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CD44 designates a family of single-span trans-membrane 
proteins that are encoded by a single gene of about 50 kb of 
length located on chromosome 11 in humans and on chro-
mosome 2 in mice (reviewed in Orian-Rousseau 2010). The 
CD44 gene is composed of 20 exons (Fig. 1). Ten of these 
exons (also known as “constant” exons) are expressed in all 
isoforms. They also account for the N-terminal extracel-
lular part, the trans-membrane region and the intracellular 
domain of all members. The ten central exons known as 
“variant” exons are excised or included in various combi-
nations by alternative splicing in the membrane-proximal 
stem region. They account for the heterogeneity of this pro-
tein family. The last two exons encoding the CD44 cyto-
plasmic domain are also subjected to alternative splicing. 
The smallest isoform (CD44s) lacking all variant exons in 
the extracellular domain is ubiquitously expressed, whereas 
the expression of variant isoforms is confined to only few 
tissues and takes place only under specific developmen-
tal conditions. Most strikingly, CD44 variant isoforms are 
expressed in a variety of different cancers, particularly in 
advanced stages (reviewed in Naor et al. 2002; Orian-Rous-
seau 2010]. The complexity of the CD44 protein family is 
further enhanced by post-translational modifications such 
as N- and O-glycosylations, chondroitin sulfations or hep-
aran sulfate additions (for a more detailed description see 
Orian-Rousseau and Sleeman 2014; Ponta et al. 2003).

CD44 came into focus for the first time in cancer 
research when it was identified as a homing receptor 
for migrating thymus progenitor cells (O’Neill 1989) 
and human lymphocytes (Jalkanen et al. 1987; Pals et al. 
1989). Furthermore, CD44 appeared to mediate the bind-
ing of lymphocytes or lymphoma cells to endothelial cells 
most likely only upon activation of the lymphocytes (Les-
ley and Hyman 1992; Oppenheimer-Marks et al. 1990). 
These functions are not only instrumental for the fate of 
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lymphocytes but are also required for the hematogenic 
spreading of tumor cells.

Molecular functions of CD44

CD44 is the main receptor for hyaluronan

The migration of lymphocytes as well as the spreading of 
tumor cells are controlled by CD44 and require interactions 
with constituents of the extracellular matrix (ECM). A hall-
mark in the CD44 research was the identification of CD44 
as the principal receptor for hyaluronan (HA) (Aruffo 
et al. 1990). HA is a linear non-sulfated polysaccharide 
composed of disaccharide units of d-glucuronic acid and 
N-acetyl-d-glucosamine with a MW of 106–107 kDa. HA 
is particularly abundant in connective tissue and in the 
lymph and lymph node matrix. HA does not only provide 
a cellular support and hydrophilic matrix but also regulates 
cell–cell adhesion, cell migration as well as growth and 
differentiation (Laurent and Fraser 1992). Consequently, 
HA is involved in many physiological processes such as 
wound healing, inflammation, morphogenesis and in patho-
logical processes such as cancer. Furthermore, upon inter-
action with the cell surface HA forms a “coat” that can 
act as a cellular barrier (Gately et al. 1984; McBride and 
Bard 1979) and eventually can protect tumor cells from an 
immune attack. Interestingly, several tumor cells produce 
increased amounts of HA or induce the production of HA 
by surrounding fibroblasts thereby leading to enhanced 
metastatic spreading (Knudson et al. 1984; Turley and Tre-
tiak 1985; Zhang et al. 1995).

The binding domain of CD44 for HA is located in 
the N-terminal extracellular part of the molecule. This 
domain is called the “link region” for its homology with 

the HA-binding domain of the cartilage link protein that 
allows network formation between HA and glycosami-
noglycans in the ECM (Laurent and Fraser 1992). It is a 
globular domain with three conserved cysteine bridges and 
with two BX7B sequences where two basic amino acids 
(B) are separated by seven non-acidic amino acids (Goet-
inck et al. 1987; Goldstein et al. 1989; Peach et al. 1993; 
Yang et al. 1994). This binding domain exists in all CD44 
isoforms. However, in some cells, the insertion of variant 
exons in the stem region results in a loss of HA binding, 
whereas in other cells, the inclusion of variant exons even 
enhances HA binding (reviewed in Naor et al. 1997; Orian-
Rousseau and Sleeman 2014). Several other factors influ-
ence the binding of CD44 to HA. Among these are CD44 
aggregation, interaction of CD44 with other cell surface 
proteins and post-translational modifications of the CD44 
protein (reviewed in Naor et al. 1997; Orian-Rousseau and 
Sleeman 2014). Although not all parameters regulating HA 
binding to CD44 have been unraveled CD44 turned out to 
be the most important cellular receptor for HA and seems 
to be involved in the majority of HA-dependent cellular 
responses. Additionally, several other HA-binding cellu-
lar receptors have been identified (e.g., RHAMM, Lyve1, 
TLR4, ICAM1), which have functions in rather restricted 
tissues (reviewed in Naor et al. 1997).

