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cancers, and the potential role of various oncogenic genes 
regulated by this transcription factor  in cancer develop-
ment and progression. Additionally, various pharmacologi-
cal approaches employed to target the deregulated NF-κB 
signaling pathway, and their possible therapeutic potential 
in cancer therapy is also discussed briefly.
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Abbreviations
NF-κB  Nuclear factor kappa B
IκBα  Inhibitor of kappa B-α
IKK  IκB kinase
NIK  NF-κB-inducing kinase
TNF  Tumor necrosis factor
LPS  Lipopolysaccharide
TNFR  TNF receptor
TLR  Toll-like receptor
IL-1  Interleukin-1
TCR  T-cell receptor
TRAF  TNFR-associated factor
RIP  Receptor-interacting protein
TAK1  TGF-β-activated kinase 1
BAFF  B-cell-activating factor
HCC  Hepatocellular carcinoma
PI3K  PI3-kinase
HGF  Hepatocyte growth factor
HBV  Hepatitis B virus
HCV  Hepatitis C virus
NS5A  Non-structural 5A
IκBα-SR  IκBα super-repressor
DEN  Diethylnitrosamine
CAC  Colitis-associated colon cancer
PRR  Pattern recognition receptors

Abstract The transcription factor nuclear factor kappa 
B (NF-κB) has attracted increasing attention in the field 
of cancer research from last few decades. Aberrant activa-
tion of this transcription factor is frequently encountered 
in a variety of solid tumors and hematological malignan-
cies. NF-κB family members and their regulated genes 
have been linked to malignant transformation, tumor cell 
proliferation, survival, angiogenesis, invasion/metastasis, 
and therapeutic resistance. In this review, we highlight the 
diverse molecular mechanism(s) by which the NF-κB path-
way is constitutively activated in different types of human 
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CK2  Casein kinase 2
siRNA  Small interfering RNA
ER  Estrogen receptor
EGFR  Epidermal growth factor receptor
RANK  Receptor activator of NF-κB
IκBαM  IκBα mutant
HNSCC  Head and neck squamous cell carcinoma
HPV  Human papillomavirus
DLBCL  Diffuse large B-cell lymphoma
CLL  Chronic lymphocytic leukemia
HL  Hodgkin’s lymphoma
ATL  Adult T-cell leukemia
HTLV-1  Human T-cell leukemia virus type 1
EBV  Epstein–Barr virus
CML  Chronic myelogenous leukemia
ALL  Acute lymphoblastic leukemia
ABC  Activated B-cell-like
VEGF  Vascular endothelial growth factor
PGHS  Prostaglandin endoperoxide H synthases
COX  Cyclooxygenase
AP-1  Activator protein-1
PKC  Protein kinase C
Rb  Retinoblastoma
IAP  Inhibitors of apoptosis
PMA  Phorbol myristol acetate
MMP  Matrix metalloproteinase
ECM  Extracellular matrix
ELAM-1  Endothelial-leukocyte adhesion molecule-1
VCAM-1  Vascular cell adhesion molecule-1
ICAM-1  Intercellular adhesion molecule-1
EMT  Epithelial–mesenchymal transition
CXCR4  CXC-chemokine receptor 4
MEKK1  Mitogen-activated protein kinase/ERK kinase 

kinase
GSK-3β  Glycogen synthase kinase-3 beta
PDK1  Phosphoinositide-dependent protein kinase-1
MAP3K  Mitogen-activated protein kinase kinase kinase
TBK1  TANK-binding kinase 1
JNK  c-Jun NH2-terminal kinase
MnSOD  Manganese superoxide dismutase
FHC  Ferritin heavy chain
ROS  Reactive oxygen species
TRAIL  Tumor necrosis factor-related apoptosis-induc-

ing ligand
STAT3  Signal transducer and activator of transcription 
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C/EBPβ  CCAAT/enhancer-binding protein beta
HIF-1α  Hypoxia-inducible transcription factor-1 alpha
NSAID  Nonsteroidal anti-inflammatory drug
UPS  Ubiquitin proteasome system
EGCG  Epigallocatechin-3-gallate
ATO  Arsenic trioxide

NF‑κB signaling pathway

Nuclear factor kappa B (NF-κB) was first identified as a 
DNA-binding protein that specifically bound to the immu-
noglobulin κ light-chain enhancer, which is restricted in 
B cells, by David Baltimore in 1986 (Sen and Baltimore 
1986). NF-κB is a Rel family transcription factor that con-
sists of five members in mammalian cells, namely RelA 
(p65), RelB, Rel (c-Rel), NF-κB1 (p50/p105), and NF-κB2 
(p52/p100) (Baldwin 1996). Both classical and alternate 
pathways can activate NF-κB signaling through an IκB 
kinase (IKK)-dependent manner (Tergaonkar 2006). In the 
canonical pathway, the activated β-subunit of IKK (IKKβ) 
phosphorylates the negative regulator of NF-κB [inhibitor 
of kappa B-α (IκBα) protein] upon the activation of the 
IKK complex, and thereafter leads to the ubiquitination and 
proteasome-mediated degradation of IκBα. This releases 
the p65/p50 heterodimer and allows the translocation of 
the NF-κB complex into the nucleus (Hayden and Ghosh 
2004).

Activation of the non-canonical pathway involves the 
NF-κB-inducing kinase (NIK)-mediated activation of the 
IKKα homodimer, which then activates p100/RelB by 
proteasomal degradation of its inhibitory C-terminal half 
for processing into the p52/RelB heterodimer (Senftleben 
et al. 2001). Various pro-inflammatory cytokines; tumor 
necrosis factor (TNF); lipopolysaccharide (LPS); and 
other stimuli such as DNA-damaging agents and viral 
proteins, working through the TNF receptor (TNFR), 
Toll-like receptor/interleukin-1 (TLR/IL-1R), and T-cell 
receptor (TCR), activate the classical NF-κB pathway 
(Hayden and Ghosh 2004). Following the ligand recep-
tor binding, signaling proceeds through TNFR-associated 
factor/receptor-interacting protein (TRAF/RIP) com-
plexes, usually with the engagement of TGF-β-activated 
kinase 1 (TAK1), leading to canonical signaling (Hayden 
and Ghosh 2008). On the other hand, the alternative path-
way is stimulated by a more restricted set of cytokines 
that belong to the TNF superfamily, such as B-cell-acti-
vating factor (BAFF), LTβ, and CD40 (Chen and Greene 
2004). It is well established that the canonical NF-κB 
pathway is essential for inflammation and innate immu-
nity, while the non-canonical pathway plays a central role 
in the lymphoid organ development and adaptive immu-
nity (Bonizzi and Karin 2004). In general, NF-κB fam-
ily proteins are evolutionarily conserved mediators that 
integrate multiple stress stimuli to regulate innate and 
adaptive immune responses; they act broadly to influence 
gene expression events that impact cell survival, differ-
entiation, proliferation, adhesion, immunity, and inflam-
mation (Ghosh et al. 1998; Perkins 2007; Shen and Ter-
gaonkar 2009).
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Role of NF‑κB in cancer initiation and progression

Aberrant NF-κB activation has been implicated in the 
pathogenesis of various human diseases such as inflamma-
tory diseases; metabolic disorders; cancers that are related 
to inflammation, oxidative stress, and enhanced cell prolif-
eration; viral infection; and genetic disorders (Kumar et al. 
2004; Sarkar et al. 2008; Wong and Tergaonkar 2009). The 
first evidence implicating the oncogenic potential of NF-κB 
was the identification of retroviral oncoprotein v-rel, which 
shares a Rel transactivation domain with the mammalian 
homologs (Carrasco et al. 1996; Gilmore 1999). Numerous 
evidences have shown that constitutive activation of NF-κB 
is prevalent in most major human cancers mainly due to 
the aberrant activation of upstream signaling molecules, or 
through the autocrine or paracrine activation by cytokines 
and growth factors, and sometimes by the genetic alteration 
of genes encoding NF-κB and IκB proteins (Karin et al. 
2002; Van Waes 2007; Table 1). The constitutive activa-
tion of NF-κB in specific human malignancies is discussed 
below.

