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and publicly available genome-wide datasets of human 
liver tissue from patients with non-alcoholic steatohepa-
titis (NASH), cirrhosis, and hepatocellular cancer (HCC). 
After a curation procedure, expression data of 143 chemi-
cals were included into a comprehensive biostatistical 
analysis. The results are summarized in the publicly avail-
able toxicotranscriptomics directory (http://wiki.toxbank.
net/toxicogenomics-map/) which provides information for 
all genes whether they are up- or downregulated by chemi-
cals and, if yes, by which compounds. The directory also 
informs about the following key features of chemically 
influenced genes: (1) Stereotypical stress response. When 
chemicals induce strong expression alterations, this usu-
ally includes a complex but highly reproducible pattern 
named ‘stereotypical response.’ On the other hand, more 
specific expression responses exist that are induced only 

Abstract   A long-term goal of numerous research pro-
jects is to identify biomarkers for in vitro systems predict-
ing toxicity in vivo. Often, transcriptomics data are used to 
identify candidates for further evaluation. However, a sys-
tematic directory summarizing key features of chemically 
influenced genes in human hepatocytes is not yet available. 
To bridge this gap, we used the Open TG-GATES database 
with Affymetrix files of cultivated human hepatocytes incu-
bated with chemicals, further sets of gene array data with 
hepatocytes from human donors generated in this study, 

Marianna Grinberg and Regina M. Stöber shared first authorship.
Jörg Rahnenführer and Jan G. Hengstler shared senior authorship.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s00204-014-1400-x) contains supplementary 
material, which is available to authorized users.

M. Grinberg · E. Rempel · K. Madjar · J. Rahnenführer 
Department of Statistics, TU Dortmund University, Dortmund, 
Germany

R. M. Stöber · K. Edlund · P. Godoy · R. Reif · A. Widera · 
R. Marchan · J. G. Hengstler (*) 
Leibniz Research Centre for Working Environment and Human 
Factors at the Technical University of Dortmund (IfADo), 
Ardeystrasse 67, 44139 Dortmund, Germany
e-mail: hengstler@ifado.de

W. Schmidt‑Heck 
Leibniz Institute for Natural Product Research and Infection 
Biology, Hans Knoell Institute, Jena, Germany

A. Sachinidis · D. Spitkovsky · J. Hescheler 
Center of Physiology and Pathophysiology, Institute 
of Neurophysiology, University of Cologne (UKK), Cologne, 
Germany

H. Carmo · M. D. Arbo 
Laboratório de Toxicologia, Departamento de Ciências 
Biológicas, Universidade do Porto, Porto, Portugal

B. van de Water · S. Wink 
Division of Toxicology, Leiden Academic Centre for Drug 
Research, Leiden University, Leiden, The Netherlands

M. Vinken · V. Rogiers 
Department of Toxicology, Dermato‑Cosmetology 
and Pharmacognosy (FAFY), Center for Pharmaceutical Research 
(CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium

S. Escher 
Fraunhofer Institute for Toxicology and Experimental Medicine 
(ITEM), Hannover, Germany

B. Hardy 
Douglas Connect and OpenTox, Zeiningen, Switzerland

http://wiki.toxbank.net/toxicogenomics-map/
http://wiki.toxbank.net/toxicogenomics-map/
http://dx.doi.org/10.1007/s00204-014-1400-x


2262	 Arch Toxicol (2014) 88:2261–2287

1 3

by individual compounds or small numbers of compounds. 
The directory differentiates if the gene is part of the ste-
reotypical stress response or if it represents a more specific 
reaction. (2) Liver disease-associated genes. Approxi-
mately 20  % of the genes influenced by chemicals are 
up- or downregulated, also in liver disease. Liver disease 
genes deregulated in cirrhosis, HCC, and NASH that over-
lap with genes of the aforementioned stereotypical chemi-
cal stress response include CYP3A7, normally expressed 
in fetal liver; the phase II metabolizing enzyme SULT1C2; 
ALDH8A1, known to generate the ligand of RXR, one of 
the master regulators of gene expression in the liver; and 
several genes involved in normal liver functions: CPS1, 
PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and 
ADH4. (3) Unstable baseline genes. The process of iso-
lating and the cultivation of hepatocytes was sufficient to 
induce some stress leading to alterations in the expression 
of genes, the so-called unstable baseline genes. (4) Biologi-
cal function. Although more than 2,000 genes are transcrip-
tionally influenced by chemicals, they can be assigned to 
a relatively small group of biological functions, including 
energy and lipid metabolism, inflammation and immune 
response, protein modification, endogenous and xenobi-
otic metabolism, cytoskeletal organization, stress response, 
and DNA repair. In conclusion, the introduced toxicotran-
scriptomics directory offers a basis for a rationale choice of 
candidate genes for biomarker evaluation studies and repre-
sents an easy to use source of background information on 
chemically influenced genes.

Keywords  Hepatotoxicity · Toxicotranscriptomics · 
Unsupervised clustering · In vivo validation · Steatosis · 
Cirrhosis · Hepatocellular cancer · Biomarker 
identification · Bioinformatics · SEURAT-1

Introduction

Transcriptomics is an emerging field in chemical hazard 
identification. The patterns of up- and downregulated genes 
that are obtained as readouts of chemically exposed cells and 
tissues provide initial evidence of the involved toxic mecha-
nisms. For example, oxidative stress, induction or inhibition 
of enzymes, activation of nuclear receptors, or genotoxicity 
each induces a signature gene expression pattern (Godoy 
2013; Hewitt et al. 2007). Gene array analysis performed on 
the livers of rats facilitated the differentiation between geno-
toxic and non-genotoxic carcinogens (Ellinger-Ziegelbauer 
et  al. 2008; Godoy 2013). These successful toxicogenom-
ics studies in vivo prompted several ambitious research pro-
grams, including the EU-funded SEURAT-1 network and the 
ESNATs project (Waldmann et  al. 2014; Krug et  al. 2013; 
Schug et  al. 2013; Weng et  al. 2014; Balmer et  al. 2014; 
Campos et al. 2014), with the aim to identify biomarkers of 
toxicity in vitro. One long-term goal of these projects is to 
identify biomarkers in the in vitro systems that can predict 
certain mechanisms of toxicity in vivo. Moreover, the phar-
macokinetic models that are developed should be able to pre-
dict the doses that result in critical compound concentrations 
at target cells in organisms. The proposed projects are ambi-
tious and require time as their success necessitates that all 
mechanisms leading to adverse effects are known and that in 
vitro systems are available that reliably reflect these mecha-
nisms. However, currently the link between gene expres-
sion alterations and adverse effects in vivo is not completely 
understood. Moreover, there are insufficient studies demon-
strating which of the responses of in vitro systems are rele-
vant to the in vivo situation. For example, primary cultivated 
hepatocytes have been shown to become apoptosis resist-
ant in culture, thereby possibly suppressing certain in vivo 
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relevant responses (Godoy et al. 2009, 2010a, b). Moreover, 
cultivated hepatocytes are known to upregulate clusters of 
genes as a response to the isolation procedure and cultivation 
stress (Zellmer et al. 2010). This response can be suppressed 
by certain compounds, but consequently represents an effect 
that can be interpreted as a pure in vitro artifact. On the other 
hand, a systematic comparison between rat livers in vivo and 
cultivated rat hepatocytes in vitro has shown a good correla-
tion for some cellular stress, DNA damage, and metabolism-
associated genes (Heise et al. 2012). These examples illus-
trate that successful application of toxicogenomics requires 
an understanding of the role of each individual up- or down-
regulated gene, and the knowledge whether a response in an 
in vitro system is relevant to the in vivo situation.

Primary human hepatocytes are frequently used as a 
model in vitro system in both pharmacology and toxicology 
studies. Despite its popularity, a comprehensive analysis of 
the genes altered by chemicals has not yet been performed. 
However, a large set of gene array data ‘Open TG-GATEs’ 
generated by treating cultivated primary human hepato-
cytes with 158 chemicals was recently made publicly avail-
able (Xing et al. 2014; Fijten et al. 2013; Zhang et al. 2014; 
Uehara et al. 2011; Hirode et al. 2009; Kiyosawa et al. 2009). 
The chemicals included hepatotoxic and non-hepatotoxic 
drugs, all acting via various mechanisms, as well as several 
experimental hepatotoxic compounds. Many of the com-
pounds were tested using three concentrations, the highest of 
which was close to cytotoxic levels. Due to the variability in 
mechanism of actions caused by the different categories of 
drugs tested, it was assumed that the database encompassed 
a large fraction of all genes that could be altered in human 
hepatocytes after chemical exposure. Therefore, we analyzed 
the structure of the chemically induced gene expression alter-
ations and categorized the altered genes using the following 
key principles. (1) Stereotypical stress response. Chemicals 
inducing strong expression alterations are usually accom-
panied by a complex but highly reproducible ‘stereotypical’ 
response. This stereotypical response is generally observed 
with numerous compounds when close to cytotoxic con-
centrations are used, even if the compounds act by different 
mechanisms. Conversely, more specific expression responses 
exist that are induced only by individual compounds or small 
numbers of compounds. (2) Liver disease-associated genes. 
Approximately 20 % of the genes influenced by chemicals 
are also up- or downregulated in liver disease, such as stea-
tohepatitis, liver cirrhosis, and hepatocellular cancer. For 
humans, a direct validation of the influence of chemicals in 
hepatocytes in vivo is not possible, but can be circumvented 
by using sets of gene array data obtained from liver tissue 
of patients. An obvious course of study would be to inves-
tigate whether a gene influenced by a chemical in cultivated 
hepatocytes in vitro is also deregulated in human liver dis-
ease. Of course, the molecular mechanisms leading to cell 

stress in liver disease and after exposure to chemicals may 
differ. However, if the expression of a certain gene is influ-
enced by the microenvironment of a diseased liver, its dereg-
ulation by chemicals in vitro is less likely to represent a pure 
in vitro artifact. (3) Unstable baseline genes. Simply the pro-
cess of isolating and cultivating hepatocytes has been shown 
to induce stress leading to expression alterations of genes, 
so-called unstable baseline genes. (4) Biological function. 
Although more than 2,000 genes are transcriptionally influ-
enced by chemicals, the genes can be assigned to a relatively 
small group of biological functions.

This article focuses on the Open TG-GATEs dataset, sev-
eral publicly available gene array data of liver diseases and 
gene expression data of primary human hepatocytes generated 
in the present study. One challenge working with large sets of 
transcriptomics data, especially when generated by research 
consortia with several independent contributors over an 
extended period of time, is to identify artifacts and eliminate 
errors. Differences that arise from the combination of several 
analytical batches, as well as experimental errors in subsets 
of samples, are almost unavoidable, but can to some extent 
be identified and controlled. In case of the Open TG-GATEs 
database, exclusion of implausible data by a number of cura-
tion steps has the potential to improve the reliability of the 
identified genes. Here, we present an in silico characterization 
and curation approach to identify and control batch effects, 
assess data reproducibility across replicates, and pinpoint 
compounds that display an implausible concentration progres-
sion. A major challenge to result interpretation is that only a 
relatively small subset of the 148 analyzed chemicals caused 
deregulation of many genes and was able to induce high fold 
changes, whereas the majority of compounds deregulated only 
small numbers of genes and caused low fold changes.