The minimal size of HA fragments binding to CD44 
corresponds to six disulfide units. This is important since 
high molecular weight HA (hHA) in the ECM is degraded 
by hyaluronidases into smaller fragments (sHA) that still 
can bind to CD44. Interestingly, hHA and sHA often exert 
opposite effects on several physiological and pathological 
processes (for a detailed discussion see Orian-Rousseau 
and Sleeman 2014).

Although HA and CD44s are expressed in nearly all 
tissues, only few physiological functions requiring their 

Fig. 1  The CD44 proteins are encoded by one single gene. The 
CD44 gene comprises 20 exons. Ten of these exons (v1–v10) are 
alternatively spliced. The CD44s isoform does not contain any vari-
ant exon. Variant exons (v6 is shown) are included in the stem region 

of the protein. In humans, exon v1 contains a stop codon and is not 
found in any isoform. The last two exons encoding the CD44 cyto-
plasmic domain are also subjected to alternative splicing (reviewed in 
Ponta et al. 2003)
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collaboration have been identified. One of which is the 
already mentioned homing of lymphocytes, where anti-
bodies against CD44 that block the binding to HA, inhibit 
the binding of lymphocytes to high endothelial venules, 
a key step in homing (Jalkanen et al. 1987). In addition, 
the homing of mesenchymal stem cells to the kidney dur-
ing acute renal failure is instrumental for the healing pro-
cess and is dependent on CD44–HA interaction (Herrera 
et al. 2007). Another one is the rolling of lymphocytes 
in the blood stream, which is one of the first steps in the 
extravasation of lymphocytes (and metastasizing tumor 
cells). This step requires the interaction of leukocytes to 
the endothelial cells of blood vessels. For some T cells, 
this interaction can be blocked by CD44-specific antibod-
ies and by treatment with soluble HA (DeGrendele et al. 
1996, 1997). Furthermore, CD44 antibodies, which pre-
vent the binding of CD44 to HA inhibit the migration of 
hematopoietic stem cells to the bone marrow (Avigdor 

et al. 2004). In angiogenesis, the formation of new blood 
vessels from existing ones, a phenomenon important in 
wound healing and tumor growth, the interaction of CD44 
and HA also appears to be instrumental (Fuchs et al. 2013) 
(Fig. 2a).

CD44 isoforms act as co-receptors

A milestone in the research on CD44 was the identifica-
tion of the CD44v6 isoform as one of the first metastatic 
determinants in cancer (Gunthert et al. 1991; Hofmann 
et al. 1991; Rudy et al. 1993). CD44v6-specific antibodies 
were able to block the metastatic spreading of rat pancre-
atic tumor cells. Moreover, the transfection of CD44v4–v7 
(the v6 exon is contained in the stem region) cDNA but 
not of CD44s cDNA into non-metastatic tumor cells con-
ferred metastatic propensity to these cells. These findings 
prompted a huge number of studies aiming at unraveling 

Fig. 2  Most common blocking reagents against CD44 isoforms: a 
CD44 ectodomain [e.g., (Yu et al. 1997), antibodies blocking CD44–
HA interaction (Ghatak et al. 2002) or small fragments of HA inhib-

iting the binding of hHA (Ghatak et al. 2002; Fuchs et al. 2013). b 
Antibodies against CD44v6 (Heider et al. 1996; Schrijvers et al. 
1993) or peptides (Matzke et al. 2005)
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the relevance of CD44 isoforms and particular CD44v6 
isoforms in all different types and stages of human tumors, 
and indeed, there is ample of evidence for a correlation 
between the expression of CD44 isoforms and advanced 
stages of carcinomas (reviewed in Naor et al. 2002; Orian-
Rousseau 2010).

A breakthrough in the understanding of molecular func-
tions of CD44 isoforms in physiological and pathological 
conditions was the observation that heparan sulfate-mod-
ified CD44v3 isoforms are able to bind several heparan 
sulfate binding growth factors such as FGFs or HB-EGF 
(Bennett et al. 1995; Jackson et al. 1995). It turned out that 
such a function is not confined to heparan sulfate-modified 
CD44 isoforms but can also be provided by other isoforms. 
Of particular interest for cancer research was the identifica-
tion of CD44v6 isoforms as co-receptors for the receptor 
tyrosine kinases (RTKs), Met and VEGFR-2 (Orian-Rous-
seau et al. 2002; Tremmel et al. 2009). Met and VEGFR-2 
activation and subsequent signaling are both dependent on 
CD44v6 (Orian-Rousseau et al. 2002, 2007). Consequently, 
the formation of new blood vessels in a human pancreatic 
xenograft was blocked upon inhibition of CD44v6 (Trem-
mel et al. 2009). These data point toward a requirement of 
the co-receptor functions of CD44v6 for these RTKs for 
tumor progression. In agreement with this assumption is the 
finding that metastasis of colorectal cancer spheres injected 
into the murine cecum is dependent on both, CD44v6 and 
Met (Todaro et al. 2014).

