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Abstract Lonomia obliqua caterpillar envenomation
causes acute kidney injury (AKI), which can be respon-
sible for its deadly actions. This study evaluates the pos-
sible mechanisms involved in the pathogenesis of renal
dysfunction. To characterize L. obliqgua venom effects,
we subcutaneously injected rats and examined renal func-
tional, morphological and biochemical parameters at sev-
eral time points. We also performed discovery-based pro-
teomic analysis to measure protein expression to identify
molecular pathways of renal disease. L. obliqua envenoma-
tion causes acute tubular necrosis, which is associated with
renal inflammation; formation of hematic casts, resulting
from intravascular hemolysis; increase in vascular perme-
ability and fibrosis. The dilation of Bowman’s space and

Electronic supplementary material The online version of this
article (doi:10.1007/s00204-014-1264-0) contains supplementary
material, which is available to authorized users.

M. Berger - J. A. Guimardes (D<)

Laboratério de Bioquimica Farmacoldgica, Centro de
Biotecnologia, Universidade Federal do Rio Grande do Sul
(UFRGS), Av. Bento Gongalves, 9500, CEP 91501-970 Porto
Alegre, RS, Brazil

e-mail: guimar@cbiot.ufrgs.br

L. Santi - W. O. Beys-da-Silva - J. R. Yates III
Department of Chemical Physiology, The Scripps Research
Institute, La Jolla, CA, USA

F. M. S. Oliveira - M. V. Caliari

Laboratério de Protozooses, Departamento de Patologia Geral,
Instituto de Ciéncias Biol6gicas, Universidade Federal de Minas
Gerais (UFMG), Belo Horizonte, MG, Brazil

M. A. R. Vieira

Laboratério de Fisiologia Renal, Departamento de Fisiologia e
Biofisica, Instituto de Ciéncias Bioldgicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil

glomerular tuft is related to fluid leakage and intra-glo-
merular fibrin deposition, respectively, since tissue factor
procoagulant activity increases in the kidney. Systemic
hypotension also contributes to these alterations and to the
sudden loss of basic renal functions, including filtration
and excretion capacities, urinary concentration and mainte-
nance of fluid homeostasis. In addition, envenomed kidneys
increase the expression of proteins involved in cell stress,
inflammation, tissue injury, heme-induced oxidative stress,
coagulation and complement system activation. Finally, the
localization of the venom in renal tissue agrees with mor-
phological and functional alterations, suggesting also a
direct nephrotoxic activity. In conclusion, the mechanisms
of L. obliqua-induced AKI are complex involving mainly
glomerular and tubular functional impairment and vascular
alterations. These results are important to understand the
mechanisms of renal injury and may suggest more efficient
ways to prevent or attenuate the pathology of Lonomia’s
envenomation.

Keywords Venom - Lonomia - Renal - Acute kidney
injury - Nephrotoxicity - Acute tubular necrosis

Introduction

Accidents caused by venomous animals (mainly snakes,
spiders, scorpions, bees, wasps and caterpillars) are a costly
and critically important public health problem. Despite of
this, public health authorities, nationally and internation-
ally, have given little attention to this problem worldwide
(Warrell 2010; Williams et al. 2010). Consequentially, the
morbidity and mortality associated with envenomation
cases produce a great impact on the population and health-
care systems. One of the most important and lethal effects
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of these animal venoms is nephrotoxicity, and a broad
clinical spectrum of renal function impairment has been
reported in human and experimental models of enveno-
mation (Sitprija 2006; Berger et al. 2012). As kidneys are
highly vascularized organs and have the ability to concen-
trate substances into urine, they are particularly susceptible
to venom toxins. The most common clinical renal manifes-
tation seen in human patients is acute tubular necrosis, but
all renal structures may be involved. Thus, the occurrences
of acute tubulointerstitial nephritis, renal cortical necrosis,
mesangiolysis, vasculitis, glomerulonephritis, proteinuria,
hematuria, hemoglobinuria and myoglobinuria have also
been described (Sitprija 2006).

Lonomia obliqua caterpillars are well known in south-
ern Brazil where they cause severe hemorrhagic syndrome
characterized by perturbed coagulation, ecchymosis, acute
kidney injury (AKI) and generalized hemorrhage. Since the
1980s, there has been a considerable increase in the num-
ber of hemorrhagic incidents in rural areas of the southern-
most Brazilian states of Rio Grande do Sul, Santa Catarina
and Parand. The origin of this epidemic is not clear, but can
be partially attributed to recent deforestation, as well as to
a progressive reduction in the number of natural predators.
Usually, accidents occur when the victim unknowingly
leans against a tree trunk containing hundreds of caterpil-
lars and comes into contact with the caterpillar’s venom-
ous bristles, which are chitinous evaginations of cuticule.
Often, the caterpillar is crushed, the bristles are broken and
venomous secretions, including hemolymph, penetrate the
human skin (Veiga et al. 2001). The venom is composed
of several active constituents with procoagulant, fibrinog-
enolytic, proteolytic and hemolytic activities (Pinto et al.
2010). Although consumptive coagulopathy secondary
to intravascular disseminated coagulation is commonly
observed in human and experimental animals, AKI is the
leading cause of death from L. obliqgua envenomation (Zan-
nin et al. 2003; Gamborgi et al. 2006; Berger et al. 2010).

Early in the 1980s, the first registered cases of L. obli-
qua-induced hemorrhagic syndrome indicated that 18 % of
envenomed patients had developed AKI. The mortality rate
in these patients reached 50 % (Duarte et al. 1990, 1994).
However, a lower incidence (5.2 %) was observed in the
Brazilian state of Rio Grande do Sul from 1989 to 1995,
when only 15 of 286 envenomed patients developed AKI
(Duarte 1997). Another study analyzing a larger group of
2,067 envenomed patients in the Santa Catarina state in
Brazil (from 1989 to 2003) reported that 39 victims (1.9 %)
developed AKI (with serum creatinine levels >1.5 mg/dL).
Eleven (32 %) of these patients were treated with dialysis
and four (10.3 %) developed chronic renal injury (CRI).
All victims with AKI presented concomitantly coagulation
disturbances and hematuria and/or hemoglobinuria. Seven
deaths (4 %) occurred during this period (Gamborgi et al.
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2006). An important conclusion of this work is that, even
after the introduction of antivenom therapy (with antilo-
nomic serum) in 1995, there was no reduction in the inci-
dence of AKI, despite the significant decrease in the num-
ber of deaths and patients who developed CRI (Gamborgi
et al. 2006). In fact, recently, we observe that antivenom
treatment was able to reduce creatinine and urea levels of
rats only if administered 2 h post-venom injection. Sero-
therapy after 6 h of envenomation fails to neutralize the
rising in biochemical markers of renal injury (Berger et al.
2013). Since the average time elapsed between the contact
of a person with caterpillars and an appropriate medical
care can vary from 19 to 37 h (Zannin et al. 2003), it seems
imperative to achieve a better understanding of the mecha-
nisms involved in venom-induced AKI. It is clear that hav-
ing such knowledge available, it will then make possible to
develop new efficient treatments in order to avoid or at least
to reduce the progression of renal disease in Lonomia’s and
other kind of animal envenoming.

The risk of conducting early renal biopsies in human
patients, due to coagulation disturbances inherent to the
envenomation, has made it difficult to analyze the acute
kidney pathological alterations. There are only two case
reports in the literature describing alterations of Lonomia-
induced AKI. The main findings were oliguria, high levels
of serum creatinine, thickening of the Bowman’s capsule,
focal tubular atrophy and acute tubular necrosis (Burdmann
et al. 1996; Fan et al. 1998). Since no experimental stud-
ies were available until now, the contribution of several fac-
tors possibly associated with AKI, such as hemodynamic
changes, vascular permeability alterations, hemolysis,
tubular obstruction, glomerular fibrin deposition and even a
direct venom nephrotoxicity, remains obscure in Lonomia-
induced AKI.

In an attempt to better understand the progression of
renal disease commonly observed after the contact with
L. obliqua caterpillars, we have focused on the action of
venom in the kidney. Therefore, an experimental rat model
was used in order to characterize changes in renal function,
tubular hydroelectrolytic transport, histopathology and
hemodynamics.

Materials and methods
Reagents

Evans blue dye, purified coagulation factors (VII, IX and
X) and molecular weight standards used in SDS-PAGE and
Western blot were purchased from Sigma-Aldrich (Saint
Louis, MO, USA). Chromogenic substrate for factor Xa
(S2222, Bz-lle-Glu-Gly-Arg-pNa) was obtained from
Chromogenix (Milano, Italy). Ketamine and xylazine were
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from Syntec, Sdo Paulo, Brazil. L. obliqua antivenom (anti-
lonomic serum—ALS), provided by the Butantan Insti-
tute (Sao Paulo, Brazil), was used as primary antibody for
the detection of toxins in urine and renal tissue. ALS is a
horse-derived concentrate of purified polyclonal antibodies
(IgG) that had been raised against L. obliqua bristle extract
(Rocha-Campos et al. 2001). Non-specific background
staining in immunohistochemical reactions was blocked
using Ultra V Block reagent (Thermo Fisher Scientific,
Waltham, MA, USA).

