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Abstract Sunitinib (SUN) is a new multi-targeted oral

tyrosine kinase inhibitor that has both anti-angiogenic and

anti-tumor activities. However, information reported in the

literature on the effects of SUN on the constitutive

expression of cytochrome P450 1A1 (CYP1A1) gene in

cells from mammalian species remains unclear. Therefore,

the main objectives of the current work were to investigate

the potentiality of SUN to induce CYP1A1 gene expression

in human breast cancer MCF7 cells and to explore the

molecular mechanisms involved. Our results showed that

SUN induced the CYP1A1 mRNA, protein, and activity

levels in a concentration-dependent manner in MCF7 cells.

The increase in CYP1A1 mRNA by SUN was completely

blocked by the transcriptional inhibitor, actinomycin D;

implying that SUN increased de novo RNA synthesis.

Furthermore, the ability of SUN to increase luciferase

reporter gene expression suggests an aryl hydrocarbon

receptor (AhR)-dependent transcriptional control and

excludes the possibility of any posttranscriptional mecha-

nisms. In addition, blocking of AhR activation by resve-

ratrol, a well-known AhR antagonist, prevented the

SUN-induced CYP1A1 gene expression, further confirms

the involvement of AhR. Interestingly, this was associated

with the inability of SUN to directly bind to and induce

transformation of cytosolic AhR to its DNA-binding form

in vitro, suggesting that the effect of SUN does not involve

direct binding to AhR. The current manuscript provides the

first evidence for the ability of SUN to induce CYP1A1

gene expression in MCF7 cells through AhR ligand-inde-

pendent mechanisms.
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Introduction

The cytochrome P450 1A1 (CYP1A1) is a monooxygenase

enzyme that is involved in a number of cellular functions such

as metabolism of xenobiotics (Walisser et al. 2005). CYP1A1

has been shown to be responsible for the bioactivation of a

variety of environmental carcinogens such as polycyclic

aromatic hydrocarbons (PAHs) to epoxide and diol-epoxide

intermediates (Shimada and Fujii-Kuriyama 2004). The bio-

chemical and carcinogenic effects of PAHs are primarily

initiated by binding to and activation of a cytosolic ligand-

activated transcription factor, the aryl hydrocarbon receptor

(AhR). Mechanistically, upon binding with its ligands, such as

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, Fig. 1), AhR

dissociates from its inhibitory proteins (Denison et al. 1986;

Sogawa and Fujii-Kuriyama 1997) allowing it to translocate

to the nucleus, where it heterodimerizes with a nuclear tran-

scription factor protein called the AhR nuclear translocator

(ARNT) (Whitelaw et al. 1994). The heterodimeric AhR-

ARNT complex then binds to specific DNA recognition

sequences, GCGTG, within the xenobiotic responsive ele-

ment (XRE) located in the promoter region of all AhR-regu-

lated genes, including CYP1A1 (Denison et al. 1989; Korashy

and El-Kadi 2006; Nebert et al. 2004).

The AhR has been identified as a target of several

signaling pathways that cross-talk with its own regula-

tory pathway, such as proteasomal degradation (Pollenz
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and Buggy 2006), redox-sensitive transcription factors

(Zordoky and El-Kadi 2009), and the mitogen-activated

protein kinases (Henklova et al. 2008). Among these sig-

naling pathways, tyrosine kinase receptors, which play an

important role in tumor growth, pathologic angiogenesis,

and metastatic progression of cancer through the phos-

phorylation of target proteins (Lemmon and Schlessinger

2010), have been shown to differentially modulate the

expression of CYP1A1 and AhR activation. In this regard,

it has been reported that genistein, a tyrosine kinase

inhibitor (TKI), potentiated the induction of CYP1A1 by

TCDD but inhibited omeprazole-dependent CYP1A1

induction in rat hepatoma H4IIE cells (Backlund et al.

1997). In addition, Matsuoka-Kawano and co-worker have

demonstrated the ability of TSU-16, a TKI, to induce

human CYP1A1 and CYP1A2 through the activation of

AhR (Matsuoka-Kawano et al. 2010). Interestingly, recent

study has demonstrated that gefitinib, a clinically used TKI,

induces the CYP1A1 mRNA and activity in epidermal

growth factor receptor (EGFR)-wild type non-small cell

lung cancer cell lines (Alfieri et al. 2011).