The binding ability of CD44 to ECM components, par-
ticularly to HA, and the co-receptor function of CD44 
isoforms are features that might explain the contribution 
of CD44 to tumorigenesis. Furthermore, the functions of 
CD44 isoforms as co-receptors for several RTKs might 
also explain why so many different CD44 isoforms exist. 
Indeed, different isoforms can address different recep-
tors and are specialized for different ligands (reviewed in 
Orian-Rousseau and Sleeman 2014).

It is worth noting that CD44 proteins collaborate not 
only with RTKs but are also involved in the CXCL12-
CXCR4 axis (Fuchs et al. 2013) and the Wnt signaling 
pathway (Schmitt et al. 2014). Furthermore, CD44 proteins 
can contribute to signaling pathways by binding metallo-
proteinases and thereby facilitating the activation of growth 
factor pro-forms to the active protein (Yu and Stamenkovic 
2000; Yu et al. 2002).

Particularly important in the context of carcinogenesis 
is the contribution of CD44 to the inhibition of apopto-
sis (Yu et al. 1997). Several mechanisms have been pro-
posed that account for this function. Among these are the 
HA-dependent activation of TGFβ1 (Yu and Stamenkovic 
2004), the activation of HB-EGF, the activation of osteo-
pontin by CD44v6 containing isoforms and even the inhi-
bition of Fas signaling by CD44 (reviewed in Ponta et al. 

2003; Mielgo et al. 2005). A completely different function 
of CD44 in apoptosis was recently suggested. CD44v6 iso-
forms account for the formation of a pre-metastatic niche 
that promotes survival of tumor cells and induces chemo-
resistance (Jung et al. 2009, 2011).

The involvement of CD44 in the establishment and pro-
gression of several cancers makes it a suitable target for 
cancer therapy. In this review, we present various ways of 
targeting CD44 isoforms and discuss the future prospects 
of these therapies.

Anti‑CD44 strategies

Hyaluronan-dependent anti-cancer strategies

There is ample evidence that the CD44–HA interaction 
is involved in tumor progression (reviewed in Misra et al. 
2011; Orian-Rousseau and Sleeman 2014). Therefore, the 
interference with the binding of CD44 expressed on tumor 
cells to HA using either the soluble CD44 ectodomain as 
a competitor or antibodies that specifically block the bind-
ing of HA to CD44, impaired tumor growth and metastasis. 
Indeed, the local administration of the ectodomain of CD44 
in mice transfected with human melanoma cells inhibited 
tumor growth, whereas injection of a mutant, non-HA-
binding CD44 ectodomain had no effect (Bartolazzi et al. 
1994). Similarly, human melanoma cells transfected with 
an expression construct for the CD44 ectodomain showed 
retarded tumor growth when compared to cells transfected 
with a HA-binding mutant (Ahrens et al. 2001). Most 
strikingly, the expression of a peptide of 42 amino acid 
of length that contained three BX7B HA-binding motifs 
(found in CD44 and other HA-binding proteins) induced 
apoptosis and inhibited tumor growth of melanoma cells in 
vivo (Xu et al. 2003).

The expression of the CD44 ectodomain in metastatic 
murine mammary carcinoma cells also inhibited tumor 
growth upon the induction of apoptosis and repressed the 
invasion of tumor cells into the surrounding tissues (Yu 
et al. 1997) (Fig. 2a). A mutant ectodomain in the HA-bind-
ing sequence, however, did not interfere with tumor growth 
(Peterson et al. 2000). In these mammary carcinoma cells, 
CD44 recruits the metalloproteinase MMP9 most likely in 
a HA-dependent manner since MMP9, CD44 and HA are 
found in clusters (Yu and Stamenkovic 1999). The binding 
of MMP9 to CD44 allowed the activation of TGFβ1, which 
resulted in cell survival and metastasis (Yu and Stamenko-
vic 2004).

Monoclonal CD44-specific antibodies, which interfere 
with the binding of HA to CD44, have similar effects as the 
CD44 ectodomain. They led to the inhibition of anchorage-
independent growth of murine mammary carcinoma cells 
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and human colon carcinoma cells and induced apoptosis 
(Ghatak et al. 2002) (Fig. 2a). Furthermore, HA oligosac-
charides had similar effects and inhibited tumor growth in 
vivo most likely by interfering with the binding of hHA to 
CD44 (Ghatak et al. 2002) (Fig. 2a). This is an example of 
apparent opposing effects of hHA and sHA.