Venom

Lonomia obliqua caterpillars were kindly provided by the
Centro de Informacdes Toxicoldgicas (CIT), Porto Alegre,
Rio Grande do Sul, Brazil. The specimens used in this
study were collected in the cities of Bom Principio and
Progresso, both located in Rio Grande do Sul, Brazil. L.
obliqua venom was obtained by homogenizing the bristles
in cold phosphate buffered saline (PBS), pH 7.4, as previ-
ously described (Berger et al. 2010). The venom obtained
following this procedure was designated as L. obliqua
bristle extract (LOBE). The protein content of the LOBE
samples was determined using a BCA assay kit (Pierce,
Rockford, USA), and the aliquots were stored at —80 °C
prior to use. The total number of caterpillars used for bris-
tle extract preparation was 124 specimens, and the protein
concentration of the LOBE samples was 4.10 mg/mL. The
total amount of venom extracted per caterpillar was 2.4 mg.
All of the LOBE samples had similar in vitro procoagulant
activities, and the protein pattern for each sample as moni-
tored by SDS-PAGE and gel filtration chromatography
(Pinto et al. 2006; Berger et al. 2010) was also similar.

Ethical statements

All procedures involving animals were carried out in
accordance with the Guiding Principles for the Use of Ani-
mals in Toxicology (International Society of Toxicology,
http://www.toxicology.org) and the Brazilian College of
Animal Experimentation (COBEA). The experimental pro-
tocol was approved by the ethical committee on research
animal care of the Federal University of Rio Grande do Sul,
Brazil (register number 2008177/2009), and by the Insti-
tute’s Animal Ethics Committee of the Federal University
of Minas Gerais, Brazil (protocol 177/2008).

Experimental protocol
Animals

Adult male Wistar rats, weighing 250-300 g, were supplied
by the central animal facility of our institution. They were

housed in standard conditions within a temperature con-
trolled room (22-23 °C, on a 12-h light/dark cycle, with the
lights on at 7:00 am) and had free access to water and food.

Selection of the venom dose

The severity of the natural envenoming is related mainly
to the number of caterpillars involved as well as to the
intensity of the exposure, since the venom is present not
only in the caterpillar’s bristles but also in their skin and
hemolymph (Veiga et al. 2001). Considering that accidents
with medical importance involve contact with a colony
containing at least 40 to 50 caterpillars (Gamborgi et al.
2006) and that during venom extraction, after removal
of all spicules, each caterpillar produces approximately
2.4 mg of venom, the total amount of venom injected in
an individual weighing 70 kg can reach up to 1.4-1.7 mg/
kg. In fact, these doses were calculated based on an artifi-
cial method of venom extraction, in which the caterpillar’s
bristle was macerated in a solution buffer. Thus, in a real
envenomation situation, the total amount of venom trans-
ferred is probably lower than the amount calculated. In an
attempt to reproduce the clinical conditions observed in a
real envenomation, we selected doses of 1.0 and 1.5 mg/kg
injected subcutaneously into rats. These doses were also in
accordance with the amount of venom used in other studies
to induce coagulopathy and test the efficacy of antilonomic
serum (Berger et al. 2010; Dias da Silva et al. 1996; Rocha-
Campos et al. 2001).

Venom administration

To follow the time course of kidney pathophysiological
alterations, we used an experimental model of envenoma-
tion in rats. For this purpose, animals were divided into
three groups (n = 6/group): The control animals (CTRL)
were injected subcutaneously (s.c.) with 100 pL of sterile
PBS solution and the experimental animals received a s.c
injection containing 1.0 or 1.5 mg of LOBE per kg of body
weight in a final volume of 100 pL. Immediately after treat-
ments, the animals were distributed individually into meta-
bolic cages, allowing quantitative urine collections and
measurement of water intake. At several time points, post-
venom injection (2, 6, 12, 24, 48 and 96 h), blood, urine
and kidneys were obtained for biochemical, histopathologi-
cal and immunohistochemical analyses.

Sample preparation
Blood was collected in conscious rats through the cau-
dal vein in 1:10 (v/v) 3.8 % trisodium citrate. Plasma was

obtained by centrifugation at 1,500xg for 10 min and
stored at —80 °C prior to use. Urine samples were also
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centrifuged at 2,500xg for 5 min, and the supernatants
were stored at the same conditions. After blood collec-
tion, animals from the different groups were anesthetized
by intraperitoneal (i.p.) injection of a mixture of ketamine
(75 mg/kg) and xylazine (10 mg/kg). Then, an intracardiac
perfusion was performed through the left ventricle with
PBS solution, and a circulatory circuit was opened by an
incision in the right atrium, to ensure the elimination of
intravascular blood. Immediately after perfusion, kidneys
were quickly removed. One of them was fixed for histo-
logical analysis and the other was frozen in liquid nitrogen
and stored at —80 °C for the measurement of tissue factor
activity and proteomic analysis.

Biochemical measurements

Urinary and plasma levels of creatinine, urinary y-glutamyl
transferase (y-GT) activity and proteinuria were deter-
mined by spectrophotometry (Turner SP-830 plus Barn-
stead, Dubuque, Iowa, USA) using commercially available
kits (BioClin/Quibasa, Belo Horizonte, Brazil). Plasma
and urinary concentrations of Nat and K* were measured
by flame photometry (CELM 180; Belo Horizonte, Minas
Gerais, Brazil). Osmolality was determined in plasma and
urine samples by cryoscopic osmometery using a Micro-
Osmometer 3320 (Advanced Instruments, Norwood, Mas-
sachusetts, USA). Urine proteins were also analyzed by
gel electrophoresis which was performed according to
Laemmli (1970). Urine samples from animals of different
times post-venom injection were diluted (10x) and ali-
quots of 10 uL were submitted to SDS-PAGE on 8-20 %
gradient gels under reducing conditions. Toxins excreted
in urine were detected by Western blot as previously
described (Pinto et al. 2006). Aliquots containing 50 ug
of protein were separated by SDS-PAGE and transferred
to PVDF membranes. Toxins were recognized using as a
primary antibody an equine anti-LOBE IgG (ALS) diluted
1:100 and as a secondary antibody a peroxidase-labeled
anti-horse IgG diluted 1:1,000.

Renal function parameters

At the time intervals mentioned above, the following renal
function parameters were determined: glomerular filtration
rate (GFR), osmolar clearance (C,,), water-free clear-
ance (Cyyyp), fractional water excretion (FEy,.), fractional
sodium excretion (FEf;,) and fractional potassium excretion
(FE). GFR (expressed as mL/min/100 g of body weight)
was estimated by the creatinine clearance (C,), using the
standard formula: C,, = U,,. V/P.,, where U, is the urinary
creatinine concentration, V is the urinary output and P,
is the plasma creatinine concentration. C,,, (expressed as

mL/min) was calculated as C.y,, = U, /Posm- V> Whereas
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U, and P are the urinary and plasma osmolalities,
respectively. Values of Cy,o (mL/min) and FEyy,q (%) were
obtained, respectively, from the equations: Cy,o = V —
C.m and FE,o = V/GFR.100. FE{;, and FE{ (expressed
as %) were calculated according to the equation: FE = UE/
PF.100. UE represents the urinary excretion of each ion,
and PF is the amount filtered in plasma (both expressed as

nmol/min).
Hemodynamic parameters

Systemic arterial pressure was measured in conscious rats
by an indirect tail-cuff method using an electrosphyg-
momanometer (LE 5001, Harvard Apparatus, Holliston,
Massachusetts, USA) combined with a pneumatic pulse
transducer/amplifier, which provides output signals pro-
portional to cuff pressure and amplified Korotkoff sounds.
Three consecutive readings of mean arterial pressure and
heart rate were recorded before blood collection for each
animal in each time post-venom injection.

Renal vascular permeability

The extravasation of Evans blue dye into the kidney was
used as an index of increased vascular permeability
(Pompermayer et al. 2005). Rats received Evans blue dye
(30 mg/kg) intravenously (1 mL/kg) via caudal vein 10 min
prior to LOBE (1.5 mg/kg, s.c.) or PBS (100 pL, s.c.) injec-
tion. After 12 or 24 h, animals were anesthetized and per-
fused as described above to remove the intravascular Evans
blue. Then, the kidneys were quickly removed, weighed
and allowed to dry for 24 h at 40 °C. The dry weight was
determined and Evans blue dye extracted in 2.5 mL of 1 %
formamide (48 h at 40 °C). The absorbance of extracted
solution was measured in triplicate using a microplate
reader  spectrophotometer (SpectraMAX, Molecular
Devices Co., Sunnyvale, USA), and the amounts of Evans
blue dye were calculated by a standard curve made with
known concentrations of Evans blue. Results are presented
as the amount of Evans blue dye extravasated (pLg) per
100 mg of kidney tissue.