Molecular mechanism(s) of constitutive NF‑κB 
activation in major solid tumors

Hepatocellular carcinoma (HCC)

Several studies have reported the persistent activation of 
NF-κB in hepatocellular carcinoma cell lines and tissue 
samples derived from liver cancer patients (Arsura and 
Cavin 2005; Qiao et al. 2006; Tai et al. 2000). Experimen-
tal mouse models have suggested that the growth factor-
mediated NF-κB activation in hepatocytes involving the 
PI3-kinase (PI3K)/Akt axis (Cavin et al. 2005), hepatocyte 
growth factor (HGF)/Met signaling (Muller et al. 2002), 
and TAK1/IKK pathway (Arsura et al. 2003) promotes 
liver tumor development and progression. Viral proteins of 
oncovirus have been identified to activate the NF-κB sign-
aling pathway (Block et al. 2003), including hepatitis B 
virus (HBV) X protein (Diao et al. 2001), as well as hepa-
titis C virus (HCV) non-structural 5A (NS5A) (Waris et al. 
2003), and core proteins (Sato et al. 2006; Shrivastava et al. 
1998), which are implicated in hepatocellular transforma-
tion (Bouchard and Schneider 2004; McGivern and Lemon 
2011). Tight connections between inflammation and cancer 
have long been established, and tumor-promoting inflam-
mation has been described as one of the hallmarks of can-
cer by Hanahan and Weinberg (Hanahan and Weinberg 
2011; Sethi et al. 2012). As a key player in inflammation 
and cancer, it is no surprise that NF-κB has been identi-
fied to be linked to inflammation-associated liver cancer in 
an Mdr2-knockout mouse model, from which the animal 

spontaneously develops cholestatic hepatitis-induced HCC 
(Pikarsky et al. 2004). The study demonstrated that IκBα 
super-repressor (IκBα-SR) or anti-TNFα antibodies inhib-
ited the TNFα-induced NF-κB activation in Mdr2−/− mice, 
resulted in apoptosis of transformed hepatocytes, and 
retarded progression to malignancy (Pikarsky et al. 2004). 
It is correlated with the observation of enhanced carcino-
gen-mediated hepatocyte death in mice with hepatocyte-
specific deletion of IKKβ (Maeda et al. 2005); surprisingly, 
IKKβ-knockout mice presented a significant increase in 
diethylnitrosamine (DEN)-induced hepatocarcinogenesis 
owing to the increased compensatory proliferation of sur-
viving hepatocytes. Additional ablation of IKKβ in adja-
cent myeloid cells (Kupffer cells) markedly reduced hepa-
tocarcinogenesis, which was attributed to the suppression 
of NF-κB-dependent production of potent hepatomitogens 
(TNFα, IL-6, and HGF) that stimulate proliferation of 
hepatocytes (Maeda et al. 2005).

Colorectal cancer

Further evidence linking NF-κB with inflammation-asso-
ciated tumor development comes from a mouse model of 
colitis-associated colon cancer (CAC) (Greten et al. 2004). 
Specific deletion of IKKβ in intestinal epithelial cells 
(enterocytes) or myeloid cells led to reduction in tumor for-
mation, or a decrease in both tumor incidence and tumor 
size, respectively, indicating that enterocytes’ IKKβ con-
tributes to early tumor promotion by inhibiting apoptosis, 
while it promotes tumor growth by inducing the expression 
of pro-inflammatory cytokines in myeloid cells (Greten 
et al. 2004). The study not only revealed the importance 
of the IKK/NF-κB pathway in the tumor microenviron-
ment for tumorigenesis, but also highlighted its cell type-
dependent functions. In fact, in addition to colon cancer 
cell lines and colorectal carcinoma tissue samples (Kojima 
et al. 2004; Lind et al. 2001; Yu et al. 2003), NF-κB has 
been found to be highly expressed and active in the stroma 
of human colonic adenomatous polyps (Hardwick et al. 
2001). Various factors such as pattern recognition recep-
tors (PRRs) (Karin 2006), tumor-promoting cytokines 
(Terzic et al. 2010), or casein kinase 2 (CK2) (Farah et al. 
2003) have been implicated in the constitutive activation of 
NF-κB in colorectal cancer; however, the molecular mecha-
nisms underlying this response require further investiga-
tion. It has been demonstrated, using a mouse colon can-
cer metastasis model, that inhibition of NF-κB by IκBα-SR 
could convert LPS-induced tumor growth to tumor regres-
sion (Luo et al. 2004). In addition, knockdown of the 
NF-κB p65 subunit by small interfering RNA (siRNA) has 
been shown to enhance in vitro and in vivo sensitivity of 
colon carcinoma to the chemotherapeutic agent CPT-11 
(irinotecan) (Guo et al. 2004).
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Breast cancer

Several studies have documented the aberrant nuclear 
expression of different NF-κB family members (c-Rel, p50, 
and RelA) and constitutive NF-κB DNA-binding activity in 
many human breast tumor cell lines, human breast cancer 
specimens, and the majority of carcinogen-induced primary 
rat mammary tumors (Cogswell et al. 2000; Nakshatri et al. 

1997; Sovak et al. 1997). In the transgenic mouse model, 
31.6 % of mice that overexpressed c-Rel in the mammary 
gland developed mammary tumors, in which significant 
increases in the expression of the cancer-related NF-κB 
target genes were observed (Romieu-Mourez et al. 2003). 
These findings reveal the important involvement of con-
stitutive NF-κB activation in the early development of 
breast cancer. It is suggested that the activation of RelA 

Table 1  Key molecular mechanism(s) of constitutive NF-κB activation in major human cancers

Mechanism(s) Cancer type(s) References

Aberrant signaling pathways

 Tumor-promoting cytokines/growth 
factors

Colorectal cancer Terzicet al. (2010)

HNSCC Wang et al. (2009)

Multiple myeloma Anderson and Carrasco (2011), Hideshima et al. (2004)

 HER2 (ErbB-2) overexpression Breast cancer Biswas et al. (2004), Pianetti et al. (2001), Singh et al. (2007)

Prostate cancer Le Page et al. (2005)

 EGFR overexpression Prostate cancer Le Page et al. (2005)

Non-small-cell lung cancer Sethi et al. (2007)

HNSCC Bancroft et al. (2002), Wang et al. (2009)

 Bcr-Abl expression Leukemias (CML, ALL) Kirchner et al. (2003), Reuther et al. (1998)

 PI3K/Akt axis HCC Cavin et al. (2005)

Breast cancer Pianetti et al. (2001)

Prostate cancer Dan et al. (2008), Shukla et al. (2005)

Pancreatic cancer Asano et al. (2004)

HNSCC Bancroft et al. (2002)

 Protein kinase CK2 Colorectal cancer Farah et al. (2003)

HNSCC Yu et al. (2006)

Breast cancer Romieu-Mourez et al. (2001)

Overexpression of viral proteins

 HBV X protein HCC Diao et al. (2001)

 HCV NS5A protein HCC Waris et al. (2003)

 HCV core protein HCC Sato et al. (2006), Shrivastava et al. (1998)

 HTLV-1 Tax protein Adult T-cell leukemia Matsuoka and Jeang (2007), Yamaoka et al. (1996)

 EBV LMP1 protein Hodgkin’s lymphoma Young and Rickinson (2004)

Genetic alterations

 c-Rel gene amplification Lymphomas (Hodgkin’s lymphoma, 
DLBCL, follicular lymphoma)

Courtois and Gilmore (2006), Rayet and Gelinas (1999)

 c-Rel gene alterations  
(chromosomal rearrangements)

Lymphomas (DLBCL, follicular  
lymphoma, Hodgkin’s lymphoma)

Courtois and Gilmore (2006), Rayet and Gelinas (1999)

 NFκB1 gene amplification Multiple myeloma Annunziata et al. (2007), Demchenko et al. (2010),  
Keats et al. (2007)

 NFκB1 gene alterations  
(chromosomal rearrangements)

Acute lymphoblastic leukemia Rayet and Gelinas (1999)

 NFκB2 gene alterations  
(mutations, chromosomal  
rearrangements)

B- and T-cell leukemias/lymphomas Courtois and Gilmore (2006), Karin et al. (2002),  
Rayet and Gelinas (1999)