The binding of HA to CD44 can lead to the internaliza-
tion of HA (Culty et al. 1992, 1994). This feature and the 
unique properties of HA, namely its bio-degradability, its 
bio-compatibility and non-immunogenicity makes HA a 
good candidate for drug delivery applications. Several labs 
have shown that HA can be covalently coupled with drugs 
can efficiently target CD44-expressing cells (Akima et al. 
1996; Luo et al. 2000; Pouyani and Prestwich 1994; Yadav 
et al. 2008). HA contains multiple functional residues 
(hydroxyl and carboxylic acid) on the HA backbone, which 
can be used to form HA-drug conjugates. Upon internaliza-
tion, the drug is released mainly by enzymatic hydrolysis. 
Several preclinical studies have shown that the anti-cancer 
properties are efficiently improved by the covalently cou-
pling of drugs to HA. For example, the coupling of the anti-
mitotic chemotherapeutic agent paclitaxel to HA increased 
its solubility and selectively targeted the CD44-dependent 
human ovarian, colon and breast cancer cells (Luo and 
Prestwich 1999).

HA can also be covalently or non-covalently coupled 
with nanoparticles (NPs). An in-depth description of the 
potential of HA-based nanocarriers can be found in the 
reviews by (Choi et al. 2012; Ghosh et al. 2012; Misra et al. 
2011). Here, we describe only a few examples. Several ver-
sions of HA-coupled nanocarriers loaded with anti-cancer 
drugs were examined and have demonstrated advantages 
for cancer treatments in animal models. Their non-modified 
counterparts showed no such advantages. For example, 
coupling of high molecular weight HA to lipid-based NPs 
enhanced their circulation time and improved the specific-
ity of tumor targeting (Mizrahy et al. 2014). Interestingly, 
coupling of sHA did not show this effect. Several anti-
cancer drugs such as epirubicin, doxorubicin, paclitaxel or 
mitomycin c were incorporated in the inner hydrophobic 
part of HA-nanocarriers and were tested for their therapeu-
tic efficacy (Eliaz et al. 2004; Eliaz and Szoka 2001; Peer 
and Margalit 2004). In all cases, the encapsulation of the 
drugs led to a significant improvement of their efficacy.

Examples of more recently developed NPs with 
extremely high efficient tumor targeting, optimal release 
of encapsulated drugs due to fine-tuning of the pH con-
ditions and extremely low cytotoxicity are found in the 
following papers: Qiu et al. (2014); Song et al. (2014a, 
b). Some of these combinations have made it to clinical 
trials. One example is a combination of HA and pacli-
taxel, a highly hydrophobic anti-cancer drug, referred to 
as ONCOFID™-P undergoing phase II clinical study in 

Europe for treatment of refractory bladder cancer (reviewed 
in Choi et al. 2012).

Antibody-based strategies against CD44

Monoclonal antibodies against CD44v6 in head and neck 
cancer

Expression studies for several CD44 isoforms revealed that 
they are particular abundant in advanced stages of carci-
noma. This is particularly true for CD44v6 (reviewed in 
Naor et al. 2002; Orian-Rousseau 2010). Since the expres-
sion of CD44v6 is particularly high and homogenous in 
human head and neck carcinoma (HNSCC), HNSCC was 
considered promising for treatment with the CD44v6 anti-
bodies (Heider et al. 1996; Schrijvers et al. 1993) (Fig. 2b). 
Two monoclonal antibodies were used. The first one, des-
ignated BIWA, was derived from mice injected with the 
human CD44v6 part (Heider et al. 1996). The second 
one, named U36, was obtained from a screen for specific 
epitopes expressed on human head and neck carcinoma 
cells. It turned out that U36 is also specific for CD44v6 
(Schrijvers et al. 1993; Van Hal et al. 1996). Interestingly, 
the epitopes recognized by the two mAbs overlap and differ 
only by two amino acids (Van Hal et al. 1997).

Both mAbs were radiolabelled and showed selective 
tumor targeting and high tumor uptake in HNSCC patients 
undergoing surgery (Colnot et al. 2000; de Bree et al. 1995; 
Stroomer et al. 2000; Van Hal et al. 1996; Verel et al. 2002). 
Since the BIWA antibody induced an immune response in 
patients, it was humanized to give BIWA4 (bivatuzumab) 
that was then used for further clinical studies (Colnot et al. 
2003; Stroomer et al. 2000). A radio-immune therapy 
study (RIT) with 186Re-labeled bivatuzumab in HNSCC 
patients gave promising anti-tumor effects with consistent 
stable disease at higher radioactivity dosage (Borjesson 
et al. 2003; Postema et al. 2003). The U36 antibody was 
also tested in several RIT studies with promising outcomes 
especially in adjuvant settings (Colnot et al. 2000, 2002).

