GENOTOXICITY AND CARCINOGENICITY

Identification of biomarkers of chemically induced hepatocarcinogenesis in rasH2 mice by toxicogenomic analysis

Han-Jin Park · Jung-Hwa Oh · Se-Myo Park · Jae-Woo Cho · Young Na Yum · Sue Nie Park · Do-Young Yoon · Seokjoo Yoon

Received: 13 August 2010/Accepted: 9 May 2011/Published online: 24 May 2011 © Springer-Verlag 2011

Abstract Toxicogenomic approaches have been applied to chemical-induced heptocarcinogenesis rodent models for the identification of biomarkers of early-stage hepatocarcinogenesis and to help clarify the underlying carcinogenic mechanisms in the liver. In this study, we used toxiciogenomic methods to identify candidate biomarker genes associated with hepatocarcinogenesis in rasH2 mice. Blood chemical, histopathologic, and gene expression analyses of the livers of rasH2 mice were performed 7 and 91 days after the administration of the genotoxic hepatocarcinogens 2-ace-tylaminofluorene (AAF) and diethylnitrosoamine (DEN), the genotoxic carcinogen melphalan (Mel), and the nongenotoxic noncarcinogen 1-naphthylisothiocynate (ANIT).

H.-J. Park · J.-H. Oh · S.-M. Park · S. Yoon (⊠) Division of Research and Development, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseong-gu, Daejeon 305-343, Korea e-mail: sjyoon@kitox.re.kr

J.-W. Cho

Division of Pre-Clinical Study, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseong-gu, Daejeon 305-343, Korea

Y. N. Yum

Toxicological Screening and Testing Division, NiFDS, Korea Food and Drug Administration, 187 Osongsaengmyeong2(i)-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea

S. N. Park

Hazardous Substances Analysis Division at Seoul Regional FDA, Korea Food and Drug Administration, 900-12, Mok-dong, Yangcheon-gu, Seoul 158-050, Korea

D.-Y. Yoon

Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul 143-701, Korea Histopathologic lesions and a rise in accompanying serum marker levels were found in the DEN-treated rasH2 mice, whereas no neoplastic lesions were observed in the rasH2 mice. However, biological functional analysis using Ingenuity Pathways Analysis (IPA) software revealed that genes with comparable molecular and cellular functions were similarly deregulated in the AAF- and DEN-treated rasH2 mice. We selected 68 significantly deregulated genes that represented a hepatocarcinogen-specific signature; these genes were commonly deregulated in both the AAF- and DEN-treated rasH2 mice on days 7 and 91. Hierarchical clustering analysis indicated that the expression patterns of the selected genes in the hepatocarcinogen (AAF and DEN) groups were distinctive from the patterns in the control, Mel, and ANIT groups. Biomarker filter analysis using IPA software suggested that 28 of the 68 signature genes represent promising candidate biomarkers of cancer. Quantitative real-time PCR analysis confirmed that the deregulated genes, which exhibited sustained up- and down-regulation up to day 91, are likely involved in early-stage hepatocarcinogenesis. In summary, the common and significant gene expression changes induced by AAF and DEN may reflect early molecular events associated with hepatocarcinogenesis, and these "signature" genes may be useful as biomarkers of hepatocarcinogenesis in mice.

Keywords Biomarker · Hepatocarcinogenesis · rasH2 mice · Toxicogenomics · 2-acetylaminofluorene · Diethylnitrosoamine

Introduction

The conventional two-year rodent bioassay has been widely used during the preclinical stages of drug development as a prerequisite test for defining the carcinogenic

potential of candidate drugs. Although this bioassay has been highly standardized and broadly adopted, there is a clear need to improve the process because it requires a lot of time, money, manpower, and animals to evaluate drug safety and identify environmental carcinogens. For this reason, there have been several attempts to improve the two-year carcinogenicity testing process, including the use of transgenic mouse models (e.g., p53+/-, Tg.AC, and rasH2 mice) to shorten the amount of time necessary to complete the test (Pritchard et al. 2003), and the use of toxicogenomic methods to predict the carcinogenicity of xenobiotics at early time points (Ellinger-Ziegelbauer et al. 2009; Thomas et al. 2007). Transgenic mouse models are considered a promising candidate for short-term studies of carcinogenicity due to the early onset of spontaneous and chemically induced tumors compared with wild-type mice. The possibility of employing a short-term carcinogenicity assay using transgenic mice as a substitute for the two-year rodent bioassay was first introduced in 1996 by the International Committee on Harmonization (ICH) (Contrera and DeGeorge 1998). For more than a decade, regulatory agencies and pharmaceutical associations have evaluated short-term carcinogenicity using transgenic mice, and the consensus is that these models have added value in human cancer hazard identification (Storer et al. 2010).

The rasH2 mouse is a hemizygous transgenic mouse carrying several copies of the human c-Ha-ras oncogene that was established in 1990 at the Central Institute for Experimental Animals (Saitoh et al. 1990). Five to six copies of the prototype human c-Ha-ras oncogene with the gene's own promoter and enhancer were inserted in tandem array into the genome of a C57BL/6J × BALB/cByJ mouse embryo by pronuclear microinjection. The founder mouse was backcrossed with C57BL/6 J females to produce transgenic breeding stock. Hemizygous transgenic mice (CB6F1-Tg rasH2mice) for experimentation are produced by breeding transgenic male C57BL/6 J mice with wild-type BALB/cByJ female mice. This model is highly susceptible to genotoxic and nongenotoxic carcinogens through any conventional route of administration (Alden et al. 2002; Morton et al. 2002). Several six-month carcinogenicity studies of rasH2 mice have demonstrated a high incidence and rapid induction of tumors, with sensitivity to various carcinogens (Maronpot et al. 2000; Morton et al. 2002; Yamamoto et al. 1996). Mechanistic studies of tumorigenesis in rasH2 mice have suggested that over-expression of the transgene is the primary cause for accelerated tumor development (Tamaoki 2001).

In addition to the use of transgenic mice, the consideration of gene expression through microarray-based toxicological studies (toxicogenomics) has helped refine carcinogenicity testing. Toxicogenomics has already been employed to elucidate the mechanism of action of toxic compounds in classical toxicological studies (Lord et al. 2006), as well as for the prediction and classification of the carcinogenicity of genotoxic and nongenotoxic compounds (Ellinger-Ziegelbauer et al. 2005; Fielden et al. 2008). The potential importance of toxicogenomics in drug development has been recognized by the US Food and Drug Administration (FDA) and the pharmaceutical industry, and they have established a framework to review toxicogenomic data (Leighton et al. 2006). The accumulated gene expression data resulting from research in the toxicological field over the past few years will enable toxicogenomic methods to more accurately classify genotoxic and nongenotoxic carcinogens and to predict the carcinogenicity of unknown compounds (Waters et al. 2010). Several examples of the use of toxicogenomics in the identification of early marker genes that can be used to predict hepatocarcinogenic potential and in the elucidation of carcinogenic mechanisms in the liver have been reported, including the prediction and classification of genotoxic and nongenotoxic hepatotoxicants (Ellinger-Ziegelbauer et al. 2005, 2008; Kramer et al. 2004). The results of these studies indicate that it may be possible to identify molecular markers for use in predicting hepatic carcinogenicity.