The present study begins with the generation of a curated 
Open TG-GATEs dataset, which represents a relatively spe-
cialized, bioinformatics-based workflow. However, the initial 
analysis is highly relevant since some problematic subsets of 
the database would otherwise compromise the analysis. Sub-
sequent analysis introduces a toxicotranscriptomics directory 
where for each chemically influenced gene in hepatocytes, 
the basic information of ‘stereotypical’ versus ‘specific,’ ‘dis-
ease gene,’ ‘unstable baseline gene,’ and biological function 
is made available. We believe that the information provided 
by this directory will facilitate more accurate interpretation of 
toxicogenomics data from human hepatocytes in the future.

Materials and methods

Download and preprocessing of Open TG‑GATEs data

The freely available database Open TG-GATEs (Toxicog-
enomics Project—Genomics-Assisted Toxicity Evaluation 
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System) (NIBIO 2013) compiles Affymetrix HG U133 
Plus 2.0 gene expression microarray data (54,675 probe 
sets, corresponding to 19,945 uniquely annotated Gene 
Symbol IDs) from monolayer cultured primary human 
hepatocytes exposed to 158 compounds and correspond-
ing untreated controls. A subset of the compounds (n = 52) 
was tested using three concentrations and three incuba-
tion periods (2 h, 8 h, and 24 h). For the additional com-
pounds (n  =  106), the concentration and time sets are 
incomplete. The compounds were tested either for only 
one or two exposure periods, or with only two concentra-
tions as shown in Tables S1 and S2. If possible, the high-
est tested concentration (or the only tested concentration 
if only one was analyzed) was chosen as the concentration 
yielding an 80–90  % relative survival based on the LDH 
release, indicating concentrations where the first signs of 
cytotoxicity become detectable. For non-cytotoxic com-
pounds, the high concentration was defined as the concen-
tration of highest solubility or 10 mM at a maximum. The 
solvent DMSO was routinely used at 0.1 %. This concen-
tration was increased to 0.5 % for compounds with limited 
solubility. In total, six batches of human hepatocytes were 
used, whereby hepatocytes from ‘male’ and ‘female’ were 
specified by the columns ‘sex_type’ in the ‘Attribute.tsv’ 
file, which are given together with the gene expression 
raw data in Open TG-GATEs. Two replicate experiments 
were available for 155 of the 158 compounds (Table S2); 
the experiments without replication were not considered in 
this study. The raw microarray data (CEL files) for all ana-
lyzed compounds and conditions were downloaded from 
the Open TG-GATEs website (http://toxico.nibio.go.jp/). 
For the normalization of the entire set of expression arrays, 
the Robust Multi-Array Average (RMA) algorithm was 
used that applies background correction, log2 transforma-
tion, quantile normalization, and a linear model fit to the 
normalized data to obtain a value for each probe set (PS) 
on each array (Krug et al. 2013; Harbron et al. 2007). The 
difference in gene expression (fold change) between treated 
samples and corresponding untreated controls was calcu-
lated for each compound, and for each concentration and 
incubation time, based on the average of replicate values. 
These values were used for all subsequent analyses. Data 
preprocessing and all subsequent analyses were performed 
using the statistical programming language R, version 3.0.1 
(R Development Core Team 2013).

Visualization of high‑dimensional gene expression data

Heatmaps were generated using unsupervised hierarchical 
clustering to visualize matrices of gene expression values, 
ranging from blue (low expression) to red (high expression). 
Principal component analysis (PCA) was used to visualize 
expression data in two dimensions, representing the first two 

principal components, i.e., the two orthogonal directions of 
the data with the highest variance. Both heatmaps and PCA 
were performed on the basis of the 100 top-ranking genes 
with highest fold change (absolute values) across all com-
pounds. This gene selection was performed separately for 
all nine combinations of concentration and incubation time.

Gene set enrichment methods

Gene ontology enrichment was performed with the topGO 
package (Alexa and Rahnenführer 2010), using Fisher’s 
exact test, and only results from the biological process 
ontology were considered. The cutoff for the enrichment 
p value was set to 0.001. Transcription factor binding site 
(TFBS) enrichment was performed using the PRIMA algo-
rithm (http://acgt.cs.tau.ac.il/prima/) (Elkon et  al. 2003) 
provided in the Expander software suite (version 6.04; 43 
http://acgt.cs.tau.ac.il/expander/) (Ulitsky et al. 2010), and 
the cutoff for the enrichment p value was set to 0.01.

Definition of indices for concentration progression

For analyzing progression of gene alterations over increas-
ing concentrations, two indices were introduced—the ‘pro-
gression profile index’ and the ‘progression profile error 
indicator.’ Both indices were calculated for each compound 
and for each pair of adjacent concentrations. The progres-
sion profile index was determined as the proportion of 
genes deregulated exclusively (at least twofold up or down 
compared to control) at a higher concentration compared 
to a respective lower concentration. A value close to zero 
indicates only few additional genes deregulated at the next 
higher concentration, a value close to one indicates many 
additional genes. The ‘progression profile error indicator’ 
interchanges the roles of the lower and higher concentration 
and specifies the proportion of genes deregulated exclu-
sively at a lower compared to a respective higher concen-
tration. Values above 0.5 indicate an implausible concen-
tration progression. However, if only a few genes in total 
are altered at the respective lower concentration, they can 
be interpreted as outliers. Thus, the ‘modified progression 
profile error indicator’ is an adjustment of the ‘progression 
profile error indicator’ for such cases, setting the index to 
zero, if the original value is larger than 0.5 and at most 20 
genes are altered at the respective lower concentration. All 
three progression indices were calculated separately for the 
three exposure periods of 2 h, 8 h, and 24 h.

Principle for differentiating between stereotypic 
and compound‑specific gene expression responses

The selection value introduced in this study is a method to 
differentiate between stereotypic and compound-specific 
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gene expression responses. Genes that are deregulated by 
many compounds reflect a stereotypic response, in con-
trast to compound-specific response of genes that are regu-
lated only by a few compounds. For a given probe set, the 
selection value determines the number of compounds that 
induces an expression change of at least threefold. Selec-
tion value 20 (SV20) then yields a list of genes deregu-
lated at least threefold by at least 20 compounds, whereas 
SV3 gives a list of genes deregulated threefold by at least 
three compounds. For a specific concentration and incuba-
tion time, compounds are ranked in order of fold change 
for each probe set, i.e., for the upregulated probe sets, com-
pounds are ranked from high to low fold change and for 
the downregulated probe sets in reverse order. Thus, the 
selection value x (short SVx) for a single probe set is the 
compound with rank x, meaning that the probe set is dereg-
ulated threefold in at least x compounds. The threshold 
of threefold for the selection value method and for other 
analyses in this study is chosen arbitrarily. In principle, 
also, e.g., a 2- or 1.5-fold threshold would be possible. The 
rationale for choosing a threefold threshold is to keep the 
number of false-positive genes relatively low.

Primary human hepatocyte isolation and cultivation

Liver tissue from eight patients undergoing surgical liver 
resection was used to isolate primary human hepatocytes. 
Patients’ characteristics and the assignment of the individ-
ual donors to the respective experiments are summarized 
in Table S3. The cells were used for the time-dependent 
cultivation experiments to determine the ‘unstable base-
line genes’ and for quantitative real-time PCR (qRT-PCR) 
experiments. The experiments were approved by the local 
ethical committees, and all patients provided their writ-
ten consent. The donors’ cells were obtained by a two-
step isolation procedure developed by Seglen (1976), and 
processed and cultivated as recently described by Godoy 
(2013). Briefly, during the first perfusion step, the liver was 
rinsed with an EGTA-containing buffer to prevent coagu-
lation and to remove residual blood and calcium from the 
vessels. Secondly, the liver was perfused with a colla-
genase-containing buffer, which gradually digested the liver 
tissue until the cells could be easily released from the liver 
capsule into a suspension buffer. The cells were transported 
overnight from the surgical department as cold stored sus-
pensions on ice. Upon arrival, the cells were resuspended 
in fresh cultivation medium (William’s E including 2 mM 
stable glutamine, 100  U/mL penicillin, 0.1  mg/mL strep-
tomycin, 10  µg/mL gentamicin, 100  nM dexamethasone, 
2  ng/mL insulin plus 10  % fetal calf serum (FCS) ‘Sera 
Plus’ during the first 3–4 h of cultivation), and the viabil-
ity was determined using the trypan blue exclusion method. 
Cells were seeded in conventional six-well plates between 

two soft gel layers of collagen, using 350 µL of 1 mg/mL 
collagen gel per layer per well. 106 cells/well were seeded 
in 2  mL FCS containing cultivation medium and kept in 
the incubator for at least 3 h to allow attachment of cells 
to the collagen matrix before the second layer of collagen 
was applied. Upon polymerization, cells were incubated in 
FCS-free cultivation medium.

RNA extraction

To extract RNA from cultivated primary hepatocytes, 
the cultivation medium was aspirated and 1  mL of QIA-
zol (Qiagen, Hilden, Germany) was added immediately. 
Samples were sonicated for 30  s (alternating 5  s pulse, 
2  s pause) on ice, and further processing was performed 
according to the manufacturer’s instructions.

Gene expression microarray analysis for the analysis 
of ‘unstable baseline genes’

RNA extracted from freshly isolated primary human hepat-
ocytes (FH) and primary human hepatocytes cultivated in 
collagen sandwich (CS) for 1, 2, 3, 5, 7, 10, and 14 days 
was analyzed on Affymetrix HG  U133 Plus  2.0 arrays in 
triplicates (hepatocytes isolated from three donors on three 
different occasions). Two of the samples were excluded 
from the array analysis due to poor RNA quality (RIN 
value <8), as assessed by the Agilent 2100 Bioanalyzer sys-
tem and the RNA 6000 Nano LabChip Kit (Agilent Bio-
technologies, Palo Alto, USA). Microarray data preprocess-
ing and normalization was performed as described above 
for the Open TG-GATEs dataset. Replicates were averaged, 
and for each time point (CS), the fold change was calcu-
lated as compared to FH, and up- and downregulation were 
defined as at least a threefold difference.

Quantitative real‑time PCR

Primary human hepatocytes from five donors were cul-
tivated overnight and treated for 24  h with valproic 
acid, ketoconazole, galactosamine, acetaminophen, and 
isoniazide (all purchased from Sigma-Aldrich Che-
mie GmbH, Taufkirchen, Germany) at concentrations 
corresponding to the highest reported for the respec-
tive compound in the Open TG-GATES database, fol-
lowed by extraction of RNA as described above. The 
number of donors tested per compound is specified in 
Table S4. The High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems, Darmstadt, Germany) was 
used to reversely transcribe RNA into cDNA. Quantita-
tive real-time PCR (qRT-PCR) with TaqMan probes was 
performed on the ABI 7500 Fast Real-Time PCR system 
(Applied Biosystems) to determine gene expression levels. 
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Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) 
was used as the endogenous control. The applied assays 
were 4352934E (GAPDH), Hs00166169_m1 (G6PD), 
Hs01037712_m1 (PDK4), Hs01650979_m1 (INSIG1), and 
Hs01572978_g1 (PCK1) (Applied Biosystems). Further-
more, one additional gene, THRSP (Hs00930058_m1), was 
analyzed after 24  h treatment at all three concentrations 
reported in the Open TG-GATES database for three com-
pounds (valproic acid, ketoconazole, isoniazide). Twenty-
five nanograms cDNA was used in each PCR, and the con-
ditions were set according to the standard specifications 
recommended by Applied Biosystems. For calculation 
of relative gene expression, the ΔΔCT method was used. 
Time-matched, untreated cells cultivated on the same six-
well plate as those that were treated were used as controls. 
Between two and five biological replicates (hepatocytes 
isolated from different donors) were analyzed for each 
gene, depending on the final amount of RNA available.

