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Abstract Epidemiological studies show that a positive

correlation exists between the consumption of strongly

heated meat and fish and the development of colorectal

tumours. In this context, it has been postulated that the

uptake of toxic substances formed during meat and fish

processing such as heterocyclic aromatic amines (HCAs)

may be causally related to colon carcinogenesis. In a pre-

vious study, we have shown that 2-amino-1-methyl-6-phe-

nylimidazo[4,5-b]pyridine (PhIP), the most abundantly

formed HCA in the above-mentioned food items, is mainly

absorbed in the small intestine (i.e. proximal jejunum) of

the rat. In the present study, we analysed whether PhIP can

actively be secreted by enterocytes in the rat proximal

jejunum and distal colon. Unidirectional PhIP flux rates

from the mucosal-to-the serosal compartment (Jms) and in

the opposite direction (Jsm) were examined in Ussing

chambers with 14C-PhIP as radiotracer and in the absence of

electrochemical gradients. Under these experimental condi-

tions, significant negative net flux rates (Jnet = Jms - Jsm)

can only be explained by an active secretion of PhIP into the

luminal compartment, and such an effect was observed in

the rat distal colon, but not in the proximal jejunum.

Moreover, the data obtained suggest that the breast cancer

resistance protein, the multidrug resistance protein 4 and

P-glycoprotein are not involved in the active secretion of

PhIP in the rat distal colon. The potential role of PhIP

transport in colon carcinogenesis is discussed.
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Introduction

Colon cancer is one of the most frequent cancers in the

industrialized nations. The consumption of strongly heated

meat correlates with certain cancer types, among others

with colorectal tumours (Scheppach et al. 1999; Chao et al.

2005; Norat et al. 2005; Sinha et al. 2005; Wu et al. 2006;

Rohrmann et al. 2007). Heterocyclic aromatic amines

(HCAs) are formed in meat and fish during the cooking

procedure at high temperatures for a long time or over an

open fire. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyri-

dine (PhIP) is the most abundantly formed HCA and

therefore may have a great impact on colon cancer devel-

opment (Layton et al. 1995). PhIP is known to form DNA

adducts after its metabolic activation and is mutagenic in

bacterial as well as mammalian cell-based genotoxicity

assays (Thompson et al. 1987; Frandsen et al. 1992; Schut

and Herzog 1992; Friesen et al. 1994; Dragsted et al. 1995).

Its carcinogenicity in the large intestine of the rat was

demonstrated by Ito et al. (1991) and Hasegawa et al.

(1993). In these carcinogenicity studies, extremely high

(i.e. for humans totally irrelevant) concentrations of PhIP

(100–400 ppm) were used. When PhIP was fed at con-

centrations below 50 ppm, the number of aberrant crypt

foci or tumours in the colon of rats did not increase when
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compared to the corresponding control groups (Fukushima

et al. 2004; Doi et al. 2005; Kühnel et al. 2009).

The necessity to feed extremely high concentrations of

PhIP to induce preneoplastic or neoplastic lesions in the

colon of the rat actually suggests that PhIP is only absorbed

to a minor extent in the gut. This suggestion was verified by

applying the Ussing chamber technique (Dietrich et al.

2001a; Nicken et al. 2010). In both studies, it was shown that

approximately a thousandth part of PhIP added to the

mucosal compartment of the Ussing chambers reached the

serosal compartment. This effect could in part be due to

the presence of efflux transporters pumping PhIP out of the

intestinal mucosa. Dietrich et al. (2001a, 2001b) showed that

the multidrug resistance protein 2 (MRP2), which transports

a wide range of compounds conjugated with glucuronic acid,

sulphate or glutathione (Oude Elferink et al. 1995) and is

expressed in the apical domain of enterocytes present in the

small intestine of the rat (Mottino et al. 2000; Rost et al.