To date, several applications of toxicogenomics to the investigation into candidate genes responsible for enhanced carcinogenesis in the forestomach, lungs, and liver of rasH2 mice have been reported (Okamura et al. 2004, 2006, 2007). However, the use of toxicogenomics for the determination of gene expression patterns or the identification of marker genes for predicting carcinogenicity has not been reported. Here, we investigated the gene expression patterns in the livers of rasH2 mice following short- and long-term exposure to genotoxic hepatocarcinogens to identify marker genes involved in the onset of carcinogenesis.

Materials and methods

Chemicals and animals

Corn oil, 1-naphthylisothiocynate (ANIT), 2-acetylaminofluorene (2-AAF), diethylnitrosoamine (DEN), and melphalan (Mel) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Pathogen-free, six-week-old, male rasH2 mice were obtained from CLEA Japan Inc. (Tokyo, Japan). A maximum of five mice were housed in polycarbonate cages with absorbent hardwood bedding in a controlled temperature $(23^{\circ}C \pm 3^{\circ}C)$ and humidity $(50\% \pm 10\%)$ facility with a 12-h light/dark cycle. Certified rodent chow (Purina, Seoul, Korea) and water were supplied *ad libitum* throughout the experiment. Food was withdrawn 12 h prior to the day of dissection. All experiments were approved by the Institutional Animal Care and Use Committee and conducted in accordance with Association for Assessment and Accreditation of Laboratory Animal Care international guidelines.

Study design

After a one-week acclimatization period, 36 rasH2 mice were randomly divided and allocated to ten groups according to the administered chemicals and the day of killing (Table 1). The four tested chemicals were divided into three categories: genotoxic hepatocarcinogens (AAF and DEN), genotoxic carcinogens (Mel), and nongenotoxic noncarcinogens (ANIT). All tested chemicals were dissolved in corn oil and administered orally at 10 ml/kg body weight. Control mice were administered the corresponding quantity of corn oil (vehicle). The dose of the four administered chemicals was one-fifth the LD50 dose for each chemical. The mice in each group were administered their specific chemical daily until the day before killing; however, drug administration to the rasH2 mice in the DEN 91-day (91 d) group was stopped after 7 days of repeated dosing. The relative liver weight was calculated as the percentage of the body weight.

Blood biochemistry and histopathology

All mice were killed on the scheduled date using isoflurane. Blood was collected through the inferior vena cava in Vacutainer[®] tubes (BD Biosciences, San Jose, CA, USA). Serum was isolated after centrifugation at 3,000 rpm for 10 min. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin (TBIL), and total cholesterol (Tcho) were measured using a DRI-CHEM 3500s (FUJI-FILM, Tokyo, Japan). After blood collection, the liver was rapidly removed and fixed in 10% neutral-buffered formalin. The specimens were dehydrated, embedded in paraffin, and sectioned into 4-µm-thick slices onto microscope slides. The sectioned tissues were stained with hematoxylin

Labre L Enpermiental debigi	Table	1	Experimental	design
-----------------------------	-------	---	--------------	--------

and eosin and examined by light microscopy (Nikon E-400, Tokyo, Japan).

Gene expression analysis

Total RNA was extracted from a portion of each liver using Trizol reagent (Invitrogen, Carlsbad, CA, USA) and purified using an RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer's instructions. The isolated total RNA was quantified using a spectrophotometer (NanoDrop Technologies, Montchanin, DE, USA). For the microarray experiments, the quality of RNA was evaluated using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Changes in gene expression were determined using an Affymetrix Mouse Gene 1.0 ST array (Santa Clara, CA, USA). Three hundred nanograms of total RNA was used for cDNA synthesis. All microarray procedures were performed according to the manufacturer's instructions. Raw image data acquired from a GeneChip Scanner 3000 (Affymetrix) were processed by GeneChip Operating Software (GCOS, Affymetrix). Subsequent data normalization, statistical analysis, differentially expressed gene (DEG) selection, and hierarchical clustering were performed using GenPlex software, version 3.0 (ISTECH Inc., Ilsan, Korea). The criteria for DEG selection in each chemical-treated group were P < 0.05 (Student's t test) and a 1.2-fold change in expression relative to that in the corresponding control group. Commonly deregulated genes between the different groups were identified by Venn diagrammatic selection methods. Classification of the selected genes according to their biological and toxicological functions was done using Ingenuity Pathway Analysis (IPA) software (Ingenuity[®] Systems, Redwood, CA, USA). The P value, represented as the negative log ratio of the IPA results, is the probability based on Fisher's

Group number	Group name	Chemical/vehicle	CAS number	Dose (mg/ml/kg)	Dosing day/(day of killing)	Number of mice
1	Con 7d	–/Corn oil	_	0^{a}	7/(8)	3
2	Con 91d				90/(91)	3
3	ANIT 7d	1-Naphthylisothiocynate (ANIT)/corn oil	551-06-4	21	7/(8)	4
4	ANIT 91d				90/(91)	5
5	AAF 7d	2-Acetylaminofluorene (2-AAF)/corn oil	53-96-3	162	7/(8)	4
6	AAF 91d				90/(91)	5
7	DEN 7d	Diethylnitrosoamine (DEN)/corn oil	55-18-5	40	7/(8)	4
8	DEN 91d				7/(91) ^b	5
9	Mel 7d	Melphalan/corn oil	148-82-3	0.6	7/(8)	4
10	Mel 91d				90/(91)	5

^a Control animals that received vehicle alone

^b The animals in group DEN 91d stopped receiving a daily dose of diethylnitrosoamine after 7 days and were killed on day 91

exact test. In addition, biomarker filtration analysis of the selected gene set was performed using IPA software. The selected genes were annotated based on the NetAffyxTM and Ingenuity[®] systems.

Quantitative real-time PCR (RT-qPCR)

cDNA was synthesized from 2 μ g of total RNA using random primers and SuperscriptTM Reverse Transcriptase (Invitrogen) and subsequently diluted to 1:50 with RNAfree water. RT-qPCR was performed using QuantiTect SYBR Green PCR Master Mix (Qiagen) according to the manufacturer's instructions on a Rotor-Gene 3000 system (Corbett Research, Sydney, Australia). Gene-specific primers were designed using Primer3 software (http://frodo. wi.mit.edu/primer3/); the sequences are presented in Table 2. Melting curve analyses of all amplified samples were done to ensure the specificity and integrity of the amplified samples. *Gapdh* was used as an internal control. The relative mRNA level for the amplified gene of interest was determined by the 2^{$\Delta\Delta$ Ct} method (Livak and Schmittgen 2001).

Results

Survival and body/liver weight

During the experimental period, no animals died prematurely in the ANIT-, AAF-, Mel-treated groups, or control groups; however, 3 unscheduled deaths occurred among the DEN-treated rasH2 mice in the 91-d group. The final body weights and absolute and relative liver weights are shown in Table 3. The seven-day (7d) and 91-d chemicaltreated rasH2 mice did not differ significantly in body or

Table 2 Primers used for quantitative real-time PCR analysis

liver weight, except for the DEN-treated group. The mean body and liver weights in the DEN 7-d group were markedly reduced compared with those in the control, ANIT, AAF, and Mel 7-d groups; similarly, the relative liver weight was decreased slightly in the DEN 7-d group. The mean liver weights and relative liver weights for the rasH2 mice in the DEN 91-d group were significantly greater than those in the control, ANIT, AAF, and Mel 7-d groups.