Liver disease dataset analysis

Microarray datasets that investigated global gene expres-
sion changes in liver disease were retrieved from pub-
lic data repositories ArrayExpress (E-MEXP-3291) and 
Gene Expression Omnibus (GSE25097). E-MEXP-3291 
(Lake et  al. 2011) was analyzed on Affymetrix GeneChip 
Human 1.0 ST arrays and was used to compare non-alco-
holic steatohepatitis (NASH) (n = 16) to healthy liver tis-
sue (n = 19). GSE25097 (Tung et al. 2011) was analyzed 
on Human RSTA Affymetrix 1.0 Custom CDF microar-
rays and was used to compare cirrhotic liver (n =  40) to 
non-tumor liver tissue (n =  243). Moreover, we retrieved 
normalized RNA sequencing (RNA-Seq) data, analyzed 
on the Illumina HiSeq platform, from The Cancer Genome 
Atlas (TCGA) (http://cancergenome.nih.gov/) to study 
gene expression changes in hepatocellular carcinoma 
(HCC) (n = 163) as compared to matched non-tumor liver 
tissue (n = 49). Microarray gene expression data was pro-
cessed and quantile normalized using the Piano R package 
(Väremo et al. 2013). Differential expression analysis was 
also carried out using the Piano package, and p values were 
corrected for multiple testing by the method of Benjamini 
and Hochberg (Benjamini and Hochberg 1995). Differential 
expression analysis of RNA-Seq data was performed using 
the R package DESeq (Anders and Huber 2010). Genes 
with a fold change of at least 1.3 and a false discovery rate 
(FDR) adjusted p value ≤0.05 in the pairwise comparison 
of healthy/non-tumor tissue to diseased tissue were consid-
ered differentially expressed. To enable a direct comparison 
of differentially expressed genes to genes deregulated after 
chemical exposure to human hepatocytes in vitro, which 
were originally analyzed on different platforms, probe 
sets included on the Affymetrix arrays were converted 

into uniquely annotated Ensembl Gene IDs. This resulted 
in 18,809 genes for the Open TG-GATEs dataset (origi-
nally 54,675 probe sets), 19,477 genes for E-MEXP-3291 
(originally 32,321 probe sets), and 25,426 genes for 
GSE25097 (originally 37,582 probe sets). In a next step, 
only genes contained in both the Open TG-GATEs dataset 
and E-MEXP-3291 (17,663 genes) or GSE25097 (16,514 
genes), respectively, were included in the final compari-
son. To enable a direct comparison to the TCGA dataset 
(20,471 genes, as recognized by a unique Entrez Gene ID), 
the Affymetrix probe sets that were included in the analysis 
of the Open TG-GATEs dataset were converted to Entrez 
IDs using manufacturer mapping after duplicate removal, 
resulting in 19,944 uniquely annotated genes and 17,895 
genes included in the final comparison.

Results

Data structure and curation

Database description and data subset selection

The Open TG-GATEs database (NIBIO 2013) compiles 
global gene expression data from cultured primary human 
hepatocytes exposed to 158 compounds and corresponding 
untreated controls. Fifty-two of the 158 compounds were 
tested using three concentrations (‘high,’ ‘middle,’ and ‘low’) 
with the highest concentration approximately representing 
the EC10, and with a dilution factor in the range 2–7 (fac-
tor 5 in more than 80 % of cases). Three incubation times 
(2  h, 8  h, and 24  h) were investigated, and each condition 
was assessed using two replicate experiments. Only a subset 
of the conditions tested for the 52 compounds was analyzed 
for the additional 106 compounds (Tables S1 and S2). Raw 
expression data were available for 2,605 array experiments 
(1,879 exposed and 726 control samples), indicating incom-
plete concentration sets, time sets, and/or replicate sample 
pairs for a proportion of the analyzed compounds. For three 
compounds, bromoethylamine (BEA), lipopolysaccharide 
(LPS), and trimethadione (TMD), only one replicate experi-
ment was available investigating the highest tested concen-
tration and the 24-h time point. For phorone (PHO), no data 
at all were available for that test condition. With respect to 
that test condition, these compounds were therefore excluded 
from further analyses. A summary of the available data for 
the different compounds, including concentrations, time 
points, and replicates, is presented in Table S1, and a detailed 
compound-specific summary is provided in Table S2. Seven 
of the tested compounds were cytokines (interferon alpha, 
hepatocyte growth factor, interleukin 1 beta, interleukin 6, 
transforming growth factor beta 1, tumor necrosis factor) and 
LPS, which were all excluded from further analyses resulting 

http://cancergenome.nih.gov/
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in a total of 151 small molecular chemical compounds that 
were included in the subsequent analyses.

Batch effects

To obtain an overview of gene expression alterations induced 
by the tested compounds, PCA was performed using the 100 
top-ranking genes with the highest fold change (absolute val-
ues) across all compounds, where the nine combinations of 
concentration and incubation time were independently con-
sidered (Fig. S1). This is best demonstrated by the 24-h high 
concentration subset (Fig. 1a) which illustrates the location of 
controls within two main clusters—the lower cluster subdi-
vided into several sub-clusters and the majority of the treated 
samples that move in the direction of the first principal com-
ponent. To visualize the contribution of technical variability 
to the observed pattern, all replicates were connected by lines. 
The resulting pattern, upon visual inspection, indicated that 
the majority of the replicate pairs were found located close to 
each other (Fig. 1b). This prompted us to continue our anal-
yses using the mean values of the replicates (Fig. 1c). Con-
necting lines drawn between controls and the corresponding 
treated samples illustrate that individual control–treatment 
pairs were located within only one of the two main clusters, 
for the incubation condition of 24 h and the high concentra-
tion (Fig. 1d), suggesting that the difference between the clus-
ters is a consequence of experimental variability. Therefore, 
we subtracted the controls from the corresponding compound 
exposed samples. In the resulting scatter plot (Fig.  1e), the 
above described clusters are no longer observed, suggesting 
that batch effects were removed by this procedure. In conclu-
sion, it appears that no special procedures are needed to cor-
rect batch effects within the data, as simply subtracting the 
corresponding controls seems to be sufficient.

Reproducibility

As a next step, the reproducibility between replicates was 
quantitatively analyzed. For this purpose, the distributions 
of the Euclidean distances between all replicate sample 

Fig. 1   Principle component analysis of gene expression data 
obtained from human hepatocytes after incubation with 148 chemi-
cals (green symbols) and 7 cytokines (red symbols). Data of the high 
concentration and 24-h incubation are shown. All other incubation 
conditions are summarized in Fig. S1. a Overview of all samples 
and replicates. The dark and light green symbols illustrate the con-
trols and exposed samples, respectively. b Connecting lines between 
replicates illustrate the degree of variability. c Mean values of the 
replicates. d Connecting lines between controls (dark green) and cor-
responding compound exposed (light green) samples. e Subtraction 
of the controls from the corresponding compound exposed samples 
(color figure online)

▸
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pairs and between control–treatment sample pairs were 
compared. The median distance between replicates was 
4.9-fold lower than the median distance between control–
treatment pairs for the 24-h, high concentration samples. 
The Euclidean distances of the replicate pairs are shown in 
a frequency distribution (Fig. 2a). The red line in the his-
togram in Fig.  2a separates the 5 % largest observed dis-
tances from the main distribution, representing 14 (9.5 %) 
of the compounds tested in the 24-h, high concentration 
subset. These replicate pairs with the largest observed 
distances were illustrated by connecting lines in a PCA 
plot (Fig. 2b). The result suggests that even the worst rep-
licates had a relatively small variability in relation to the 
much larger compound-induced effects. The same principle 
applies to the other time–concentration subsets. Therefore, 
reproducibility between replicates is within an acceptable 
range.

Number of deregulated genes per compound

A situation where a relatively small subset of tested com-
pounds is responsible for the majority of gene expression 
effects, i.e., where the majority of compounds causes no or 
only small expression alterations, warrants further inves-
tigation in order to exclude false-negative findings, espe-
cially when the test compounds were selected based on the 
probable or potential toxic effects. In the Open TG-GATEs 
dataset, it is surprising that well-documented hepatotoxic 
compounds, such as carbon tetrachloride, are among the 
tested compounds which show only a very weak effect on 
gene expression. In Fig.  3, the time- and concentration-
dependent increase in the number of upregulated genes 

per compound is shown for fold changes of 1.5, 2.0, and 
3.0, indicating substantial differences between compounds. 
For example, at 24-h, high concentration, cycloheximide 
induced the largest number of gene expression alterations 
with 5,124; 2,547, and 887 upregulated probe sets (Fig. 3) 
and 5,506; 2,621; and 903 downregulated probe sets (Fig. 
S2) for fold changes 1.5, 2.0, and 3.0, respectively. Under 
the same conditions, triazolam deregulated only 37 genes 
at least 1.5-fold (6 up, 31 down) and only one gene at least 
twofold (down). Table S5 gives an overview of the com-
pounds that deregulated (twofold up or down compared to 
control) at most 20 genes when administered at the low, 
middle, and high concentrations for each incubation period 
and for both up- and downregulated genes. Eleven of the 
48 compounds that were tested at all concentrations for all 
time periods appear in all six lists, i.e., they deregulated 
less than 20 genes in total, independently from direction 
(up or down) and time point. These were clofibrate, hexa-
chlorobenzene, phenytoin, coumarin, gemfibrozil, bro-
mobenzene, amiodarone, sulfasalazine, cimetidine, halop-
eridol, and glibenclamide.

Determining the 100 strongest deregulated genes across 
all compounds and assigning these genes to the compound 
with the most extreme fold change showed that only 32 
and 23 of the 148 analyzed compounds were responsible 
for the 100 most up- and downregulated genes, respec-
tively (Fig. 4; Fig. S3). This is a situation that requires care-
ful consideration because it may indicate that a relatively 
large fraction of the studied compounds causes only weak 
expression alterations. Alternatively, it could mean that the 
highest concentration tested, although intended to be close 
to cytotoxic, was not high enough. In previous gene array 

Fig. 2   Reproducibility between 
replicas. a Frequency distribu-
tion of the Euclidean distance 
between all pairs of replicates. 
The red line indicates the 5 % 
largest observed distances 
between replicates. b PCA plot 
with connecting lines between 
the 5 % largest observed dis-
tances, representing 14 (9.5 %) 
of the compounds tested in 
the 24-h, high concentration 
subset. The variability of the 
worst replicates is still relatively 
small in relation to the much 
larger compound effects shown 
by connecting lines in Fig. 1d 
(color figure online)
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Fig. 3   Number of significantly upregulated genes. The x axis lists all 
chemicals that were tested at the indicated concentration for the cor-
responding period. The y axis gives the number of upregulated genes 
with at least 1.5-, 2.0-, and 3.0-fold change. The result shows that the 
number of deregulated genes differs strongly between the chemicals. 

The corresponding data for downregulated genes is shown in Fig. S2. 
Dark green more than 1.5-fold upregulated; light green more than 
twofold upregulated; black more than threefold upregulated (color 
figure online)

Fig. 4   ‘Exclusivity analysis’ of the upregulated genes. This analysis 
first determines the 100 strongest upregulated genes across all com-
pounds. Next, these genes are assigned to the compound with the 

most extreme fold change. The corresponding analysis for the down-
regulated genes is shown in Fig. S3
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studies, we have seen that identification of ‘close to cyto-
toxic’ concentrations is challenging, especially for com-
pounds with steep concentration effect curves (Krug et al. 
2013; Waldmann et  al. 2014). Also the method used to 
determine cytotoxicity is of importance. In addition, a lack 
of differential genes could simply be due to experimental 
errors. One possibility to identify the latter is to analyze the 
deviations from monotonous concentration progression, as 
described in the following paragraph.