Renal tissue factor activity

Renal tissue factor (TF) was measured indirectly based on
its ability to form a complex with factor VIIa (TF/FVIla)
to activate factor IX and X (Morrissey 1995). Briefly, the
kidneys were collected as described above, homogenized in
cold PBS solution containing 1 % Triton X-100 and cen-
trifuged at 9,500x g for 15 min. Samples of supernatants
(with 10 pg of protein) were incubated with a concentrate
mixture of FVII + FIX 4 FX (total of 15 pg) in 20 mM
Tris—HCI, pH 7.4 containing 10 mM of CaCl, for 10 min at
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37 °C. Activated factor Xa (FXa) produced during the reac-
tion was detected by the addition of a specific chromogenic
substrate (0.2 mM S2222). The kinetics of p-nitroaniline
release was monitored at 405 nm for 30 min in a final vol-
ume of 100 pL using a microplate reader spectrophotom-
eter (SpectraMAX, Molecular Devices Co., Sunnyvale,
USA). Each sample was measured in triplicate and results
expressed as umol of FXa generated per min per mg of kid-
ney tissue.

Histology and immunohistochemistry

For renal histopathology, kidneys were collected as
described above, sectioned sagitally and fixed in 10 % buff-
ered formaldehyde, pH 7.2. After processing in alcohol and
xylol, the organs were included in paraffin, and 4-pm-thick
sections were obtained and stained with hematoxylin and
eosin (H&E), periodic acid-Schiff (PAS) or picrosirius
reagent.

For immunohistochemical analysis of venom distribu-
tion in renal tissue, the kidney sections were deparaffi-
nized and treated with 10 % hydrogen peroxide solution
in methanol for 15 min to block endogenous peroxidase
activity. Non-specific binding sites were blocked with
Ultra V Block reagent followed by incubation overnight at
4 °C with an equine anti-LOBE IgG (ALS) diluted 1:250
in PBS. After a washing step, the sections were incubated
with the secondary antibody (a biotinylated anti-horse IgG
produced in goat, diluted 1:100) and streptavidin diluted
1:100. The chromogenic reaction was developed by incu-
bating the sections with 0.05 % diaminobenzidine solution
and 0.2 % hydrogen peroxide. The progress of the reaction
was monitored by light microscopy and stopped by wash-
ing the slides. Finally, the sections were counterstained
with diluted Harris’s hematoxylin. Control reactions were
done by incubating kidney sections from non-envenomed
rats with equine anti-LOBE IgG (ALS) under the same
conditions as described above. No positive reactions were
observed in these sections. Some sections were also used as
negative controls. In these cases, the primary antibody was
substituted by PBS.

Morphometric analysis

Glomerular morphological alterations were quantified by
computer-assisted morphometric analysis using a method
previously described (Caliari 1997). Briefly, images with
40x magnification of 30 glomeruli from each animal of
different groups were randomly digitalized using a JVC
TK1270/RGB microcamera (Tokyo, Japan). The KS300
software coupled to a Carl Zeiss image analyzer (Carl
Zeiss, Oberkochen, Germany) was used to measure the
total area (um?) of each glomerulus, glomerular tuft and

Bowman’s space. The pixels of whole glomerulus and
those corresponding to the glomerular tuft were selected
and used for the generation of a binary image and subse-
quent calculation of the corresponding areas. The area of
Bowman’s space was obtained by the difference between
the whole glomerular area and tuft area. The regions of
positive immunohistochemical reaction (expressed as wm?)
were also measured and used as a parameter to quantify
venom distribution in the renal tissue.

Renal tissue proteomics
Sample preparation for mass spectrometry

The kidneys from controls and envenomed animals (at 24 h
post-venom injection) were collected as described above,
homogenized in cold PBS solution containing 1 % Triton
X-100 with protease inhibitor cocktail (Halt protease inhib-
itor cocktail, Thermo, Rockford, USA) and centrifuged at
9,500 g for 15 min. The resulting supernatants were com-
pletely lyophilized and stored at —80 °C until use. Lyophi-
lized samples were resuspended in water and precipitated
using methanol/chloroform protocol. After precipitation,
samples were dried at room temperature and resuspended
in 8 M urea. Each sample containing 100 ug of protein was
reduced with 5 mM tris-2-carboxyethyl-phosphine (TCEP)
at room temperature for 20 min and alkylated with 10 mM
iodoacetamide at room temperature in the dark for 20 min.
After reduction and alkylation, proteins were digested with
2 pg of trypsin (Promega, Madison, WI) by incubation at
37 °C during 16 h. Samples were freeze-dried at —80 °C
and, after thaw, formic acid to a final concentration of 5 %
was added. Samples were centrifuged at 14,000 rpm for
20 min, and the supernatant was collected and stored at
—80 °C.

MudPIT

The protein digest was pressure-loaded into a 250-pm i.d
capillary packed with 2.5 cm of 5-um Luna strong cation
exchanger (SCX) (Whatman, Clifton, NJ) followed by
2 cm of 3-um Aqua C18 reversed phase (RP) (Phenom-
enex, Ventura, CA) with a l-um frit. The column was
washed with buffer containing 95 % water, 5 % acetonitrile
and 0.1 % formic acid. After washing, a 100-pm i.d. cap-
illary with a 5-um pulled tip packed with 11 cm of 3-um
Aqua C18 resin (Phenomenex, Ventura, CA) was attached
via a union according to Klein et al. (2012). The entire
split-column was placed in line with an Agilent 1100 qua-
ternary HPLC (Palo Alto, CA) and analyzed using a modi-
fied 11-step separation as described previously (Washburn
et al. 2001). The buffer solutions used were 5 % acetoni-
trile, 0.1 % formic acid (buffer A), 80 % acetonitrile, 0.1 %

@ Springer



464

Arch Toxicol (2015) 89:459-483

formic acid (buffer B), and 500 mM ammonium acetate,
5 % acetonitrile and 0.1 % formic acid (buffer C). Step 1
consisted of a 70 min gradient from 0 to 100 % (vol/vol)
buffer B. Steps 2-10 had a similar profile with the follow-
ing changes: 5 min in 100 % (vol/vol) buffer A, 3 min in X
% (vol/vol) buffer C, a 6 min gradient from O to 15 % (vol/
vol) buffer B and a 85 min gradient from 15 to 100 % (vol/
vol) buffer B. The 3 min buffer C percentages (X) were 10,
20, 30, 40, 50, 60, 70, 80, 90 and 100 % (vol/vol), respec-
tively, for the 10-step analysis.

LTQ-Orbitrap

As peptides eluted from the microcapillary column, they
were electrosprayed directly into a LTQ-Orbitrap (Thermo
Fisher) with the application of a distal 2.4-kV spray volt-
age. Full MS spectra were acquired in profile mode, with a
mass range of 400-1,600 in the Orbitrap analyzer with res-
olution set at 60,000 followed by continuous repetition of
10 data-dependent MS/MS spectra at 35 % normalized col-
lision energy was throughout each step of the multidimen-
sional separation. Minimal signal for fragmentation was
set to 1,000. Dynamic exclusion was enabled with a repeat
count of 1, duration of 30.00 s, list size of 500, exclusion
duration of 180.00 s and exclusion mass with high/low of
1.5 m/z. Application of mass spectrometer scan functions
and HPLC solvent gradients was controlled by the Xcalibur
data system.

Analysis of tandem mass spectra

MS/MS spectra were analyzed using the following soft-
ware analysis protocol. Protein identification and quan-
tification analysis were done with Integrated Proteomics
Pipeline (IP2, Integrated Proteomics Applications, Inc.
www.integratedproteomics.com/). Tandem mass spectra
were extracted into ms?2 files from raw files using RawEx-
tract 1.9.9 (McDonald et al. 2004) and were searched using
ProLuCID algorithm (Xu et al. 2006). MS/MS spectra
remaining after filtering were searched with the ProLuCID
algorithm against the EBI-IPI_rat_3.30_06-28-2007 con-
catenated to a decoy database in which the sequence for
each entry in the original database was reversed (Peng et al.
2003). Searches were performed with cysteine carbamido-
methylation as a fixed modification. ProLuCID results were
assembled and filtered using the DTASelect program (Tabb
et al. 2002) using two SEQUEST (Eng et al. 1994) defined
parameters: the cross-correlation score (XCorr) and nor-
malized difference in cross-correlation scores (DeltaCN) to
achieve a false discovery rate of 1 %. The following param-
eters were used to filter the peptide candidates: —p 1 —y 1
—trypstat —fpf 0.01 —dm. Also, we used 50 ppm as precur-
sor tolerance, fragment mass tolerance of 600 ppm, three as
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number of isotopic peaks and unlimited missed cleavages
were allowed.