Blood biochemistry and histopathology

Serum biochemical analyses to identify liver injury did not reveal significant differences among the control, ANIT-, AAF-, and Mel-treated rasH2 mice. However, the 7-d DEN-treated rasH2 mice showed significantly increased serum levels of AST, ALT, ALP, and TBIL, while the DEN 91-d group showed significantly increased serum AST, ALT, and ALP levels (Fig. 1). The 7- and 91-d DENtreated mice showed the most dramatic increase in serum ALP (Fig. 1).

No chemically induced or spontaneous neoplastic lesions were observed in the livers of the mice, including those that died prematurely. However, histopathologic examination revealed that treatment with ANIT or DEN induced mild to severe liver injury. Three rasH2 mice in the ANIT 7-d group exhibited mild inflammatory cell infiltration around the portal area, while 4 rasH2 mice in the ANIT 91-d group showed bile duct hypertrophy (data not shown). The livers of the rasH2 mice in the DEN 7-d group showed mild centrilobular hypertrophy (Fig. 2c, e). In the DEN 91-d group, hepatocelluar vacuolation, karyomegaly/cytomegaly, oval cell hyperplasia, bile duct hyperplasia, and mitosis were observed (Fig. 2d, f). No chemically induced histopathologic changes were detected in the 7- or 91-d control, AAF, and Mel groups.

Gene symbol	Forward primer	Reverse primer	Accession no.
Cdkn1a	GTGGCCTTGTCGCTGTCT	CCAATCTGCGCTTGGAGT	NM_007669
Ccng1	AATTGAGTCGGCCCATGA	CCAAGATGCTTCGCCTGT	NM_009831
Trp53inp1	CCAGGGATTGCCACACTC	GGCTGGAAGGAGACAGCA	NM_021897
Mdm2	AGTGACGAAGGGCACGAG	TGTGATGGAAGGGGAGGA	NM_021897
Tnfrsf10b	GAGGGGACAGCCATCCTT	GGAGGCCTGGGGTGTAGT	NM_020275
Tubb2c	TCGGTGTTGGACGTTGTG	GGGTACCCATCCCAGACC	NM_146116
Vcam1	TTGGGAGCCTCAACGGTA	GCCCGTAGTGCTGCAAGT	NM_011693
Serpinf1	TCAAGGGGCAGTGGGTAA	GCTGGGCAATCTTGCAGT	NM_011340
Cdkn1a	GCCTTAGCCCTCACTCTGTG	AGGGCCCTACCGTCCTACTA	NM_007669
Tnfrsf10b	GTCAGAAGGGAACTGCAAGC	GCATCGACACCGTATTTG	NM_020275
Bcl2L1	TGTGGATCTCTACGGGAACA	AAGAGTGAGCCCAGCAGAAC	NM_009743
Gapdh	TGACCACAGTCCATGCCATC	GACGGACACATTGGGGGGTAG	NM_008084

Table 3 Body weight, liverweight, and relative liver weight(g liver/100 g body)	Group	Body weight (g) ^a	Liver weight (g) ^a	Relative liver weight (g liver/100 g body) ^a
	7-day			
	Con 7d	21.83 ± 0.84	0.99 ± 0.06	4.55 ± 0.31
	ANIT 7d	22.30 ± 1.24	0.94 ± 0.05	4.20 ± 0.15
	AAF 7d	21.13 ± 1.51	0.86 ± 0.10	4.06 ± 0.42
	DEN 7d	$17.18 \pm 0.94^{**}$	$0.65 \pm 0.06^{**}$	$3.76 \pm 0.19^{**}$
	Mel 7d	22.20 ± 0.83	0.93 ± 0.05	4.18 ± 0.11
	91-day			
^a The values given are the	Con 91d	29.10 ± 2.12	1.11 ± 0.15	3.81 ± 0.26
mean \pm SD	ANIT 91d	27.70 ± 3.55	1.06 ± 0.08	3.84 ± 0.26
* Significantly different from	AAF 91d	$24.90 \pm 1.66*$	1.13 ± 0.13	$4.52 \pm 0.33^{*}$
the vehicle controls ($P < 0.05$)	DEN 91d	27.60 ± 0.21	$1.55 \pm 0.03^{*}$	$5.63 \pm 0.15^{**}$
** Significantly different from the vehicle controls ($P < 0.01$)	Mel 91d	$24.80 \pm 0.69^{**}$	1.12 ± 0.10	$4.50 \pm 0.34^{*}$

Gene expression analysis

Gene expression analysis was performed using three samples per group. Total RNA samples from the chemicaltreated groups were selected based on RNA integrity and blood biochemistry as well as histologic analysis. In the DEN 91-d group, only two samples were used for gene expression analysis due to unscheduled deaths during the experimental period. Each chemical-treated group was compared with the control group at the same time point. Significantly up- and down-regulated genes were identified by t tests at each time point (P < 0.05) combined with the requirement for at least a 1.2-fold change with respect to the mean intensity of the replicate samples. The number of differentially expressed genes is shown in Table 4. The remarkable increase in the number of differentially expressed genes in the DEN-treated groups is consistent with the elevated levels of serum markers and histopathologic findings. To identify whether the hepatocarcinogeninduced transcriptional effects observed on day 7 persisted until day 91, we profiled the significantly modulated genes in hepatocarcinogen-treated livers taken from mice in the 7- and 91-d groups for each chemical. In the AAF-treated rasH2 mice, 152 genes were identified as significantly deregulated on days 7 and 91, whereas 1,075 genes were so identified in the DEN-treated rasH2 mice.

To elucidate the underlying biological responses regulated by the genes whose expression was modulated by AAF and DEN, we carried out a statistical analysis using IPA software to identify the biological and toxicological functions of the selected gene sets. As shown in Fig. 3a, most of the predicted molecular and cellular functions overlapped between the AAF- and DEN-treated groups, except for amino acid metabolism, cellular response to therapeutics, energy production, free radical scavenging, post-translational modification, and protein synthesis. A toxicological function analysis focusing on hepatotoxicity was also performed for the same gene sets; the results are shown in Fig. 3b. The differentially expressed genes in the DEN 7- and 91-d groups were significantly associated with hepatocellular carcinoma, liver cirrhosis, liver cholestasis, liver necrosis/cell death, liver damage, liver hepatitis, liver hyperplasia, liver inflammation, liver proliferation, and liver steatosis, whereas the AAF-induced gene expression changes were significantly associated with hepatotoxic functions, including hepatocellular carcinoma, liver necrosis/cell death, and liver hepatitis.