Based on these results, the non-radioactive cytotoxic 
drug mertansine, an anti-microtubule agent, was coupled 
with bivatuzumab (Sauter et al. 2007). Indeed, bivatuzumab 
could direct mertansine activity to CD44v6-expressing 
tumor cells. Pharmacokinetics, immunogenicity and safety 
of the antibody drug conjugate were evaluated. In a phase 
I escalation study with 31 HNSCC patients, no immune 
response was observed with bivatuzumab–mertansine (Sau-
ter et al. 2007), and in a phase I trial, 12 HNSCC patients 
were treated with the maximal tolerated dose (Riechelmann 
et al. 2008). Unexpectedly, the binding of the conjugate 
to skin keratinocytes mediated serious skin toxicity and 
had a fatal outcome, and therefore, the study was termi-
nated. However, in three patients, a partial response with a 
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disappearance of tumor infiltration could be observed. The 
tumor regression lasted for 4–8 months under continued 
drug treatment (Riechelmann et al. 2008).

In a parallel study, seven HNSCC patients received 
bivatuzumab–mertansine for 23 weeks. With the highest 
dose, one patient developed toxic epidermal necrolysis and 
died. The risk–benefit assessment turned out to be negative 
mainly for skin-related adverse events although the major-
ity of skin reactions were reversible. Further clinical devel-
opment was discontinued (Tijink et al. 2006).

Despite the clinical drawbacks with bivatuzumab–mer-
tansine CD44v6 mAbs were further developed for target-
ing CD44v6 in HNSCC tumors. The U36 antibody was 
labeled with 111In using the chelator CHXA”-DTPA and 
the chimeric molecule showed promising results regarding 
bio-distribution and tumor uptake in HNSCC bearing nude 
mice (Sandstrom et al. 2008). F(ab′)2 and Fab′ fragments 
of U36 were even superior to the mAb regarding bio-dis-
tribution and accumulation in the tumor (Sandstrom et al. 
2012). Although the tumor uptake of 125I-F(ab′)2 was lower 
as compared to the 125I-labeled mAb U36, a higher tumor-
to-blood ratio was observed.

Bivatuzumab was also used in bio-distribution and safety 
studies in other tumors (breast cancer (Koppe et al. 2004); 
thyroid cancer (Fortin et al. 2007) and for tumor imaging 
(Vermeulen et al. 2013)). It was additionally used for the 
detection of lymph node metastases (Borjesson et al. 2006). 
Most recently, a fully human Fab fragment obtained from 
a synthetic Fab library and selected for binding to CD44v6 
isoforms was assessed for tumor imaging. A comparison 
between 111In- and 125I-labeled Fab fragments revealed 
that both had a high tumor targeting capacity but the 111In-
labeled had a higher tumor-to-blood ratio and could dis-
criminate better between high and moderate expression of 
CD44v6 in HNSCC xenografts (Haylock et al. 2014).

A very interesting and often successful approach is 
the targeting of tumor antigens by adoptive cell therapy. 
For this approach, T cells were genetically engineered 
to express receptors directed against the tumor antigen. 
CD44v6 was used as such an antigen. The antigen-recog-
nizing determinant of bivatuzumab was fused to the sign-
aling domains of CD28 and CD3ζ. The chimeric genes 
were introduced by means of retroviral gene transfer into 
human T cells, which then displayed anti-CD44v6 effec-
tor functions. They eliminated CD44v6 positive acute 
myeloid leukemia and multiple myeloma cells in murine 
xenografts (Casucci et al. 2013). The drawback of this 
approach is the off-tumor/on-target toxicity due to the 
expression of the tumor antigen on normal tissue. For 
CD44v6, these tissues are mainly keratinocytes and cir-
culating monocytes. The elimination of these monocytes 
in particular would lead to long-term monocytopenia, a 
disease that is life threatening. To avoid side effects, the 

authors have incorporated a suicide gene into the engi-
neered T cells namely, the non-immunogenic, quick act-
ing and inducible iCasp9 (Straathof et al. 2005). iCasp9 
refers to a Casp9 gene fused to a dimerization sequence. 
This dimerization sequence can be addressed by treat-
ment with a small molecule that exclusively drives iCasp9 
dimerization and activation in the transfected T cells 
thereby leading to their elimination.

Other antibodies against CD44

A study with pancreatic cancer patients that underwent 
surgery demonstrated that patients with higher levels of 
panCD44 in the pancreatic adenocarcinoma had a worse 
prognosis for survival when compared to patients with 
lower levels (Li et al. 2014) suggesting CD44 as a thera-
peutic target. Indeed, a panCD44 Ab reduced growth, 
metastasis and post-radiation recurrence of pancreatic 
xenograft tumors. The antibody also reduced the number of 
tumor initiating cells (TICs or CSC, cancer stem cells) in 
cultured pancreatic cancer cells and xenograft tumors. The 
elimination of theses TICs is most likely due to the down-
regulation of stem cell self-renewal markers as well as inhi-
bition of the survival factor STAT. Interestingly, the RTK 
Met appears to be also a marker of pancreatic cancer stem 
cells and its inhibition by specific inhibitors or its down-
regulation by shRNA also reduced the population of CSCs 
(Li et al. 2011).