Concentration progression

In concentration-dependent gene expression studies, genes 
that are up- or downregulated after treatment with low 
concentrations of a particular compound are usually also 
deregulated at higher concentrations. When a compound 
deregulates a large number of genes at a low concentration, 
but gene expression remains unaltered at a higher concen-
tration, this may be indicative of low-quality data and may 
be a consequence of experimental errors. Of course a non-
monotonous dose–response relationship cannot automati-
cally be interpreted as a consequence of low data quality. 
However, it may help to identify subsets of data that require 
more detailed evaluation. To analyze concentration pro-
gression across the database, two different types of analy-
ses were performed. First, the ‘progression profile index’ 
was introduced to describe at which concentration—low, 
middle, or high—deregulation of genes occurs. Second, the 
‘progression profile error indicator’ was calculated to iden-
tify compounds with an unusual concentration progression 
of gene expression alterations, i.e., an expression profile 
with a large fraction of genes deregulated at a lower but not 
at higher concentrations.

The ‘progression profile index’ was determined as the 
fraction of genes that were at least twofold up- or downreg-
ulated at a higher concentration (middle vs. low and high 
vs. middle), but unchanged at the respective lower concen-
tration. A ‘progression profile index’ value close to zero 
thus indicates that only few additional genes are deregu-
lated at a higher concentration, whereas a value close to one 
points toward a large fraction of genes exclusively deregu-
lated at the higher concentration. The concept is illustrated 
for four examples in Fig. 5a (only for upregulated genes). 
The upper panel of Fig. 5a illustrates the expression of the 
individual genes at the three concentrations. The panel in 
the middle gives the corresponding Venn diagrams that 
count the overlaps between genes upregulated at least two-
fold. The middle, but not the low concentration of valproic 
acid (VPA) resulted in a high fraction of upregulated genes, 
which therefore cluster to the right side of the ‘progression 
profile index’ plot (lowest panel in Fig.  5a). Moreover, a 
relatively high fraction of additional genes are upregulated 
with the high compared to the middle concentration, giving 

VPA a relatively high position on the vertical axis of the 
plot. Propranolol (PPL), which upregulates genes only at 
the high concentration, is positioned in the upper left of the 
‘progression profile index’ plot. Only low concentrations of 
triazolam (TZM) and high concentrations of allyl alcohol 
(AA) resulted in the upregulation of genes that clustered to 
the lower left and the upper right corner of the plot, respec-
tively. Figure 5b illustrates the ‘progression profile indices’ 
for each of the 151 compounds for the comparison of the 
middle versus low (x axis) and the high versus middle (y 
axis) concentration. For the 24-h time period, most com-
pounds clustered in the upper right corner of the diagram 
(Fig. 5b). This reflects the situation where with each con-
centration step, from low to middle and from middle to 
high, additional genes become deregulated. The second 
most abundant compounds cluster to the upper left corner. 
For these compounds, genes were only deregulated with the 
high compared to the middle concentration, but not with 
the middle compared to the low concentration. Compounds 
that clustered in the lower left corner deregulated addi-
tional genes that were not observed for the middle or high 
concentrations, meaning that the deregulated genes were 
already up or down with the low concentration. The gray 
color used in the ‘progression profile indices’ represents 
the compounds that deregulated less than 20 genes and is 
indicative of the ‘weak compounds’ summarized in Table 
S5. A relatively high fraction of these compounds clustered 
to the lower left, suggesting a concentration progression 
profile with deregulated genes that starts with the low con-
centration with only a few further genes up- or downregu-
lated with the middle and high concentrations. The obser-
vation that this particular concentration progression pattern 

Fig. 5   Concentration progression analysis. a Principles of the ‘pro-
gression profile index’ and the ‘progression profile error indicator’ 
illustrated for the four compounds valproic acid (VPA), propranolol 
(PPL), triazolam (TZM), and allyl alcohol (AA). Only the upregu-
lated genes after 24-h exposure were considered in this example. 
The upper panel shows the levels of the individual upregulated genes 
at three concentrations (low, middle, high). The panel in the mid-
dle summarizes the upregulated genes by Venn diagrams. The low-
est panel shows the resulting positions of the four compounds in the 
respective profilers indicated in blue. b Overview of the ‘progression 
profile indices’ for all compounds tested at three concentrations (low, 
middle, high) after three exposure periods (2 h, 8 h, and 24 h). First, 
the genes up- or downregulated at a higher concentration were deter-
mined (twofold up or down compared to control). Next, the fraction 
of these genes that are not deregulated at the lower concentration 
was calculated. These calculations were performed comparing the 
low versus the middle (x axis) and the middle versus the high (y axis) 
concentrations. A value close to zero means that only few additional 
genes were deregulated at a higher concentration; whereas, a value 
close to one indicates a large fraction of genes deregulated only at 
the higher concentration. Each symbol represents an individual com-
pound. The triangles represent the later excluded compounds. Black 
or gray symbols indicate that more than or less than (or equal to) 20 
genes, respectively, were deregulated in total (color figure online)

▸
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was preferentially observed for the ‘weak compounds’ led 
us to test their reliability using a ‘progression profile error 
indicator.’

The ‘progression profile error indicator’ was designed 
to identify compounds that cause a non-monotonous con-
centration progression of gene expression alterations. It 
recognizes genes that are deregulated when treated with the 
lower but not the respective higher concentration (Fig. 6). 
The principle is illustrated with four compounds in Fig. 5a. 
One hundred and eight genes were upregulated using a 
low-concentration TZM, but none when the middle con-
centration was used. Therefore, TZM yields a high value 
on the ‘middle to low’ axis of the ‘progression profile error 
indicator’ (Fig. 5a). This indicator seems useful, because a 
compound with an ambiguous concentration progression 
such as TZM requires careful reevaluation. On the other 
hand, VPA and PPL show predominantly increasing con-
centration progressions, and therefore, the low ‘progression 
profile error indicators’ are plausible. The results obtained 
with AA are more complicated as a high error indicator on 

the ‘middle to high’ axis is observed (Fig.  5a). However, 
the corresponding Venn diagram shows that the high ‘error 
indicator’ was caused by a single gene that was upregulated 
with the middle, but not the high concentration. This exam-
ple illustrates that a certain number of non-monotonous 
genes should be exceeded before they contribute to the 
error indicator. In the present study, this number was set to 
20, which finally results in the ‘modified progression pro-
file error indicator’ (Fig. 5a, lowest panel, right side). The 
results obtained for AA and other compounds demonstrate 
the usefulness of this error indicator. Therefore, the ‘modi-
fied progression profile error indicator’ was applied to eval-
uate all 151 compounds. It considered the two error indica-
tors of the comparison of the low versus middle and middle 
versus high concentration, as well as the number of deregu-
lated genes (twofold up or down compared to control).

 On the basis of the modified progression profile error 
indicator, a ‘progression error profile’ was defined. There-
fore, each compound was assigned to labels annotating the 
concentration progression for each time period (with respect 

Fig. 6   ‘Progression profile error indicator.’ A high value means that 
a high fraction of the genes were deregulated exclusively at a lower 
compared to a respective higher concentration. Each symbol repre-
sents an individual compound. The triangles present the excluded 
compounds. Gray symbols indicate that less than or equal to 20 genes 

were deregulated in total. Black symbols indicate that more than 20 
genes were deregulated in total, and both values are smaller than 
or equal to 0.5. Red symbols indicate that more than 20 genes were 
deregulated in total and that at least one of the error indicator values 
is greater than 0.5 (color figure online)
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to the up- and downregulated genes). Hence, the ‘progres-
sion error profile’ comprises a set of six labels ‘NA,’ ‘OO,’ 
‘o,’ ‘+,’ ‘−’ indicating ‘the compound was not tested,’ ‘the 
number of differentially expressed genes at all concentra-
tions was zero,’ ‘the number of differentially expressed 
genes at all concentrations was at most 20,’ ‘the number 
of differentially expressed genes was at least 20 and both 
error indicator values were below (or equal to) 0.5’ or ‘the 
number of differentially expressed genes was at least 20 
and one of the two error indicator values was above 0.5’ for 
that time period. Combining the annotations for the com-
pound-wise concentration progression at all time points, 
each compound is provided with a labeling of the follow-
ing design: ‘2 h Up| 8 h Up| 24 h Up| 2 h Down| 8 h Down| 
24 h Down’. For a more detailed description, the reader is 
referred to Table S6. The profiles can be used to assign the 
compounds to groups which are characterized by their con-
centration progression. All in all, 63 different profiles can 
be observed (Table S6). Most of the compounds, 35 in total, 
had the profile NA|+|+|NA|+|+, meaning that these com-
pounds show a plausible concentration progression for the 
incubation periods 8 h and 24 h. No data were available for 
the 2-h incubation period. The following compounds were 
excluded from further analyses of the curated database due 
to their ‘progression error profile’: carbon tetrachloride 
(‘o|o|+|o|o|o’), doxorubicin (‘NA|−|−|NA|+|+’), triazolam 
(‘NA|o|−|NA|OO|OO’), tetracycline (‘o|o|−|OO|o|o’), ticlo-
pidine (‘NA|o|o|NA|o|−’). Except for doxorubicin, all com-
pounds belong to the category ‘weak compounds.’ In addi-
tion, three further compounds (aspirin, indomethacin, and 
methyltestosterone) showed the same profile as carbon tet-
rachloride, even though they are known to be less directly 
hepatotoxic. Although the results from all three compounds 
should be treated with caution, they were not removed, 
because without further experiments it cannot be excluded 
that the observed ‘weak’ result and unusual progression 
profile are real. Table S7 gives an overview of the com-
pounds that deregulated more than 20 genes and yielded a 
‘progression profile error indicator’ value above 0.5. The 
top 32 (23) compounds which contribute to the 100 most 
up (down)-regulated genes for the 24-h, high concentration 
subset (Fig.  4, Fig. S3) yielded on average, error indica-
tor values in the range of 0.1–0.4 across all time periods. 
The highest error indicator values were attained by com-
pounds that belong to the ‘weak compounds,’ which deregu-
lated less than 20 genes in total (Table S5). They clustered 
to the upper right of the ‘progression profile error indices’ 
(Fig.  6). In conclusion, unusual concentration progres-
sion profiles were mainly identified among the compounds 
with weak expression responses. Therefore, the follow-
ing part of the manuscript focuses on the compounds with 
strong expression responses. The RMA normalized, in silico 
curated version of the Open TG-GATEs database, where 

compounds with an unusual concentration progression 
have been removed, is available under http://wiki.toxbank.
net/toxicogenomics-map/. These data represent the basis for 
all further calculations.