Assessing differential expression and exclusive proteins/
bioinformatic tools

The software PatternLab (Carvalho et al. 2008, 2012) was
used to identify exclusive proteins found in the control and
treated conditions. PatternLab’s Approximately Area Pro-
portional Venn Diagram (AAPVD) module was used for
pinpointing proteins uniquely identified in each condition.
The following parameter was used: proteins that were not
detected in at least 2 out of 3 runs per condition were not
considered. G test spectral counting quantitation was per-
formed in a pair-wise comparison between the two groups,
as previously reported (Ambatipudi et al. 2009). Pro-
teins are considered differentially expressed with p < 0.1.
Ingenuity Pathway Analysis tool (Ingenuity Systems;
http://www.ingenuity.com) was used to generate functional
annotations of identified proteins in known molecular path-
ways and/or biologic function in disease. The significance
of the canonical pathways and biologic function defined
by identified proteins was measured in two ways: (1) The
number of proteins identified from the data set that map to
a known pathway or function in disease and (2) a p value
(Fisher exact test) determining the probability that the asso-
ciation between the proteins in the data set and the canoni-
cal pathway or function in disease is explained by chance
alone.

Statistical analyses

Results are expressed as mean + SE. When appropriate,
statistical comparisons were done by using one- or two-
way analysis of variance followed by the Bonferroni’s test.
A p value of less than 0.05 was chosen to establish signifi-
cance. Statistical analysis was performed using GraphPad
Prism (GraphPad Software Inc., San Diego, CA, USA).

Results
Renal function

To follow renal alterations in rats, several physiological
parameters were measured at different times post Lono-
mia obliqua venom injection. The results are presented
in Fig. 1. Between 2 and 6 h after LOBE administration
(doses of 1 mg/kg or 1.5 mg/kg, s.c.), the animals showed
signs of acute toxicity, including progressive weakness,
lethargy and dyspnea. Compared to PBS-treated animals,
there was a reduction in body weight mainly at 6 h in rats
that received the higher dose of LOBE (1.5 mg/kg, s.c.)
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Fig. 1 Functional parameters during L. obliqua-induced AKI. Rats
were injected subcutaneously with PBS (controls—CTRL) or LOBE
(1.5 or 1.0 mg/kg). After different times post-administration, the fol-
lowing parameters were determined: a body weight, b water intake,
¢ urine output, d glomerular filtration rate (GFR), e urinary density,
f urine osmolality (urine osm), g plasma osmolality (plasma osm),

(Fig. 1a). The weight loss was accompanied by a signifi-
cant reduction in water intake between 6 and 48 h and by
an increase in urinary output at 6 and 12 h for both tested
doses (Fig. 1b). The polyuria was maximal at 6 h, when
urinary output increased from 0.58 £ 0.08 mL/2 h in PBS-
treated animals to 1.80 & 0.16 mL/2 h (p < 0.05) in rats
injected with LOBE (1.5 mg/kg, s.c.). At the same time,
animals that received a dose of 1.0 mg/kg had a urinary
output significantly lower (0.9 £ 0.2 mL/2 h, p < 0.05)
compared to those treated with 1.5 mg/kg (Fig. 1c).
Important glomerular and tubular functions related to
control of fluid filtration, water and electrolyte balance
were severely impaired. Despite the polyuria, L. obliqua-
induced AKI is associated with a marked reduction in the
glomerular filtration rate (GFR). In the first 24 h of enveno-
mation, a rapid decrease in GFR was observed in animals
treated with both doses of LOBE. At 48 h, envenomed rats

Time after envenomation (h) Time after envenomation (h)

h osmolar clearance (C,,), i water-free clearance (Cy,q), j frac-
tional water excretion (FE,y,(), k fractional sodium excretion (FEj;,)
and 1 fractional potassium excretion (FEf). Data are presented as
mean + SE (n = 6/group). Significant differences: *p < 0.05 versus
CTRL and %p < 0.05 versus LOBE (1.0 mg/kg, s.c)

(injected with 1.5 mg/kg of LOBE) presented values of
GFR 16 times lower than controls at the same time. This
remarkable effect of the venom on GFR was observed for
as long as 96 h (Fig. 1d). Similarly, the kidney’s ability to
concentrate urine (a primordial tubular function) was also
impaired, since the density and osmolality of urine had a
reduction in values between 2 and 48 h (Fig. le, f). The
decrease in urinary osmolality was accompanied by a sig-
nificant increase in the plasma osmolality observed mainly
in rats injected with the higher dose of LOBE (Fig. 1g).
Consistent with these results, the osmolar clearance (C,,)
was lower in envenomed animals, while the free water
clearance (Cy,q) increased, which imply that the kidney
is producing dilute urine through the excretion of solute-
free water (Fig. 1h, 1). As expected, with the loss of abil-
ity to retain water, the fractional excretion of water (FEy,.)
increased from 0.33 £ 0.03 % in PBS-treated animals
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to 29.1 £ 4.9 % (p < 0.05) in rats injected with LOBE
(1.5 mg/kg, s.c.) at 48 h (Fig. 1j). Likewise, tubular ability
to conserve and maintain the electrolytic balance was lost
throughout the envenoming period. The fractional excre-
tion of sodium and potassium (FEy,, and FEy ) was high
between 24 and 48 h, indicating a marked impairment in
the tubular reabsorption of filtered Na® and K™ (Fig. 1k,
). At 96 h, most of the renal function parameters (except-
ing GFR) tend to return to normal levels (similar from that
obtained to non-envenomed rats).

Proteinuria

Most of envenomed animals produced dark brown-colored
urine in the period of 6-12 h, indicating the occurrence of
hematuria and/or hemoglobinuria. The presence of intact
and fragmented erythrocytes, epithelial cells and leuko-
cytes was observed in the urinary sediment by light micros-
copy (not shown). Consistent with these observations, L.
obliqua venom-induced massive acute proteinuria, which
was maximal at 6 and 12 h post-venom injection (Fig. 2a).
As expected, the group treated with 1.5 mg/kg of LOBE
had more severe proteinuria compared to animals treated
with 1.0 mg/kg, but for both groups, urinary protein excre-
tion decreased progressively between 12 and 48 h, reach-
ing levels similar to controls at 96 h. Analysis of urine by
SDS-PAGE revealed the presence of several proteins with
molecular weights ranging from 10 to 75 kDa (Fig. 2b). A
greater variety of bands were evident mainly at 6 and 12 h
after envenomation, confirming this time interval as cru-
cial to the development of glomerular injury. The two most
prominent bands (observed around of 70 and 15 kDa) have
molecular weights that match to serum albumin (68 kDa)
and subunits of hemoglobin (16 kDa). The presence of
venom excreted in urine was verified by Western blot. As
shown in Fig. 2c, we detected at least 5 bands in urine from
venom-treated rats at 6 and 12 h, which specifically react
with antibodies raised against L. obliqua toxic proteins.
These bands have molecular weights around of 70-60, 50,
37, 25 and 20 kDa (arrows in Fig. 2¢) and were not rec-
ognized in urine from non-envenomed animals (controls).
Several toxins in this range of molecular weights have
already been identified through transcriptomic and prot-
eomic analysis of LOBE. Some of them include lectins and
c-type lectin-like proteins (70-60 kDa), serine proteinases
(50 kDa), cysteine proteinases (37 kDa) and lipocalins (25—
20 kDa) (Ricci-Silva et al. 2008; Veiga et al. 2005).