Targeting of CD44 also eradicated human acute myeloid 
leukemic stem cells (AML-LSCs) (Jin et al. 2006). Admin-
istration of a pan CD44-specific monoclonal antibody into 
immunosuppressed mice transplanted with AML-LSCs 
drastically decreased the leukemic population. The traf-
ficking of LSCs to the bone marrow niche and its engraft-
ment in this supportive microenvironment were drastically 
reduced. An interesting point to note concerning the pan 
CD44 mAb used in this study is that it is an activating Ab 
that is thought to induce ligation of CD44, thereby revert-
ing the differentiation of immature AML blasts.

Targeting CD44 with a humanized monoclonal anti-
body resulted in the complete clearance of engrafted 
human mammary carcinoma cells or human chronic lym-
phocytic leukemia (CLL) cells in immune-deficient mice 
(Weigand et al. 2012; Zhang et al. 2013). In CLL cells, 
but not in normal B cells, the zeta-associated protein of 
70 kDa (ZAP-70), a survival factor that inhibits spontane-
ous or drug-induced apoptosis, seems to be up-regulated 
and is found in a complex with CD44. The treatment with 
already low doses of CD44-specific Ab leads to internaliza-
tion of the complex resulting in down-modulation of ZAP-
70 thereby impairing BCR-dependent survival signaling. 
This might explain the cytotoxic effect of the CD44 mAb. 
Preclinical evaluation of the 89Zr-labeled mAb in mice and 
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in cynomolgus monkeys transplanted with CD44 posi-
tive human carcinoma cells or CD44 negative tumor cells 
revealed a selective targeting of the CD44 positive tumors 
(Vugts et al. 2014).

Other strategies against CD44

Aptamers

Aptamers are small synthetic molecules (either DNA, RNA 
or peptides) that have high binding affinity and specific-
ity (similar to mAbs) for target proteins thereby inhibiting 
their functions (Cox and Ellington 2001). DNA aptamers 
were isolated based on their binding to exon v10 of CD44 
by SELEX technology (Iida et al. 2014). In breast cancer 
cells, CD44v10 proteins appear to form complexes with 
the surface protein EphA2, which accounts for the migra-
tory ability of the cells (Iida et al. 2014). This complex 
formation is impaired by the treatment of the breast cancer 
cells with the v10-specific aptamers, and consequently, the 
migration of the breast cancer cells is inhibited. This sug-
gests a potential therapeutic use of the aptamers that should 
now be tested in vivo.

Peptide‑based strategies

The understanding of the molecular mechanism of action 
of CD44v6 in the activation of RTKs such as Met and 
VEGFR-2 led to the identification of CD44v6 peptides 
that inhibit both RTKs (Matzke et al. 2005; Tremmel et al. 
2009). Mutational analysis of CD44v6 revealed that three 
amino acids in the exon v6 region are absolutely required 
for its co-receptor function for Met and VEGFR-2. Pep-
tides with the minimal length of five amino acids contain-
ing these critical amino acids interfere with the co-receptor 
function of CD44v6 and inhibit vascularization of pan-
creatic tumors (Matzke et al. 2005; Tremmel et al. 2009) 
(Fig. 2b). These observations are a further hint for the func-
tional relevance of the co-receptor function of CD44v6 
in tumor growth and metastasis and are the basis for the 
development of therapeutic tools for treatment of pancre-
atic cancers (http://amcure.com/).

Interestingly, a peptide comprising eight amino acids 
and derived from human urokinase plasminogen activa-
tor (A6) acts in an uPA-independent pathway to inhibit 
migration, invasion and metastasis of cancer cells (Boyd 
et al. 2003). This peptide turned out to bind specifically 
to CD44 (Piotrowicz et al. 2011) and is now examined 
in a trial phase II study for its efficacy in the treatment of 
human ovarian cancer (Ghamande et al. 2008; Gold et al. 
2012). Another CD44 binding peptide, was identified in an 
indirect way, namely in a screen for overlapping synthetic 
peptides from the laminin α5 globular domain. One of the 

peptides that inhibited tumor growth and lung colonization 
of B16-F10 mouse melanoma cells was shown to target 
CD44 (Hibino et al. 2004).