Among TKIs, sunitinib malate (SUN, Fig. 1) is a new

multi-targeted oral anti-angiogenic and anti-tumor drug that

has been recently approved against gastrointestinal stromal

tumors and advanced renal cell carcinoma (Kassem et al.

2012). Although SUN is structurally similar to gefetinib,

very little information has been reported in the literature on

the effects of SUN on the constitutive CYP1A1 gene

expression in cells from mammalian species. Therefore, the

present study was designed to investigate the capacity of

SUN to induce CYP1A1 gene expression in MCF7 cells and

explore the molecular mechanisms involved. The current

manuscript provides the first evidence for the ability of SUN

to induce CYP1A1 gene expression in MCF7 cells through

AhR ligand-independent mechanisms.

Materials and methods

Materials

Sunitinib malate ((Z)-N-(2-(diethylamino) ethyl)-5-((5-

fluoro-2-oxoindolin-3-ylidene) methyl)-2, 4-dimethyl-1H-

pyrrole-3-carboxamide) was obtained from LC Laboratories

(Woburn, MA). 7-Ethoxyresorufin, Dulbecco’s Modified

Eagle’s Medium (DMEM), anti-goat IgG peroxidase sec-

ondary antibody, protease inhibitor cocktail, and 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) were purchased from Sigma Chemical Co. (St. Louis,

MO). 2,3,7,8-Tetrachlorodibenzo-p-dioxin, [99 % pure,

was purchased from Cambridge Isotope Laboratories

(Woburn, MA). Amphotericin B and resorufin were pur-

chased from ICN Biomedicals Canada (Montreal, QC).

TRIzol reagent, T4 polynucleotide kinase, and lipofectamine

kits were purchased from Invitrogen Co. (Grand Island, NY).

High-Capacity cDNA Reverse Transcription kit and SYBR�

Green PCR Master Mix were purchased from Applied Bio-

systems (Foster city, CA). Actinomycin D (Act-D) was

purchased from Calbiochem (San Diego, CA). Nitrocellu-

lose membrane was obtained from Bio-Rad Laboratories

(Hercules, CA). CYP1A1 goat polyclonal primary antibody

and goat anti-ARNT antibody were purchased from Santa

Cruz Biotechnology, Inc. (Santa Cruz, CA). Chemilumi-

nescence Western blot detection kits were obtained from GE

Healthcare Life Sciences (Piscataway, NJ). [c-32P]ATP was

supplied by Perkin Elmer (Boston, MA). All other chemicals

were purchased from Fisher Scientific Co. (Toronto, ON).

Cell culture and treatments

Human breast cancer MCF7 cells (American Type Cell

Cutler, Manassas, VA) were maintained in DMEM, with

phenol red supplemented with 10 % fetal bovine serum,

20 lM L-glutamine, 50 lg/ml amikacin, 100 IU/ml peni-

cillin G, 10 lg/ml streptomycin, and 25 ng/ml amphoteri-

cin B. Cells were grown in 75 cm2 tissue culture flasks at

37 �C under a 5 % CO2 humidified environment.

The cells were seeded onto 96-, 12-, and 6-well cell

culture plates in DMEM culture media for CYP1A1

enzyme activity, mRNA, and protein assays, respectively.

In all experiments, the cells were treated for the indicated

time intervals in serum-free media with various concen-

trations of SUN as indicated. Stock solutions of SUN were

prepared in DMSO and stored at -20 �C. In all treatments,

the DMSO concentration did not exceed 0.05 % (v/v).

Cytotoxicity of SUN

The effect of SUN on MCF7 cell viability was determined

by measuring the capacity of reducing enzymes present in

Fig. 1 Chemical structures of TCDD and SUN
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only viable cells to convert MTT to colored formazan

crystals as described previously (Korashy et al. 2011).

Briefly, MCF7 cells were treated for 24 h with various

concentrations of SUN; thereafter, media were removed

and cells were incubated with MTT for 2 h. The color

intensity in each well was then measured at wavelength of

550 nm using EL 312e 96-well microplate reader, Bio-Tek

Instruments Inc. (Winooski, VT). The percentage of cell

viability was calculated relative to control wells designated

as 100 % viable cells using the following formula: cell

viability = (A treated)/(A control) 9 100 %.