Renal histopathological alterations
Light microscopy of kidney biopsies from PBS-injected

rats revealed a normal renal parenchyma (Fig. 3a). In con-
trast, envenomed animals showed progressive degenerative
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Fig. 2 Proteinuria. a Rats were injected subcutaneously with PBS
(controls—CTRL) or LOBE (1.5 or 1.0 mg/kg). After different times
post-administration, the protein levels in urine were measured. Data
are presented as mean + SE (n = 6/group). Statistical differences of
*#p < 0.05 versus CTRL and %p < 0.05 versus LOBE (1.0 mg/kg, s.c)
were considered significant. b Representative urine samples from
CTRL and rats treated with LOBE (1.5 mg/kg, s.c.) were analyzed by
SDS-PAGE (8-20 %) under reducing conditions. ¢ Toxins excreted
in urine were detected by Western blot. Samples of urine from
CTRL and rats treated with LOBE (1.5 mg/kg, s.c.) at 6 and 12 h
post-venom injection were separated by SDS-PAGE, and different
toxins were detected by immunoreaction with polyclonal antibodies
against LOBE. Toxins present in crude bristle extract are also showed
(LOBE). The arrows indicate bands detected in urine samples at 6
and 12 h of envenomation. Molecular weight (MW) standards were
shown on the left of figure b and ¢

lesions compatible with acute tubular necrosis (ATN)
(Fig. 3b-h). Increased acidophilia and dilation of renal
tubules were observed between 6 and 48 h after venom
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Fig. 3 L. obliqua envenomation
induces acute tubular necrosis.
Representative kidney sections
from control (CTRL) or enven-
omed animals (injected with

1.5 mg/kg, s.c.) are presented
(a—g). Note the normal mor-
phology of kidney from CTRL
animal (a) in comparison with
the progressive degenerative
lesions of venom-treated rats
(b—g). Increased acidophilia,
dilation of renal tubules, loss

of proximal brush border,
cytoplasm vacuolation, nuclear
pyknosis and desquamation of
necrotic cells can be observed
(d-f). Hyaline (arrowheads in c,
d and g) and hematic (arrows in
d) casts are also present inside
renal tubules. Arrowheads in E
indicate necrotic cells. Asterisks
in d and f indicate the presence
of a hyaline material within the
Bowman’s space and an inflam-
matory cell infiltrate and edema,
respectively. All sections were
stained with H&E. Magnifica-
tion: x 10. h Levels of urinary
y-glutamyl transferase (y-GT)
activity were measured in rats
injected with PBS or LOBE (1.5
or 1.0 mg/kg) at different times
post-administration. Data are
presented as mean + SE (n = 6/
group). Statistical differences

of *p < 0.05 versus CTRL and
$p < 0.05 versus LOBE (1.0 mg/
kg, s.c) were considered sig-
nificant

administration (Fig. 3c—f). Loss of proximal brush border,
cytoplasm vacuolation, and in some tubules, degenera-
tion and desquamation of necrotic cells occurred between
12 and 48 h (Fig. 3d—f). The nuclei of the various proxi-
mal tubular cells at 24 and 48 h often showed pykno-
sis with clumping of chromatin material (Fig. 3e, f). In
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several tubules at 48 h, the renal epithelium was completely
necrotic, whereas the basement membrane was either intact
or disrupted by tubular necrosis (Fig. 3f). Consistent with
the histological signs of tubular injury, y-GT urinary activ-
ity—which is considered an efficient biomarker for early
diagnosis of ATN (Guder and Ross 1984)—increased in a
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Fig.4 L. obliqua envenomation induces renal tubular obstruction.
Representative kidney sections from animals injected with LOBE
(1.5 mg/kg, s.c.) showing details of tubular obstruction by hya-
line and hematic casts and cellular debris at 12 h (a) and 24 h (b)
post-venom injection. Hyaline casts (black arrowheads) are formed
by a protein-rich material (predominantly serum albumin and hemo-
globin), while hematic casts (black arrows) are formed by frag-
mented or intact erythrocytes. Due to tubular necrosis, the basement
membrane in some tubules is disrupted, resulting in detachment of
necrotic cells into the lumen (white arrowheads). All sections were
stained with H&E. Magnification: x4 (a) and x20 (b)

dose- and time-dependent manner up to 48 h. At 96 h, y-
GT activity decreased, but remained significantly high in
animals treated with 1.5 mg/kg of LOBE. Histologically,
the signs of lesions were much less marked, and the proxi-
mal and post-proximal tubular epithelia assumed a normal
appearance at 96 h (Fig. 3g, h).

Besides the evidence of degenerative lesions, proximal
and distal tubules also had swollen lumens. Hyaline and
hematic casts and cellular debris were found within tubules,
obstructing their lumens (Figs. 3c—f, 4). Hyaline casts (pre-
dominantly formed by a protein-rich material) were more
prevalent at 6 and 12 h (Figs. 3c, d, 4a), while hematic casts
(predominantly formed by fragmented or intact erythro-
cytes) and cellular debris have appeared commonly at 12,
24 and 48 h (Figs. 3d-f, 4a, b).

An intense inflammatory response characterized by
edema, cellular infiltration and fibrosis was observed
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mainly at 48 and 96 h (Figs. 3f, 5). Inflammatory cell infil-
trate and edema were detected at 48 h in regions of exten-
sive necrosis (Fig. 3f) and within glomeruli (Fig. 5c). At
96 h, despite signs of tubular regeneration, the inflamma-
tory infiltrate increased significantly, probably to help in
tissue repair (Fig. 5b). Light microscopy of sections stained
with picrosirius revealed extensive peritubular collagen
deposition at 96 h after administration of L. obliqgua venom
(Fig. 5e) compared to PBS-treated rats (Fig. 5d), indicating
fibrosis. Foci of inter-glomerular collagen deposition were
also observed in the renal cortex at the same time (Fig. 5f).

Glomerular morphometric alterations and renal tissue
factor activity

Glomerular alterations in envenomed animals were associ-
ated with lobulation of the capillary tufts, dilation of glo-
meruli, deposition of a hyaline material inside the Bow-
man’s space and distention of Bowman’s space (Figs. 3d,
6a, 7b). Nodules that formed a dense, strongly stained
mesangial matrix evidenced by the presence of a PAS-pos-
itive stain in the capillary tufts were also observed between
2 and 12 h post-venom (Fig. 6a). Consistent with histologi-
cal observations, computer-assisted morphometric analysis
has indicated a significant increase in glomerular area at all-
time intervals examined. There was also an increase in the
areas of glomerular tuft and Bowman’s space, which con-
firms that the capillaries and Bowman’s space are dilated
(Fig. 6b). The enlargement of Bowman’s space observed at
12 h possibly is related to the presence of a hyaline mate-
rial (rich in plasma proteins) found in several glomeruli at
this time (details in Figs. 3d, 7b).

Since intra-glomerular fibrin deposition can impair
renal function and L. obliqua venom is able to activate the
coagulation system both in vitro and in vivo (Berger et al.
2010), we decide to measure the levels of renal tissue factor
(TF) activity during envenomation. TF is a transmembrane
enzyme activator that triggers the coagulation cascade, gen-
erating activated factor X and fibrin. As showed in Fig. 6c,
renal TF activity increased rapidly from the first 2 h, reach-
ing levels twice higher than control values at 6 h. At 12 and
24 h post-venom injection, this level remained significantly
high, but decreased progressively thereafter (Fig. 6¢). Inter-
estingly, the rise in renal TF activity was coincident with
the presence of PAS-positive deposits (which stain spe-
cifically glycoproteins) within the capillary tufts at 2—-12 h
(Fig. 6a).

Hemodynamics and renal vascular permeability
Mean arterial blood pressure was lower in animals that

received LOBE compared to basal levels in controls
(Table 1). Sustained hypotension was detected between
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Fig.5 L. obliqua envenomation induces renal inflammation and
fibrosis. Light micrographs showing a marked inflammatory cell
infiltrate (arrowheads) in the tubulointerstitial region at 96 h (b) and
glomerulus at 48 h (c) after LOBE injection (1.5 mg/kg, s.c.). There
were no signs of inflammation in control (CTRL) animals (a). It
was also observed an extensive peritubular (e) and inter-glomerular

24 and 96 h in rats treated with the both doses of venom.
The maximum decrease occurred at 24 h. In contrast, the
heart rate increased significantly at 12 and 96 h in animals
injected with 1 mg/kg of LOBE and at 48 h in animals
injected with 1.5 mg/kg. Hypotension was accompanied by
an increase in renal vascular permeability (Fig. 7). Kidney
blood vessels were hyperemic, and signs of plasma leakage,
migration of inflammatory cells and interstitial edema were
also evident after 12 h of venom administration (Fig. 7a).
As mentioned above, several glomeruli at 12 h have their
Bowman’s space filled with a protein-rich material that
had extravasated from glomerular capillaries (Fig. 7b).

(f) collagen deposition at 96 h (regions stained in red), indicating
fibrosis. Arrowheads in these panels indicate inflammatory infiltrate.
There were no signs of fibrosis in CTRL rats (d). Stain: H&E (a—c)
and picrosirius (d—f). Magnification: x 10 (a, b, d and e), x20 (f) and
x40 (c)

Confirming these observations, a marked increase in vascu-
lar permeability in the kidney, as measured by the extrava-
sation of Evans blue dye, was detected at 12 and 24 h after
LOBE injection (1.5 mg/kg, s.c) (Fig. 7c).