Identification of candidate biomarkers

To identify candidate biomarkers that can predict hepatocarcinogenic effects at early time points, we sought to identify genes that displayed common gene expression patterns between the early and late time points in the AAFand DEN-treated groups. To this end, 52 and sixteen genes were identified as commonly up- and down-regulated in the AAF 7-d, AAF 91-d, DEN 7-d, and DEN 91-d groups, respectively. Gene expression profiles of the selected gene set discriminated the AAF- and DEN-treated groups from the control, ANIT-, and Mel-treated groups by hierarchical clustering analysis (Fig. 4). The expression levels of the genes selected as candidate biomarkers for hepatocarcinogenesis in each group are listed in Table 5. Biomarker filter analysis using IPA revealed that 28 of the 68 genes were feasible cancer biomarkers in humans and mice (Table 5). The 28 selected biomarkers were mainly involved in apoptosis (Bax, Tnfrsf10b, Bcl2l1, Trp53inp1, and Wwox), transport (Gria3, Ngo1, and Selenbp2), transcriptional regulation (Nfe2l2, Btg2, and Mybl1), the cell cycle (Cdkn1a and Mdm2), and cell adhesion (Vcam1).

Fig. 1 Blood biochemical analysis of the control and chemical-treated groups. AST aspartate transferase; ALT alanine transferase; ALP alanine phosphatase; TBIL total bilirubin; Tcho total cholesterol

RT-qPCR Verification

To verify our microarray data, which identified the commonly and significantly deregulated genes (i.e., candidate biomarkers), we selected eleven genes from Table 5 and determined their expression levels using RT-qPCR. The expression values obtained were consistent with the expression levels detected by microarray analysis (Fig. 5). Gene expression changes in the 7-d group were greater than those in the 91-d group in both AAF- and DEN-treated livers. The most prominent changes in expression were observed with cell cycle–related genes such as *Cdkn1a*, *Mdm2*, and *Ccng1*, and apoptosis-related genes such as *Trp53inp1* and *Tnfrsf10b*; expression of these genes was markedly increased (>10-fold) on day 7 in both the AFF- and DEN-treated rasH2 mice and showed slightly reduced expression in the 91-d groups. In contrast, *Nqo1* expression was consistent in all observed groups by microarray and RT-qPCR analyses. Several inconsistencies in expression were observed between the microarray and RT-qPCR analyses, including *Bax* and *Bcl211* expression in the AAF and DEN 91-d groups; however, most of the changes observed in the AAF and DEN groups were confirmed by RT-qPCR analysis.

Discussion

The aim of the current study was to investigate gene deregulation in the early stages of carcinogenesis caused by genotoxic hepatocarcinogens at early (7 days) and late

Fig. 2 Histopathologic examination of the livers of vehicle (a, b) and DEN-treated rasH2 mice (c-f). a Con 7d; b Con 91d; (c, e) DEN 7d, mild centrilobular hypertrophy was observed; (d, f) DEN 91d,

(91 days) time points in rasH2 mice and whether this information could be used to discriminate between the hepatocarcinogenic effects of various chemicals and eventually be employed as candidate biomarkers to predict hepatocarcinogenic potential. To accomplish this, we treated rasH2 mice with chemicals from three different well-characterized classes of agents, including AAF and DEN (genotoxic hepatocarcinogens), Mel (genotoxic carcinogen), and ANIT (nongenotoxic noncarcinogen), and we identified commonly deregulated genes in the AAF- and DEN-treated groups (AAF 7d, AAF 91d, DEN 7d, and DEN 91d) using toxicogenomic approaches. AAF and DEN are known to induce heptocarcinogenesis in rodents and humans; the carcinogenicity of the

hepatocelluar vacuolation, karyomegaly (*arrowhead*), cytomegaly of hepatocytes, oval cell hyperplasia (*arrow*), bile duct hyperplasia, and hepatocellular mitosis were observed $(200 \times)$

two carcinogens is listed in the Carcinogen Potency Data Base at http://potency.berkeley.edu/ (Gold et al. 1999, 2005). Toxicogenomics as well as cancer studies have been used together with AAF- and DEN-induced hepatocarcinogenesis in rodent models for the prediction of carcinogenic potential (Ellinger-Ziegelbauer et al. 2005; Fielden et al. 2008; Nakayama et al. 2006).

In the present study, treatment of rasH2 mice with DEN was found to affect body and liver weight. Furthermore, chemical-induced histopathologic lesions accompanying elevated serum biomarker levels were observed in DEN-treated rasH2 mice. In these mice, the levels of serum biomarkers indicating liver injury were dramatically

Table 4Differentiallyexpressed genes in rasH2 mouseliver after treatment with fourchemicals

Group	The numbers of signi	Statistical significance		
	Up-regulation	Down-regulation	(Welch's t test)	
7-day			P < 0.05	
ANIT 7d	322	204		
AAF 7d	397	462		
DEN 7d	2,474	3,274		
Mel 7d	384	514		
91-day				
ANIT 91d	227	162		
AAF 91d	376	389		
DEN 91d	1,155	1,756		
Mel 91d	484	505		

Fig. 3 Biological and toxicological functional analysis using IPA software. **a** Comparison of molecular and cellular functions among commonly deregulated genes in the DEN (7 and 91d) and AAF (7 and 91d) groups. **b** Comparison of the hepatotoxicologic functions among

elevated, and significant body and liver weight loss was observed in the 7-d group. In the 91-d DEN-treated group, however, various histopathologic lesions with significant liver weight gain were observed. Mild centrilobular hypertrophy was observed in the DEN 7-d group, while hepatocellular vacuolation, karyomegaly/cytomegaly, oval

commonly deregulated genes in the DEN (7 and 91 d) and AAF (7 and 91d) groups. The *orange line* indicates the threshold of statistical significance (P < 0.05)

cell hyperplasia, bile duct hyperplasia, and mitosis were observed in the DEN 91-d group. Oval cell hyperplasia is often observed in the livers of rats and mice after treatment with various hepatotoxins or during chemical-induced hepatocarcinogenesis (Factor et al. 1994; Sell and Dunsford 1989). It has been suggested that regeneration of the Fig. 4 Hierarchical clustering analysis of commonly and significantly expressed genes in AAF- and DEN-treated rasH2 mice. The gene expression profiles of the AAF- and DENtreated groups are discriminated from the control-, ANIT-, and Mel-treated groups

hepatic parenchyma after irreversible damage may occur via oval cell hyperplasia and that these cells may eventually differentiate into hepatocytes (Factor et al. 1994). Oval cell hyperplasia has also been observed during AAF- and DEN-induced hepatocarcinogenesis (Becker and Sell 1979; Koen et al. 1983). Karyomegaly and irregularly sized hepatocellular nuclei (i.e., anisonucleosis) were identified in the DEN 91-d group. This histopathologic change has been reported to be associated with toxicity due to chemical hepatocarcinogens such as AAF and DEN (Giri and Das 1996; Svoboda and Higginson 1968). Although DENinduced preneoplastic lesions such as hepatocellular altered foci were not identified in this study, our data indicate that the DEN-induced histopathologic changes in the rasH2 mouse livers in this study are consistent with the previous findings of chemical carcinogen-induced liver injury in rodents. On the other hand, treatment of rasH2 mice with AAF did not have any significant effect on serum levels of AST, ALT, ALP, TBIL, and hepatic histology. Although AAF has been widely used as a powerful carcinogen, which induces tumor in the liver of rodent, mouse is less susceptible to the hepatocarcinogenicity of AAF (Astrom et al. 1986; Travis et al. 1996). Therefore, it is seemed that the dose of AAF used in this study was not enough to induce histopathologic changes associated with hepatocarcinogenesis. In contrast to our blood biochemical and histopathologic observations, gene expression analysis indicated that the molecular mechanisms underlying the induction of hepatocarcinogenesis by AAF correlated well with DEN. Indeed, the significantly and commonly deregulated genes in the AAFand DEN-treated groups shared most of their molecular and cellular functions (Fig. 3a).