The use of peptides was also proposed to fight against 
CLL (Ugarte-Berzal et al. 2012, 2014). Advanced stages of 
CLL and poor survival of patients correlate with elevated 
levels of (pro)MMP9. This (pro)MMP9 is localized at the 
membrane of CLL cells and forms a complex with the α4β1 
integrin and an isoform of CD44 that accounts for cell sur-
vival, cell adhesion and transendothelial migration. The 
hemopexin domain of (pro)MMP9 contains binding sites 
for CD44 and the α4β1 integrin. Blocking of the binding 
sites with specific peptides unraveled the independent con-
tribution of CD44 and α4β1 to the pathogenesis of CLL. 
However, interference with each binding site independently 
had only partial therapeutic effects (Ugarte-Berzal et al. 
2012). Interestingly, one peptide was able to prevent the 
binding of both, CD44 and α4β1, and is thus a promising 
candidate for therapeutic approaches (Ugarte-Berzal et al. 
2014). A therapeutic approach for CLL using CD44-spe-
cific antibodies has been described in chapter II,2,b.

Another peptide of 24 amino acids was obtained from 
the sequence of the FKBLP protein, a Hsp90 co-chaper-
one with anti-angiogenic activity. Similar to the protein, 
the peptide was anti-angiogenic and inhibited tumor cell 
migration and tumor growth in two human tumor xenograft 
models (Valentine et al. 2011). Interestingly, this peptide 
conferred this inhibition only if the cells express CD44 and 
prevented HA-induced signal transduction by CD44.

As mentioned in a previous chapter, a 42 amino acid 
peptide containing three BX7B HA-binding motifs found 
also in CD44 induced apoptosis of melanoma cells and 
thereby inhibited tumor growth in vivo (Xu et al. 2003).

Inhibition of CD44 expression

Instead of interfering with the function of CD44 proteins 
(e.g., by antibody treatment), the inhibition of their expres-
sion in tumor cells is an alternative. A powerful method 
for such an approach is the delivery or the expression of 
siRNA in tumor cells. In tumor cell lines, the treatment 
with siRNA or the transfection of expression vectors for 
shRNA is a standard tool to examine the relevance of pro-
teins in the transformation process. The involvement of 
CD44 isoforms in tumor growth and metastatic spreading 
has been confirmed by such approaches. For therapeutic 
use, the problem of tumor-specific delivery and/or expres-
sion has to be solved.

One example is the down-regulation of CD44v6 by 
siRNA in a tumor-specific manner (Misra et al. 2009). It 
is based on nanoparticles coated with transferrin (Tf), an 
iron-transporting protein binding to Tf-receptors (Bellocq 
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et al. 2003). Such receptors are highly expressed on tumor 
cells and mediate the tumor-specific targeting of the nano-
particles. Binding of the nanoparticles to Tf-R induces up-
take of the particles into dividing and non-dividing tumor 
cells via endocytosis. The nanoparticles carried a CD44v6-
specific shRNA generator plasmid that is silenced by inter-
rupting sequences. These sequences can be eliminated by 
expression of the Cre recombinase in a promoter-specific 
manner. In ApcMin/+ mice that develop spontaneously colo-
rectal carcinoma with high expression of CD44 variant 
isoforms, the tissue-specific delivery of siRNA was per-
formed using a colon-specific promoter. The expression 
of CD44v6-specific shRNA led to the reduction of tumors 
in these mice (Misra et al. 2009). This approach is highly 
flexible since the use of specific shRNA and tissue-specific 
promoters for expression of the Cre recombinase allow its 
application for several tumor types and target genes.

A direct delivery of CD44-specific siRNA was mediated 
by a dendrimer-based nanoparticle used for treatment of 
ovarian cancer (Shah et al. 2013). The system is based on a 
polypropylenimine dendrimer as a carrier for the cell death 
inducing drug paclitaxel, a synthetic analog of the lutein-
izing hormone-releasing hormone for tumor targeting and 
CD44-specific siRNA. The efficiency of these combinato-
rial particles for treatment of ovarian carcinoma was dem-
onstrated in vitro on cells isolated from patients and in vivo 
in murine xenograft models.

A very efficient means to control gene expression is the 
use of microRNAs (miRNAs). These RNAs bind to specific 
sequences in the 3’UTR region of RNAs and either repress 
or enhance their translation. These miRNAs have pleio-
tropic actions since binding sites for these miRNAs are 
not only found on one RNA species but on several RNAs 
that are most often involved in the regulation of common 
cellular programs. Importantly, several miRNAs are aber-
rantly expressed in tumors and metastasis (Nicoloso et al. 
2009; Sotiropoulou et al. 2009; Ventura and Jacks 2009) 
and expression profiles of miRNAs even predict the clini-
cal outcome of neoplasias (Calin and Croce 2006). Inter-
estingly, the majority of miRNAs affected in tumors are 
down-regulated and function as bona fide tumor suppressor 
genes. This holds also true for several miRNAs that affect 
CD44 expression. Examples are miR-34a (Liu et al. 2011), 
miR-328 (Chen et al. 2014), miR-143 (Ma et al. 2013) and 
miR-199a-3p (Henry et al. 2010).