Immunohistochemical detection of venom in the renal
tissue

Venom distribution and its binding to renal structures was
investigated by submitting kidney biopsies from venom-
treated and control rats to immunohistochemistry using
anti-LOBE IgG that reacts specifically with venom toxins
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Fig. 6 Glomerular alterations. a Light micrographs showing a time-
dependent increase in the deposition of a PAS-positive material in
glomerular capillaries of LOBE-injected animals (1.5 mg/kg, s.c.) in
comparison with controls. Also note the increase in glomerular size.
All sections were stained with PAS. Magnification: x40. b Thirty
glomeruli from each animal injected with the dose of 1.5 mg/kg were
used to quantify the mean area of glomerulus, glomerular tuft and
Bowman’s space of animals treated with the dose of 1.5 mg/kg. Data

Fig. 7 Renal vascular permeability. Representative micrographs of
a kidney blood vessel (a) and glomerulus (b) from animals injected
with LOBE (1.5 mg/kg, s.c.) after 12 h of envenomation. Note the
vascular leakage and edema (asterisks) and migration of inflamma-
tory cells to damaged tissue (arrowheads). Also, the presence of a
hyaline material inside the Bowman’s space (asterisk in b) was asso-
ciated with the increase in glomerular area observed at this time. All

(Fig. 8). Positive immunohistochemical reaction was found
in cortical and medullar regions of kidneys from rats
injected with 1.5 mg/kg of LOBE (Fig. 8d, c). Venom was
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ered significant. ¢ Renal tissue factor activity was measured in control
(C) and envenomed (1.5 mg/kg, s.c.) animals by generation of factor
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sections were stained with H&E. Magnification: x10 (a) and x40
(b). ¢ Evaluation of changes in renal vascular permeability were
assessed by Evans blue dye extravasation. Results are expressed as
g Evans blue dye per 100 mg of renal tissue from control (CTRL)
and LOBE-treated (1.5 mg/kg, s.c.) rats at 12 and 24 h post-venom
administration. Data are presented as mean + SE (n = 6/group). Sta-
tistical comparisons are indicated

detected in glomerular capillaries, Bowman’s capsule, in
proximal and distal tubules and in intra-tubular casts. Stain-
ing for venom was intense in tubular brush border at 2 and
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Table 1 Hemodynamic parameters

Parameter Group

Time after envenomation (h)

0

2

6 12

24 48 96

MAP (mmHg) CTRL
LOBE (1.0 mg/kg, s.c.)
LOBE (1.5 mg/kg, s.c.)
HR (Beats/min) CTRL
LOBE (1.0 mg/kg, s.c.)
LOBE (1.5 mg/kg, s.c.)

94.6 £2.2
103 +£3.8
104 +23
366 + 5.4
383 £3.7
355+£72

1075+ 1.5
92.8+2.6
124.8 + 8.6%
391+ 1.8
402 + 16.1

390 + 14.3

1002 +3.4 963 +1.2

1043 £2.7 84.5+3.6

1127 +£48 951429
391 £58 403 +2.1
409 4 13.1 449 £ 6.9*
391454 393+10.2°

115+122 1114+11 118+126
88 £3.1*  91.6+1.5% 91.7+3.5%
749 £1.5%% 8154 1.1% 95.1 + 1.4*
401 + 4.1 362+ 113 376 +8.7
398 +11.4 381 +8.5 443 + 8.5%
427 + 6.6° 424 +£5.7%% 369 £ 3.3%

Data are presented as mean =+ SE (n = 6/group)

MAP mean arterial pressure, HR heart rate

Statistical differences of * p < 0.05 versus CTRL and ¥ p < 0.05 versus LOBE (1.0 mg/kg, s.c) were considered significant

Fig. 8 Immunohistochemi-
cal detection of L. obliqua
venom in renal tissue. Positive
immunohistochemical reac-
tion was found in cortical and
medullar regions of kidneys
from rats injected with 1.5 mg/
kg of LOBE (b-e). Venom was
detected in glomerular capil-
laries (arrows in b), Bowman’s
capsule (arrow in the inset B),
tubular brush border (arrows
in the inset C), in intra-tubular
casts (arrowheads in ¢) and also
was present in cells of tubules
in degeneration (arrowheads in
the insets ¢ and d). After 96 h,
the immunoreactivity for venom
was weak and mainly localized
in tubules (arrows in e). There
was no immunoreactivity in
the renal structures of control
(CTRL) rats (a). Magnifica-
tion: x 10 (a—e) and x40 (insets
in b—d) f. The amounts of
venom detected in renal tissue
were estimated by the area of
positive immunohistochemical
reaction. Thirty sections per rat
were analyzed as described in
“Materials and methods.” Data
are presented as mean + SE

(n = 6/group)

6 h and was also present in cells of tubules in degeneration
at 48 h (Fig. 8b—d). Generally, tubules stained more than
glomeruli. There was no immunoreactivity for venom in

renal tissue (um?)

Venom detected in

2 6 12 24 48 96
Time after venom injection (h)

the renal structures of PBS-treated rats (controls) (Fig. 8a).
The highest levels of venom (estimated by the area of posi-
tive immunohistochemical reaction) were detected in the
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Fig. 9 Immunohistochemical detection of L. obliqua venom in renal
vascular tissue. Positive immunohistochemical reaction was detected
in renal arteries (a) and veins (b) of rats injected with LOBE (1.5 mg/
kg, s.c.) at 6 h of envenomation. Note the presence of venom in
perivascular connective tissue (arrows) and endothelium and smooth
muscle cells (arrowheads). Magnification: x 10 (b) and x40 (a)

renal tissue at 2 h (Fig. 8f). After that, venom immunoreac-
tivity decreased progressively until 96 h when the staining
was weak (Fig. 8e, f). L. obliqua toxins were also detected
in other kidney structures such as in perivascular connec-
tive tissue of blood vessels, endothelium and smooth mus-
cle of arteries and veins (Fig. 9a, b).

Kidney proteins differentially expressed
during envenomation

To gain further mechanistic insight which drive venom-
induced kidney disease, we applied a semi-quantitative
discovery-based shotgun proteomic approach to identify
the proteins differentially expressed in the kidney of enven-
omed animals. For this purpose, the proteomic data were
acquired by tandem mass spectrometry with subsequent
quantification, analysis of differential protein expression,
validation and functional annotations in order to identify
the involved molecular pathways. The proteins identified
consist of two classes: (1) those that were differentially

@ Springer

expressed and met our significance criteria and (2) proteins
that were uniquely identified in kidneys of rats injected
with PBS or LOBE (1.5 mg/kg) after 24 h. Figure 10a rep-
resents differentially expressed and unique proteins via a
Venn diagram. Overlaps between PBS- and LOBE-treated
animals represent significant differentially expressed pro-
teins, and non-overlapping portions of the diagram repre-
sent unique protein identifications. A total of 779 proteins
were identified. Twenty-four proteins were exclusively
identified in envenomed animals; 169 were exclusively
identified in control rats, and 586 were common proteins in
both treatments. Among these 586 proteins, 138 (23.5 %)
were identified as being differentially expressed.

Ingenuity pathway analysis was used for functional
annotations and revealed several key protein categories
and pathways significantly enriched in the differentially
expressed proteins. Thus, the sets of proteins were assigned
to either biologic function in disease or canonical signal-
ing pathways. Through these analyses, it was evident that
the set of proteins identified in control kidneys displayed
healthy biological functions such amino acid metabolism
and small-molecule biochemistry associated with normal
renal metabolic pathways (Fig. 10b). On the other hand,
protein expression shifts toward “cellular distress” func-
tions in the kidney of envenomed rats (Fig. 10c). In this
case, the expression profiles were considerably enriched for
proteins that belong to acute-phase inflammatory response
signaling, LXR/RXR activation (involved in retinoic acid-
mediated gene activation triggered by inflammatory stimu-
lus), oxidative stress response pathways such as that medi-
ated by the nuclear erythroid-related factor 2 (NRF2) and
coagulation and complement systems (involved in throm-
bosis, fibrosis, inflammation and vascular alterations)
(Fig. 10c).