To date, several toxicogenomic studies employing chemically induced hepatocarcinogenesis in rats have been

Table 5 List of commonly and significantly deregulated genes in the 7- and 91-d AAF and DEN groups

	Probe ID	Gene symbol	Fold change				Accession no.
Up-regulation Ub 1044363 Cdin1a* 32.452 135.908 12.410 13.659 NM_0076 10570002 EG346032 25.072 60.745 7.277 16.578 XM_4806 1055570 46234411181k 7.010 33.590 4.587 4.111 NM_0010 10555570 46234411181k 7.010 33.590 4.587 4.111 NM_0010 1055570 46234411181k 7.010 33.590 4.587 4.111 NM_0010 1055716 Brg2* 2.041 21.804 1.642 3.568 NM_0075 10456400 Tubb6 1.523 16.061 1.401 2.514 NM_0089 10550146 Phida3 2.763 13.582 3.069 2.262 NM_0175 10416230 Tytr/10b* 2.085 10.620 2.014 1.869 AK05075 10437266 Aaas 2.374 9.667 1.634 1.621 NM_1020 10372668 Maas 2.073			AAF 7d	DEN 7d	AAF 91d	DEN 91d	
10443463 Cdkn1a* 32,452 135,908 12,410 13,659 NM_0076 10570002 EC546022 25,072 60,745 7,277 16,678 XM_486 10605874 Eda2r 9,771 34,665 6,954 5,004 NM_1755 1055570 463243411181k 7,010 33,590 4,587 4,111 NM_0016 1035300 Myb1* 3,084 24,385 2,428 5,098 NM_0016 10357875 Big2* 2,041 21,804 1,642 3,568 NM_0075 10407126 P1k2 3,566 16,701 4,327 2,425 NM_152 10455400 Tabb2e* 1,862 11,851 1,524 2,222 NM_1015 1045640 Ptiduad 2,763 13,582 3,069 2,262 NM_0173 10490503 Tabb2e* 1,862 11,851 1,524 2,223 NM_0107 10490637 Tabb2e* 1,863 1,837 0,433 1,714 N	Up-regulation						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10443463	Cdkn1a*	32.452	135.908	12.410	13.659	NM_007669
10605874 Eda2r 9.771 34.665 6.954 5.004 NML1755 1055570 47324411178ik 7.010 33.350 4.587 4.111 NML0086 1055501 Mybli* 3.084 24.385 2.428 5.098 NML0086 1055787 Btg2* 2.041 21.804 1.642 3.568 NML0264 1047126 Pik2 3.566 16.701 4.327 2.425 NML0264 1048628 Tubb6 1.523 16.061 1.401 2.514 NM_0264 10380146 Phida3 2.763 13.582 3.069 2.62 NML0137 103480628 Tubb2c* 1.862 11.851 1.524 2.223 NML1461 10416230 Tufpf10b* 2.085 10.620 2.014 1.869 AK05075 10372668 Mdm2* 3.331 10.130 2.285 1.732 NML0121 10432986 Aaas 2.374 9.667 1.634 1.621 NM_2026	10570002	EG546032	25.072	60.745	7.277	16.578	XM_486078
10565570 463243411Rik 7.010 33.590 4.587 4.111 NM_0010 10353010 Myb11* 3.084 24.385 2.428 5.098 NM_0068 10355775 Btg2* 2.041 21.804 1.642 3.568 NM_0075 10407126 Pik2 3.566 16.701 4.327 2.425 NM_1028 10355271 Cong1 4.770 14.908 3.417 2.779 NM_0098 10350146 Pikla3 2.763 13.582 3.069 2.262 NM_1040 10416230 Tufpsf10b* 2.085 10.620 2.014 1.869 AK05075 10372668 Mdm2* 3.331 10.130 2.285 1.732 NM_10107 10432986 Aaas 2.374 9.667 1.634 1.621 NM_152 1043316 - 1.567 9.077 1.386 1.576 NM_0190 10496373 Ddit4 1 2.435 6.656 1.918 2.649 NM_0391	10605874	Eda2r	9.771	34.665	6.954	5.004	NM_175540
10353010 Mybl1* 3.084 24.385 2.428 5.098 NM_0086 10599348 Gria3* 11.323 23.446 8.540 5.584 NM_0076 10407126 Pik2 3.566 16.701 4.327 2.425 NM_1528 10456400 Tubb6 1.523 16.061 1.401 2.514 NM_0086 10351747 Ceng1 4.770 14.908 3.417 2.779 NM_0098 10350146 Philda3 2.763 13.582 3.069 2.262 NM_1037 10480628 Tubb2c* 1.862 11.851 1.524 2.223 NM_1040 10416230 Tufrsf10b* 2.085 10.620 2.014 1.869 AK05075 10432986 Aaas 2.374 9.667 1.634 1.621 NM_1013 10432986 Aaas 2.073 6.157 1.955 2.511 NM_0218 1049316 - 1.567 9.077 1.386 1.576 NM_1099 <td>10565570</td> <td>4632434111Rik</td> <td>7.010</td> <td>33.590</td> <td>4.587</td> <td>4.111</td> <td>NM_001080995</td>	10565570	4632434111Rik	7.010	33.590	4.587	4.111	NM_001080995
10599348 Gria ^{3*} 11.323 23.446 8.540 5.584 NM_0168 10357875 Btg2* 2.041 21.804 1.642 3.568 NM_0072 10456400 Tubb6 1.523 16.661 1.401 2.145 NM_0264 1035016 Philo33 2.763 13.582 3.069 2.262 NM_0137 10440628 Tubb2e* 1.862 11.851 1.524 2.223 NM_1641 10416230 Tufrsf10b* 2.085 10.620 2.014 1.869 AK05075 10372668 Mdm2* 3.331 10.130 2.285 1.732 NM_0101 10432986 Aaas 2.374 9.667 1.634 1.621 NM_0153 10432986 Aaas 2.374 9.667 1.634 1.621 NM_0153 10432986 Aaas 2.374 9.667 1.334 1.621 NM_0201 1053205 Trp53inp1* 4.349 9.462 1.378 1.714 NM_0201	10353010	Mybl1*	3.084	24.385	2.428	5.098	NM_008651
10357875 Big^{2*} 2.04121.8041.6423.568NM_007510407126 $Pik2$ 3.56616.7014.3272.425NL_152310456400Tubb61.52316.0611.4012.514NM_026410355271 $Ceng1$ 4.77014.9083.4472.779NN_009810350146Phida32.76313.5823.0692.262NM_113710480628Tubb2e*1.86211.8511.5242.233NM_101710432986Aaas2.3749.6671.6341.621NM_152410411306Poik3.0099.5792.0641.645NM_012810432986Aaas2.3749.4621.3781.714NM_021810495316-1.5679.0771.3861.576NM_019910496373Ddit/12.4356.6561.9182.649NM_030810496373Ddit/12.4356.5641.9552.511NM_028310496617Enc1*1.6166.0181.3681.837AK043791040617Enc1*1.6166.0181.3681.831NN_02681042404Pvt1*1.6166.0181.3681.831NM_026810426016Greel1.5775.1511.3071.676NM_013810516932Sen23.0724.9291.6011.437NM_026810436016Greel1.5775.1511.3001.579NM_00761048	10599348	Gria3*	11.323	23.446	8.540	5.584	NM_016886