miRNA34a is one of the best characterized tumor sup-
pressor within the miRNAs. Ectopic expression of miR-
NA34a induces cell cycle arrest, apoptosis and inhibits 
cancer proliferation, migration and metastasis in a variety 
of cancer types (Hermeking 2010). This miRNA regulates 
several target RNAs involved in cell proliferation, survival 
and migration among which the cyclin-dependent kinases, 
the RTK Met, Bcl-2, Myc and CD44. The miRNA34a gene 

was cloned into an expression plasmid driven by a breast 
cancer-specific promoter to allow expression in breast 
cancer cell lines (Li et al. 2012). Transfection of several 
breast cancer cell lines with this expression vector resulted 
in growth arrest and apoptosis in vitro. Most importantly, 
in an orthotopic mouse model of human breast cancer, the 
injection of liposomal complexes of the miRNA34a expres-
sion plasmid resulted in reduced tumor size and extended 
life span of the animals with only minor side effects (Li 
et al. 2012). Similarly, the systemic application of miR-34a 
complexed with a lipid-based delivery agent in orthotopic 
tumor models of prostate cancer in mice resulted in inhibi-
tion of tumor growth and metastasis and an extended life 
span (Liu et al. 2011).

CD44 as a stem cell marker

Many studies within the last years have identified cells in 
tumors with stem-like characteristics, so-called CSCs or 
TICs. These cells have self-renewal capacity; the potential 
to give rise to several cell types within a tumor; and account 
for tumor initiation, tumor recurrence, tumor metastasis 
and the resistance of tumors to chemo-or radiotherapy. 
These CSCs should be the target of efficient tumor thera-
pies. In many tumors including breast cancer HNSCC and 
colorectal cancer, CD44 have been identified as a marker 
on CSCs although in most cases the specific isoforms are 
not known (reviewed in Trapasso and Allegra 2012; Wil-
liams et al. 2013; Woodward and Sulman 2008). The role 
of CD44 in cancer stemcellness is, however, not yet unrave-
led. Interestingly, in HNSCC and pancreatic cancer cells, 
Met has also been identified as a marker of CSCs. Met pos-
itive HNSCCs have self-renewal capacity, form spherical 
colonies, are highly chemo-resistant and their transplanta-
tion into immunosuppressed mice leads to metastasis (Sun 
and Wang 2011). Pancreatic cancer cells that express Met 
and CD44 have the capability of self-renewal and show the 
highest tumorigenic potential of all cell populations (Li 
et al. 2011).

CD44v6 isoforms have been identified as markers of 
CSCs in colon cancer and account for the metastatic pro-
pensity of the tumors (Todaro et al. 2014), suggesting that 
CD44v6 targeting in colon cancer is a promising therapeu-
tic approach. Indeed, CD44 variant isoforms (the one tested 
was CD44v4–10) but not CD44s in the intestinal stem cells 
in the crypts of ApcMin/+ mice, that are prone to develop 
colorectal cancer, account for tumor formation and relapse 
controlling the balance between cell survival and apoptosis 
(Zeilstra et al. 2008, 2014). Indeed, a therapeutic approach 
targeting CD44v6 by means of shRNA in ApcMin/+ mice 
inhibited the development of colorectal cancer and is 
described in chapter III). In human gastro intestinal cancer 
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cells, however, a CD44v8–10 variant isoform seems to be 
characteristic for CSCs rendering the tumor cells resistant 
to chemo- or radiotherapy by a mechanism that regulates 
the redox status of the cells (Ishimoto et al. 2011). It is 
most probable that the various therapeutic approaches that 
we have discussed in this review target CSCs in the tumors 
even if this has not been directly proven and are therefore 
efficient.

Outlook

Since the discovery of CD44 and in particular of CD44v6 
isoforms as prognostic markers in a variety of cancers, 
several approaches have been developed to target them. 
Although only few approaches have made it so far to clini-
cal trials, the scientific progress in the last years suggests 
strong perspectives in anti-CD44 therapies. This, on the 
one hand, is due to the identification of CD44 isoforms 
(including CD44v6) as functional markers for CSCs in sev-
eral human tumors and on the other hand to the molecular 
functions of CD44 isoforms as multidomain platforms inte-
grating extracellular cues with growth factors, cytokines 
and metalloproteinases. These findings suggest that CD44 
is one of the main players in tumor growth and in the most 
life-threatening steps of cancer, namely metastasis. The 
detection of CD44 on CSCs was most of the times per-
formed with antibodies that recognized all CD44 isoforms. 
Since CD44s is expressed ubiquitously in tissues, there is 
an urgent need to define which CD44-specific isoforms are 
present on these CSCs. Only then will the specific strate-
gies be directed more selectively against tumor cells.
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