2002; MacLean et al. 2008), may act as an efflux pump for

PhIP and decreases its bioavailability (i.e. its concentration in

systemic blood) in Wistar rats. Moreover, the breast cancer

resistance protein (BCRP), whose expression increases

within the small intestine from proximal to distal and

thereafter strongly decreases in the colon of the male rat

(MacLean et al. 2008), has also been shown to reduce the

bioavailability of PhIP (van Herwaarden et al. 2003; Pavek

et al. 2005). Very recently, Dietrich et al. (2011) reported that

down-regulation of BCRP expression in murine colon ade-

nomas leads to an accumulation of PhIP in the above-men-

tioned lesions (Dietrich et al. 2011), thus reinforcing the view

that BCRP is an important PhIP efflux transporter.

We hypothesized that PhIP is taken up by the small intestine

and reaches the distal colon via the systemic blood circulation,

where it is actively secreted into the gut lumen. Earlier Ussing

chamber studies (Dietrich et al. 2001a; Nicken et al. 2010)

have clearly shown that segments of the small intestine (e.g.

the proximal jejunum) take up PhIP and that PhIP migrates

from the tissue into the serosal compartment of the chambers.

In the present study, we have analysed whether PhIP can be

actively secreted into the gut lumen in the proximal jejunum

and/or the distal colon and which transport proteins may be

involved in the secretion process. The relevance of PhIP

transport (intestinal absorption as well as secretion) in

colon carcinogenesis is discussed with regard to previously

published results and those obtained in the present study.

Materials and methods

Chemicals

PhIP was synthesized by Albrecht Seidel (Biochemisches

Institut für Umweltcarcinogene, Großhansdorf, Germany).

Its purity ([98 %) was checked by HPLC. A 10 mmol l-1

stock solution of PhIP in dimethyl sulfoxide (Carl Roth,

Karlsruhe, Germany) was used for the Ussing chamber

experiments. 14C-PhIP (Toronto Research Chemicals,

North York, Canada) was dissolved in dimethyl sulfoxide,

and 2 lCi (74 kBq) were used to label either the mucosal

or the serosal compartment of the Ussing chambers. In

those experiments, in which mannitol was used as a spe-

cific marker of the paracellular pathway, 3 lCi (111 kBq)
3H-mannitol (PerkinElmer, Boston, USA) were added to

the mucosal or serosal buffer (buffer constituents listed in

the section ‘‘Ussing chamber experiments’’). Verapamil

and forskolin were purchased from Sigma Aldrich

(Munich, Germany) and dissolved in water. Ko143 (Sigma

Aldrich) was dissolved in dimethyl sulfoxide.

Animals

Male Fischer 344 rats were obtained from Charles River

Laboratories International Inc. (Sulzfeld, Germany) and

housed for a minimum of 8 days in our animal facility.

During this period of time, the animals had free access to

water and standard feed. Rats were killed at an age of

8–10 weeks (body weight 200 ± 40 g). The study protocol

was approved by the Animal Welfare Service of the Lower

Saxony State Office for Consumer Protection and Food

Safety (Oldenburg, Germany).

Preparation of the intestinal segments

Rats were killed by cervical dislocation and subsequent

exsanguination. The whole gut was removed from the

abdomen within the first 5 min after killing the animals

and kept in the ice-cold buffer used for the serosal com-

partment (described in the section ‘‘Ussing chamber

experiments’’), which was continuously gassed with carb-

ogen (95 % O2:5 % CO2), until the tissues were stripped

and mounted into the Ussing chambers or cut into small

pieces for gene expression analyses. The following gut

segments were used: the duodenal sample was taken 1 cm

below the pylorus, the proximal jejunal sample 15 cm

distal to the duodenum, the distal jejunal sample 10 cm

proximal to the ileum, the ileal sample directly proximal to

the caecum and the caecal sample from the corpus ceci.

The tissue excised up to 3 cm distal to the junction of the

caecum and the colon was defined as ‘‘proximal colon’’,

the tissue proximal to the rectum as ‘‘distal colon’’ and the

tissue immediately proximal to the anus as ‘‘rectum’’. For

the gene expression analyses, the samples were incubated

overnight at 4 �C in RNAlater reagent (Qiagen, Hilden,

Germany) and stored at -20 �C until RNA isolation was

performed.
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Ussing chamber experiments

The experiments were basically performed as previously

described (Nicken et al. 2010) with slight modifications.

