-
uate that effect (Miller et al. 2005). Similarly in another 
study, TNF-α-induced oxidative stress in adult rat cardio-
myocytes was also prevented by oleate treatment (Al-Shud-
iefat et al. 2013). More recently, isolated hearts from rats 
that underwent TAC surgery perfused with oleate showed 
improved contractility while maintaining TAG turnover and 
oxidation levels. This was attributed to the increased affin-
ity of oleate to TAG incorporation, thereby maintaining the 
normal rate of fatty acid metabolism in the hypertrophied 
heart (Lahey et al. 2014). To our knowledge, there are cur-
rently no oleate-specific dietary trials being conducted to 
treat HF patients. However, oleate is a naturally abundant 
FA (70–80 %) found in olive oil (Benito et al. 2010), which 
features prominently in Mediterranean style diets. Meta-
analysis from a systemic review conducted in 2014 showed 
a significant correlation between increased consumption 
of olive oil and reduced risk of all-cause mortality, cardio-
vascular events and strokes (Schwingshackl and Hoffmann 
2014). The Prevencion con Dieta Mediterranea (PRED-
IMED) study found a reduced occurrence of major cardio-
vascular events among people with high cardiovascular risk 
that consumed a Mediterranean style diet supplemented 
with extra-virgin olive oil (Estruch et al. 2013). Analysis 
of a cohort from PREDIMED showed that those with the 
highest consumption of virgin olive oil and vegetable con-
sumption had lower plasma inflammatory biomarkers for 
coronary heart disease compared to those who consumed 
less (Urpi-Sarda et al. 2012). These studies all serve to 
highlight the therapeutic potential oleate supplementation 
could provide for HF patients.

l-Carnitine

Carnitine is produced from the amino acids lysine and 
methionine, and it exists in two stereoisomers, where 
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l-carnitine is the biologically active form. l-Carnitine lev-
els are maintained via endogenous synthesis predominantly 
in the kidney and liver and via dietary intake, mostly from 
dairy and meat (Demarquoy et al. 2004; Siliprandi et al. 
1991). l-Carnitine is primarily involved in mitochondrial 
metabolism and function (Fig. 3). It serves as an essential 
cofactor for the transport of acyl-CoA into the mitochon-
dria matrix for the generation of ATP through β-oxidation 
(Broderick et al. 1993). l-Carnitine also increases the rate 
of glucose oxidation by stimulating pyruvate dehydroge-
nase when there are elevated levels of unused FAs (Calvani 
et al. 2000). Depletion of the l-carnitine pool will there-
fore lead to a decreased rate of β-oxidation. In settings 
of HF, cardiac l-carnitine levels are shown to be reduced 
(Masumura et al. 1990; Regitz et al. 1990). Its supplemen-
tation therefore is viewed by many as a potential form of 
therapy to restore ATP levels to the heart.

An early study demonstrated that acute l-carnitine per-
fusion reversed the depressed cardiac function in isolated 
carnitine-deficient rat hearts and was protective against ex 
vivo ischemia/reperfusion injury (Broderick et al. 1993). 
Rats with mild surgically induced hypertrophy exhibited 
increased glucose oxidation rates and improved contractile 
function when treated with propionyl-l-carnitine, a deriva-
tive of l-carnitine (Schonekess et al. 1995) while another 
rat model of HF with preserved ejection fraction showed 
improved survival rates, attenuation of LV fibrosis and res-
toration of LV free-carnitine levels after being provided 
with a l-carnitine supplemented diet (Omori et al. 2012). 
Perfusion of l-carnitine in dog and pig hearts was also 
shown to improve contractility and LV pressure (Liedtke 
et al. 1988; Suzuki et al. 1981).

A small cohort of patients with congestive HF treated 
with propionyl-l-carnitine showed increased peak heart 
rate, exercise capacity and peak oxygen consumption, 
along with a significant reduction in pulmonary arterial 
pressure, atrial and ventricular size (Anand et al. 1998); 
1500 mg l-carnitine administered to patients daily with 
New York Heart Association (NYHA) class II symptoms 
and preserved ejection fraction showed improvement in 
diastolic parameters as well as dyspnea after 3 months 
(Serati et al. 2010). A separate study showed that patients 
with dilated cardiomyopathy who received daily 2 g doses 
of l-carnitine had increased mortality benefit against those 
who received the placebo (Rizos 2000). Of note, a recent 
study in mice suggested that intestinal microbiota metabo-
lism of l-carnitine may contribute to increased risk of ath-
erosclerosis (Koeth et al. 2013). However, potential limita-
tions of this study have also been highlighted (Ussher et al. 
2013). In summary, while a number of clinical studies show 
promising results, larger randomized trials and mechanistic 
studies should be undertaken to comprehensively assess the 
therapeutic potential of l-carnitine supplementation.

Small molecules

Small molecules are chemically synthesized drugs with low 
molecular weights (<1000 Da). They can usually be admin-
istered orally and can enter the systemic circulation via 
capillaries (Samanen 2013). Thus, a number of investiga-
tors have assessed the potential of using small molecules to 
target specific intercellular signaling pathways to treat HF.