Total RNA extraction and cDNA synthesis

After incubation with the test compound for the specified

time periods, total cellular RNA was isolated using TRIzol

reagent (Invitrogen�) according to the manufacturer’s

instructions and quantified by measuring the absorbance at

260 nm. RNA quality was determined by measuring the

260/280 ratio ([1.8). Thereafter, first strand cDNA syn-

thesis was performed using the High-Capacity cDNA

reverse transcription kit (Applied Biosystems�), according

to the manufacturer’s instructions and as described previ-

ously (Korashy et al. 2011). Briefly, 1.5 lg of total RNA

from each sample was added to a mixture of 2.0 ll of 109

reverse transcriptase buffer, 0.8 ll of 259 dNTP mix

(100 mM), 2.0 ll of 109 reverse transcriptase random

primers, 1.0 ll of MultiScribe reverse transcriptase, and

3.2 ll of nuclease-free water. The final reaction mixture

was kept at 25 �C for 10 min, heated to 37 �C for 120 min,

heated for 85 �C for 5 s, and finally cooled to 4 �C.

Quantification of mRNA expression by real-time

polymerase chain reaction (RT-PCR)

Quantitative analysis of specific mRNA expression was per-

formed by RT-PCR by subjecting the resulting cDNA to PCR

amplification using 96-well optical reaction plates in the ABI

Prism 7500 Fast RT-PCR System (Applied Biosystems�).

The 25 ll reaction mixture contained 0.1 ll of 10 lM for-

ward primer and 0.1 ll of 10 lM reverse primer (40 nM final

concentration of each primer), 12.5 ll of SYBR Green Uni-

versal Mastermix, 11.05 ll of nuclease-free water, and

1.25 ll of cDNA sample. Human primers for CYP1A1 (for-

ward: 50-CTA TCT GGG CTGTGG GCA A-30; reverse:

50-CTG GCT CAA GCA CAA CTT GG-30) and for b-ACTIN

(forward: 50-TAT TGG CAA CGA GCG GTT CC-30, reverse:

50-GGC ATA GAG GTC TTT ACG GAT GTC-30) (Korashy

and El-Kadi 2012) were purchased from Integrated DNA

technologies (IDT, Coralville, IA). The fold change in the

level of CYP1A1 gene between treated and untreated cells was

corrected by the levels of b-ACTIN. Assay controls were

incorporated onto the same plate, namely no-template

controls to test for the contamination of any assay reagents.

The RT-PCR data were analyzed using the relative gene

expression (i.e., DD CT) method, as described and explained

previously (Livak and Schmittgen 2001). Briefly, the data are

presented as the fold change in gene expression normalized to

the endogenous reference gene b-ACTIN and relative to a

calibrator. The fold change in the level of target genes between

treated and untreated cells, corrected by the level of b-actin,

was determined using the following equation: fold

change = 2-D(DCt), where DCt = Ct(target) - Ct(b-actin) and

D(DCt) = DCt(treated) - DCt(untreated).

Protein extraction and western blot analysis

Twenty-four hours after incubation with the test compound,

approximately 1.5 9 106 cells per six-well culture plates

were collected in 100 ll lysis buffer (50 mM HEPES,

0.5 M sodium chloride, 1.5 mM magnesium chloride,

1 mM EDTA, 10 % glycerol (v/v), 1 % Triton X-100, and

5 ll/ml of protease inhibitor cocktail). Total cellular pro-

teins were obtained by incubating the cell lysates on ice for

1 h, with intermittent vortex mixing every 10 min, followed

by centrifugation at 12,0009g for 10 min at 4 �C.

Western blot analysis was performed using a previously

described method (Korashy and El-Kadi 2004). Briefly,

25 lg of protein from each treatment group was separated

by 10 % sodium dodecyl sulfate (SDS)-polyacrylamide gel

electrophoresis (PAGE) and then electrophoretically

transferred to nitrocellulose membrane. Protein blots were

then blocked overnight at 4 �C in blocking solution

[0.15 M sodium chloride, 3 mM potassium chloride,

25 mM Tris-base (TBS), 5 % skim milk powder, 2 %

bovine serum albumin, and 0.5 % Tween-20]. After

blocking, the blots were washed several times with TBS-

Tween-20 before being incubated with a primary polyclonal

goat anti-mouse CYP1A1 antibody for 2 h at room tem-

perature in TBS solution containing 0.05 % (v/v) Tween-20

and 0.02 % sodium azide. Incubation with a peroxidase-

conjugated rabbit anti-goat IgG secondary antibody was

carried out in blocking solution for 1 h at room temperature.