Accordingly to our functional and histopathological
results, several novel proteins related to renal disease were
identified in the kidney of LOBE-treated animals. Proteins
associated with tubular and glomerular injury, necrosis,
inflammation and fibrosis were up-regulated or unique
in envenomed rats (Fig. 10d). Some of these molecules,
mainly those that were related to renal disease or identified
in canonical pathways, are listed in Table 2. A complete
list with differentially expressed and unique proteins of
envenomed and control animals are shown in supplemental
Table 1. It is worth mentioning that proteins functionally
linked to tissue injury (markers of necrosis and/or apopto-
sis), osmotic and oxidative stress, electrolytic imbalance,
acute-phase inflammatory response, fibrosis and throm-
bosis were expressed in the kidneys of LOBE-treated rats
(Table 2). Proteins of the kallikrein-kinin and complement
systems which are related to hypotension and control of
vascular permeability were also found to be up-regulated
in envenomed animals (Table 2). Our proteomic data also
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Fig. 10 Kidney proteins differentially expressed during L. obliqua
envenomation. Unique or differentially expressed kidney proteins
from control and envenomed (1.5 mg/kg, s.c.) animals were identified
at 24 h post-venom injection by proteomic analysis. Exclusive and
common proteins in each condition, as well as the total number of
proteins identified are showed via a Venn diagram (a). Top canonical
pathways of differentially expressed and unique proteins identified in
control (CTRL) (b) and LOBE-treated (c) kidneys are shown. Those

confirm that an important mechanism of Lonomia-induced
AKI is mediated by hemoglobin and the release of its deg-
radation products: free heme and iron. In fact, hemoglobin,
hemopexin and ferritin were up-regulated, and the expres-
sion of heme oxygenase-1 was uniquely induced in the kid-
neys of envenomed rats (Table 2). As a result of heme and
iron release, several antioxidant enzymes were found to be
up-regulated, indicating the generation of reactive oxygen
species (Table 2).

Discussion

AKI is frequently described and is life threatening in sev-
eral cases of snake and arthropod envenomation (Sitprija
2006; Berger et al. 2012). Particularly in Lonomia obli-
qua envenomation, AKI is the main cause of death and its
mechanisms are completely unknown until now. In this
work, we use an in vivo experimental model to character-
ize the L. obliqua-induced AKI. According to our results,
the pathophysiological mechanism seems to be complex
and multifactorial involving four main issues: (1) vascu-
lar abnormalities; (2) tubular and glomerular alterations;

Folate Transformations

Small Molecule Biochemistry:

C

NRF2-mediated Oxidative Stress

Acute Inflammatory Response

D

Renal Damage/Necrosis

Top Canoninal Pathways - CTRL

Glycine Biosynthesis
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1} 5 10 15
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Top Canoninal Pathways - LOBE

Complement System
Oxidative Stress

Coagulation System
LXR/RXR Activation

0 5 10 15
-Log(p-value)

Proteins Related to Renal Disease

Renal Fibrosis
Nephrosis
Glomerular Injury
Kidney Failure
Renal Nephritis
Renal Inflammation
Renal Tubule Injury

-Log(p-value)

proteins functionally related to renal disease were also categorized
accordingly to their roles in different types of renal pathologies (d).
Each functional annotation is assigned to a significance score repre-
sented as p value (Fisher exact test) determining the probability that
the association between the proteins in the data set and the canoni-
cal pathway or function in disease is explained by chance alone. The
number of identified proteins (NIP) that belong to a particular canoni-
cal pathway or play a role in renal pathology is shown

(3) renal inflammation and (4) a direct venom cytotoxic
activity.

Vascular abnormalities

Rats injected with L. obliqua venom presented important
hemodynamic alterations characterized by systemic hypo-
tension and increased heart rate. The time of maximal
decrease in blood pressure was coincident with the reduc-
tion in GFR and the impairment of renal function. In addi-
tion, an increase in renal vascular permeability and edema
was also observed at the same period of envenomation.
These findings are important because systemic vasodila-
tion is associated with the decrease in GFR and can lead to
renal hypoperfusion and ischemia in different pathological
conditions (Schrier et al. 2004). Specifically in this type of
envenomation, one mechanism that could contribute to vas-
odilation is the activation of kallikrein-kinin system (KKS).
It is known that L. obliqua venom has toxins (kallikrein
activators and kininogenases) able to activate plasma pre-
kallikrein and directly release bradykinin (BK) from low
molecular weight kininogen (LMWK) (Pinto et al. 2010;
Bohrer et al. 2007). Interestingly, our results indicated

@ Springer
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Table 2 continued

(5

Thukral et al. (2005)

References

Precursor of fibrin clots/polymerize into fibrin and acting as a cofactor

Biological function and/or participation in disease

)
[}
=
<
>
SO
o
o
=]
=]
<
=
&)
=
-
o}
s 9
=
o
an
=}
=]
=
=
[s9
[
o}
o
<
=
g
<
@]

Acession number® Protein description

P02680-1

Springer

in platelet aggregation/conversion of fibrinogen to fibrin is triggered

gamma chain (FbG)

by thrombin/up-regulation of Fb mRNA in kidney is associated with
proximal tubular injury and intra-glomerular fibrin deposition

Takatsuka et al. (2006)

Thrombin inhibitor/it is activated by the glycosaminoglycans, heparin

Heparin cofactor 2 (HC-2)

Q64268

or dermatan sulfate. In the presence of the latter, HC-II becomes the

predominant thrombin inhibitor in place of antithrombin III (AT)/HC-II-
levels increase in thrombosis and intravascular disseminated coagula-

tion (DIC)
Promotes the fragmentation of the mitochondrial network and its perinu-

Basnakian et al. (2002)

Mitochondrial fission 1
protein (MFP-1)

P84817

clear clustering/can induce cytochrome c release from the mitochon-
drion to the cytosol, ultimately leading to apoptosis. Also mediates

peroxisomal fission

Proteins functionally related to renal disease were selected and their specific role in renal pathology was reviewed based on literature data. Complete proteome analysis was included in supple-

mental Tables 1-3

% Acession number in UniProtKB/Swiss-Prot database

® Log(2) ratio change

¢ Spec count G test p value (proteins were considered differentially expressed with p < 0.1)

that the expression of LMWK (the main substrate of tis-
sue kallikrein and venom kininogenases) is up-regulated
in the kidneys of envenomed animals, which may favor the
generation of BK. The immediate consequence of intra-
vascular activation of KKS is a fall in systemic blood pres-
sure and in peripheral tissues is edema and erythema for-
mation (Bohrer et al. 2007). The participation of BK was
already confirmed, since the hypotensive and edematogenic
responses elicited by LOBE were inhibited by HOE-140, a
B2 receptor antagonist (Bohrer et al. 2007). In agreement
with these experimental observations, hypotension and
reduced plasma levels of pre-kallikrein are common fea-
tures observed in patients (Zannin et al. 2003), which sup-
port the evidence that KKS is activated during envenoma-
tion and is clinically relevant. Moreover, the data presented
here also suggest that KKS activation may be involved in
venom-induced AKI.

Tubular and glomerular alterations

Despite the scarce clinical case reports, the main pathologi-
cal finding obtained from kidney biopsies is acute tubular
necrosis (ATN). Experimental animals also showed his-
tological alterations compatible with ATN such as loss of
proximal brush border, cytoplasm vacuolation, pyknotic
nuclei, degeneration and desquamation of necrotic cells.
These necrotic cells exfoliating into the lumen due to either
cell death or defective cell-to-cell or cell-to-basement
membrane adhesion can obstruct the flow of filtrated fluid
and give rise to a back pressure limiting glomerular filtra-
tion (Trof et al. 2006). Accordingly, in this work, markers
of ATN were detected in urine (urinary y-GT), and several
proteins related to tubule injury were found to be up-regu-
lated (Orm-1, YBX1, Alb, CK-B, FABP3 and NHE-RF1) or
uniquely expressed (NGAL) in the kidneys of envenomed
rats. Proteins linked to apoptosis (CytC, S100-A8 and MFP-
1) were also up-regulated. The occurrence of glomerular
dysfunction was evident, because envenomed rats presented
massive proteinuria; serum Alb had a 2.1-fold increase in
the kidneys, and a band corresponding to the molecular
weight of Alb was detected in urine. In addition, our results
confirm that hematuria and hemoglobinuria are predomi-
nant characteristics of L. obliqua-induced AKI. Indeed, the
venom has strong in vitro and in vivo hemolytic activity and
a phospholipase A2 responsible for this effect was already
isolated (Seibert et al. 2004, 2006). Intact erythrocytes were
found within the tubules forming intra-tubular casts and,
as a result of intravascular hemolysis, different Hb subu-
nits were detected in urine and kidneys. It is known that
the formation of Hb deposits may be toxic to renal tubules
due to heme cytotoxicity (Zager 1996). Once reabsorbed by
the proximal tubular cells the heme porphyrin ring is rap-
idly catabolized by Hmox-1 yielding equimolar amounts
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of free iron, biliverdin and carbon monoxide (Camara and
Soares 2005). Free iron then up-regulates intracellular fer-
ritin expression, a key defense mechanism against iron-
induced tissue damage. However, in the presence of large
amounts of Hb, the levels of released iron also increase,
saturating the binding capacity of ferritin. Thus, the iron
not removed by ferritin binding is able to readily accept and
donate electrons and greatly facilitates free radical produc-
tion (Zager 1996; Khan 2009; Zager et al. 2012). As pro-
teins related to canonical pathways of oxidative stress were
identified exclusively in the kidneys of LOBE-treated rats,
we believe that heme cytotoxicity plays a significant role in
L. obliqua-induced AKI. Consistent with this, several anti-
oxidant enzymes (Prdx-5, Prdx-2, GST, DJ-1 and SOD) and
proteins associated with heme and iron metabolism (Hmox-
1, ferritin, Hpx and Cygb) were up-regulated or uniquely
expressed during envenomation, suggesting that heme is
effectively metabolized, generating free radicals and induc-
ing oxidative damage to proteins, lipids and DNA. In fact, in
previous experiments, we demonstrated that LOBE induces
kidney DNA damage leading to double-strand breaks and
formation of oxidized purines and pyrimidines (Berger
et al. 2013). Probably this is associated with the increased
expression of Rad50, a double-strand break repair protein,
detected in the present work.