Multiple myeloma Annunziata et al. (2007), Demchenko et al. (2010),  
Keats et al. (2007)

 IκB gene mutations Hodgkin’s lymphoma Courtois and Gilmore (2006)

 Bcl-3 gene alterations  
(chromosomal rearrangements)

B-cell lymphocytic leukemia Courtois and Gilmore (2006), Rayet and Gelinas (1999)
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is associated more with distinct subtypes, as the classic 
form of NF-κB (RelA/p50 heterodimer) has been detected 
predominantly in HER2-overexpressing estrogen recep-
tor (ER)-negative breast tumors, which were responsive 
to treatment with specific NF-κB inhibitors (Biswas et al. 
2004; Singh et al. 2007). Another study has shown that an 
accumulation of nuclear c-Rel, p50, and p52, rather than 
p65, is differentially activated in breast tumors regard-
less of ER status (Cogswell et al. 2000). One mechanism, 
which underlies the elevated activation of NF-κB in breast 
cancer cells, has been proposed to be regulated by onco-
genic signaling. For example, HER2/neu overexpression 
induces NF-κB through calpain-mediated IκBα degradation 
by activating the PI3K/Akt pathway (Pianetti et al. 2001; 
Zhou et al. 2000). Aberrant activation of protein kinase 
CK2 in breast cancer has also been found to promote the 
degradation of IκBα by phosphorylating this NF-κB inhibi-
tor, resulting in increased nuclear translocation of NF-κB 
(Landesman-Bollag et al. 2001; Romieu-Mourez et al. 
2001). The essential requirement of IKKα and NF-κB 
in mammary gland development provides the hint for the 
importance of increased NF-κB activation in breast cancers 
(Cao et al. 2001). Evidence has shown that the deletion of 
IKKα delayed the onset of progesterone-driven mammary 
cancer with decreased NF-κB activation (Schramek et al. 
2010). Besides the substantial role of IKKα in breast car-
cinogenesis, it has also been found to be important for the 
self-renewal of HER2-transformed mammary tumor-initiat-
ing cells, as well as the metastatic spread of breast cancer 
(Cao et al. 2007; Tan et al. 2011).

Prostate cancer

NF-κB levels have been found to be constitutively activated 
in hormone-independent human prostate cell lines that 
do no response to anti-androgen therapy (Palayoor et al. 
1999), while androgen could produce sustained elevation of 
NF-κB activity in androgen-responsive prostate cancer cells 
(Ripple et al. 1999). Many studies have also provided evi-
dence of overexpression and activation of NF-κB in human 
prostate tumors, which correlates with disease progression 
(Ross et al. 2004; Shukla et al. 2004). Deregulated NF-κB 
signaling has been implicated in mediating cellular trans-
formation, prostate cancer growth, lymph node metastases, 
and disease outcome (Fradet et al. 2004; Ismail et al. 2004; 
Kim et al. 2002; Zhang et al. 2009). The most well-char-
acterized mechanism underlying the constitutive NF-κB 
activation in prostate cancer has been attributed to Akt 
activation, which interacts with and stimulates IKK (Dan 
et al. 2008; Shukla et al. 2005), but other tyrosine kinases 
such as epidermal growth factor receptor (EGFR), HER2, 
and NIK are also suggested to be involved in the activa-
tion of the pathway (Le Page et al. 2005; Suh et al. 2002). 

Silencing of IKKα has been found to delay the progression 
of castration-resistant prostate cancer, whereas IKKβ abla-
tion presents no effect on the development of the tumor 
(Ammirante et al. 2010). The involvement of IKK in can-
cer metastasis has been established in the model of pros-
tate cancer, in which IKKα activation mediated through 
the induction of receptor activator of NF-κB (RANK) pro-
motes metastatic progression by inhibiting the metastasis 
suppressor Maspin (Luo et al. 2007). Inhibition of NF-κB 
by the signal-unresponsive IκBα mutant (IκBαM) or pep-
tide antagonist of NF-κB nuclear translocation led to the 
suppression of prostate cancer cell proliferation, induction 
of apoptosis, or sensitization to TNFα treatment (Asano 
et al. 2004; Gasparian et al. 2002; Herrmann et al. 1997). 
Most importantly, blockade of NF-κB activity decreased 
angiogenesis, invasion, and metastasis of xeno-transplanted 
human prostate tumors in nude mice (Huang et al. 2001).

Head and neck squamous cell carcinoma (HNSCC)

Many studies have previously documented the prevalence 
of constitutively activated NF-κB in diverse HNSCC cell 
lines and tumor tissue specimens (Bancroft et al. 2001; 
Mishra et al. 2006; Nakayama et al. 2001; Ondrey et al. 
1999). The deregulated NF-κB signaling modulates the 
expression of programs of functional genes that contrib-
utes to different stages of HNSCC development and pro-
gression (Allen et al. 2007; Bancroft et al. 2001; Loercher 
et al. 2004; Molinolo et al. 2009; Ondrey et al. 1999). 
Global gene profiling analysis has also clearly indicated 
that NF-κB signaling is a major contributor to metastatic 
progression of HNSCC (Dong et al. 2001) and a prognostic 
biomarker of a high-risk disease (Chung et al. 2006). An 
elevated phosphorylation level of NF-κB in patient samples 
is associated with poor prognosis in terms of high recur-
rence and poor survival (Zhang et al. 2005). Autocrine or 
paracrine secretion of various cytokines or growth factors 
has been linked to NF-κB activation in HNSCC (Van Waes 
2007; Wang et al. 2009). For example, interleukin-1 alpha 
(IL-1α) has been shown to be overexpressed autonomously 
by HNSCC and contributes to the activation of NF-κB, 
thereby promoting cell survival and growth (Wolf et al. 
2001).

Major risk factors for head and neck cancer, such as cig-
arette smoking or human papillomavirus (HPV) infection, 
have been implicated in NF-κB activation. Cigarette smoke 
condensate is capable of activating NF-κB via phospho-
rylation and degradation of IκBα that is mediated through 
induction of IKK in HNSCC cell lines (Anto et al. 2002). 
Also, a positive correlation between the nuclear locali-
zation of NF-κB and HPV16-encoded E7 protein level 
has been reported in laryngeal cancer (Du et al. 2003). In 
HNSCC, several upstream signaling pathways have been 
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indicated to mediate the constitutive activation of NF-κB, 
namely PI3K/Akt cascade (Bancroft et al. 2002), CK2 
(Yu et al. 2006), and the TNF–TNFR1–TRADD–TRAF2–
RIP–TAK1–IKK pathway (Jackson-Bernitsas et al. 2007). 
Different experimental approaches have been designed to 
block the deregulated NF-κB activation, such as dominant 
negative IκBαM (Duffey et al. 1999), IKKα, and IKKβ 
kinase dead mutants (Yu et al. 2006), or pharmacological 
inhibitors (Bancroft et al. 2002). The inhibition of NF-κB 
activation in HNSCC significantly suppresses the expres-
sion of NF-κB-modulated genes, such as pro-inflammatory 
cytokines (IL-6, IL-8, and YAP1), and results in the induc-
tion of cell death and tumor growth inhibition (Allen et al. 
2007; Wang et al. 2009).

Constitutive NF‑κB activation in hematological 
malignancies

Leukemias and lymphomas

Various genetic abnormalities of the NF-κB pathway have 
been found in human leukemia and lymphoid malignan-
cies. Amplifications of c-Rel are frequently seen in Hodg-
kin’s lymphomas and diffuse large B-cell lymphomas 
(DLBCLs), while fewer cases of c-Rel gene rearrangements 
are found in certain types of B-cell lymphomas (Courtois 
and Gilmore 2006; Rayet and Gelinas 1999). In contrast 
to c-Rel, amplifications or chromosomal rearrangements 
of RelA and RelB have not been consistently reported in 
human leukemias and lymphomas (Gilmore et al. 2004). In 
addition, constitutive activation of NF-κB by NFκB2 gene 
alterations, but not the NFKB1 gene, and inactivating muta-
tions of the IκB gene have been associated with several B- 
and T-cell lymphomas and chronic lymphocytic leukemia 
(CLL), as well as Hodgkin’s lymphoma (HL) (Courtois 
and Gilmore 2006; Karin et al. 2002). Aberrant activation 
of receptors and key upstream mediators also leads to the 
persistent NF-κB signaling observed in leukemias and lym-
phomas (Jost and Ruland 2007). NF-κB activation has been 
found to be associated with virus-induced leukemias and 
lymphomas. A study of adult T-cell leukemia (ATL) led to 
the discovery of the first human retrovirus, human T-cell 
leukemia virus type 1 (HTLV-1), which was then identified 
as causal agent of ATL (Matsuoka and Jeang 2007). The 
HTLV-1 Tax oncoprotein stably associates with IKKγ to 
form Tax/IKK complexes that persistently activate NF-κB 
through both canonical and non-canonical pathways (Mat-
suoka and Jeang 2007). Constitutive activation of NF-κB 
has been found to be essential for Tax-mediated transfor-
mation (Yamaoka et al. 1996).