The bands were visualized using the enhanced chemilumi-

nescence method according to the manufacturer’s instruc-

tions (GE Healthcare, Mississauga, ON). The intensity of

CYP1A1 protein bands was quantified relative to the signals

obtained for glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) protein, using ImageJ� image processing pro-

gram (National Institutes of Health, Bethesda, MD, http://

rsb.info.nih.gov/ij).

Determination of CYP1A1 enzymatic activity

CYP1A1-dependent 7-ethoxyresorufin (7ER) O-deethylase

(EROD) activity was performed on intact living MCF7

Arch Toxicol (2013) 87:847–856 849
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cells using 7ER as a substrate (Kennedy et al. 1993). After

incubation of the cells with increasing concentrations of

SUN for 24 h, 100 ll of 2 lM 7ER in assay buffer (0.05 M

Tris, 0.1 M NaCl, pH 7.8) was then added to each well.

Immediately, an initial fluorescence measurement (t = 0)

at excitation/emission (545 nm/575 nm) followed by

additional set of fluorescence measurements of the wells

was recorded every 5 min for 20 min interval using Baxter

96-well fluorometer (Deerfield, IL). The amount of res-

orufin formed in each well was determined by comparison

with a standard curve of known concentrations and nor-

malized to protein levels determined using a modified

fluorescent assay (Lorenzen and Kennedy 1993). The rate

of resorufin formation was expressed as percentage of

control.

Transient transfection and luciferase assay

MCF7 cells were plated onto 12-well cell culture plates.

Each well of cells was transfected with 1.6 lg of the XRE-

driven luciferase reporter plasmid pGudLuc 1.1 (Nagy

et al. 2002), generously provided by Dr. M.S. Denison

(University of California at Davis), using Lipofectamine

2000 reagent according to the manufacturer’s instructions

(Invitrogen�). Luciferase assay was performed according

to the manufacturer’s instructions (Promega�) as described

previously (Korashy et al. 2007). Following 16 h, the cells

were treated for additional 24 h with increasing concen-

trations of test compounds in a fresh serum-free medium.

After treatments, cells were washed with phosphate-buf-

fered saline; thereafter, 200 ll of Passive Lysis Buffer

(Promega�) was added into each well with continuous

shaking for at least 20 min, and then the content of each

well was collected separately in 1.5 ml microcentrifuge

tubes. Enzyme activities were determined using a lucifer-

ase reporter assay system (Promega�) and quantified using

a TD-20/20 luminometer (Turner BioSystems, Sunnyvale,

CA). Luciferase activities were reported as emitted light

per well as a percent of control.

Electrophoretic mobility shift assay (EMSA)

XRE complementary oligonucleotides, 50-GGAGTTGCGT

GAGAAGAGCC-30 and 50- GGCTCTTCTCACGCAACT

CC-30, were synthesized, annealed, and labeled with c-32P-

ATP at the 5-end using T4 polynucleotide kinase and used

as a probe for EMSA reactions as described previously

(Denison et al. 1989; Korashy et al. 2007). Aliquots of the

guinea pig liver cytosolic protein (2 mg) were incubated

for 30 min at room temperature in a reaction mixture

(30 ll) containing 25 mM HEPES, pH 7.9, 80 mM

KCl, 1 mM EDTA, 1 mM dithiothreitol, 10 % glycerol

(vol/vol), and 400 ng poly(dI.dC). Thereafter, *1 ng

(100,000 cpm) [32P]-labeled XRE was incubated with the

mixture for another 30 min before being separated through

a 4 % non-denaturing PAGE. For the competition assay,

proteins were preincubated at room temperature for 20 min

with either 0.6 lg anti-ARNT antibody (Santa Cruz Bio-

technology, Inc.) or a 100-fold molar excess of unlabeled

(cold) XRE before the addition of the [32P]-labeled XRE.

The gel was dried at 80 �C for 1 h, and AhR-XRE com-

plexes formed were visualized by autoradiography (El

Gendy and El-Kadi 2010; Gharavi and El-Kadi 2005).