Sildenafil

Sildenafil is a selective inhibitor of type 5 phosphodiester-
ase (PDE5) that inhibits the degradation of cGMP result-
ing in an antihypertrophic signaling effect (Vandeput 
et al. 2009) (Fig. 5). Several animal studies have shown 
that sildenafil attenuates cardiac remodeling, with an anti-
hypertrophic and anti-fibrotic effect, and protects the heart 
against cardiac injury including MI and TAC (Chau et al. 
2011; Nagayama et al. 2009; Takimoto et al. 2005). Silde-
nafil has been tested in a number of clinical trials in various 
clinical conditions, including HF, MI and diabetic cardio-
myopathy, with studies showing improved cardiac perfor-
mance and outcomes and a good safety profile (Giannetta 
et al. 2012, 2014; Schwartz et al. 2012). HF patients with 
NYHA class II–III symptoms treated with 50 mg of Silde-
nafil three times daily for a year showed improved cardiac 
functional capacity, reversed remodeling of the left atria 
and ventricle, and was associated with improvement in 
exercise performance (Guazzi et al. 2011).

BGP-15

We recently assessed the potential of a small molecule 
called BGP-15 in a transgenic mouse model with HF 
and AF. BGP-15 is a hydroxamic acid derivative that is 
administered orally, and is a co-inducer of the stress-
inducible form of hsp70 (HSP70/72). BGP-15 was 
previously found to be effective in preventing insulin 
resistance in genetic- and diet-induced mouse models 
of obesity (Chung et al. 2008), and shown to provide 
protection in genetic mouse models of Duchenne mus-
cular dystrophy, in part by attenuating fibrosis in the 
diaphragm muscle and increasing SERCA2a in skeletal 
muscle (Gehrig et al. 2012). Finally, BGP-15 represented 
an attractive drug to test in our mouse model with HF and 
AF because BGP-15 had previously been tested for safety 
and efficacy in human clinical trials and shown to have 
no adverse cardiac effects (healthy volunteers, patients 
with insulin resistance and patients with type 2 diabetes 
mellitus) (Literati-Nagy et al. 2009, 2010, 2012). Oral 
administration of BGP-15 for 4 weeks in the AF and 
HF mouse model was associated with reduced episodes 
of arrhythmia, improved cardiac function, smaller atrial 
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size, reduced ventricular fibrosis and increased cardiac 
SERCA2a expression (Sapra et al. 2014). While we had 
hypothesized that BGP-15 treatment may provide ben-
efit in the HF and AF model by increasing expression of 
hsp70, BGP-15-induced protection was associated with 
increased phosphorylation of IGF1R and reduced atrial 
levels of the lipid GM3 ganglioside, without changes in 
hsp70 (Sapra et al. 2014) (Fig. 5).

Stem cell therapies and cardiac regeneration

The adult heart has a very limited regenerative capacity 
following injury. It was envisaged that implantation of 
stem cells into the failing heart would cause regeneration 
of heart muscle and improve heart function; thus, a num-
ber of cell therapies for cardiac regeneration have been 
experimentally investigated (reviewed in Braunwald 2014; 
Hudson and Porrello 2013; Sanganalmath and Bolli 2013; 
van Berlo and Molkentin 2014). Initial studies revealed 
that bone marrow-derived stem cells and skeletal myo-
blasts had limited effect on cardiac function in clinical 
trials and did not affect survival (Abdel-Latif et al. 2007; 
Menasche et al. 2008). Cardiac progenitor cells appear to 
be safe when injected into a small number of patients, and 
thus, a larger trial is planned (Bolli et al. 2011). Cardio-
sphere-derived cells also appear to be safe and associated 
with reduced scar size (Makkar et al. 2012; Malliaras et al. 
2014). A clinical trial to assess safety and efficacy of car-
diospheres in patients post-MI with cardiac dysfunction is 
now being undertaken (Braunwald 2014). Human-induced 
pluripotent stem cells have been shown to reduce infarct 
size and improve cardiac function in a porcine ischemia–
reperfusion model (Xiong et al. 2013) but have not yet 
been used in a clinical setting. A recent study has pro-
duced human embryonic stem cell-derived cardiomyocytes 
(hESC-CMs) at a clinical scale and demonstrated suffi-
cient myocardial regeneration following transplantation 
in infracted hearts of nonhuman primates (Chong et al. 
2014). Despite the limitations of the study (e.g., small ani-
mal numbers, high cost, hESC-CM induced arrhythmias, 
discussed in detail in the following commentaries (Ander-
son et al. 2014; Murry et al. 2014; Sussman and Puceat 
2014), this study was able to generate 10-times more 
hESC-CMs than previous studies and identified ventricu-
lar arrhythmias as a challenge that needs to be addressed 
before this therapy is used in the clinic. Thus, in order for 
cell therapy to become a reality, several important ques-
tions regarding optimal cell type, route of administration, 
optimal cell dose and timing of their administration need 
to be answered, and large-scale, carefully designed, rand-
omized clinical trials need to be performed (Sanganalmath 
and Bolli 2013).