Briefly, from each animal and location, two tissue segments

of about 2 cm length were used. The tissues consisted of the

mucosal layer, which had been stripped from the muscle,

and the serosal layers on ice and mounted into the Ussing

chambers with an exposed serosal area of 0.5 cm2. The

tissue samples were stabilized by allowing them to recover

from the preparation procedure for 30 min at the experi-

mental temperature of 37 �C (Polentarutti et al. 1999). The

buffer solution in the mucosal compartment of the Ussing

chambers consisted of 113.6 mmol l-1 NaCl, 5.4 mmol l-1

KCl, 0.2 mmol l-1 HCl, 1.2 mmol l-1 MgCl2, 2 mmol l-1

NaHCO3, 0.4 mmol l-1 Na2HPO4, 1.1 mmol l-1 NaH2

PO4, 2 mmol l-1 mannitol, 19.8 mmol l-1 sodium gluco-

nate and 0.01 mmol l-1 indomethacin, while the buffer

solution in the serosal compartment of the Ussing chambers

consisted of 113.6 mmol l-1 NaCl, 5.4 mmol l-1 KCl,

0.4 mmol l-1 HCl, 1.2 mmol l-1 MgCl2, 21 mmol l-1

NaHCO3, 1.2 mmol l-1 Na2HPO4, 0.3 mmol l-1 NaH2

PO4, 2 mmol l-1 mannitol and 0.01 mmol l-1 indometha-

cin. The lack of glucose at the luminal side avoided alter-

ations in mucosal transport due to active glucose

absorption. The osmolalities were measured at pH 7.4 in the

serosal buffer solution and at pH 6.4 in the mucosal buffer

(both at 37 �C after gassing with carbogen) and resulted in

283 and 273 mosm kg-1, respectively.

The tissues were incubated under short-circuited con-

ditions, the electrophysiological parameters tissue conduc-

tance (Gt) and short-circuit current (Isc) being continuously

recorded throughout the entire experimental period. A 10

mmol l-1 PhIP stock solution was added to each com-

partment to yield a final PhIP concentration of 10 lmol l-1.

The radiotracers 14C-PhIP and 3H-mannitol were then

added to the mucosal or serosal compartments. After

30 min equilibration in the presence of radiotracers, 500 ll

samples were collected every 15 min. Unidirectional flux

rates became stable after another 30 min. After each

sampling, the respective chamber was refilled with the

corresponding amount of buffer. To determine which

transport protein was involved in PhIP transport across the

intestinal mucosa 100 lmol l-1 verapamil as a P-glyco-

protein inhibitor (Iida et al. 2005) or 5 lmol l-1 Ko143 as

a BCRP inhibitor (Allen et al. 2002) were added after

75 min to both the mucosal and the serosal compartments

of the Ussing chambers and the sampling was continued for

three further intervals. At the end of the experiments,

10 lmol l-1 forskolin was added to the serosal compart-

ment of the Ussing chambers to prove the viability of the

tissues. Forskolin leads to the stimulation of adenylate

cyclase activity, which in turn normally induces a marked

electrogenic chloride secretion via the cAMP pathway and

is accompanied by a marked Isc increase (Bleich et al.

2007). The difference of the Isc value before application of

forskolin and the maximal Isc response as a measure of

electrogenic net ion secretion (maximal DIsc) was used

to test the viability of the tissue samples and to eliminate

inappropriate tissues. For this purpose, Grubbs’ test

(GraphPad Prism version 5.00 for Windows, GraphPad

Software, San Diego, CA, USA) was applied to test the

forskolin-induced maximal Isc data of the animals. The

mean maximal DIsc ± standard deviation was 6.32 ± 1.42

(n = 22) with a critical Z value of 2.76. Z values in the

experiments ranged between 0.06 and 1.92. However, no

significant outlier was detected (level of significance 0.05,

two-sided).