Infection with Epstein–Barr virus (EBV) is associ-
ated with a high risk of Hodgkin’s lymphoma, Burkitt’s 

lymphoma, and B-cell lymphomas (Young and Rickinson 
2004). The EBV-encoded membrane protein LMP1 acts as 
the member of the TNFR superfamily and constitutively 
activates the NF-κB pathway in a ligand-independent man-
ner (Young and Rickinson 2004). Another oncogenic pro-
tein, Bcr-Abl, which is strongly associated with chronic 
myelogenous leukemia (CML) and acute lymphoblas-
tic leukemia (ALL), is also capable of activating NF-κB 
(Reuther et al. 1998). The resulting nuclear translocation 
of NF-κB and enhanced transactivation function has been 
found to be dependent on the tyrosine kinase activity of Abl 
(Kirchner et al. 2003; Reuther et al. 1998). Moreover, Bcr-
Abl-induced transformation of primary bone marrow cells 
and tumor growth can be blocked by IκBα-SR-mediated 
NF-κB inhibition (Reuther et al. 1998). Aberrant NF-κB 
activation has been demonstrated to be required for the pro-
liferation and survival of Hodgkin’s disease tumor cells and 
activated B-cell-like (ABC) DLBCL, and contributes to 
the poor clinical outcome (Bargou et al. 1997; Davis et al. 
2001; Jost and Ruland 2007). Introducing IκBα-SR by ret-
roviral transduction caused reduction in cell proliferation 
rate, blocked cell-cycle progression, and induced apoptosis 
in HL and ABC DLBCL cells (Bargou et al. 1997; Davis 
et al. 2001). It was shown in the same study that HL cells 
depleted of constitutive nuclear NF-κB revealed strongly 
impaired tumor growth after being xenografted into SCID 
mice (Bargou et al. 1997).

Multiple myeloma

Diverse genetic or epigenetic alterations that trigger both 
the canonical and non-canonical NF-κB pathways have 
been described in multiple myeloma cell lines and patient 
samples (Annunziata et al. 2007; , Keats et al. (2007) et al. 
2007; Demchenko et al. 2010). The alterations include 
overexpression or activating mutations of positive regula-
tors of NF-κB signaling such as TACI, CD40, LTβR, NIK, 
NFKB1, and NFKB2 and inactivating abnormalities of 
negative regulators such as BIRC2/BIRC3, cIAP1/cIAP2, 
CYLD, TRAF2, and TRAF3 (Annunziata et al. 2007; 
Keats et al. 2007; Demchenko et al. 2010). Constitutive 
activation of the NF-κB signaling pathway stimulates 
cell growth, promotes cell survival, inhibits programmed 
cell death, and induces drug resistance in myeloma cells 
(Hideshima et al. 2002, 2004; Richardson et al. 2003). 
Moreover, production of various cytokines and growth 
factors such as interleukin-6 (IL-6), TNFα, and vascular 
endothelial growth factor (VEGF) by the NF-κB pathway 
facilitates the development of autocrine or paracrine sign-
aling loops involving the interaction of myeloma cells and 
bone marrow stromal cells, resulting in further progression 
of the disease (Anderson and Carrasco 2011; Hideshima 
et al. 2004).
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Role of major NF‑κB‑regulated genes in cancer 
development

Activated NF-κB binds to specific DNA sequences in tar-
get genes, designated as κB elements, and regulates tran-
scription of over five hundred genes (Li and Sethi 2010). 
A number of important NF-κB-regulated genes involved in 
tumor cell proliferation, survival, angiogenesis, invasion/
metastasis, and therapeutic resistance are listed below, and 
their roles are discussed.

Cyclooxygenase-2 (COX-2)

Aberrant arachidonic acid metabolism is involved in 
inflammation and carcinogenesis, owing to the tumor-
promoting activities of the metabolic products prostaglan-
dins (PGs) and leukotrienes (Wang and DuBois 2006). 
Pharmacological intervention in the biosynthesis of these 
metabolites by inhibiting the relevant enzymes has been 
considered an effective approach for cancer chemopreven-
tion and treatment (Zha et al. 2004). The PG endoperox-
ide H synthases (PGHS), also known as cyclooxygenases 
(COX), catalyze the rate-limiting step in PG synthesis 
(Smith et al. 2000). There are two isoforms of the enzyme, 
namely COX-1 and COX-2. COX-1 universally exists in 
most mammalian tissues, while COX-2 is expressed rapidly 
in response to pro-inflammatory mediators and mitogenic 
stimuli (Surh et al. 2001). The expression of COX-2 but 
not COX-1 has been always observed to be upregulated in 
a wide variety of human cancers (Fosslien 2000; Surh et al. 
2001; Zha et al. 2004). The promoter region of the COX-2 
gene contains putative binding sites for NF-κB, which acts 
as a transcription factor to regulate the induction of COX-2 
(Yamamoto et al. 1995).

Activation of NF-κB is required for COX-2 produc-
tion, as evidenced by the observations of impaired COX-2 
expression after specific inhibition of NF-κB (Smith et al. 
2000). Moreover, evidence indicates that COX-2 expres-
sion is able to promote the activity NF-κB, indicating a 
positive feedback control mechanism (Poligone and Bald-
win 2001). COX-2 can be activated by various chemo-
therapeutic agents and radiation, and thus contributes to 
therapeutic resistance (Li and Sethi 2010). Widely used 
therapeutic microtubule-interfering agents such as taxol, 
colchicines, and vinblastine have been found to induce 
activator protein-1 (AP-1) to mediate COX-2 expression 
via the cyclic AMP response element site in the COX-2 
promoter (Subbaramaiah et al. 2000). Taxanes including 
paclitaxel and docetaxel are able to stabilize COX-2 mRNA 
through protein kinase C (PKC) and p38 MAPK signal-
ing (Subbaramaiah et al. 2003). Also, levels of COX-2 
expression have been reported to be correlated inversely 
with increased tumor radiation sensitivity in oral squamous 

cell carcinoma (Terakado et al. 2004). It has been reported 
that specific COX-2 inhibition by celecoxib synergistically 
enhances the anti-tumor activity of chemotherapeutic drugs 
such as CPT-11 (Trifan et al. 2002), COL-3, and docetaxel 
(Dandekar et al. 2005). In addition to the chemosentization 
effect, celecoxib augmented the response of A431 human 
tumor xenografts in nude mice to radiation (Nakata et al. 
2004). Another COX-2 inhibitor, SC-236, has been shown 
to potentiate the effects of radiation therapy in different 
cancer models including sarcoma (Kishi et al. 2000) and 
glioma (Petersen et al. 2000). COX-2 has been also found 
to promote colon carcinoma-induced angiogenesis by pro-
ducing important angiogenic factors (Tsujii et al. 1998). 
Jung and his colleagues confirmed, using human lung 
cancer cells, that the induction of VEGF through COX-2 
upregulation is NF-κB-dependent (Jung et al. 2003). Fur-
thermore, COX-2-mediated endothelial cell migration and 
tube formation could be inhibited by the selective COX-2 
inhibitor NS-398 and the non-selective inhibitor aspirin 
(Tsujii et al. 1998).