Statistical analysis

The comparative analysis of the results from various

experimental groups with their corresponding controls was

performed using SigmaStat� for Windows (Systat Soft-

ware, Inc, CA). One-way analysis of variance (ANOVA)

followed by Student–Newman–Keul’s test was carried out

to assess which treatment groups showed a significant

difference from the control group. The differences were

considered significant when p \ 0.05.

Results

Effect of SUN on MCF7 cells viability and proliferation

To determine the maximum non-toxic concentrations of

SUN to be utilized in the current study, MCF7 cells were

exposed for 24 h to increasing concentrations of SUN (0, 1,

2.5, 5, 10, and 20 lM) using MTT assay. Our results

showed that all concentrations ranging from 1 to 5 lM did

not significantly affect cell viability (Fig. 2). However,

SUN 10 and 20 lM significantly decreased the cell via-

bility to approximately 80 and 30 %, respectively. Based

Fig. 2 Effect of SUN on MCF7 cell viability. MCF7 cells were

treated for 24 h with various concentrations of SUN (0, 1, 2.5, 5, 10,

and 20 lM). Cell viability was determined using MTT assay. Values

are presented as % of the control (mean ± SEM, n = 6). ?p\0.05

compared to control (0 lM)
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on these findings, SUN concentrations 2.5, 5, and 10 lM

were utilized in all subsequent experiments in MCF7 cells

(Fig. 2).

Induction of CYP1A1 gene expression by SUN

in MCF7 cells

To determine the capacity of SUN to alter the expression of

CYP1A1 gene, MCF7 cells were incubated for 6 h with

increasing concentrations of SUN (2.5, 5, and 10 lM);

thereafter, CYP1A1 mRNA levels were determined by RT-

PCR. Figure 3a shows that SUN-induced CYP1A1 mRNA

expression in a concentration-dependent manner. The

submaximal induction was achieved at a concentration

5 lM (3-fold), whereas the highest concentrations tested,

10 lM, increased CYP1A1 mRNA by approximately

5-fold (Fig. 3a).

To further examine whether the induction of CYP1A1

mRNA in MCF7 cells in response to SUN treatment is

translated into functional protein and catalytic activity,

MCF7 cells were treated for 24 h with the same concen-

trations of SUN; thereafter, CYP1A1 protein and catalytic

activity were determined by Western blot analysis and

EROD assay, respectively. Figure 3b, c show that SUN

induced CYP1A1 protein and catalytic activity in a con-

centration-dependent manner in a pattern similar to what

was observed with mRNA. The maximal inductions of

CYP1A1 protein and activity observed at 10 lM were

approximately 5.5- and 2.5-fold, respectively.

Transcriptional induction of CYP1A1 gene by SUN

in MCF7 cells

To explore the molecular mechanisms involved in the

induction of CYP1A1 by SUN, initially we questioned

whether the induction of human CYP1A1 by SUN (Fig. 3)

is regulated at the transcriptional level; we tested the

hypothesis that SUN increases the de novo CYP1A1 RNA

synthesis. For this purpose, MCF7 cells were treated for

6 h with a single concentration of SUN (10 lM), which

showed maximal induction, in the presence and absence of

5 lg/ml Act-D, a RNA synthesis inhibitor. Thereafter,

CYP1A1 mRNA expression was determined by RT-PCR.

If SUN increased the amount of CYP1A1 mRNA through

increasing its de novo RNA synthesis, we would expect to

observe a decrease in the content of CYP1A1 mRNA after

the inhibition of its RNA synthesis.

Figure 4 shows that pretreatment of the cells with Act-D

alone completely blocked the constitutive expression of

CYP1A1 mRNA. Importantly, the SUN-induced CYP1A1

mRNA level was markedly blocked by the RNA synthesis

Fig. 3 Effects of SUN on CYP1A1 mRNA (a), protein (b), and

activity (c) levels in MCF7 cells. a MCF7 cells were treated for 6 h

with various concentrations of SUN (0, 2.5, 5 and 10 lM). Total RNA

was isolated using TRIzol reagent, and CYP1A1 mRNA was

quantified by RT-PCR. Duplicate reactions were performed for each

experiment, and the values represent mean of fold change ± SEM.