The radioactivity of the samples was measured using a

conventional liquid scintillation counter (Wallac 1410;

Wallac Oy, Turku, Finland). The standard double label

DPM (decays per min) program of the Wallac counter was

used for counting respective 14C and 3H radioactivities in

the same sample. The tracers were discriminated on the

basis of the corresponding quench standard libraries. Uni-

directional flux rates (Jms, Jsm) were calculated from the

rate of tracer appearance at the observed side using stan-

dard equations (Schultz and Zalusky 1964). Since mannitol

has been suggested to be exclusively transported paracel-

lularly, its flux rates can be used to estimate the corre-

sponding water fluxes (Karbach 1992). For example, at a

concentration of 2 mmol l-1 mannitol in the buffer as used

here, a flux rate of 100 nmol cm-2 h-1 could be generated

by the paracellular translocation of 50 ll of water. Since

0.01 mmol l-1 PhIP was homogenously dissolved in the

buffer solution, this implies a theoretical PhIP flux rate of

0.5 nmol cm-2 h-1 in the same volume. Thus, this pro-

cedure enables the comparison of the calculated transepi-

thelial flux rates of PhIP (‘‘radiotracer method’’) with the

estimated paracellular flux rates (‘‘mannitol method’’,

Fig. 1) and provides an approach to differentiate between

transcellular and paracellular transport of PhIP.

RNA isolation and quantitative real-time PCR

RNA was isolated with the RNeasy Plus Mini Kit (Qiagen)

according to the instructions of the manufacturer. The

columns were eluted twice with 30 ll water. The reverse

transcription was performed by using 200 U Moloney

murine leukaemia virus reverse transcriptase, 40 U RNA-

sin Plus and an oligo(dT)15 primer (all from Promega,

Mannheim, Germany), and 6 ll of the isolated RNA in a

20 ll reaction. Expression levels of the rat target genes

abcb1a (coding for Mdr1a), abcb1b (coding for Mdr1b),

abcc4 (coding for Mrp4) and abcg2 (coding for BCRP) as

well as the b-actin gene (as an internal control) were
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determined with the following primer pairs: forward

b-actin (50-CTG AAC CCT AAG GCC AAC C-30) and

reverse b-actin (50-AAC ACA GCC TGG ATG GCT

AC-30); forward abcb1a (50-CTG GAG GAC GAA ATG

ACC AC-30) and reverse abcb1a (50-TGG AGA CGT CAT

CTG TGA GC-30); forward abcb1b (50-TGC TCA TCG

TTG CCT ACA TC-30) and reverse abcb1b (50-TCC AAG

TTT GTC ACC AAT TCC-3‘); forward abcg2 (50-TCA

CTG ACC CTT CCA TCC TC-30) and reverse abcg2

(50-TGT TGT AGG GCT CAC AGT GG-30); forward

abcc4 (50-AAG TTC TGC GAG CCA AGA AG-30) and

reverse abcc4 (50-GCC GAG TCG TCA GAG TCA TAC-30).
The quantitative PCR was carried out with a Mx3000P

sequence detection system (Agilent Technologies, Wald-

bronn, Germany) in a 20 lL reaction containing KAPA

SYBR� FAST qPCR Universal Mix (Peqlab Biotechnol-

ogie GmbH, Erlangen, Germany), 100 nmol l-1 forward

primer, 100 nmol l-1 reverse primer, and 2 ll of a 1:10

diluted cDNA sample using an annealing and elongation

temperature of 60 �C. The melting curves were analysed

after 40 amplification cycles. The quantification was per-

formed by making use of a standard curve of pooled

proximal jejunum and ileum samples over 5 log levels of

dilution in each plate. The target gene expression levels

were normalized by dividing them by the rat b-actin

expression level. All assays were performed at least in

duplicates.

Statistical analyses

The data of the Ussing chamber experiments are presented

as arithmetic mean ± SEM. Statistical analyses (Grubbs’

outlier test, paired t test) were performed with the number

of animals (n) as indicated in the respective text, tables and

figures with GraphPad Prism 5.0 (GraphPad Software, San

Diego, CA, USA) and values of p \ 0.05 were considered

statistically significant.