Cyclin D1

Cyclin Dl, which is encoded by the CCNDl gene, controls 
the transition from G1 to S phase in the cell cycle (Sherr 
1996). Overexpression of cyclin D1 and amplification or 
translocation of 11q13 (where CCND1 locates) are found 
frequently in many human cancers (Donnellan and Chetty 
1998; Hunter and Pines 1994; Sherr 1996). NF-κB pro-
motes cell proliferation through transcriptional activation 
of cyclin D1 by binding to the cyclin D1 promoter (Gut-
tridge et al. 1999; Hinz et al. 1999). The inhibition of 
NF-κB reduces the cyclin D1 activity, which is associated 
with delayed phosphorylation of the retinoblastoma (Rb) 
protein, resulting in impaired cell-cycle progression that 
can be rescued by ectopic expression of cyclin D1 (Gut-
tridge et al. 1999; Hinz et al. 1999). IKKα has been found 
to be required for NF-κB-induced cyclin D1 expression, 
which is proposed as a key element in mammary gland 
development and mammary carcinogenesis (Cao et al. 
2001, 2007). Consistently, transcriptional activation of 
cyclin D1 by IKKα has been reported in other cell types, 
but mediated by distinct factors such as β-catenin (Alba-
nese et al. 2003) and ER α (Park et al. 2005). In human 
breast epithelial cells, IκB homology Bcl-3 in association 
with p52 homodimers has been demonstrated to stimulate 
the transcription of the cyclin D1 gene via directly interact-
ing with the NF-κB binding site in the cyclin D1 promoter 
(Westerheide et al. 2001). This finding is in accordance 
with the observations of increased nuclear accumulation of 
p50, p52, and Bcl-3 with elevated expression of cyclin D1 
in tumorigenic breast tissues (Cogswell et al. 2000). Inhibi-
tion of cyclin D1 expression by using a cyclin D1 antisense 
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construct in a variety of cancers not only resulted in attenu-
ated cancer cell proliferation and loss of tumorigenicity, but 
also led to an increased growth-inhibitory effect of chemo-
therapeutic agents. These findings suggest that cyclin D1 
may exert a protective effect against drug-induced cytotox-
icity and further implies a requirement for cyclin D1 in the 
maintenance of chemoresistance in these cells (Arber et al. 
1997; Kornmann et al. 1998, 1999; Nakashima and Clay-
man 2000; Schrump et al. 1996; Zhou et al. 1995).

Anti-apoptotic genes

The Bcl-2 family of proto-oncogenes is a critical negative 
regulator of apoptosis and is frequently dysregulated in 
wide variety of cancers. The promoter of human Bfl-1/A1, 
Bcl-xL, and Bcl-2 has been identified to present an NF-κB 
binding site, which is responsible for its c-Rel/RelA-, 
c-Rel-, or p50/p65-dependent induction, respectively (Catz 
and Johnson 2001; Chen et al. 2000; Zong et al. 1999). In 
IκBα-SR-expressing cells, overexpression of either Bfl-1/
A1 or Bcl-xL has been found to confer resistance to apop-
tosis induced by TNFα (Chen et al. 2000; Karin and Lin 
2002; Zong et al. 1999). Furthermore, NF-κB-induced 
expression of Bfl-1/A1 potently suppressed chemotherapy-
induced apoptosis by inhibiting the release of cytochrome 
c and by blocking caspase-3 activation (Wang et al. 1999). 
Indeed, most chemotherapeutic drugs and ionizing radia-
tion that activate NF-κB can also activate Bcl-2 family pro-
teins in various cancer cell lines (Li and Sethi 2010). We 
have previously summarized several studies demonstrating 
the downregulation of different Bcl-2 family members by 
antisense oligonucleotides, small-molecule inhibitors, or 
siRNAs leading to enhanced chemo- or radiosensitization 
of multiple human cancers (Li and Sethi 2010).

Another important group of survival proteins regu-
lated by NF-κB is the inhibitors of apoptosis (IAPs), 
which directly bind and inhibit caspase activity (Deveraux 
and Reed 1999; Tamm et al. 1998). Expression of IAPs is 
induced in response to several NF-κB-activating stimuli, 
including TNFα, phorbol myristol acetate (PMA), LPS, and 
IL-1β, and the induction was blocked by IκBα-SR, suggest-
ing the involvement of IAPs in the anti-apoptotic activity 
of NF-κB (Chu et al. 1997; Stehlik et al. 1998; Wang et al. 
1998). Moreover, cIAP1, cIAP2, and XIAP can further 
enhance cell survival by their ability to promote NF-κB acti-
vation in a positive feedback loop (Chu et al. 1997; Gyrd-
Hansen and Meier 2010; Hofer-Warbinek et al. 2000). Sur-
vivin, a key regulator of mitosis and programmed cell death, 
has provided strong evidence for IAP involvement in can-
cer. RelB and p50 are bound to the NF-κB binding site in 
the survivin promoter between −354 and −345 (Kawakami 
et al. 2005). Survivin has been found to be selectively 
expressed in transformed cells and in most human cancers 

(LaCasse et al. 1998; Mita et al. 2008). The level of survivin 
correlates with a decreased tumor cell apoptotic index in 
gastric cancer (Lu et al. 1998) as well as colorectal cancer 
(Kawasaki et al. 1998); more importantly, patients with a 
low apoptotic index or with survivin-negative tumors had 
shortened 5-year disease survival than the group with high 
apoptosis or those with survivin-positive tumors (Kawasaki 
et al. 1998; Sarela et al. 2000). Cancer patients with lymph 
node invasion, metastases, and recurrent disease displayed 
significantly higher expression of survivin (Mita et al. 
2008). Finally, overexpression of survivin can be useful 
as a predictive factor to determine response to chemother-
apy in patients with bladder cancer, breast cancer multiple 
myeloma, lymphoma, and ovarian carcinoma (Li and Sethi 
2010). Consistent with the findings for survivin, alterations 
in other IAP members found in many types of human can-
cer are also associated with chemoresistance, disease pro-
gression, and poor prognosis (Gyrd-Hansen and Meier 
2010; Hunter et al. 2007; LaCasse et al. 2008). Strategies 
such as antisense oligonucleotides, siRNA, and small-mol-
ecule antagonists have been developed to block IAPs, and 
have resulted in induction of apoptosis, inhibition of tumor 
growth, and increased sensitivity to chemo- or radiotherapy 
in a broad spectrum of human cancer models (Gyrd-Hansen 
and Meier 2010; Hunter et al. 2007; LaCasse et al. 2008).

Angiogenic factors

Tumor-associated neovasculature, generated by angiogen-
esis, develops during tumorigenesis to facilitate the tumor 
acquiring nutrients and oxygen and disposing of meta-
bolic wastes (Hanahan and Weinberg 2011). This process 
is initiated by an “angiogenic switch” in which the bal-
ance between pro-angiogenic and anti-angiogenic factors is 
tipped toward angiogenesis (Carmeliet and Jain 2000). The 
deregulated NF-κB signaling also contributes to angiogen-
esis through modulation of major pro-angiogenic factors 
such as VEGF and pro-inflammatory cytokines (e.g., IL-8) 
(Aggarwal 2004; Karin 2006). In highly malignant human 
prostate cancer cells PC-3M, expression of VEGF and IL-8 
is upregulated and correlates with the constitutive NF-κB/
relA activity (Huang et al. 2001). Furthermore, bombesin-
stimulated expression and secretion of VEGF and IL-8 has 
been found to be dependent on NF-κB activation (Levine 
et al. 2003). Administration of a NF-κB antisense oligonu-
cleotide abrogated the TNFα-induced IL-8 and VEGF pro-
duction, along with inhibition of tubular morphogenesis in 
vascular endothelial cells (Yoshida et al. 1997). In human 
melanoma, ovarian, and prostate cancer models, block-
ade of NF-κB signaling by IκBαM suppressed the in vitro 
and in vivo expression of VEGF and IL-8, which directly 
correlated with the reduced neovascularization as well as 
decreased tumorigenicity (Huang et al. 2000a, b; 2001).
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Regulators of invasion/metastasis