(n = 6). b MCF7 cells were treated for 24 h with the same

concentrations of SUN; thereafter, CYP1A1 protein level was

determined by Western blot analysis. One of the three representative

experiments is shown. c MCF7 cells were treated for 24 h with the

same concentrations of SUN. CYP1A1 enzyme activity was measured

in intact living cells using 7ER as a substrate. Values are presented as

mean ± SEM, n = 8. 1p\0.05 compared to control (0 lM)
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inhibitor, Act-D, indicating that SUN increased the

CYP1A1 mRNA content at the transcriptional level by

increasing its de novo RNA synthesis.

AhR-dependent induction of CYP1A1 by SUN

The possibility that SUN induces CYP1A1 gene expression

through an AhR-dependent mechanism was addressed by

several approaches. Therefore, a series of independent

experiments were conducted.

Induction of AhR-dependent reporter gene expression

by SUN in MCF7 cells

First, we questioned whether the induction of CYP1A1

mRNA by SUN is attributed to an increase in the expres-

sion of AhR-dependent reporter gene. Therefore, MCF7

cells, transiently transfected with the XRE-driven lucifer-

ase reporter gene, were incubated for 18 h with SUN

(10 lM). Figure 5a shows that treatment of MCF7 cells

with SUN significantly induced (2-fold) the reporter gene

which is known to occur only through the AhR activation.

Blocking of the SUN-mediated induction of CYP1A1 mRNA

by the AhR antagonist resveratrol

To further confirm the AhR-dependent induction of the

CYP1A1 gene by SUN, we tested the effect of the AhR

antagonist, resveratrol (RES) (Beedanagari et al. 2009;

Imig et al. 2002), on SUN-induced CYP1A1 mRNA. For

this purpose, MCF7 cells were treated with 20 lM RES in

the presence and absence of 10 lM SUN for an additional

6 h. Thereafter, CYP1A1 mRNA expression was quantified

by RT-PCR. Figure 5b shows that induction of CYP1A1

mRNA in response to 10 lM SUN was completely pre-

vented by RES, suggesting that AhR is essential for SUN-

mediated induction of CYP1A1.

Ligand-independent activation of AhR

The ability of SUN to directly interact with AhR molecule

and activate its translocation to the DNA-binding form in

the nucleus with the subsequent binding to the XRE was

determined by EMSA. Untreated guinea pig hepatic cyto-

sol was preincubated, in vitro, for 2 h with SUN (50 lM)

or TCDD (20 nM), a positive control for AhR transfor-

mation. Figure 5c shows that TCDD markedly induced the

AhR/ARNT/XRE complex formation (lane 3) as compared

to control (lane 1). However, SUN was not able to activate

the AhR/ARNT/XRE complex formation (lane 2). The

specificity of AhR/ARNT heterodimer binding to XRE was

confirmed by the competition assay using anti-ARNT

antibody, supershift (lane 4) and a 100-fold molar excess of

unlabeled XRE (lane 5).

Discussion

The present study demonstrates the first evidence that

tyrosine kinase inhibitor, SUN, induces CYP1A1 gene

expression at the transcriptional levels in human breast

cancer MCF7 cells through ligand-independent AhR acti-

vation. This is supported by the following findings;

(a) induction of CYP1A1 gene by SUN at the mRNA,

protein, and activity levels in a concentration-dependent

manner; (b) blocking of the SUN-induced CYP1A1

expression by the RNA synthesis inhibitor, Act-D;

(c) increase XRE luciferase reporter gene expression;

(d) inhibition of SUN-induced CYP1A1 mRNA by the

AhR antagonist, RES; and (e) inability of SUN to bind to

and activate AhR.

Recent findings have demonstrated that activation of

AhR and induction of CYP1A1 are not just restricted to

PAHs (the classical ligands) and that a large number of

newly identified CYP1A1 inducers whose structures and

physiochemical properties significantly differ from those of

PAHs have been previously reported (Gharavi and El-Kadi

2005; Seidel et al. 2000). Although the majority of these

non-classical AhR ligands are weak CYP1A1 inducers and

possess a low probability of human exposure, this list has

expanded to include a number of widely prescribed drugs

such as omeprazole (Lemaire et al. 2004), primaquine

Fig. 4 Effects of RNA synthesis inhibitor Act-D on the induction of

CYP1A1 mRNA by SUN. MCF7 cells were treated with 5 lg/ml Act-

D, a RNA synthesis inhibitor, 30 min before co-exposure to 10 lM

SUN for additional 6 h. Total RNA was isolated using TRIzol

reagent, and the amount of CYP1A1 mRNA was quantified using RT-

PCR and normalized to b-ACTIN housekeeping gene. Duplicate

reactions were performed for each experiment, and the values

represent mean of fold change ± SEM. (n = 6). ?p \ 0.05 compared

with control; *p \ 0.05 compared to same treatment in the absence of

Act-D
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(Werlinder et al. 2001), and sulindac (Ciolino et al. 2006).