Results

Electrophysiological parameters and unidirectional flux

rates of PhIP and mannitol in proximal jejunum

and distal colon under baseline conditions

To reduce prostaglandin-mediated secretory activities that

potentially could interfere with tissue viability and par-

ticularly with PhIP flux rates in jejunum and colon indo-

methacin was added to the buffer solutions. Therefore, in a

first step, the effect of indomethacin on the electrophysi-

ological parameters determined in the Ussing chamber

experiments was analysed. As in the case of pig and dog

(Schröder et al. 1991; Omori et al. 2011), basal Isc values

were higher in the absence of indomethacin than in the

presence of it. Furthermore, in the presence of indometh-

acin, tissue permeabilities as a function of time were more

stable and the forskolin response was more prominent,

thus indicating greater viability over time (Table 1). In a

few experiments (n = 4), secretory PhIP flux rates in

distal colon were determined in the presence or absence of

indomethacin. It was shown that indomethacin has no

influence on the secretory PhIP flux rates (data not

shown).

Mean basal Isc and Gt values of jejunal and colonic

preparations after a 60 min incubation in the presence of

indomethacin are presented in Table 2. Whereas Isc values

as a measure of total electrogenic net ion transport were not

significantly different between jejunum and colon, Gt val-

ues as a measure of tissue permeability were higher (by

about 20 %) in jejunum than in colon (p \ 0.05). The

forskolin-induced Isc response was significantly higher (by

almost 40 %) in colon when compared to jejunum.

Equilibrated mean unidirectional flux rates of PhIP and

mannitol occurred at 60 min of incubation (Table 3). In

jejunum, the PhIP flux rate in the mucosa-to-serosa direc-

tion (Jms) was not significantly different from Jsm, thereby

resulting in a Jnet (Jnet = Jms - Jsm) that was not different

from zero. In contrast, Jsm of PhIP in colon was signifi-

cantly higher (by 138 %) than in the opposite direction,

thus leading to a net secretion of PhIP. Irrespective of the

direction, mannitol flux rates were not significantly dif-

ferent in jejunum and colon and resulted in Jnet values that

were not significantly different from zero.

Unidirectional flux rates of mannitol were used to cal-

culate paracellular water fluxes, which can be used to esti-

mate the corresponding theoretical paracellular PhIP flux

rates. These in turn can be compared with transepithelial

Fig. 1 Comparison of overall transepithelial flux rates of PhIP (data

taken from Table 3) and paracellular flux rates (data calculated from

mannitol flux rates as presented in Table 3; calculation exemplified in

Materials and methods, section ‘‘Ussing chamber experiments’’) in rat

jejunum and colon. Results are expressed as mean ± SEM of ten

independent experiments (Student’s t test for paired observations;

n.s., not significant)
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flux rates of PhIP obtained from radiotracer measurements

(Fig. 1). Interestingly, in the jejunum, the estimated para-

cellular flux rates of PhIP were significantly higher than the

transepithelial fluxes. In contrast, in the colon, the Jms

values for the transepithelial and paracellular pathways

were similar, while the transepithelial transport of PhIP in

the opposite direction was significantly higher than the

estimated paracellular transport (Fig. 1).

Unidirectional flux rates of PhIP in distal colon

in the presence of transport inhibitors

To identify which transport proteins could be involved in

the actively driven PhIP secretion in rat distal colon, the

P-glycoprotein inhibitor verapamil and the BCRP inhibitor

Ko143 were used. Neither 100 lmol l-1 verapamil nor

5 lmol l-1 Ko143 had a significant inhibitory effect on Jsm

of PhIP (Fig. 2). Even after adding 25 lmol l-1 Ko143, no

effect on Jsm of PhIP was observed (data not shown).

Transporter gene expression in different sections

of the gut

The expression of the genes coding for the transport pro-

teins BCRP, Mdr1a and Mdr1b was measured by real-time

quantitative PCR experiments in different segments of the

rat gut. The three gene transcripts were expressed in all gut

segments (Fig. 3), and no statistical significant differences

in the expression levels of the three genes were observed

among the different segments. In contrast, Mrp4 was

expressed at 1010 times lower levels than b-actin (data not

shown).