In vitro reproduction of reported compound‑gene effects

To assess the reproducibility of the gene expression 
response to chemical exposure reported in the Open TG-
GATEs database, primary human hepatocytes from five 
donors were isolated and cultivated, as described above. 
The in vitro response to five compounds (valproic acid, 
ketoconazole, galactosamine, acetaminophen, isoniazide) 
under identical conditions, as described in the Open TG-
GATEs database (highest concentration and 24-h incuba-
tion), was determined by qRT-PCR for four selected genes 
(G6PD, PDK4, PCK1, INSIG1) (Table S4). The in vitro 
response to three of the five compounds (valproic acid, 
ketoconazole, isoniazide) was additionally analyzed for 
thyroid hormone-inducible hepatic protein (THRSP), using 
a wide concentration range for the 24-h treatment time 
point (Table S8). We tested whether a qualitative agree-
ment could be obtained between the data in the Open TG-
GATEs database and our qRT-PCR analyses. The strong 
induction of G6PD by valproic acid, ketoconazole, and 
acetaminophen (23.7-, 3.4-, and 7.3-fold, respectively) 
reported by Open TG-GATEs was qualitatively confirmed 
in our data (Table S4). However, the relatively weak induc-
tion of G6PD (2.4-fold) by isoniazide was not confirmed, 
and galactosamine resulted in large differences between 
the tested donors. Induction of PDK4 (4.2-fold) by valp-
roic acid in the Open TG-GATEs data was confirmed, but 
the 3.4-fold increase by acetaminophen was not repro-
duced (Table S4). For this limited set of genes, the results 
for hepatocytes from independent donors illustrate that 
more than half of the positive observations from the data-
base can be reproduced, but independent confirmation will 
be required in the future to obtain even higher reliability. 
THRSP should be highlighted as a special case as the gene 
array data could not be confirmed. THRSP expression was 
upregulated by many compounds, including VPA in Open 
TG-GATEs, and has previously been reported to play a role 
in the pathogenesis of liver steatosis (Wu et al. 2013). How-
ever, induction of THRSP in cultivated human hepatocytes 
could not be confirmed after incubation with valproic acid, 
ketoconazole, and isoniazide (Table S8).

Warning flags for unstable baseline genes

It is well known that isolation and cultivation of primary 
hepatocytes causes up- and downregulation of numer-
ous genes, named ‘unstable baseline genes’ (Godoy 2013; 
Zellmer et  al. 2010). A relatively high number of genes 

http://wiki.toxbank.net/toxicogenomics-map/
http://wiki.toxbank.net/toxicogenomics-map/
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associated with xenobiotic and endogenous metabolism 
are known to be downregulated during cultivation. In con-
trast, inflammation-associated genes have been reported to 
be induced. These gene expression alterations occur as a 
response to the isolation stress and to the culture conditions. 
They are independent from compound exposure and might 
thus give rise to false-positive findings or cloud true findings 
as a consequence of opposing effects. To identify unsta-
ble baseline genes, expression profiles in freshly isolated 
primary human hepatocytes (FH) were analyzed by gene 
arrays and compared to the expression of corresponding 
genes after 1, 2, 3, 5, 7, 10, and 14 days in collagen sand-
wich (CS) culture. The number of probe sets upregulated at 

least threefold after one or more time points, as compared 
to FH, was 1,509 (1,086 genes); for the at least threefold 
downregulated probe sets, the corresponding number was 
1,754 (988 genes) (Table S9). Categorization as unstable 
baseline genes does not necessarily exclude biological rel-
evance. It is possible that an identical set of genes are influ-
enced by certain chemicals and by cell stress induced in 
response to hepatocyte isolation and cultivation. However, 
an unstable baseline may render the identification of the 
effects of chemicals technically more difficult, because they 
have to be differentiated from a second factor of influence—
isolation and cultivation stress. Therefore, in the toxicotran-
scriptomics directory, the column CS indicates whether the 

Fig. 7   Unsupervised cluster-
ing of the 100 most deregulated 
genes across all compounds 
tested at the highest concentra-
tion for 24 h of incubation. The 
lines represent the compounds, 
while each column stands for 
a gene. Red color indicates up 
and blue color downregulated 
genes as indicated by the code 
in the upper left. Moreover, 
the compounds have been 
classified with respect to their 
genotoxicity, human hepato-
toxicity, and BSEP inhibiting 
capacity. These properties are 
indicated in the columns left 
of the heatmap. Unsupervised 
clustering results in three clus-
ters that can be associated with 
biological motifs, proliferation, 
cytochrome P450 (CYP), and 
stress response as indicated 
below the heatmap (color figure 
online)
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gene is up- or downregulated during collagen sandwich cul-
ture of primary hepatocytes (Table S13).

Detection of biological motifs

To characterize the genes that were deregulated by the 
tested compounds at the highest concentration after an 
incubation period of 24  h, unsupervised cluster analysis 
was performed. Only the 143 compounds that remained 
after the aforementioned data curation step (i.e., removal 
of compounds with an unusual concentration progression 
profile) were included to generate a heatmap of the 100 
strongest deregulated genes (horizontal) across the remain-
ing compounds (vertical) (Fig. 7; Table S10, Table S19). A 
pattern was obtained with compounds that caused relatively 
strong expression alterations clustering in the lower part 
of the heatmap. In contrast, chemicals inducing relatively 
weak expression alterations clustered at the upper part. The 
genes formed several clusters; three of the clusters could 
be manually associated with distinct biological motifs, as 
indicated by the blue and red bars in Fig. 7: (1) prolifera-
tion, (2) cytochrome P450 enzymes, and (3) cell stress-
associated clusters. The proliferation-associated genes 
clustered to the left and were exclusively downregulated 
(genes: CXCL6 to CDK1; compounds: AFB1 to CHX). 
They include well-characterized genes, such as cyclin A 
(CCNA2), cyclin-dependent kinase 1 (CDK1), and topoi-
somerase II alpha (TOP2A). Approximately in the center 
of the heatmap, a cluster with predominantly upregulated 
cytochrome P450 isoenzymes was observed (CYP3A7, 
CYP3A4, CYP1A1, CYP1A2). More to the right, a further 
cluster of upregulated genes that are associated with differ-
ent types of cell stress could be seen, including heat-shock 
70-KD protein 6 (HSPAG); endoplasmic reticulum stress 
inducible ATF3 (which is also known to be regulated by 
heat-shock proteins); RGCC which is induced by TP53 in 
response to DNA damage; FBX032, a TGF beta target gene 
involved in regulating cell survival; and pyruvate dehydro-
genase kinase 4 (PDK4), which is known to be upregulated 
in response to starvation or hypoxia.

Stereotypic versus compound‑specific gene expression 
responses

Introduction of the selection value concept

As described in the previous paragraph, unsupervised clus-
tering identified sets of genes that were affected by large 
numbers of compounds, i.e., the proliferation cluster (Fig. 7). 
In contrast, the expression levels of other genes were influ-
enced only by individual compounds. To systematically 
analyze stereotypic versus compound-specific gene expres-
sion responses, the selection value concept was introduced 

(Fig.  8). Based on the sample subset that was treated with 
the highest concentration for 24 h, a list was generated for 
each probe set, with compounds ranked in order of fold 
change. Thus, for the upregulated probe sets, compounds 
were ranked from high to low fold change, and for the down-
regulated probe sets, compounds were ranked in the reverse 
order. Selection value x (short SVx) was then defined to 
deliver a list of genes at least threefold up- or downregu-
lated by at least x compounds. Selection value 20 (SV20) 
accordingly delivers a list of genes deregulated by 20 or 
more different compounds; whereas, lists based on SV5, 
SV3, and SV1 comprise genes deregulated by at least five, 
three, and one single compound, respectively (Table S11). 
Genes selected by SV20 exhibited a stereotypic expression 
response of hepatocytes exposed to chemicals. Applying this 
concept to the curated Open TG-GATEs data, SV20 deliv-
ered a list of 31 upregulated probe sets, which increased to 
531; 1,101; and 4,135 for SV5, SV3, or SV1, respectively 
(Fig.  8b; Fig S4, Table S12). The corresponding numbers 
for the downregulated probe sets were 179; 857; 1,713; and 
4,479 for SV20, SV5, SV3, and SV1, respectively (Fig. 9). 

The SV20 genes were chosen for further detailed analy-
sis as they represent a stereotypical or consensus response 
of hepatocytes exposed to chemicals (Table  1). It should 
be considered that 20 compounds represent a high fraction, 
because only 32 of all tested compounds induced strong 
expression responses (Fig.  4). Next, the functions of all 
SV20 genes were studied individually and a manual assign-
ment of function was performed, based on the literature, in 
order not to rely only on computationally based GO analysis 
which will be described later. Most of the upregulated genes 
were associated with biological functions, such as phase I 
and II metabolism, differentiation and development, protein 
modification and degradation, stress response, as well as 
energy and lipid metabolism (Table 1A). In contrast, most of 
the downregulated SV20 genes represented genes involved 
in cell cycle progression (Table  1B; Table S11). A smaller 
fraction of the downregulated SV20 genes is associated with 
DNA synthesis and repair, immune response, cytoskeleton 
and intracellular trafficking, as well as metabolism. A more 
comprehensive overview is provided in Table S14, which 
lists the top 100 upregulated consensus probe sets (69 genes) 
that were upregulated by at least 20 compounds.

Besides the SV20 genes, a detailed analysis was also 
performed for the SV3 genes (Table S11). The intention 
was to consider more individual expression responses, i.e., 
genes up- or downregulated by at least three compounds. 
In principle, an even more individual response could be 
studied for single compounds using, in the terminology 
of the selection value concept, the SV1 genes. However, 
since the individual compounds were tested only in two 
replicates, the probability of false positives due to multiple 
testing would be relatively high. Therefore, the analysis of 
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SV3 genes for the identification of compound-specific gene 
expression responses represents a compromise between 
individuality and reliability. Manual inspection of the SV3 
genes revealed a more diverse pattern of biological func-
tions (Table S15). As observed for the SV20 genes, energy 
and lipid metabolism were frequently observed functions 
among the upregulated SV3 genes (Table S15A). Fur-
ther categories were inflammation, development and dif-
ferentiation, protein degradation as well as regulation of 
transcription, metabolism, stress response and apoptosis, 
membrane transporters, and cytoskeletal factors. Typical 
functions of the downregulated genes are factors involved 

in differentiation, endogenous and xenobiotic metabolism, 
cytoskeletal organization, immune response, transporters, 
energy and lipid metabolism, and apoptosis (Table S15B).

Overrepresented gene ontology groups and transcription 
factor binding sites

Analysis of overrepresented GO groups resulted in metab-
olism of xenobiotics and endogenous substrates as the 
predominating biological functions (Table  2A), thereby 
confirming the conclusions of the aforementioned manual 
categorization. To obtain an overview of overrepresented 

Fig. 8   a Selection values for the upregulated genes. A selection value 
of, e.g., five means that at least five compounds upregulate (>three-
fold) the indicated gene. The corresponding data for downregulated 

genes are in Figure S4. b Overview of the number of selection value 
1, 3, 5, and 20 genes. For example, 31 genes are upregulated (>three-
fold) by at least 20 compounds (SV20)
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transcription factor binding sites (TFBS), the SV20 genes 
were analyzed by the PRIMA software. Among the down-
regulated genes (Table S11), TFBS of proliferation-asso-
ciated genes were overrepresented, such as E2F1 and ATF 
(Table 2B). This corresponds to the results of the GO group 
analysis where the top overrepresented GO groups all are 
associated with cell cycle progression and proliferation 
(Table 2). In the set of upregulated genes (Table S11), the 
well-established transcription factor of hepatocyte differ-
entiation and a central regulator of liver function, HNF4, 
(Watt et al. 2003; Kamiya et al. 2003), was overrepresented 
(Table 2). Table S16 provides an overview of the overrep-
resented GO groups (unadjusted p value ≤0.001) and over-
represented transcription factor binding sites (unadjusted p 
value ≤0.01) for the SV3 genes.