The transcription targets of NF-κB also include variety 
of molecules involved in tumor invasion, migration, and 
metastasis. NF-κB binding sites were identified in the 
promoters of genes that encode several matrix metallo-
proteinases (MMPs) that degrade the extracellular matrix 
(ECM) to facilitate tumor cell invasion in tissues (Karin 
et al. 2002). NF-κB activation is also required for the tran-
scription of a group of adhesion molecules [endothelial-
leukocyte adhesion molecule-1 (ELAM-1), vascular cell 
adhesion molecule-1 (VCAM-1), and intercellular adhe-
sion molecule-1 (ICAM-1)] (Collins et al. 1995), which 
facilitate the extravasation of cancer cells (Kobayashi 
et al. 2007). Interestingly, VEGF is capable of stimulat-
ing the expression of ICAM-1, VCAM-1, and E-selectin, 
which is mediated through NF-κB activation (Kim et al. 
2001). Together with other regulators, MMPs and adhesion 
molecules cooperate in the induction of epithelial–mes-
enchymal transition (EMT) for the progression of cancer 
metastasis (Lopez-Novoa and Nieto 2009). A breast cancer 
model has exemplified the essential role of NF-κB signal-
ing in the induction and maintenance of EMT, and showed 
that the reversal of EMT could be achieved by inhibition of 
NF-κB activity (Huber et al. 2004). Moreover, NF-κB has 
been implicated in the migration and organ-specific hom-
ing of metastatic cancer cells, as demonstrated by Helbig 
and his co-workers, who showed that NF-κB regulated the 
motility of breast cancer cells, and promoted tumor migra-
tion and metastasis by directly upregulating the expression 
of CXC-chemokine receptor 4 (CXCR4) (Helbig et al. 
2003). Overall, the above studies indicate that it is impor-
tant to suppress NF-κB activation in order to reduce cancer 
metastasis.

Potential cross talk between NF‑κB and other signal 
transduction cascades

The full transcriptional activation of NF-κB may involve 
cross talk with other signal pathways such as EGFR, PI3K/
Akt and signal transducer, and activator of transcription 
3 (STAT3), and blocking the activity of these signaling 
pathways can also provide an alternative strategy to regu-
late NF-κB activity in cancer therapy (Li and Sethi 2010; 
Fig. 1). The EGFR family acts as a central signal transducer 
of multiple important signaling pathways that contrib-
ute to tumor growth, survival, angiogenesis, invasion, and 
metastasis (Normanno et al. 2006; Yarden 2001). In many 
tumors, overexpression of EGFR family members (EGFR 
or ErbB-2) or their ligand overexpression activates NF-κB, 
stimulating various intracellular signaling cascades. For 
example, our group has reported that overexpression of 

EGFR led to constitutive activation of NF-κB through EGF 
receptor-kinase-dependent tyrosine 42 phosphorylation of 
IκBα (Sethi et al. 2007). While Pianetti et al. (2001) found 
that HER2/neu overexpression also activates NF-κB in an 
IKK-independent manner, but via the PI3K/Akt pathway in 
breast cancer.

The kinetics and spectrum of NF-κB activation differs 
widely in response to various stimuli that require different 
intermediates to transmit the signal. Several kinases, such 
as Akt, mitogen-activated protein kinase/ERK kinase kinase 
(MEKK1), PKC, glycogen synthase kinase-3 beta (GSK-3β), 
phosphoinositide-dependent protein kinase-1 (PDK1), and 
TAK1, have been reported to function upstream of NF-κB 
signaling (Vallabhapurapu and Karin 2009; Viatour et al. 
2005). Apart from the canonical and non-canonical NF-κB 
signaling, PI3K/Akt has been identified as an important 
mediator to activate NF-κB. Different modes of functional 
interaction between PI3K/Akt and NF-κB have been dis-
covered in tumors. The most common mechanism has been 
attributed to direct phosphorylation of IKKα by Akt, thereby 
leading to the activation of the kinase upstream of NF-κB 
(Ozes et al. 1999; Romashkova and Makarov 1999). Akt 
can also indirectly stimulate IKK activity through its down-
stream effector mammalian target of rapamycin (mTOR) 
(Dan et al. 2008) or mitogen-activated protein kinase kinase 
kinase (MAP3K) Cot (Kane et al. 2002). Finally, Akt targets 
and phosphorylates RelA through a p38- or IKK-dependent 
mechanism to stimulate NF-κB-dependent transcription by 
stimulating the transactivation domain of the p65 subunit, 
rather than inducing NF-κB nuclear translocation via IκBα 
degradation (Madrid et al. 2000, 2001).

It is possible that oncoproteins that are known to be acti-
vated in cancer cells, such as H-Ras, trigger signaling cas-
cades that lead to constitutive NF-κB activation, which is 
required for efficient Ras-induced cellular transformation 
(Arsura et al. 2000; Finco et al. 1997; Hanson et al. 2004; 
Mayo et al. 1997) as well as EMT in Ras-transformed 
epithelial cells (Huber et al. 2004). The NF-κB activation 
induced by Ras engages several downstream effector path-
ways, such as PI3K/Akt signaling or Raf coupling with 
MEKK1, all of which lead to the activation of the IKK 
complex (Arsura et al. 2000; Chang et al. 2003; Madrid 
et al. 2000, 2001). In addition, the IKK-related kinase 
TANK-binding kinase 1 (TBK1), functioning downstream 
of Ras, has been shown to trigger the classical NF-κB path-
way activation, as judged by the accumulation of nuclear 
NF-κB (Baldwin 2012; Staudt 2010). Furthermore, Ras is 
able to stimulate the transcriptional activation function of 
NF-κB via the targeting of the RelA/p65 subunit, instead 
of inducing the nuclear translocation of NF-κB (Finco et al. 
1997).

In various tumors, the pro-apoptotic c-Jun NH2-terminal 
kinase (JNK) signaling and NF-κB appear to have opposing 
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biological effects. The activation of JNK results in diverse 
outcomes of cellular response ranging from the induc-
tion of apoptosis to increased survival and altered prolif-
eration, which has been implicated in different stages of 
cancer development (Herr and Debatin 2001; Wagner and 
Nebreda 2009). NF-κB activation in response to TNFR1 
engagement promotes termination of JNK activation 
through a mechanism that depends on the induction of anti-
oxidant enzymes such as manganese superoxide dismutase 
(MnSOD) and ferritin heavy chain (FHC), as reactive oxy-
gen species (ROS) help to sustain JNK activity (Kamata 
et al. 2005; Pham et al. 2004). In addition, interference with 
JNK activity can be achieved through NF-κB-dependent 
upregulation of genes encoding inhibitors of JNK signaling 
such as GADD45β, XIAP, and A20 (De Smaele et al. 2001; 
Papa et al. 2004; Tang et al. 2001). In many cell types, 
suppression of JNK-induced apoptosis can contribute to 

the tumor-promoting activities of NF-κB (Nakano et al. 
2006; Papa et al. 2006). Moreover, NF-κB inhibition has 
been reported to sensitize cells to TNFα-induced or tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL)-
induced apoptosis through the sustained activation of JNK 
(Liu et al. 2002; Nakshatri et al. 2004).

As STAT3 supports tumor cell survival and prolifera-
tion, and plays important roles in tumor inflammation and 
immunity, it is not surprising that the activities of STAT3 
and NF-κB are closely intertwined. Several NF-κB family 
members, in particular RelA/p65 and p50, have been found 
to physically interact with STAT3, resulting in either spe-
cific transcriptional synergy or repression of target genes, 
depending on the cellular context (Grivennikov and Karin 
2010). One interesting study showed that STAT3 could 
prolong NF-κB nuclear retention through acetyltransferase 
p300-mediated RelA acetylation, thereby interfering with 

Fig. 1  Schematic diagram 
of cross talk between NF-κB 
and other signaling pathways. 
NF-κB interacts directly or 
indirectly with multiple signal-
ing pathways or transcription 
factors in cancer. Abbrevia-
tions: IL-6 interleukin-6, STAT3 
signal transducer and activator 
of transcription 3, EGFR epi-
dermal growth factor receptor, 
PI3K PI3-kinase, CK2 casein 
kinase 2, TBK1 TANK-binding 
kinase 1, MEKK1 mitogen-
activated protein kinase/ERK 
kinase kinase, IκBα inhibitor 
of kappa B-α, IKK IκB kinase, 
NF-κB nuclear factor kappa 
B, C/EBPβ CCAAT/enhancer-
binding protein beta, HIF-1α 
hypoxia-inducible transcription 
factor-1 alpha, MnSOD man-
ganese superoxide dismutase, 
FHC ferritin heavy chain, XIAP 
X-linked inhibitor of apoptosis 
protein, ROS reactive oxygen 
species, JNK c-Jun NH2-
terminal kinase, AP-1 activator 
protein-1
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NF-κB nuclear export (Lee et al. 2009). Furthermore, the 
constitutive activation of NF-κB leads to the production 
and secretion of cytokines such as IL-6 in an autocrine/
paracrine manner, which causes the consequent activation 
of STAT3 signaling in various human cancers (Griven-
nikov and Karin 2010; Hodge et al. 2005; Yu et al. 2009). 
Importantly, STAT3 and NF-κB control both distinct and 
overlapping groups of genes involved in cell proliferation, 
survival, angiogenesis, and invasion (Bollrath and Greten 
2009; Grivennikov and Karin 2010).