10407126 $Plk2$ 3.566 16.701 4.327 2.425 NM_1528 10456400 $Tubb6$ 1.523 16.061 1.401 2.514 NM_0098 10350146 $Philda3$ 2.763 13.582 3.069 2.262 NM_1017 10480628 $Tubb2c^*$ 1.862 11.851 1.524 2.223 NM_4061 10416230 $Thfrj10b^*$ 2.085 10.620 2.014 1.869 $Ak05075$ 10432986 $Aaas$ 2.374 9.667 1.634 1.621 NM_107 10432986 $Aaas$ 2.374 9.667 1.634 1.621 NM_107 10432986 $Aaas$ 2.374 9.667 1.634 1.621 NM_0107 10432986 $Aaas$ 2.374 9.667 1.634 1.621 NM_0109 10503259 $Trp53inp1*$ 4.349 9.462 1.378 1.714 NM_0208 10495316 $ 1.567$ 9.077 1.386 1.576 NM_0109 10496373 $Ddit41$ 2.435 6.656 1.918 2.649 NM_0301 10540105 $Tmem43$ 2.073 6.157 1.955 2.130 NM_0208 1042404 $Put1*$ 1.616 6.018 1.368 1.837 $AK0379$ 10406817 $Enc1*$ 1.695 5.674 1.276 2.050 NM_0075 10452016 $Gise1$ 1.577 5.151 1.307 1.676 NM_01266 1054233 $hs2011$ 2	10357875	Btg2*	2.041	21.804	1.642	3.568	NM_007570
10456400 Tubb6 1.523 16.061 1.401 2.514 NM_0264 1035271 Cong1 4.770 14.908 3.417 2.779 NM_0098 10350146 Philda3 2.763 13.582 3.069 2.262 NM_0137 10480628 Tub52* 1.852 1.851 1.524 2.223 NM_1461 1041230 Tnfrsf10b* 2.085 10.620 2.014 1.869 AK05075 10372668 Man2* 3.331 10.130 2.285 1.732 NM_0107 10432986 Aaas 2.374 9.667 1.634 1.645 NM_01218 10431306 Polk 3.009 9.579 2.064 1.645 NM_01919 10496373 Dditi I 2.435 6.656 1.918 2.649 NM_0301 1049673 Zma3 1.731 6.039 2.755 2.130 NM_0079 1042617 Encl* 1.616 6.018 1.368 1.837 AK04379	10407126	Plk2	3.566	16.701	4.327	2.425	NM_152804
10385271 $Cengl$ 4.77014.9083.4172.779NM_009810350146 $Philda3$ 2.76313.5823.0692.262NM_1013710480628 $Tubb2c^*$ 1.86211.8511.5242.223NM_146110416230 $Tufrsf10b^*$ 2.08510.6202.0141.869AK0507510372668 $Mdm2^*$ 3.33110.1302.2851.732NM_010710432986 $Aaas$ 2.3749.6671.6341.621NM_153410411306 $Polk$ 3.0099.5792.0641.645NM_012010503259 $Trp53inp1^*$ 4.3499.4621.3781.714NM_021810495316-1.5679.0771.3861.576NM_019910496373 $Ddit4 1$ 2.4356.6561.9182.649NM_030110540105 $Tmemd3$ 2.0736.1571.9552.511NM_028710497673 $Zmat3$ 1.7316.0181.3681.837AK037910406817 $Enc1^*$ 1.6655.6741.2762.050NM_00951054033 $lsg2011$ 2.2155.2451.9881.381NM_26810426016 $Grse1$ 1.5775.1511.3071.676NM_011810554253 $lsg2011^*$ 1.6694.2641.7471.847NM_012610426016 $Grse1$ 1.5763.0724.9291.6011.437NM_172710489759 $Sul2$ 1.7984.551 <td>10456400</td> <td>Tubb6</td> <td>1.523</td> <td>16.061</td> <td>1.401</td> <td>2.514</td> <td>NM_026473</td>	10456400	Tubb6	1.523	16.061	1.401	2.514	NM_026473
10350146Phida32.76313.5823.0692.262NM_013710480628Tubb2c*1.86211.8511.5242.223NN_146110416230Tyfrsf10b*2.08510.6202.0141.869AK0507510372668Mdm2*3.33110.1302.2851.732NN_010710432986Aaas2.3749.6671.6341.621NM_153410411306Polk3.0099.5792.0641.645NN_012010503259Trp53inp1*4.3499.4621.3781.714NN_0218104953165679.0771.3861.576NM_019910496373Ddit4 12.4356.6561.9182.649NM_030110540105Tmem432.0736.1571.9552.511NM_00931042404Pvt1*1.6166.0181.3681.837AK0437910406817Enc1*1.6955.6741.2762.050NM_007310406817Enc1*1.6955.6741.2762.050NM_007310406817Enc1*1.6955.6741.2762.050NM_007310406817Enc1*1.6694.2441.7471.847NM_12810426016Gtse11.5775.1511.3071.676NM_018810574545Cec53.0724.9291.6011.437NM_122610574545Ces53.0724.9291.6011.437NM_02681057	10385271	Ccng1	4.770	14.908	3.417	2.779	NM_009831
10480628Tubb2c*1.86211.8511.5242.223NM_146110416230Tufyrf10b*2.08510.6202.0141.869AK0507510372668Mdm2*3.33110.1302.2851.732NM_010710432986Aaas2.3749.6671.6341.621NM_153410411306Polk3.0099.5792.0641.645NM_012010503259Trp53inp1*4.3499.4621.3781.714NM_021810495316-1.5679.0771.3861.576NM_019910496373Didit 12.4356.6561.9182.649NM_003710540105Tmem432.0736.1571.9552.511NM_028710497673Zmat31.7316.0392.7552.130NM_00951042404Pvt1*1.6166.0181.3681.837AK043791040617Encl*1.6955.6741.2762.050NM_1047910516932Sesn21.8325.5391.4331.255NM_146110554233Isg20112.2155.2451.9881.381NM_2026010542016Gtse11.5775.1511.3071.676NM_013810574545Ces53.0724.9291.6011.437NM_17271048675Del211*1.6694.2641.7471.847NM_016010510608Vcam1*1.7024.1961.5592.491NM_0166 <t< td=""><td>10350146</td><td>Phlda3</td><td>2.763</td><td>13.582</td><td>3.069</td><td>2.262</td><td>NM_013750</td></t<>	10350146	Phlda3	2.763	13.582	3.069	2.262	NM_013750