As a consequence of ATN, the excretion of Na™ and K™
increased significantly during envenomation. Injured proxi-
mal tubule cells have alterations in the actin and microtu-
bule cytoskeletal networks that lead to a redistribution of
Na*/Kt ATPase from the basolateral to the apical mem-
brane, contributing to a decrease in Na* transport and reab-
sorption (Thadhani et al. 1996). It was reported that FEy,,
and FEy, also increase in envenomation caused by Both-
rops snakes (Boer-Lima et al. 1999; Linardi et al. 2011).
Despite the redistribution of Na™/K* ATPase to the apical
membrane, Linardi et al. (2011) reported an increase in
expression and activity of Na™/K* ATPase during enveno-
mation by Bothrops alternatus and suggest that it is a pro-
tective mechanism triggered in response to natriuresis with
the aim to preserve renal function during acute damage. In
agreement with this observation, we found an increase in
expression of type-3 Na™/H" exchanger regulatory cofac-
tor, which is important in Na* and HCO;~ reabsorption
in proximal tubule cells (Trof et al. 2006). Likewise Na*/
K™, water excretion increased significantly, and envenomed
animals had polyuria. Several parameters measured, such
as urinary density and osmolality, C,, Cyypo and FEy,,
indicate that kidneys from envenomed rats are producing
dilute urine through the excretion of solute-free water. Pos-
sibly, the presence of intra-tubular Na™ not reabsorbed by
proximal tubule cells may contribute to the increased water
excretion and both, Na™ and water rejection, may also be
associated with the fall in blood pressure.

Regarding the glomerular dysfunctions, a valuable
hypothesis that should be considered is the deposition
of fibrin clots in glomerular capillaries. Indeed, the most
potent activity of LOBE in vitro is the procoagulant activity
(Donato et al. 1998; Veiga et al. 2003). In vivo, LOBE also
causes activation of coagulation and fibrinolysis leading to
a consumptive coagulopathy characteristic of this type of
envenomation. Two enzymes responsible for the venom
procoagulant activity, activators of prothrombin and factor
X, have already been isolated (Alvarez-Flores et al. 2006;
Reis et al. 2006). Besides the direct effect on coagulation
factors, LOBE is also able to induce a procoagulant profile
in endothelial cells in culture through an up-regulation of
TF expression (Pinto et al. 2008). Confirming these results
obtained in endothelial cells, envenomed kidneys showed
an increase in TF procoagulant activity. In addition, the
expression of known markers of disseminated intravascular
coagulation and thrombosis (serpin 1 alpha-1 antiprotein-
ase, PAI-1 and HC-2) increased in the kidneys of venom-
treated rats. The gamma and beta chains of fibrinogen were
detected solely in envenomed kidneys, which are probably
related to the PAS-positive stain observed in glomeruli and
are suggestive of fibrin formation.

Renal inflammation

Intense inflammatory response is a common feature in L.
obliqua envenomation. Pain and edema are the most char-
acteristic initial symptoms observed at the local site of con-
tact (Zannin et al. 2003). Usually signs of systemic inflam-
mation with neutrophilic leukocytosis, cell infiltrate and
edema have also been described in lungs, kidney and heart
of experimental animals (Berger et al. 2013). The inflam-
matory response is accompanied by the production of sev-
eral cytokines (TNF, IL-1p IL-8, IL-6, CCL2 and CXCL1),
vasoactive mediators (BK, histamine, prostaglandins and
nitric oxide), adhesion molecules (E-selectin, VCAM-1
and ICAM-3) and an increase in leukocyte rolling and
adhesion to the endothelium (Alvarez-Flores et al. 2006;
Bohrer et al. 2007; Pinto et al. 2008; Berger et al. 2010;
Nascimento-Silva et al. 2012). Specifically in the kidney,
it was observed an up-regulation of several proteins related
to acute-phase inflammatory signaling, nephritis, inflam-
matory cell infiltration, increase in vascular permeability,
glomerular dilation, distention of Bowman’s space and
interstitial edema. Kidney sections stained with picrosirius
revealed extensive collagen deposition in cortical periglo-
merular and peritubular regions and proteins involved with
fibrosis, such as Cygb, PAI-1, complement C3 and com-
plement factor D were identified. Enhanced deposition
of extracellular matrix (ECM) proteins in renal tissue has
been observed in response to a variety of stimuli, includ-
ing TGF-B, TNF-a, IL-1, several adhesion molecules and
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chemoattractants. These stimuli can also increase the levels
of tissue inhibitors of matrix metalloproteinases, thereby
attenuating ECM turnover, and thus, favoring the deposi-
tion of collagen and other matrix proteins (Eddy 1996;
Pawluczyk and Harris 1998).

Besides fibrosis, activated complement components (C3
and factor D) may also contribute to the alterations in vas-
cular permeability and acts as a chemoattractant for neu-
trophils (Turnberg et al. 2006). Moreover, complement
activation by albumin is a powerful underlying mechanism
of tubular and interstitial injury via cytotoxic, proinflam-
matory and fibrogenic effects, which often occur in renal
diseases where proteinuria is present (Portella et al. 2013).
In an experiment conducted in proximal tubular cells incu-
bated with serum proteins, in vitro complement activation
was observed, which could be associated with changes in
the cytoskeleton, production of superoxide anion, hydrogen
peroxide and proinflammatory cytokines, such as IL-6 and
TNF-a (Abbate et al. 2006).

Direct venom cytotoxic activity

As the kidneys are highly vascularized organs, they are
particularly susceptible to direct venom toxicity (Sitprija
2006). Renal epithelial cells in culture and isolated per-
fused kidneys have been used to characterize the direct
cytotoxic effects of different venoms including bee, snake
and spider venoms. The most common isolated toxins,
which are nephrotoxic, belong to the classes of metallo-
proteinases, serine proteinases, C-type lectins, phospholi-
pases A2, sphingomyelinases D and L-amino acid oxidases
(Berger et al. 2012). In the case of L. obliqua, some tox-
ins belonging to these classes have already been isolated
(Pinto et al. 2010); however, their effects on renal cells are
unknown. Our results provide some evidence that the whole
venom probably has a direct nephrotoxic effect, since
immunohistochemical staining confirmed the presence of
venom in renal tissue, with stronger staining in the initial
6 h after venom administration followed by a progressive
decrease thereafter. The venom was rapidly excreted in
urine, because at least 5 bands which specifically react with
antibodies raised against L. obliqua toxins were detected
in urine. Interestingly, the positive immunohistochemical
reaction for venom in different kidney structures agreed
with the morphological and histological damage caused by
the venom in these anatomical regions and indicated that
there was a close correlation between the sites of venom
localization and subsequent tissue injury. Previous stud-
ies are consistent with our observations. Using immuno-
chemical and radiolabeling methods to analyze venom
biodistribution in rats, the highest quantities of LOBE were
detected in kidneys, blood and urine (Rocha-Campos et al.
2001; Da Silva et al. 2004).

@ Springer

Conclusion

In this work, a rat experimental model was used to study
the progression of renal disease during Lonomia obliqua
envenomation. According to our results, the pathophysi-
ological mechanism involved in L. obliqua-induced AKI
seems to be multifactorial where events such as systemic
hypotension and fibrin deposition contribute to renal
hypoperfusion, tubular necrosis and the sudden loss of
basic renal functions, including filtration and excretion
capacities, urinary concentration and maintenance of body
fluid homeostasis. In addition, when compared to control
rats, the kidneys from envenomed animals showed to be
increasingly enriched for stress-related proteins, which
are commonly associated with inflammation, tissue injury,
heme-induced oxidative stress, coagulation and comple-
ment systems activation. Finally, the localization of the
venom in renal tissue agreed with morphological and func-
tional alterations, suggesting a close correlation between
venom tissue levels and renal damage. Thus, the different
mechanisms as well as the renal injury biomarkers identi-
fied here can be useful and guide further experiments to the
discovery of alternative forms of treatment to L. obliqua-
induced AKI.
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