NF-κB is also able to function in concert with other tran-
scription factors, such as CCAAT/enhancer-binding protein 
beta (C/EBPβ), AP-1, and specificity protein 1 (Sp1) (Per-
kins 1997, 2007). NF-κB and C/EBPβ either form a com-
plex by direct interaction or cooperatively bind to the same 
promoter site to transactivate several genes including serum 
amyloid A2, IL-6, and IL-8 (Stein and Baldwin 1993; Xia 
et al. 1997). Similarly, the Rel homology domain of p65 is 
capable of physically interacting with bZIP regions of the 
AP-1 subunits c-Fos and c-Jun, to mutually stimulate DNA 
binding and transactivation via both κB and AP-1 response 
elements in a synergistic manner (Stein et al. 1993). Cellu-
lar stress or cytokine stimulation leads to the activation of 
parallel kinase cascades regulating NF-κB and AP-1, and 
coordinate the induction of many genes encoding inflam-
matory mediators, pro-apoptotic and anti-apoptotic proteins, 
cell-cycle regulators, and enzymes that regulate matrix 
remodeling (Guha and Mackman 2001; Herr and Debatin 
2001; Karin et al. 2002; Tak and Firestein 2001). Moreover, 
NF-κB regulates the induction of AP-1 activity by promot-
ing the expression of several AP-1 family members, which 
in turn augments a second wave of NF-κB-dependent gene 
expression (Fujioka et al. 2004; Krappmann et al. 2004). 
NF-κB is also a critical transcriptional activator of hypoxia-
inducible transcription factor-1 alpha (HIF-1α), and IKKβ-
mediated NF-κB activity is required for HIF-1α protein 
accumulation under hypoxia and induction of HIF-1α target 
genes (Rius et al. 2008). Figure 1 depicts the potential cross 
talk of NF-κB signaling pathway with other important onco-
genic signal transduction cascades.

Pharmacological strategies to block NF‑κB activation

Given the pivotal role of activated NF-κB in the develop-
ment and progression of human cancer, intensive efforts 
have been made to explore strategies that block NF-κB 
signaling in aid of cancer prevention and treatment. A num-
ber of compounds with NF-κB inhibitory effects are being 
developed and tested in translational/clinical studies (Sethi 
and Tergaonkar 2009). Below, we describe few important 
classes of major NF-κB blockers and briefly discuss the 
evidence of their therapeutic promise in cancer therapy.

IKK inhibitors

The idea of specifically blocking IκBα phosphorylation 
has so far attracted much interest and substantial effort 
to develop selective inhibitors of IKK kinases via high-
throughput screening of candidate compound libraries, 
or design and synthesis of small-molecule antagonists to 
IKK (Karin et al. 2004). PS-1145, a small-molecule IKK 
inhibitor, which was developed from natural β-carboline, 
has been shown to block TNFα-induced NF-κB activation 
by blocking the IKK complex and subsequently inhib-
iting IκBα degradation (Castro et al. 2003; Hideshima 
et al. 2002). PS-1145 suppresses the proliferation of mul-
tiple myeloma cells and exhibits selective toxicity against 
subtypes of DLBCLs (Hideshima et al. 2002; Lam et al. 
2005). BMS-345541 binds to both IKKα and IKKβ at 
similar allosteric sites, and thus presents as a highly selec-
tive inhibitor of IKK (Burke et al. 2003). This compound 
inhibits the expression of NF-κB-regulated cytokines 
including TNFα, IL-1β, IL-8, and IL-6 in monocytic cells 
and the production of TNFα in mice (Burke et al. 2003). 
In a later study, it was reported that BMS-345541 induced 
apoptosis of melanoma cell lines and attenuated the growth 
of melanoma tumors in vivo (Yang et al. 2006). A pyri-
dyl cyanoguanidine, CHS-828, was identified as a potent 
IKK inhibitor (Olsen et al. 2004) and showed remarkable 
anticancer effects in several tumor cell lines and different 
mouse xenograft models (Hjarnaa et al. 1999). However, 
when the compound was tested in phase I clinical trials, no 
objective tumor responses were observed on patients with 
solid tumors (Hovstadius et al. 2002; Ravaud et al. 2005). 
On the contrary, no specific IKKα inhibitors have been 
developed, probably because the role of IKKα in NF-κB 
signaling is not yet fully understood; however, many of the 
IKKβ inhibitors show considerable high inhibition effects 
on IKKα as well, with an IC50 value in the low micromolar 
range (Karin et al. 2004).

Nonsteroidal anti-inflammatory drugs

The NF-κB proteins are evolutionarily conserved mediators 
that integrate multiple stress stimuli to regulate inflamma-
tory processes by controlling the gene expression of multi-
ple pro-inflammatory molecules (Ghosh et al. 1998; Li and 
Verma 2002). Thus, conventional anti-inflammatory agents 
such as nonsteroidal anti-inflammatory drugs (NSAIDs) 
have been re-evaluated to explore their effects on the 
NF-κB pathway in the context of cancer treatment. Experi-
mental data, clinical trials, and epidemiologic studies have 
well documented the preventive role of NSAIDs, including 
the beneficial effect of aspirin against colorectal adenoma 
as well as many other cancers (Baron et al. 2003; Schrein-
emachers and Everson 1994; Smith et al. 2000). While the 
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major targets of NSAIDs are recognized as COX that lead 
to the inhibition of synthesis of PGs, it has been also found 
that several NSAIDs inhibit NF-κB activation (Smith et al. 
2000).

Aspirin and salicylate drugs exert their anti-inflamma-
tory properties at least partly by their specific inhibition of 
IKKβ and competing with ATP binding to the molecule, 
thereby abrogating the subsequent activation of NF-κB 
(Yin et al. 1998). Similarly, the same group have identi-
fied IKKβ kinase as the target of sulindac and its metabo-
lites, and demonstrated that the growth-inhibitory ability of 
sulindac on a colon cancer cell line is regulated in part by 
modulating the NF-κB pathway (Yamamoto et al. 1999). A 
number of commonly used NSAIDs, namely aspirin, ibu-
profen, sulindac, phenylbutazone, naproxen, indometha-
cin, diclofenac, and celecoxib, have been investigated with 
regard to NF-κB activation (Takada et al. 2004). All these 
compounds have been shown to inhibit NF-κB activation 
through suppression of IκBα degradation, but they exhib-
ited a variable inhibitory capacity (Takada et al. 2004). 
Although the detailed molecular mechanisms of how 
NSAIDs inhibit the NF-κB pathway still remain unknown, 
the above-mentioned studies provide evidence that NSAIDs 
might prevent cancer development through the inhibition of 
NF-κB signaling.