Prior to commencing the current experiments, the effects of

SUN on the CYP1A1 expression from mammalian species

were not known. Hence, the objective of the current study

was to evaluate the effect of SUN on the modulation of

CYP1A1 in vitro using human breast cancer MCF7 cell

lines.

The in vitro MCF7 cell model was utilized in the current

study for several reasons. First, MCF7 cells are extensively

used as an in vitro model for investigating the AhR acti-

vation and CYP1A1 induction by several xenobiotics. This

is because of MCF7 cells showed higher CYP1A1

expression levels in response to TCDD and other PAHs in

comparison with human hepatocellular carcinoma HepG2

cells, a well-studied in vitro model for AhR activation

(Jorgensen and Autrup 1996; Skupinska et al. 2009). Sec-

ond, the presence of a cross-talk between AhR and estrogen

receptor (ER), which is only expressed in MCF7 cells, in

that pretreatment of MCF7 cells with TCDD caused a rapid

decrease in nuclear ER binding activity and immunoreac-

tive protein (Labrecque et al. 2012; Liu et al. 2006). Third,

several recent studies have demonstrated a possible che-

motherapeutic role of SUN against breast cancer (Fratto

et al. 2011; Yardley et al. 2012). The in vitro concentra-

tions of SUN used in the current study were maintained

within the therapeutic range of plasma concentration

reported in human. For example, human subjects given

80 mg SUN for the treatment of advanced renal cell car-

cinoma had mean plasma concentrations range from 0.5 to

1 lM (Hasinoff et al. 2008). In addition, in vitro study on

primary neonatal rat cardiomyocytes to determine the

cardiotoxicity of SUN has utilized 1 and 4 lM (French

et al. 2010). Moreover, the chronic use of SUN, its pro-

longed half-life, and its high tissue distribution expected

with repeated dosing each collectively provides a high

degree of in vivo relevance to the results arising from the

concentrations of SUN (1–5 lM) used in the presently

described in vitro experiments.

Initially, we demonstrated here that SUN significantly

increased the basal CYP1A1 expression at the mRNA,

protein, and activity levels in a concentration-dependent

manner in MCF7 (Fig. 3). The current knowledge of the

Fig. 5 Effect of SUN on XRE luciferase activity (a), the AhR

antagonist RES (b), and AhR/ARNT/XRE binding (c). a MCF7 cells

transiently transfected with XRE luciferase reporter gene were grown

onto 12-well cell culture plates for 24 h. Thereafter, cells were

incubated with increasing SUN (10 lM) for an additional 12 h. Cells

were lysed and luciferase activity was measured according to the

manufacturer’s instructions. The graph represents the mean ± SEM

(n = 4). ?p \ 0.05 compared to control (0 lM). b MCF7 cells were

pretreated for 2 h with 20 lM RES prior to co-exposure with 10 lM

SUN for additional 6 h. Total RNA was isolated using TRIzol

reagent, and the amount of CYP1A1 mRNA was quantified using RT-

PCR and normalized to b-ACTIN housekeeping gene. Duplicate

reactions were performed for each experiment, and the values

represent mean of fold change ± SEM (n = 6). ?p \ 0.05 compared

with control; *p \ 0.05 compared to same treatment in the absence of

RES. c Cytosolic extracts (2 mg) from untreated guinea pig liver were

incubated in vitro with SUN (50 lM, lane 2) or TCDD (20 nM, lane
3) for 2 h. The cytosolic proteins were mixed with [c-32P]-labeled

XRE, and the formation of AhR/ARNT/XRE complexes were

analyzed by EMSA. The specificity of binding was determined by

incubating TCDD-treated cytosolic extracts with anti-ARNT antibody

(lane 4) and 100-fold molar excess of cold XRE (lane 5). AhR/

ARNT/XRE complex formed on the gel was visualized by autora-

diography. This pattern of AhR activation was observed in three

separate experiments, and only one is shown
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mechanism of CYP1A1 induction by PAHs such as TCDD,

the most potent CYP1A1 inducer tested to date, clearly

suggests a transcriptional regulation, in which activation of

a cytosolic transcriptional factor, AhR, is the first step in a

series of molecular events promoting CYP1A1 expression.