10416230 $Tufrsf10b^*$ 2.08510.6202.0141.869AK0507510372668 $Mdm2^*$ 3.33110.1302.2851.732NM_010710432986 $Aaas$ 2.3749.6671.6341.621NM_153410411306 $Polk$ 3.0099.5792.0641.645NM_012810503259 $Trp53inp1^*$ 4.3499.4621.3781.714NM_021810495316-1.5679.0771.3861.576NM_019910496373 $Ddit4l$ 2.4356.6561.9182.649NM_030110540105 $Tmend-3$ 2.0736.1571.9552.511NM_028710497673 $Zmat3$ 1.7316.0392.7552.130NM_00951042404 $Pvt1^*$ 1.6166.0181.3681.837AK0437910406817 $Enc1^*$ 1.6955.6741.2762.050NM_007510516932 $Sesn2$ 1.8325.5391.4331.255NM_144910554233 $Isg201l$ 2.2155.2451.9881.381NM_028610426016 $Gtsel$ 1.5775.1511.3071.676NM_013810574545 $Ces5$ 3.0724.9291.6011.437NM_016210510464 $Lzic$ 1.7194.4091.4681.469NM_026910510464 $Lzic$ 1.7024.1961.5592.491NM_01611051058 $Bcl21l*$ 1.5263.7551.3001.559	10480628	Tubb2c*	1.862	11.851	1.524	2.223	NM_146116
10372668 $Mdm2^*$ 3.33110.1302.2851.732 NM_0107 10432986 $Aaas$ 2.3749.6671.6341.621 NM_1534 10411306 $Polk$ 3.0099.5792.0641.445 NM_0102 10503259 $Trp53inp1^*$ 4.3499.4621.3781.714 NM_0218 10495316-1.5679.0771.3861.576 NM_0199 10496373 $Ddit4 l$ 2.4356.6561.9182.649 NM_00301 10540105 $Tmem43$ 2.0736.1571.9552.511 NM_00287 1047673 $Zmat3$ 1.7316.0392.7552.130 NM_0095 1042404 $Pvt1^*$ 1.61660181.3681.837AK0437910406817 $Encl^*$ 1.6955.6741.2762.050NM_007510516932 $Sesn2$ 1.8325.5391.4331.255NM_144910554233 $Isg20ll$ 2.2155.2451.9881.381NM_026510426016 $Gisel$ 1.5775.1511.3071.676NM_011810510464 $Lzic$ 1.7194.4091.4681.469NM_026910551068 $Vcam1^*$ 1.5263.5971.7121.375NM_007510438575 $-^*$ 1.4563.6591.2061.378 $-$ 1056303 Bax^* 1.6553.5971.7121.375NM_00761038763 $Bc2ll^*$ 1.7863.5781.730 <td< td=""><td>10416230</td><td>Tnfrsf10b*</td><td>2.085</td><td>10.620</td><td>2.014</td><td>1.869</td><td>AK050753</td></td<>	10416230	Tnfrsf10b*	2.085	10.620	2.014	1.869	AK050753
10432986Aaas2.3749.6671.6341.621NM_153410411306Polk3.0099.5792.0641.645NM_012010503259 $Trp53inp1*$ 4.3499.4621.3781.714NM_02181049373Ddir4 12.4356.6561.9182.649NM_03011054015 $Tmen43$ 2.0736.1571.9552.511NM_028710497673 $Zmat3$ 1.7316.0392.7552.130NM_009510424404 $Pvt1*$ 1.6166.0181.3681.837AK0437910406817 $Enc1*$ 1.6955.6741.2762.050NM_007910516932 $Sen2$ 1.8325.5391.4331.255NM_144910426016 $Gisel$ 1.5775.1511.3071.676NM_012810426016 $Gisel$ 1.5775.1511.3071.676NM_028010514545 $Ces5$ 3.0724.9291.6011.437NM_12261057931 $Gdf15*$ 1.6694.2641.7471.847NM_011610561162 $Cyp2a22$ 2.2614.1392.1922.581XM_004710488555 $Bcl211*$ 1.5263.5781.7301.559NM_007710488555 $Bcl211*$ 1.5263.5781.7301.452NM_00761036067 $Cyp2a22$ 2.2614.1392.1922.581XM_007610436967 $Cyr1*$ 1.7663.5781.7301.452 <td< td=""><td>10372668</td><td>Mdm2*</td><td>3.331</td><td>10.130</td><td>2.285</td><td>1.732</td><td>NM_010786</td></td<>	10372668	Mdm2*	3.331	10.130	2.285	1.732	NM_010786
10411306Polk 3.009 9.579 2.064 1.645 NM_012010503259 $Trp53inp1*$ 4.349 9.462 1.378 1.714 NM_021810495316- 1.567 9.077 1.386 1.576 NM_019910496373Ddit4 1 2.435 6.656 1.918 2.649 NM_030110540105Tmem43 2.073 6.157 1.955 2.511 NM_028710497637Zmai3 1.731 6.039 2.755 2.130 NM_007910497637Encl* 1.616 6.018 1.368 1.837 AK0437910496817Encl* 1.695 5.674 1.276 2.050 NM_007910516932Sesn2 1.832 5.39 1.433 1.255 NM_144910542433 $lsg20H$ 2.215 5.245 1.988 1.381 NM_026510426016Gtse1 1.577 5.151 1.307 1.676 NM_013810574545Ces5 3.072 4.929 1.601 1.437 NM_172710489759 $Sulf2$ 1.798 4.551 1.703 1.713 NM_026910579331Gdf15* 1.669 4.264 1.747 1.847 NM_011610561162 $Cyp2a22$ 2.261 4.139 2.192 2.581 XM_0047 10488555 $Bcl2H*$ 1.556 3.578 1.730 1.452 NM_007510436667 $Chr1*$ 1.786 3.578 1.730 1.452 <td>10432986</td> <td>Aaas</td> <td>2.374</td> <td>9.667</td> <td>1.634</td> <td>1.621</td> <td>NM_153416</td>	10432986	Aaas	2.374	9.667	1.634	1.621	NM_153416
10503259 $Trp53inp1^*$ 4.349 9.462 1.378 1.714 NM_0218 10495316 - 1.567 9.077 1.386 1.576 NM_0199 10496373 $Ddit4$ 2.435 6.656 1.918 2.649 NM_0301 10540105 $Tmem43$ 2.073 6.157 1.955 2.511 NM_00287 10497673 $Zmat3$ 1.731 6.039 2.755 2.130 NM_0095 10424404 $Pvt1^*$ 1.616 6.018 1.368 1.837 $AK04379$ 10406817 $Enc1^*$ 1.695 5.674 1.276 2.050 NM_0079 10516932 $Sesn2$ 1.832 5.539 1.433 1.255 NM_1049 10426016 $Gtse1$ 1.577 5.151 1.307 1.676 NM_0138 10574545 $Ces5$ 3.072 4.929 1.601 1.437 NM_0280 10510464 $Lzic$ 1.719 4.409 1.468 1.469 NM_0260 1057031 $Gdf15^*$ 1.669 4.264 1.747 1.847 NM_0118 10570331 $Gdf15^*$ 1.669 4.264 1.747 1.847 NM_0104 1058303 Bax^* 1.655 3.597 1.712 1.375 NM_0076 10397763 $9.030617003Rik^*$ 3.157 3.550 2.262 1.685 NM_1454 10537102 $Exoc4$ 2.932 3.112 1.983 1.816 NM_0076 <t< td=""><td>10411306</td><td>Polk</td><td>3.009</td><td>9.579</td><td>2.064</td><td>1.645</td><td>NM_012048</td></t<>	10411306	Polk	3.009	9.579	2.064	1.645	NM_012048