Gene alterations common to both chemical exposure 
in vitro and human liver disease

It is of high interest to know whether genes deregulated 
by exposure to chemicals in vitro would respond simi-
larly under conditions of in vivo exposure. Systematic in 
vitro versus in vivo comparison between cultivated human 
hepatocytes and human liver tissue after exposure to a 
test compound is not possible. Human liver tissue after 
chemical exposure is only available under exceptional and 

usually not precisely defined conditions, such as liver tis-
sue obtained from patients with acetaminophen intoxica-
tion. To nevertheless approach this question, publicly avail-
able whole-transcriptome gene expression datasets were 
explored to define genes that are differentially expressed in 
patients with NASH, liver cirrhosis, and HCC, based on the 
comparison to healthy/non-tumor liver tissue (Table S17). 
Secondly, the overlap between ‘differentially expressed 
liver disease genes’ and chemically deregulated stereotypic 
genes in vitro, determined by SV20, was plotted (Fig. 10a).

For both liver cirrhosis and hepatocellular carcinoma, 
the SV20 overlap for downregulated genes ranged from 
13 to 16 %. For non-alcoholic steatohepatitis, the overlap 
was smaller for the downregulated genes, which could be 
explained by the generally smaller number of differentially 
expressed genes in this set of data. The phase II metaboliz-
ing enzyme SULT1C2, which was upregulated by at least 
20 chemicals in vitro (fold change >3) and revealed signifi-
cantly increased expression levels in diseased liver tissue, 
provides one example of a gene that is deregulated in both 
the in vitro and the in vivo situation. Similarly, CYP3A7, 
the predominant cytochrome P450 in human fetal liver 
(Pang et al. 2012) and the p53-induced gene RGCC (Huang 
et al. 2009; Saigusa et al. 2007) were increased by chemi-
cal exposure in vitro and in at least two of the studied 
human liver conditions. Genes that were downregulated 
by at least 20 chemicals (more than threefold compared to 
controls) and showed significantly lower expression levels 
in at least two liver diseases include the aldehyde dehydro-
genase family members ALDH8A1 and ADH4, the sterol- 
and fatty acid-metabolizing cytochrome P450 isoenzymes 
CYP8B1 and CYP4A11, the urea cycle enzyme CPS1, the 
gluconeogenesis key enzyme PCK1, the membrane-associ-
ated ATP-binding cassette transporter ABCA8, and the glu-
cose transporter SLC2A2. Similarly as for SV20, a consid-
erable overlap was observed between the disease genes and 
the genes identified by SV3 (Fig. 10b), with the individual 
genes summarized in Table S18.

Discussion

How to use the toxicogenomics directory

Currently, numerous studies are performed to identify bio-
markers of hepatotoxicity, and transcriptomics data are 
frequently used to identify candidates for further evalua-
tion in biomarker evaluation studies. However, a system-
atic directory summarizing key features of chemically 
influenced genes is not available. To bridge this gap and to 
establish a systematic and comprehensive strategy for the 
identification of candidate genes, we used the Open TG-
GATES database with Affymetrix files of cultivated human 

DownUp

NREP, DHFR, AXL, CDKN2C, ABCA8, CPS1, CCNE2, 
BCL2A1, SLC2A2, UGT2B15, CYP4A11, PCK1, ID1, 
UGT2B15, CPS1, PBLD, ANGPTL4, WDR72, HNMT, 

ADH4, HOGA1*

PPM1L, THRSP, CYP3A5*

Fig. 9   Overlap between ‘unstable baseline genes’ (CS) and the 
SV20 (SV3) genes. For example, 4 of the 31 SV20 genes belong to 
the unstable baseline genes, meaning that their expression levels were 
altered by the hepatocyte isolation and cultivation procedure. The 
uniquely annotated genes in the overlap of the SV20 genes are listed 
below the corresponding Venn diagrams  (the asterisk refers to probe 
sets that are not annotated). The genes in the overlap of the SV3 genes 
are listed in Table S9. All specific genes are listed in Table S9 as well
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Table 1   Consensus genes deregulated in human hepatocytes by chemical exposure. The listed genes are at least threefold A up- or B downregu-
lated by at least 20 of the 143 studied chemicals (selection value 20)

Symbol Gene Probe set Function of the gene product

A: Upregulated consensus genes

Category: Metabolism, xenobiotics

 CYP1A1 Cytochrome P450, sub-fam. 1A, polypeptide 1 205749_at Metabolic enzyme in the ER Phase I enzymes

 CYP2C9 Cytochrome P450, sub-fam. 2C, polypeptide 9 217558_at

 CYP3A4 Cytochrome P450, sub-fam. 3A, polypeptide 4 205999_x_at
208367_x_at

 CYP3A52 Cytochrome P450, sub-fam. 3A, polypeptide 5 214235_at
243015_at

 CYP3A71 Cytochrome P450, sub-fam. 3A, polypeptide 7 205939_at
211843_x_at

 SULT1C21 Sulfotransferase 1C2 205342_s_at Cytosolic enzyme; catalyzes sulfonation Phase II 
enzymes SULT2A1 Sulfotransferase 2A1 206292_s_at

206293_at

Category: Differentiation and development

 FGF21 Fibroblast growth factor 21 221433_at Secreted growth factor; mitosis and survival Growth factor

 GDF151 Growth/differentiation factor 15 221577_x_at Secreted growth factor; inflammation and 
apoptosis

 IFRD1 Interferon-related developmental regulator 1 202147_s_at Nuclear protein; regulation of gene expression 
in proliferative and differentiative pathways

Interferon-
related signal-
ing

 EFNA11 Ephrin-A1 202023_at Receptor tyrosine kinase; migration and adhe-
sion

Other

Category: Protein modification and degradation

 CBX41 E3 SUMO-protein ligase CBX4 227558_at Protein ligase; SUMO1 conjugation and proteasomal degradation

 FBXO321 F-box protein 32 225803_at Cytosolic protein; ubiquitination and proteasomal degradation

 KLHL24 Kelch-like protein 24 221985_at
221986_s_at

Cytosolic protein; role in protein degradation

Category: Stress response

 ATF3 Activating transcription factor 3 202672_s_at
1554980_a_at

Transcription factor; stress response, further 
involved in cell cycle regulation, DNA repair, 
apoptosis

Cell cycle arrest

 RGCC1 Regulator of cell cycle 218723_s_at Cytosolic protein; induced by p53 modulates 
the activity of cell cycle specific kinases in 
response to DNA damage

 CREBRF CREB3 regulatory factor 225956_at Nuclear protein; regulates transcription, nega-
tive regulator of the ER stress response

Stress 
response/ER 
stress PPM1E Phosphoprotease 1E 205938_at Serine/threonine-protein phosphatase; negative 

regulator of cell stress response pathways

Category: Energy and lipid metabolism

 PDK41 Pyruvate dehydrogenase kinase 225207_at Mitochondrial membrane enzyme; increased 
PDK4 leads to enhanced gluconeogenesis

Glucose metabo-
lism/homeo-
stasis PPM1L2 Protein phosphatase 1L 228108_at Membrane bound enzyme; regulation of blood-

glucose

Category: Other

 SLC7A111 Solute carrier fam. 7 member 11 217678_at membrane anchored protein; cysteine and glutamate transport

 ZCCHC61 Terminal uridylyltransferase 7 242776_at Enzyme involved in RNA processing
3236542_at1, 237031_at

B: Downregulated consensus genes. The 100 probe sets (74 genes) with the highest fold change are given below

Category: Cell cycle progression and regulation

 ASPM Abnormal spindle protein homolog 219918_s_at Cytosolic protein; role in mitotic spindle regulation and coordi-
nation of mitotic processes

 AURKA Aurora kinase A 208079_s_at Cytosolic kinase; regulation of cell cycle progression
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Table 1   continued

Symbol Gene Probe set Function of the gene product

 AURKB Aurora kinase B 209464_at Cytosolic kinase; regulation of cell cycle progression

 BIRC5 Baculoviral IAP repeat-containing protein 5 202095_s_at Cytosolic protein; chromosome alignment and segregation during 
mitosis, further role as apoptotic factor

 CENPK Centromere protein K 222848_at Nuclear protein; assembly of kinetochore proteins, mitotic pro-
gression and chromosome segregation

 FAM83D Protein FAM83D 225687_at Cytosolic protein; chromosome alignment on the spindle

 MLF1IP Centromere protein U 218883_s_at Component of a nucleosome-associated complex; assembly of 
kinetochore proteins

 NCAPG Condensin-2 complex subunit G2 218662_s_at
218663_at

Nuclear protein; regulation of mitotic chromosome architecture

 OIP5 Opa-interacting prot. 5 213599_at Nuclear protein; chromosome segregation

 TTK Dual specificity protein kinase TTK 204822_at Protein kinase; centrosome duplication and mitosis progression, 
associated with cell proliferation

 CCNA2 Cyclin A2 203418_at
213226_at

Nuclear protein; cell cycle control at the G1/S and G2/M transi-
tions

 CCNB1 Cyclin B1 214710_s_at
228729_at

Cytosolic and nuclear protein; cell cycle control at the G2/M 
transition

 CCNB2 Cyclin B2 202705_at

 CCNE22 Cyclin E2 205034_at
211814_s_at

Nuclear protein; controls the cell cycle at the late G1 and early 
S phase

 CDC20 Cell division cycle 20 homolog 202870_s_at Cytosolic protein; regulation of anaphase initiation and mitotic 
exit

 CDC6 Cell division control protein 6 homolog 203967_at
203968_s_at

Cytosolic and nuclear protein; control and initiation of DNA 
replication

 CDCA3 Cell division cycle-associated protein 3 223307_at Cytosolic protein; required for entry into mitosis

 CDK1 Cyclin-dependent kinase 1 203213_at
203214_x_at
210559_s_at

Kinase, cell cycle control by modulation of the centrosome cycle 
and mitosis initiation

 CDKN3 Cyclin-dependent kinase inhibitor 3 209714_s_at
1555758_a_a

Cytosolic protein; cell cycle regulation

 DLGAP5 Disks, large homolog-associated protein 5 203764_at Cytosolic and nuclear protein; cell cycle regulator

 DTL Denticleless protein homolog 218585_s_at
222680_s_at

Cytosolic and nuclear protein; cell cycle control, DNA repair

 HMMR Hyaluronan-mediated motility receptor 207165_at
209709_s_at

Cell surface receptor; required for entry and regulation of mitosis

 MELK Maternal embryonic leucine zipper kinase 204825_at Serine/threonine-protein kinase; modulator of intracellular sign-
aling, further role in apoptosis

 TRIP13 Thyroid receptor-interacting protein 13 204033_at Transcription factor interacting protein; checkpoint arrest, 
chromosome recombination and structure development during 
meiosis, role in DNA double strand break repair

 BUB1 Serine/threonine-protein kinase BUB1 209642_at Cytoplasmic and nuclear kinase; mitotic checkpoint, required for 
normal mitosis progression BUB1B Serine/threonine-protein kinase BUB1b 203755_at

 CASC5 Cancer susceptibility candidate 5 228323_at Nuclear protein; spindle-assembly checkpoint signaling and 
chromosome alignment

 INSC Protein inscuteable homolog 237056_at Cytosolic protein; spindle orientation

 MAD2L1 Mitotic arrest-deficient 2L1 203362_s_at
1554768_a_at

Cytosolic and nuclear protein; spindle-assembly checkpoint

 NDC80 Kinetochore protein NDC80 homolog 204162_at Nuclear protein; chromosome segregation and spindle checkpoint 
activity