Immunomodulatory agents

Thalidomide and its analogs are a group of immunomodu-
latory drugs that have shown therapeutic significance in 
treating multiple myeloma (Singhal et al. 1999). When 
thalidomide is used together with dexamethasone (another 
immunosuppressant), response rates in multiple myeloma 
patients increased significantly (Kyle and Rajkumar 2004). 
Currently, thalidomide alone or in combination with other 
chemotherapeutic agents is used as a standard therapy for 
treating relapsed and refractory multiple myeloma; how-
ever, the mechanisms that underlie the anti-angiogenic 
and anti-tumor properties of thalidomide are still unclear. 
Modulation of NF-κB has been proposed as one of the 
important mechanisms of action by thalidomide. Evidence 
has shown that thalidomide and its analogs induce apop-
tosis of multiple myeloma cells, which correlates with the 
downregulation of constitutive NF-κB activity (Mitsiades 
et al. 2002b). In addition, thalidomide has also been dem-
onstrated to suppress cytokine-induced NF-κB activation 
in other cell types such as leukemia, lymphoma, and cervi-
cal cell lines (Majumdar et al. 2002). The NF-κB inhibitory 
effect of thalidomide has been identified as it blocks IKK 
activity (Keifer et al. 2001). Corticosteroids such as glu-
cocorticoids have been found to inhibit NF-κB activity in 
studies of their anti-inflammatory and immunosuppressive 
properties. Two major mechanisms have been described: 

glucocorticoids increase the transcription of the IκBα gene, 
which in turn elevates the protein level of this NF-κB inhib-
itor that retains NF-κB in the cytoplasm (Auphan et al. 
1995; Scheinman et al. 1995); also, the ligand-activated 
glucocorticoid receptor can directly interact with the p65 
subunit, resulting in the suppression of NF-κB activation 
(Ray and Prefontaine 1994).

Proteasome inhibitors

The activation of NF-κB is tightly regulated by the turno-
ver of IκBα protein through ubiquitination and proteasome-
mediated degradation. Thus, several proteasome inhibi-
tors have been developed and studied as possible cancer 
therapy. Bortezomib (former name was PS-341, marketed 
as Velcade by Millennium Pharmaceuticals) is the first pro-
teasome inhibitor approved by the FDA for the treatment 
for multiple myeloma and mantle cell lymphoma (Kane 
et al. 2003). Bortezomib, a boronic acid dipeptide, selec-
tively binds to and inhibits the 26S proteasome, which in 
turn prevents IκBα degradation, leading to the blockade of 
NF-κB activation (Richardson et al. 2003). The anti-tumor 
activities of bortezomib have been well documented as it 
exhibits cytotoxicity in a variety of cancer cell lines and 
reduces tumor growth in different in vivo models (Rich-
ardson et al. 2003). Accumulating evidence(s) indicate that 
most chemotherapeutic agents and radiation therapy induce 
the activation of NF-κB and its mediator genes in different 
type of cancers, which leads to the chemo- or radioresist-
ance observed in tumors (Li and Sethi 2010). The idea of 
using bortezomib to inhibit NF-κB activation, in combina-
tion with either chemotherapy or radiotherapy, has been 
tested in variety of cancers. It has been demonstrated that 
bortezomib could block the chemotherapy- or radiation-
induced NF-κB activation, which led to dramatic augmen-
tation of chemo- or radiosensitivity in colorectal cancer 
cells and a human colon cancer xenograft model (Cusack 
et al. 2001; Russo et al. 2001).

In the clinical setting, the addition of bortezomib to 
doxorubicin-based chemotherapy resulted in a significantly 
higher response and improved the survival of patients with 
DLBCL (Dunleavy et al. 2009). These effects were asso-
ciated with the inhibition of NF-κB activation and conse-
quent suppression of NF-κB-regulated genes. Proteasomal 
ubiquitination regulates the degradation of multiple impor-
tant proteins involved in cancers including p53, JUN, and 
β-Catenin (Hershko and Ciechanover 1998), and it is rea-
sonable to believe that the inhibition of NF-κB is not the 
only mechanism behind the anti-tumor effects of proteas-
ome inhibitors. In fact, it has been reported that bortezomib 
mediates anti-myeloma activity by inducing p53 phos-
phorylation and expression, and activating the JNK and 
caspase-8-dependent apoptotic pathway (Hideshima et al. 
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2003; Mitsiades et al. 2002a). Besides the synthetic peptide 
aldehydes, to which bortezomib belongs, the natural com-
pound lactacystin was previously identified as having the 
ability to irreversibly block the activity of the proteasome 
via a covalent modification (Voorhees and Orlowski 2006). 
Indeed, the lactacystin derivative PS-519 (MLN519) is in 
clinical development for its anti-inflammatory properties; 
however, other proteasome inhibitors have only been stud-
ied in preclinical settings (Adams 2004).

Natural products

Compounds derived from natural products, which have 
diverse molecular mechanisms of action, have also exhib-
ited inhibitory effects on NF-κB signaling (Aggarwal and 
Shishodia 2006; Nakanishi and Toi 2005; Surh 2003). A 
flavonoid-based compound, flavopiridol, blocks the trans-
location of p65 into the nucleus through inhibition of IKK 
(Takada and Aggarwal 2004), whereas another extensively 
investigated phytochemical, curcumin, suppresses NF-κB 
activation by inhibiting the NIK/IKK signaling complex 
(Glaser et al. 1973; Plummer et al. 1999). In addition, some 
studies suggested that curcumin downregulates NF-κB acti-
vation by inhibiting Notch-1 signaling (Wang et al. 2006) 
or disrupting the function of the ubiquitin proteasome sys-
tem (Dikshit et al. 2006). Similarly, the green tea polyphe-
nol epigallocatechin-3-gallate (EGCG) causes the block-
ade of the catalytic activities of the proteasome complex, 
resulting in intracellular accumulation of IκBα (Aktas et al. 
2004; Nam et al. 2001). Some natural compounds such as 
andrographolide (from plant Andrographis paniculata) and 
sesquiterpene lactone helenalin (from plant Arnica mon-
tana and Arnica chamissonis foliosa) can directly interact 
or modify the p50 or p65 subunit of the NF-κB complex, 
respectively, and thus prevent the binding of NF-κB to 
DNA (Lyss et al. 1998; Xia et al. 2004). Resveratrol (from 
various natural sources such as grapes, berries, or Polygo-
num Capsidatum) acts as a potent pharmacological ago-
nist of the NAD-dependent deacetylase SIRT1, which in 
turn inhibits NF-κB transcription by directly deacetylating 
the RelA/p65 protein (Yeung et al. 2004). Many of these 
compounds demonstrated promising anticancer properties 
in preclinical studies, and a few of which have been evalu-
ated in clinical studies. There are several ongoing phase II 
and phase III clinical trials utilizing curcumin for chemo-
prevention or as a cancer therapy (Jurenka 2009), and pre-
liminary results from a phase II trial reported beneficial 
effects of curcumin in patients with advanced pancreatic 
cancer (Dhillon et al. 2008). It should be noted that some 
of the therapeutic effects of natural agents may be medi-
ated through pathways other than NF-κB, due to their plei-
otropic nature of interfering with numerous molecular tar-
gets (Basseres and Baldwin 2006).

Concluding remarks

Several agents such as thalidomide and arsenic trioxide, 
which are able to inhibit NF-κB function, are currently in 
clinical use for cancer treatment; however, their NF-κB 
inhibitory effects have only been indentified after their 
approval for clinical use. The most well-known case of 
exploring chemotherapeutics with the intention, at least 
in part, to target NF-κB is the development of the protea-
some inhibitor bortezomib. Since it gained FDA approval 
in 2003, bortezomib has been used clinically for relapsed 
multiple myeloma and later for mantle cell lymphoma. In 
fact, the available NF-κB inhibitors usually present only 
limited therapeutic efficacy when used as a single agent 
therapy. There are multiple preclinical studies and clinical 
trials that successfully demonstrated that NF-κB inhibi-
tors markedly potentiate the effects of chemotherapeutic 
drugs or radiation, highlighting the promising potential of 
NF-κB inhibitors as adjuvant therapy. It is very important 
to take note that prolonged NF-κB inhibition might bring 
undesirable side effects that comprise the activation or effi-
cacy of the immune system of the patients. Thus, NF-κB 
inhibition should be transient and reversible to avoid long-
term immunosuppression, which makes it more practi-
cal to use NF-κB inhibitors in cancer therapy, rather than 
chemoprevention. In addition, NF-κB inhibitors should be 
tested and used with caution because NF-κB may promote 
tumorigenesis under certain circumstances (Perkins 2004; 
Shishodia and Aggarwal 2004). More detailed understand-
ing of NF-κB signaling and its different roles in diverse 
tumor types needs to be further addressed in future stud-
ies in order to provide new insights into the rational drug 
design for specific NF-κB inhibition.
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