Discussion

In an early study by Watkins et al. (1991), it was shown

that Fischer 344 rats excrete about 80 % of an oral dose

of 14C-marked PhIP within the first 24 h via faeces.

Table 1 Influence of indomethacin (10 lmol l-1) on electrophysiological parameters (short-circuit current Isc, lmol cm-2 h-1; electrical tissue

conductance Gt, mS cm-2) under baseline conditions as well as maximal Isc response (max. DIsc) and maximal Gt value (max. Gt) at max

Parameter Segment n With indomethacin Without indomethacin t test

Basal Isc Jejunum 7 0.30 ± 0.22 0.99 ± 0.25 p = 0.06

Colon 7 0.17 ± 0.12 1.03 ± 0.15 p \ 0.001

Max. DIsc Jejunum 7 4.70 ± 0.53 2.25 ± 0.60 p \ 0.01

Colon 7 5.74 ± 0.50 4.85 ± 0.67 p = 0.31

Basal Gt Jejunum 7 26.7 ± 2.4 24.3 ± 2.1 p = 0.47

Colon 7 18.5 ± 1.6 18.1 ± 2.8 p = 0.92

Max. Gt Jejunum 7 27.8 ± 2.1 34.1 ± 1.9 p \ 0.05

Colon 7 21.2 ± 2.0 20.6 ± 2.2 p = 0.84

DIsc after serosal addition of forskolin (10 lmol l-1) in rat jejunum and colon (mean values ± SEM, n = number of animals, Student’s t test for

unpaired observations)

Table 2 Electrophysiological parameters (short-circuit current Isc, electrical tissue conductance Gt) under baseline conditions as well as

maximal Isc response (max. DIsc) after serosal addition of forskolin (10 lmol l-1) in rat jejunum and colon

Electrophysiological parameter n Jejunum Colon t test

Isc (leq cm-2 h-1) 10 0.25 ± 0.16 0.07 ± 0.14 n.s.

Gt (mS cm-2) 10 22.9 ± 2.1 18.2 ± 1.2 p \ 0.05

Forskolin-induced Isc response (max. DIsc, leq cm-2 h-1) 10 4.29 ± 0.12 5.98 ± 0.38 p \ 0.01

Mean values ± SEM, n = number of animals, Student’s t test for paired observations; n.s., not significant

Table 3 Unidirectional flux rates (mucosal-to-serosal direction Jms, serosal-to-mucosal direction Jsm) and net flux rates (Jnet = Jms - Jsm) of

PhIP and mannitol across rat jejunum and colon

Intestinal segment Tracer Jms (nmol cm-2 h-1) Jsm (nmol cm-2 h-1) Jnet (nmol cm-2 h-1)

Jejunum PhIP 0.12 ± 0.04 0.13 ± 0.03 -0.01 ± 0.03

Mannitol 64.40 ± 8.61 67.00 ± 15.35 -2.60 ± 12.68

Colon PhIP 0.49 ± 0.09a 1.17 ± 0.05b -0.69 ± 0.12

Mannitol 80.59 ± 26.90 83.79 ± 18.50 -3.20 ± 15.14

Mean ± SEM, n = 10 each segment; a,b p \ 0.001 Student’s t test for paired observations
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In accordance with this observation, Ussing chamber

experiments by Dietrich et al. (2001a) and our group

(Nicken et al. 2010) demonstrated that PhIP is taken up to a

limited extent in the small intestine (e.g. the proximal

jejunum). In a follow-up study, we now show that PhIP is

secreted into the luminal compartment of Ussing chambers

when rat distal colon samples are used as a transport site.

To differentiate between paracellular (passive) and trans-

cellular (active) transport, mannitol flux rates were exam-

ined and compared with those of PhIP. The fact that PhIP

flux rates significantly differed from mannitol flux rates

suggests that PhIP is actively secreted into the luminal

compartment in rat colon. These results are in agreement

with a previous study by Walle and Walle (1999) in Caco-2

cells, in which the basolateral to apical PHIP efflux was 3.6

times greater than the apical to basolateral PhIP influx and

in which equilibrium exchange experiments demonstrated

the PhIP efflux in Caco-2 cells to be mediated by an active

process.