 Symbol Gene Probe set Function of the Gene Product

Category: Cell cycle progression and regulation

 NEK2 Never in mitosis A-related kinase 2 204641_at Mitotic kinase; controls centrosome separation and bipolar spin-
dle formation in mitotic cells
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Table 1   continued

Symbol Gene Probe set Function of the gene product

 SPC25 Kinetochore protein Spc25 209891_at Nuclear protein; chromosome segregation, spindle checkpoint 
activity

 TPX2 Targeting protein for Xklp2 210052_s_at Spindle-associated protein; spindle-assembly factor, colocalises 
with apoptotic microtubules

 ZWINT ZW 10 interactor 204026_s_at Nuclear protein of the MIS12 complex; kinetochore formation 
and spindle checkpoint activity

 GINS1 GINS complex subunit 1 206102_at Nuclear protein; initiation of DNA replication and progression of 
DNA replication forks GINS2 GINS complex subunit 2 221521_s_at

 KIAA0101 PCNA-associated factor 202503_s_at Cytosolic and nuclear protein; regulates DNA repair during DNA 
replication

 LMNB1 Lamin-B1 203276_at Membrane protein in the nuclear laminar; DNA replication, 
stress response and development

 MCM10 Minichromosome maintenance 10 220651_s_at Nuclear protein; functions as replication initiation factor

 TOP2A Topoisomerase II alpha 201291_s_at
201292_at

Nucleoplasm enzyme; transiently breaks and reunites double 
strand DNA during replication

 KIF23 Kinesin-like protein KIF23 204709_s_at Protein required for the myosin contractile ring formation during 
cytokinesis

 KIF4A Chromosome-associated kinesin KIF4A 218355_at Microtubulus motor protein; spindle formation

 NUSAP1 Nucleolar and spindle-associated protein 1 218039_at
219978_s_at

Cytosolic and nuclear protein; stabilization of microtubules

 ANLN Anillin 222608_s_at
1552619_a_at

Nuclear, actin binding protein; role in cytokinesis, deregulated in 
many cancers

 CEP55 Centrosomal protein 55 kDa 218542_at Cytosolic and nuclear protein; mitotic exit and cytokinesis

 PRC1 Protein regulator of cytokinesis 1 218009_s_at Cytosolic and nuclear protein; regulator of cytokinesis, cross-
links antiparallel microtubules

 PBK PDZ binding kinase 219148_at Mitotic kinase; phosphorylates MAP kinase p38, only active 
during mitosis

 PRR11 Proline rich 11 228273_at Cytosolic protein; expression increases from G1 to G2/M phase

 E2F8 Transcription factor E2F8 219990_at Transcription factor; regulates transcription of other transcription 
factors with role in cell cycle

 MYBL1 Myeloblastosis-related protein A 213906_at Transcriptional activator; master regulator of meiotic genes, role 
in proliferation and differentiation

 HELLS Lymphoid-specific helicase 223556_at
227350_at

Helicase with role in normal development and survival, chroma-
tin remodeling and DNA methylation

Category: DNA synthesis, recombination and repair

 DHFR1,2 Dihydrofolate reductase 202533_s_at Enzyme in folate metabolism; synthesis of 
purines

DNA synthesis

 RRM2 Ribonucleotide reductase M2 polypeptide 201890_at
209773_s_at

Cytosolic enzyme; biosynthesis of deoxyribonu-
cleotides, inhibits Wnt signaling

 TK1 Thymidine kinase 202338_at
1554408_a_at

Cytosolic kinase for DNA synthesis; phos-
phorylation of thymidine to deoxythymidine 
monophosphate

 TYMS Thymidylate synthase 202589_at
1554696_s_at

Enzyme which contributes to the de novo mito-
chondrial thymidylate biosynthesis pathway

 FANCI Fanconi-associated nuclease 1 213007_at Nuclease; required for maintenance of chromo-
somal stability, key role in DNA repair

DNA repair/
recombination

 RAD51AP1 RAD51-associated protein 1 204146_at Nuclear, DNA binding protein; DNA damage 
response

Category: Immune response and inflammation

 CCL21 C–C motif chemokine 2 216598_s_at Secreted protein; chemotactic factor attracting monocytes and 
basophils

 CXCL61 Chemokine (C–X–C motif) ligand 6 206336_at Secreted protein with chemotactic activity for neutrophils; 
inflammation and development
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hepatocytes incubated with 158 chemicals, further sets of 
gene array data from human donors that were generated in 
this study, and publicly available genome-wide datasets of 
human liver tissue from patients with NASH, cirrhosis, and 
HCC. This resulted in a toxicotranscriptomics directory 
that is now publicly available under http://wiki.toxbank.
net/toxicogenomics-map/. The directory can be down-
loaded in the form of an EXCEL table in which each gene 
can be identified together with answers to the following 
questions: (1) is the gene deregulated by chemicals and, if 
yes, by how many and which compounds; (2) is the change 
in gene expression the stereotypical response that is typi-
cally observed when hepatocytes are exposed to high con-
centrations of chemicals; (3) is the gene also deregulated in 
human liver disease; (4) does the gene belong to a group of 
‘unstable baseline genes’ that are up or downregulated due 

to the culture conditions without exposure to chemicals? In 
the following paragraph, the basis of these questions and 
their relevance to the identification of adequate genes in 
biomarker identification programs will be discussed.

Stereotypical versus specific responses

One basic principle observed in this study is that com-
plex but stereotypical expression responses are caused by 
close to cytotoxic concentrations of numerous compounds; 
this stereotypical response should be differentiated from 
compound-specific influences. The principle of stereotypi-
cal- and compound-specific responses was first observed 
by unsupervised clustering, followed by a systematic study 
using the selection value (SV) concept. Unsupervised 
clustering of the genes deregulated by chemicals in vitro 

Table 1   continued

Symbol Gene Probe set Function of the gene product

 FSTL11 Follistatin-related protein 1 208782_at Secreted glycoprotein; inflammatory protein, enhancing synthe-
sis of pro-inflammatory cytokines and chemokines by immune 
cells

 HAVCR1 Hepatitis A virus cellular receptor 1 207052_at Membrane protein receptor; role in T-helper cell development, 
cell surface receptor for the virus

 Symbol Gene Probe set Function of the Gene Product

Category: Cytoskeleton and trafficking

 ARL14 ADP-ribosylation factor-like 14 220468_at Cytoplasmic vesicle GTPase; controls transport 
of vesicles along microtubules

Transport/traf-
ficking

 KIF20A Kinesin-like protein KIF20A 218755_at Cytosolic protein; controls transport along 
microtubules

 KRT71 Keratin type II cytoskeletal 7 209016_s_at Cytoplasmic intermediate filament protein; 
responsible for structural cell integrity, stimu-
lates DNA synthesis

Cytoskeleton

 PALMD Palmdelphin 218736_s_at
222725_s_at

Cytosolic protein; role in the cell shape control 
and cell dynamics

Category: Metabolism

 ALDH8A11 Aldehyde dehydrogenase fam. 8 member A1 220148_at Cytosolic enzyme; converts 9-cis-retinal to 9-cis retinoic acid

 CPS11,2 Carbamoyl-phosphate synthase 204920_at
217564_s_at

Mitochondrial protein; role in the urea cycle, removes excess 
ammonia from the cell

Category: Other

 ABCA81,2 ATP-binding cassette sub-family A, member 8 204719_at Membrane located, ATP-dependent lipophilic drug transporter

 BCL2A11,2 Bcl-2-related protein A1 205681_at Cytoplasmic protein involved in apoptosis regulation

 DEPDC1 DEP domain-containing protein 1A 222958_s_at
232278_s_at

Nuclear protein; involved in transcriptional regulation as a tran-
scriptional corepressor

 SHCBP1 SHC SH2 domain-binding protein 1 219493_at Cytosolic protein; signaling pathways in proliferation, cell 
growth and differentiation

 UBE2C Ubiquitin-conjugating enzyme E2 C 202954_at Enzyme involved in protein ubiquitinylation and degradation

 UHRF1 Ubiquitin-like PHD and RING finger domain-
containing protein 1

225655_at Nuclear epigenetic regulator enzyme; bridges DNA methylation 
and chromatin modification

 WDR721,2 WD repeat-containing protein 72 227174_at Mutations in this gene have been associated with amelogenesis 
imperfecta hypomaturation type 2A3

3204962_s_at, 225834_at, 229490_s_at, 230554_at, 232325_at1, 244567_at

1  Gene deregulated in liver disease (NASH, cirrhosis and/or HCC). 2Unstable baseline gene. 3Not annotated, functionally unclear probe set

http://wiki.toxbank.net/toxicogenomics-map/
http://wiki.toxbank.net/toxicogenomics-map/
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illustrated that some clusters were deregulated by rela-
tively large numbers of chemicals. To further analyze these 
stereotypical responses, selection value 20 genes (SV20) 
were defined as genes that were at least threefold up- or 
downregulated by at least 20 test compounds. Twenty com-
pounds represent a relatively large fraction, because only 
32 of the studied compounds contributed to the 100 most 
deregulated genes. Of the 31 up- and 179 downregulated 
‘consensus’ or SV20 genes identified, GO group analysis 
identified xenobiotic metabolism as the most significantly 
overrepresented motif of the upregulated and cell cycle 
progression of the downregulated genes.

The knowledge whether a gene belongs to the stereotyp-
ical response of chemically exposed hepatocytes is relevant 
when selecting candidate genes for biomarker evaluation 
or other studies. On the one hand, deregulation of ‘stereo-
typical stress response genes’ reliably indicates that the 
hepatocytes are stressed by exposure to the test compound. 
On the other  hand, this deregulation is unlikely to repre-
sent a specific molecular mechanism of toxicity. While 
the SV20 genes indicate a stereotypical stress response, 
the SV3 genes may be helpful when attempting to identify 
specific mechanisms of toxicity. The SV3 genes represent 
a broad spectrum of biological functions, including energy 
and lipid metabolism, inflammation, differentiation, protein 
modification and degradation, endogenous and xenobiotic 
metabolism, cytoskeletal organization, immune response 
and several factors involved in transcriptional regulation, 
thereby representing candidates for further studies aimed at 
identifying the responsible mechanisms of hepatotoxicity.