The transcriptional regulation of CYP1A1 gene expression

by SUN, in the current study, was demonstrated first by the

ability of the transcription inhibitor, Act-D, to significantly

block the newly synthesized CYP1A1 mRNA (Fig. 4)

suggesting a requirement of de novo RNA synthesis for the

induction of CYP1A1 mRNA by SUN (Fig. 4).

The AhR involvement in the SUN-mediated induction

of CYP1A1 in MCF7 cells was evidenced first by the

ability of SUN to increase XRE-dependent luciferase

reporter gene expression that occurs only through the AhR

activation (Fig. 5a) suggests an AhR-dependent transcrip-

tional control and excludes the possibility of any post-

transcriptional mechanisms, such as mRNA stability

(Pasco et al. 1988). Second, blocking of the SUN-induced

CYP1A1 gene expression by RES, a naturally occurring

polyphenolic compound, that has been shown to block AhR

and inhibit the expression of several CYP enzymes par-

ticularly CYP1A1 (Beedanagari et al. 2009; Imig et al.

2002), suggests a direct role of AhR in the expression of

CYP1A1 gene (Fig. 5b).

In light of the information described above, our results

suggested a direct evidence for the involvement of AhR in

the transcriptional regulation of CYP1A1 by SUN. This

raises the question of whether or not SUN is a ligand and

agonist for the AhR. Therefore, we examined ability of

SUN to directly bind to and activate AhR protein using

EMSA in guinea pig cytosol model, which showed the

greatest degree of AhR transformation in response to AhR

ligand (Bohonowych and Denison 2007), an assay which is

extensively used to assess binding and affinity of ligands to

the AhR (Jeuken et al. 2003). Perhaps the finding of

greatest interest in the current study was the observation

that SUN did not directly bind to and induce transformation

of cytosolic AhR to a DNA-binding form in vitro (Fig. 5c),

a property exerted by traditional AhR ligands, implying

that SUN is not an AhR ligand. Importantly, the inability of

SUN to directly bind to and induce transformation of

cytosolic AhR to its DNA-binding form in vitro was

associated with an increase in luciferase reporter gene

expression that occurs only through AhR activation, which

suggests that AhR shuttles between the cytosol and nucleus

in the absence of exogenous ligand. Taken together, these

results strongly suggest a ligand-independent AhR activa-

tion process.

Ligand-independent AhR activation has been reported

by several drugs and chemicals. For example, omeprazole

has been shown to induce the AhR-dependent gene

expression such as CYP1A1 without direct binding to the

AhR (Backlund and Ingelman-Sundberg 2004; Lemaire et al.

2004). In addition, benzimidazole derivatives are potent

inducers of CYP1A1 in rabbit and human hepatocytes, but

apparently do not bind the AhR (Lesca et al. 1995).

Although the exact mechanisms governing the ligand-inde-

pendent activation of AhR are still not clear, it has been

suggested that metabolic activation of these compounds into

AhR ligands or their abilities to stimulate endogenous AhR

ligand could play a role (Heath-Pagliuso et al. 1998;

Schaldach et al. 1999; Sinal and Bend 1997). Moreover, it

has been reported that activation of the cyclic adenosine

monophosphate (cAMP) mediator (Oesch-Bartlomowicz

et al. 2005) or mitogen-activated protein kinases (MAPKs)

signaling pathways (Ikuta et al. 2004) increases AhR trans-

location in a manner somehow similar to, but functionally

different from, TCDD-mediated mechanisms. Another situ-

ation in which CYP1A1 can be induced in the absence

of ligand is through oxidative stress-mediated effects or

induction of cell differentiation that parallels an increase in

the AhR transcript (Delescluse et al. 2000).

In conclusion, the current manuscript provides the first

evidence for the ability of SUN to induce CYP1A1 gene

expression in MCF7 cell line at the transcriptional level

through AhR ligand-independent mechanisms.
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