Challenges that need to be overcome

A wide gap exists between our ever increasing knowledge 
of heart disease biology and the difficulty in translating 
these discoveries to new and approved therapies for HF. 
The drug development process is typically lengthy due to 
requirements of extensive pharmacological studies in dif-
ferent types of animal models and the complexity of the 
animal systems, which may differ to that of humans. Ensur-
ing the safety of new cardiac drugs remains a major chal-
lenge and is of paramount importance. In the USA, cardiac 
safety is the leading cause for drug discontinuation at all 
phases of development (Finkle et al. 2009; Piccini et al. 
2009). Efficacy needs to be achieved, and this is often the 
result of selecting the appropriate delivery method and clin-
ical endpoint measurement (Scimia et al. 2014). In addi-
tion, recent data suggest that taking just one discovery from 
the laboratory to development and delivery to patients costs 
millions of dollars (Mullard 2014). Another common chal-
lenge is matching the study drug to the right patient cohort. 
Patients with HF often have multiple comorbidities, and 
given the wide heterogeneity of the patient population with 
HF, clinical studies need to identity the appropriate target 
population in order to maximize the success of new drug 
therapies (Vaduganathan et al. 2013).

The very lengthy process of transferring preclinical stud-
ies performed in small to large animal models and then into 
clinical trials (i.e., bench to bedside) can take up to 20 years 
and poses a major barrier to clinical translation. In order to 
accelerate preclinical development, it has been suggested 
that academic centers could be provided with small and 
large animal study facilities and the necessary personnel to 
test efficacy of novel drug targets. This would allow simul-
taneous testing of investigational drugs on small and large 
animal models. Collaboration is critical, and thus, interac-
tions between scientists and clinicians should be encour-
aged and appropriate personnel employed to negotiate the 
regulatory maze. Together, this may increase the speed and 
efficiency with which research discoveries are translated 
into advances in patient care (Scimia et al. 2013, 2014).

For both cardiac and noncardiac investigational drugs, effi-
cient and sensitive evaluation of cardiac safety in research and 
development is a priority. A common side effect of chemother-
apy drugs or other anticancer therapies is cardiotoxicity. Ear-
lier, we discussed the potential of PI3K (p110α) gene therapy 
for the treatment of HF. However, PI3K inhibitors and other 
tyrosine kinase inhibitors (e.g., ibrutinib) are a promising class 
of anticancer drugs, but at the same time, are likely to lead to 
considerable toxicity to the cardiovascular system (McLean 
et al. 2013; McMullen et al. 2014). Mice that are deficient for 
both PI3K (p110α) and PI3K (p110γ) have impaired cardiac 
function and increased pathology (e.g., fibrosis, upregula-
tion of fetal genes) ultimately resulting in cardiomyopathy at 
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1 year of age, suggesting that long-term use of PI3K inhibi-
tors may lead to cardiac defects and toxicity (Zhabyeyev et al. 
2014). Furthermore, inhibition of PI3K signaling by the tyros-
ine kinase inhibitors nilotinib and dasatinib (anticancer drugs 
that have entered clinical use) can cause drug-induced cardiac 
arrhythmias (Ballou et al. 2015). Similarly, while we and oth-
ers have shown that inhibition of miR-34a and the miR-34 
family is protective in the diseased hearts of mice (Bernardo 
et al. 2012b, 2014a; Boon et al. 2013), the effect of pro-
longed/chronic inhibition of miR-34a and its family members 
may not be ideal because of its ability to drive tumorigenesis 
(Wong et al. 2011). Conversely, miR-34a replacement therapy 
as a cancer therapeutic (as is being developed by Mirna Thera-
peutics) may have adverse affects on the heart (Bader 2012; 
Daige et al. 2014; Kasinski et al. 2014). Thus, miRNA-34 
replacement therapies, PI3K inhibitors and other anticancer 
therapeutics are to be used with care in cancer patients with 
preexisting cardiac risk factors or disease. In addition, patients 
should be carefully monitored and management plans devel-
oped (Yeh et al. 2004).

Conclusions

Mechanisms contributing to the development of car-
diac hypertrophy are very complex, and our understand-
ing of the key processes responsible for the transition to 
HF remains incomplete. In the last decade, our improved 
understanding of known mechanisms and the identifica-
tion of new regulators/signaling mediators and processes 
associated with cardiac remodeling (e.g., noncoding RNAs, 
autophagy etc.) have opened up new areas of research. HF 
remains challenging to treat, and the incidence continues 
to rise with an aging population. With current HF drugs 
largely delaying HF progression, it is hoped that some of 
the new therapeutic approaches discussed in this review 
will show potential in improving heart function and revers-
ing pathological remodeling. However, additional stud-
ies and research will be required to ascertain the efficacy, 
safety and mechanisms of action of these new treatments. 
With further advancements in our understanding of the 
mechanisms responsible for the transition from adaptive to 
maladaptive heart growth, and improved tools, technolo-
gies and drug design, we get closer to the reality of iden-
tifying new therapeutics, which can improve heart function 
and the quality of life of HF patients.
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