Human disease genes

The toxicotranscriptomics directory (http://wiki.toxbank.
net/toxicogenomics-map/) indicates whether a gene is 
up- or downregulated in NASH, cirrhosis, or hepatocel-
lular cancer (HCC). Also included are not only the genes 
that are up- or downregulated by chemicals in vitro, but 
also those deregulated in the same direction (either up or 
down) in human liver disease. This may be of interest for 
the selection of candidates for biomarker evaluation pro-
grams in toxicology, because human disease genes reflect 
mechanisms triggered by a disturbed liver microenviron-
ment in vivo. One of these genes is the phase II metabo-
lizing enzyme SULT1C2, which is upregulated in NASH, 
cirrhosis, and HCC and also by at least 20 of the analyzed 
chemicals. Similarly, CYP3A7 is a SV20 chemical consen-
sus gene that is also upregulated in NASH and cirrhosis. 
CYP3A7 is the predominant cytochrome P450 in human 
fetal liver, while CYP3A4 becomes most abundant after 
birth (Pang et al. 2012). Therefore, chemicals upregulating 
this cytochrome P450 isoform reactivate a fetal expression 
pattern. The present study shows that a similar response is 
induced by hepatotoxic compounds and in liver disease. 
Thus, induction of CYP3A7 seems to represent a stereotyp-
ical response of stressed hepatocytes in vitro and in vivo. A 
further gene where alteration in expression overlaps in both 
chemical stereotypical (SV20) and disease genes is RGCC. 
Relatively little is known about this gene. It was previously 
reported to cause epithelial to mesenchymal transition in 
kidney cells (Huang et  al. 2009), and to represent a p53 

Table 2   A Overrepresented GO groups for SV20 genes (unadjusted p value ≤0.001, in total 13 upregulated, here are all listed, in total 88 down-
regulated, here only the top 15 are listed). B Overrepresented TFBS (unadjusted p value ≤0.01)

A: Overrepresented GO groups

Up

 Xenobiotic metabolic process (GO:0006805), alkaloid catabolic process (GO:0009822), monoterpenoid metabolic process (GO:0016098), 
vitamin D metabolic process (GO:0042359), exogenous drug catabolic process (GO:0042738), sulfation (GO:0051923), 3′-phosphoadeno-
sine 5′-phosphosulfate metabolic process (GO:0050427), bile acid catabolic process (GO:0030573), drug catabolic process (GO:0042737), 
positive regulation of S phase of mitotic cell cycle (GO:0045750), steroid catabolic process (GO:0006706), dibenzo-p-dioxin catabolic 
process (GO:0019341)

Down

 Cell division (GO:0051301), mitotic prometaphase (GO:0000236), mitosis (GO:0007067), regulation of transcription involved in G1/S phase 
of mitotic cell cycle (GO:0000083), DNA replication (GO:0006260), protein localization to kinetochore (GO:0034501), regulation of cyclin-
dependent protein kinase activity (GO:0000079), anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic 
process (GO:0031145), DNA replication initiation (GO:0006270), DNA strand elongation involved in DNA replication (GO:0006271), S 
phase of mitotic cell cycle (GO:0000084), mitotic sister chromatid segregation (GO:0000070), organ regeneration (GO:0031100), CENP-A 
containing nucleosome assembly at centromere (GO:0034080), M/G1 transition of mitotic cell cycle (GO:0000216)

B: Overrepresented TFBS

Up

 HNF4 (M01032), TCF-4 (M00671), Nkx2-5 (M00240), GATA-1 (M00128), FOXO4 (M00472), GATA-X (M00203), LEF1 (M00805), Gfi-1 
(M00250)

Down

 E2F (M01032), E2F-1 (M00671), AFP1 (M00240), Nrf-1 (M00128), IRF-7 (M00472), E2F-1 (M00203), ATF (M00805), BRCA1 (M00250), 
NF-Y (M01032), PXR,_CAR,_LXR,_FXR (M00671), RORalpha1 (M00240)

http://wiki.toxbank.net/toxicogenomics-map/
http://wiki.toxbank.net/toxicogenomics-map/
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Fig. 10   Overlap between genes 
altered by the test compounds 
(a SV20 genes, b SV3 genes) 
and genes altered by the human 
liver diseases non-alcoholic 
steatohepatitis (NASH), liver 
cirrhosis, and hepatocellular 
cancer (HCC). The genes differ-
entially expressed in each of the 
three liver diseases are in Table 
S17. a The genes in the overlap 
are listed below the correspond-
ing Venn diagrams. b The genes 
in the overlap are listed in Table 
S18

A

PDK4, ZCCHC6, RGCC,
GDF15, CYP3A7, SULT1C2

PBLD, ALDH8A1, WDR72, CYP8B1

Up Down

RGCC, CYP3A7, SULT1C2 CPS1, PBLD, CUX2, ALDH8A1, TNFSF10, PCK1, ID1, 
ABCA8, HNMT, SLC2A2, WDR72, CYP8B1, CLRN3, 

CYP4A11, ADH4, DHFR, HOGA1

Up Down

B

Up Down

SULT1C2, SLC7A11, EFNA1, 
FBXO32, CBX4

CYP4A11, PCK1, ADH4, ALDH8A1, PBLD, HOGA1, 
ABCA8, SLC2A2, CYP8B1, CPS1, ID1, AXL, CLRN3, 
TRIM22, CCL2, KCNJ8, HNMT, UGT2B15, WDR72, 

ANGPTL4, CUX2

Up Down

Up Down

Up Down
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inducible gene involved in cell cycle arrest (Saigusa et al. 
2007). ALDH8A1 is one example of a gene that belongs 
to the downregulated chemical consensus (SV20) genes 
which is also decreased in NASH, cirrhosis, and HCC. This 
may be of pathophysiological relevance, since ALDH8A1 
converts 9-cis-retinal into 9-cis retinoic acid (Lin and 
Napoli 2000). 9-cis retinoic acid is a ligand of the retinoid 
X receptor (RXR) in hepatocytes, one of the master regula-
tors of gene expression.

Further genes that overlapped between SV20 and liver 
disease are involved in normal metabolic liver functions. 
Downregulation of these genes may represent a state where 
the hepatocytes shift their balance from metabolism to 
regeneration. Examples are CPS1, the first enzyme of the 
urea cycle and key factor of ammonia detoxification (Sim-
mer et al. 1990; Schliess et al. 2014); PCK1 as a main con-
trol enzyme of gluconeogenesis (Pilz et al. 1992); SLC2A2, 
also known as the glucose carrier GLUT2 (Froguel et  al. 
1991); CYP8B1, a key enzyme in bile acid metabolism 
(Gåfvels et al. 1999); CYP4A11, the major fatty acid omega-
hydroxylase, which is involved in controlling the balance of 
lipids (Antoun et al. 2006); ABCA8, one of the liver’s ABC 
transporters (Tsuruoka et  al. 2002); and ADH4, an alde-
hyde dehydrogenase that metabolizes numerous substrates, 
including retinol, hydroxysteroids, and also ethanol (Kimura 
et al. 2009). Such complex but stereotypical patterns of gene 
deregulation induced by a chemical can also be interpreted as 
a situation of disturbed hepatocyte physiology and could be 
the result of different insults to the liver. However, if a gene 
induced by chemicals in vitro is also induced by the micro-
environment of a diseased liver, this at least demonstrates 
that the involved mechanism is not a pure in vitro artifact. In 
vivo validation is of high relevance, since parts of the signal-
ing network of cultivated hepatocytes are altered compared 
to hepatocytes in an intact liver, for example enhanced Akt 
activity mediating antiapoptotic mechanisms or increased 
MAK kinase signaling that causes features of epithelial-to-
mesenchymal transdifferentiation (Godoy et al. 2009; 2010); 
therefore, many responses observed in cultivated cells rep-
resent in vitro artifacts and should not be used for evalua-
tion of chemicals. Only approximately 20 % of the chemi-
cally influenced genes in hepatocytes in vitro overlap with 
the genes altered in disease. This of course does not mean 
that the remaining 80 % are irrelevant, but rather that these 
genes may lead to specific mechanisms of chemical toxic-
ity that are not induced in NASH, cirrhosis, and hepatocellu-
lar cancer. However, further studies are required to evaluate 
their in vivo relevance.

Unstable baseline genes

The toxicotranscriptomics directory (http://wiki.toxbank.
net/toxicogenomics-map/) also contains the information of 

which genes are up- or downregulated as a consequence of 
isolation stress or cultivation conditions of the hepatocytes. 
Such unstable baseline genes can nevertheless represent 
useful biomarkers. However, a careful comparison with 
time-matched controls should be performed to avoid false-
positive results. If equivalent alternatives are available, it 
may be advisable to avoid ‘unstable baseline genes.’

Limitations and technical aspects

One limitation of the present dataset of cultivated human 
hepatocytes in Open TG-GATEs is that only two replicates 
are available. Since this low number limits the validity of 
statistical tests, genes were considered as up- or down-
regulated when the mean difference to controls was at 
least threefold. It may be worthwhile to determine whether 
smaller thresholds would also be useful, because gene 
expression changes smaller than threefold can also be of 
toxicological relevance. However, the number of false-
positive genes due to multiple testing will increase with 
decreasing thresholds. Since the goal of this study was to 
identify general principles of the toxicotranscriptome in 
human hepatocytes, we preferred a relatively high thresh-
old to decrease the probability of false-positive results, even 
with the disadvantage that the lists of differential genes 
remain incomplete. Moreover, replications of gene expres-
sion analyses in hepatocytes from different donors using a 
small number of compounds showed that the majority, but 
certainly not all, gene deregulations observed in the Open 
TG-GATEs dataset are reproducible. As mentioned above, 
we recommend the use of SV3 genes as candidates when 
searching for compound-specific mechanisms, because 
higher data stability can be expected. Because only two rep-
licates are available, SV1 genes (meaning a threefold up- 
or downregulation for at least one compound) have a high 
probability of containing false positives. This risk substan-
tially decreases if similar deregulations are observed for at 
least three compounds (SV3). The problems associated with 
the fact that only two replicates were tested per compound 
demonstrate how important it will be in the future to analyze 
each compound with more than two biological replicates.

The PCA and heatmap analyses presented in this study 
were based on the 100 most deregulated probe sets across 
all analyzed compounds. In a similar fashion, previous 
studies were based on the 100 genes with highest vari-
ability (Krug et al. 2013; Waldmann et al. 2014). We have 
seen that this technique offers optimal conditions to obtain 
an overview of compound effects. However, the reported 
results did not depend on the choice of a certain number of 
probe sets. Similar principles were seen if the PCA or heat-
map analyses were based on 50, 500, or even all probe sets.

Two of the challenges working with large datasets are 
batch effects, as well as experimental errors in a subset 

http://wiki.toxbank.net/toxicogenomics-map/
http://wiki.toxbank.net/toxicogenomics-map/
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of samples. This is difficult to avoid, especially when 
large datasets are generated by consortia with several 
partners. An example of an unexpected result in the Open 
TG-GATEs dataset is the expression response induced 
by carbon tetrachloride in cultivated human hepatocytes 
which caused only very few gene expression alterations, 
although carbon tetrachloride is known to represent 
a strong hepatotoxic compound (Hoehme et  al. 2007, 
2010). An experimental explanation may be that it is 
technically challenging to suspend the highly lipophilic 
carbon tetrachloride in a way that all cultivated cells are 
exposed homogeneously (Bauer et  al. 2009). This unex-
pected subset of data was identified by a tool developed 
in this study, the ‘progression profile error indicator,’ 
which identifies non-monotonous concentration progres-
sion of deregulated genes. Some compounds, including 
carbon tetrachloride, showed an unusual concentration 
progression with a high fraction of genes deregulated at 
a lower but not at higher concentration. Here, we decided 
to exclude such unusual datasets identified by a number 
of curation steps. This seems to be justified for the pre-
sent study, which aims at identification of the underlying 
key principles of global gene expression alterations. The 
compounds with unusual concentration progression will 
be reanalyzed in a follow-up study.

Perspectives

The concentrations of the present study were chosen based 
on the cytotoxicity. Gene arrays were performed with close 
to cytotoxic compound concentrations. In a preliminary 
analysis, we already tested whether the gene expression 
data differentiate between hepatotoxic and non-hepato-
toxic compounds. Based on the literature data, it was dif-
ferentiated whether the tested chemicals were previously 
reported to be hepatotoxic in humans or not. However, 
unsupervised clustering did not differentiate between the 
hepatotoxic and non-hepatotoxic chemicals (Fig. 7). This 
is not surprising, since the tested concentrations were not 
selected to represent an in vivo relevant range but are based 
on the cytotoxicity. Future studies with in vivo relevant 
concentrations have to show whether selected biomarkers 
can discriminate between hepatotoxic and non-hepatotoxic 
substances. In conclusion, the presented toxicogenomics 
directory offers a basis for a rationale choice of genes for 
such studies.
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