MRP2 as well as MRP4 can be discarded as pro-

tein(s) involved in the transport of PhIP across the gut

mucosa in Fischer 344 rats, since they are almost not

detectable in the tissue samples analysed (Nicken et al.

2010; this study). P-glycoprotein has previously been

reported to transport PhIP (Walle and Walle 1999), but this

seems not to be the case in the distal colon of Fischer 344

rats, since verapamil had no effect on the PhIP efflux. This

is in accordance with the observation by Iida et al. (2005)

that P-glycoprotein only played a minor role in the clear-

ance of the P-glycoprotein substrate rhodamine 123 in the

colon when compared to the jejunum and ileum of rats.

BCRP acts as an efflux pump for PhIP and is able to reduce

the bioavailability of PhIP in mice by increasing its faecal

elimination (van Herwaarden et al. 2003; Pavek et al.

2005). However, the expression of BCRP was very low in

the rat colon samples, an observation that is in accordance

with a study by MacLean et al. (2008). Furthermore, the

highly specific BCRP inhibitor Ko143 (van Loevezijn et al.

2001; Allen et al. 2002) had no effect on PhIP efflux.

Although one could argue that Ko143 did not reach the

BCRP molecules during the incubation period chosen,

these results rather show that BCRP is not involved in PhIP

Fig. 2 Unidirectional flux rates (Jms, mucosal-to-serosal direction;

Jsm, serosal-to-mucosal direction) of PhIP in rat colon as affected by

100 lmol l-1 verapamil (upper chart) and 5 lmol l-1 Ko143 (lower
chart). Results are expressed as mean ± SEM of six independent

experiments
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efflux in the distal colon of Fischer 244 rats. Future

experiments will be conducted to identify the transport

protein(s) responsible for pumping PhIP out of the rat

colon epithelial cells. Another open question remaining

unanswered at present is whether N-hydroxy-PhIP (N-OH-

PhIP), an important metabolite of PhIP (see below), is also

actively pumped out of rat colon epithelial cells. Since no

radioactively marked N-OH-PhIP was available, it could

not be tested in the Ussing chamber experiments.

In order to discuss the relevance of the above-mentioned

PhIP movements across the rat gut mucosa in PhIP-induced

colon carcinogenesis, one has to take into account how and

where PhIP is activated in the rat. The first step in the

activation of PhIP is its N-oxidation to N-OH-PhIP, a

reaction that primarily occurs in the rat liver and is cata-

lysed by cytochrome P450 1A2 (Wallin et al. 1990;

Alexander et al. 1994; Lin et al. 1995; Turesky et al. 1998),

while it does not take place in the rat colon (Malfatti et al.

1996). N-OH-PhIP is metabolized in a second step by

N-acetyltransferase 2 and sulfotransferases to the corre-

sponding N-acetoxy and N-sulfonyloxy esters. These are

unstable, spontaneously decompose and give rise to the

nitrenium ion, which in turn binds to DNA (Frandsen et al.

1992; Lin et al. 1992; Nagaoka et al. 1992).

By combining the knowledge on PhIP transport and

metabolism mentioned above, the way how HCAs lead to

the formation of malignant tumours in the rat colon, first

suggested by Kaderlik et al. (1994) and now complemented

with transport studies (Nicken et al. 2010; this study),

becomes more and more concrete and is schematically

presented in Fig. 4. A limited amount of PhIP is absorbed

in the small intestine and transported via the portal

vein into the liver. In the liver, PhIP is converted into

N-OH-PhIP in a cytochrome P450-mediated reaction, and

the esterified form of N-OH-PhIP and/or free N-OH-PhIP

is/are transported via the bloodstream to the distal colon,

where the metabolite(s) is/are secreted into the gut lumen.

During the passage of the active metabolite(s) through the

colon mucosa, the compound(s) enter(s) the stem cell

compartment, in which the nitrenium ion is released. If

stem cell DNA is damaged by the nitremium ions, initiated

cells might be formed and with time give rise to a malig-

nant tumour. In the case that N-OH-PhIP is taken up by the

stem cells in the colon crypts, it must first be esterified

(most probably acetylated) as a precondition for nitrenium

ion formation within these cells.

As to the target cell population hit by the PhIP metab-

olite(s) Takahashi et al. (1998) administered a single dose

stem cell compartment in the
colon crypt

colorectal cancer

Fig. 4 Hypothetical scheme describing the fate of PhIP following its uptake in the small intestine. Details regarding the scheme are included in

the section ‘‘Discussion’’
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of PhIP to rats, killed the animals 1, 2 or 7 days later and

analysed the distribution of PhIP-DNA adducts in various

organs including the colon by making use of a polyclonal

antibody against PhIP-DNA adducts. The authors reported

that PhIP-DNA adducts were uniformly detected in surface

epithelial cells and crypt cells of the colon. If one takes into

account that surface epithelial cells in the rat colon have a

very short lifespan (Qi et al. 2009), these cells most

probably cannot serve as precursor cells for the tumours

arising later. Based on the fact that antibodies against PhIP-

DNA adducts are available (Takahashi et al. 1998) and that

markers for cancer stem cells in rat colonic crypts have

been described (Levi et al. 2009), it should be possible to

define in the near future which cells within the colonic

crypts of the rat are indeed involved in the formation of

colon tumours in PhIP-treated rats.

If it is considered that a large amount of PhIP admin-

istered to rats p.o. is eliminated with faeces (Watkins et al.

1991), the possibility that bacteria in the colon metabo-

lize PhIP to a mutagenic metabolite has to be discussed.

In fact, Vanhaecke et al. (2008a) detected the PhIP

metabolite 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahy-

dropyrido[30,20:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride

(PhIP-M1) in faecal samples of human volunteers having

eaten cooked chicken containing PhIP and identified the

bacterial strains in human faeces that are able to catalyse

the conversion of PhIP to PhIP-M1 (Vanhaecke et al.

2008b). Moreover, alkaline comet assay experiments

revealed that PhIP-M1 led to a concentration-dependent

increase in DNA damage in Caco-2 cells (Vanhaecke et al.

2008c), whereby the genotoxic effect was observed in a

concentration range of 50-200 lmol l-1. Since humans

take up less than 1 lg HCAs per day (SKLM 1998), even if

one supposed that 100 % of the daily amount of PhIP

ingested by a human being is converted into PhIP-M1 in

the colon, the concentration needed to induce DNA damage

in the epithelial cells of the colonic mucosa is definitely not

reached.

A number of epidemiological studies have pointed out

that a positive association between the consumption of red

and processed meat and colorectal cancer risk exists

(Scheppach et al. 1999; Chao et al. 2005; Norat et al. 2005;

Sinha et al. 2005; Wu et al. 2006; Rohrmann et al. 2007).

Furthermore, it has been postulated that haem iron, nitrate/

nitrite as well as HCAs present in red and processed meat

might explain the above-mentioned association (Cross

et al. 2010). However, the fact that the amounts of HCAs

actually consumed by humans are very low (\1lg/person/

day) and that only a limited fraction of the HCAs ingested

are taken up in the small intestine (Watkins et al. 1991;

Dietrich et al. 2001a; Nicken et al. 2010) and later acti-

vation supports the view that HCAs alone cannot account

for the increased red and processed meat-associated

colorectal cancer risk. Most probably, the continuous or

discontinuous exposure of the gastrointestinal tract to a

number of compounds present in red and processed meat

(e.g. haem iron, nitrate/nitrite as well as HCAs) in com-

bination with toxic intermediates endogenously formed in

the gut (e.g. endogenously formed N-nitroso compounds)

(Bingham et al. 1996; Hughes et al. 2001; Bingham et al.

2002; Cross et al. 2003; Lewin et al. 2006; Kuhnle et al.

2007) and other risk factors (ethanol, tobacco and/or

obesity among others) are responsible for the high colo-

rectal cancer incidence observed in industrialized nations.
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