10495316-1.5679.0771.3861.576NM_019910496373Ddit4 12.4356.6561.9182.649NM_030110540105Tmem432.0736.1571.9552.511NM_028710497673Zmat31.7316.0392.7552.130NM_009510424404Pvt1*1.6166.0181.3681.837AK0437910406817Encl*1.6955.6741.2762.050NM_007910516932Sesn21.8325.5391.4331.255NM_144910554233Isg20112.2155.2451.9881.381NM_008510426016Gisel1.5775.1511.3071.676NM_013810574545Ces53.0724.9291.6011.437NM_172710489759Sulf21.7984.5511.7031.713NM_026010510464Lzic1.7194.4091.4681.469NM_026910579331Gdf15*1.6694.2641.7471.847NM_011810561068Vcam1*1.7024.1961.5592.491NM_01410488575 $-*$ 1.4563.6591.2061.378-10563303Bax*1.6563.5781.7301.452NM_007510438677Cbr1*1.7863.5781.7301.452NM_0076103977639030617003Rik*3.1573.5502.2621.685NM_145410537102 <td>10503259</td> <td>Trp53inp1*</td> <td>4.349</td> <td>9.462</td> <td>1.378</td> <td>1.714</td> <td>NM_021897</td>	10503259	Trp53inp1*	4.349	9.462	1.378	1.714	NM_021897
10496373Ddit4 l2.4356.6561.9182.649NM_030110540105Tmem432.0736.1571.9552.511NM_028710497673Zmat31.7316.0392.7552.130NM_00951042404 $Pvt1^*$ 1.6166.0181.3681.837AK0437910406817Encl*1.6955.6741.2762.050NM_00751051692Sesn21.8325.5391.4331.255NM_144910554233Isg20ll2.2155.2451.9881.381NM_028610426016Gisel1.5775.1511.3071.676NM_013810574545Ces53.0724.9291.6011.437NM_1028010510464Lzic1.7194.4091.4681.469NM_026910551035Sulf21.7024.1961.5592.491NM_01181051068Vcam1*1.7024.1961.5592.491NM_014610561162Cyp2a222.2614.1392.1922.581XM_001410488575 $-*$ 1.4563.6591.2061.378-1043667Chrl*1.7863.5781.7301.452NM_00751043667Chrl*1.7863.5781.7301.452NM_007610397639030617003Rik*3.1573.5502.2621.685NM_145410537102Exoc42.9323.1121.9831.816NM_00911042467	10495316	-	1.567	9.077	1.386	1.576	NM_019976
10540105 $Tmem43$ 2.073 6.157 1.955 2.511 NM_0287 10497673 $Zmat3$ 1.731 6.039 2.755 2.130 NM_0095 10424404 $Pvt1*$ 1.616 6.018 1.368 1.837 $AK04379$ 10406817 $Enc1*$ 1.695 5.674 1.276 2.050 NM_0079 10516932 $Sesn2$ 1.832 5.539 1.433 1.255 NM_1449 10554233 $Isg2011$ 2.215 5.245 1.988 1.381 NM_0265 10426016 $Grsel$ 1.577 5.151 1.307 1.676 NM_0138 10574545 $Ces5$ 3.072 4.929 1.601 1.437 NM_1727 10489759 $Sulf2$ 1.798 4.551 1.703 1.713 NM_0280 1051044 $Lzic$ 1.719 4.409 1.468 1.469 NM_0269 10579331 $Gdf15*$ 1.669 4.264 1.747 1.847 NM_0118 10561068 $Vcam1*$ 1.702 4.196 1.559 2.491 NM_01416 10488655 $Bcl211*$ 1.526 3.755 1.300 1.559 NM_0075 10488675 $-*$ 1.456 3.659 1.206 1.378 $ 10563303$ $Bax*$ 1.655 3.597 1.712 1.375 NM_0076 10436967 $Cbr1*$ 1.786 3.578 1.730 1.452 NM_0075 10436967 <td< td=""><td>10496373</td><td>Ddit4 l</td><td>2.435</td><td>6.656</td><td>1.918</td><td>2.649</td><td>NM_030143</td></td<>	10496373	Ddit4 l	2.435	6.656	1.918	2.649	NM_030143
10497673 Zmat3 1.731 6.039 2.755 2.130 NM_0095 10424404 Pvt1* 1.616 6.018 1.368 1.837 AK04379 10406817 Encl* 1.695 5.674 1.276 2.050 NM_0079 10516932 Sesn2 1.832 5.539 1.433 1.255 NM_1449 10554233 Isg2011 2.215 5.245 1.988 1.381 NM_0265 10426016 Gtse1 1.577 5.151 1.307 1.676 NM_0138 10574545 Ces5 3.072 4.929 1.601 1.437 NM_1727 10489759 Sulf2 1.798 4.551 1.703 1.713 NM_0269 1051044 Lzic 1.719 4.409 1.468 1.469 NM_0269 10516162 Cyp2a22 2.261 4.139 2.192 2.581 XM_0014 10488555 Bcl211* 1.526 3.755 1.300 1.559 NM_0075 <t< td=""><td>10540105</td><td>Tmem43</td><td>2.073</td><td>6.157</td><td>1.955</td><td>2.511</td><td>NM_028766</td></t<>	10540105	Tmem43	2.073	6.157	1.955	2.511	NM_028766
10424404 $Pvtl*$ 1.616 6.018 1.368 1.837 $AK04379$ 10406817 $Encl*$ 1.695 5.674 1.276 2.050 NM_0079 10516932 $Sesn2$ 1.832 5.539 1.433 1.255 NM_1449 10554233 $Isg20ll$ 2.215 5.245 1.988 1.381 NM_0265 10426016 $Gtsel$ 1.577 5.151 1.307 1.676 NM_0138 10574545 $Ces5$ 3.072 4.929 1.601 1.437 NM_1727 10489759 $Sulf2$ 1.798 4.551 1.703 1.713 NM_0280 10510464 $Lzic$ 1.719 4.409 1.468 1.469 NM_0269 10579331 $Gdf15*$ 1.669 4.264 1.747 1.847 NM_0118 10501608 $Vcanl*$ 1.702 4.196 1.559 2.491 NM_0014 1048855 $Bc/211*$ 1.526 3.755 1.300 1.559 NM_0097 10488575 $-*$ 1.456 3.659 1.206 1.378 $ 10563303$ $Bax*$ 1.655 3.578 1.730 1.452 NM_0076 10397763 $9030617003Rik*$ 3.157 3.550 2.262 1.685 NM_1444 10537102 $Exoc4$ 2.932 3.112 1.983 1.816 M_0097 10424676 $Ly6e*$ 2.467 3.085 3.076 4.567 NM_0085 10441270 </td <td>10497673</td> <td>Zmat3</td> <td>1.731</td> <td>6.039</td> <td>2.755</td> <td>2.130</td> <td>NM_009517</td>	10497673	Zmat3	1.731	6.039	2.755	2.130	NM_009517
10406817 $Encl^*$ 1.695 5.674 1.276 2.050 NM_0079 10516932 $Sesn2$ 1.832 5.539 1.433 1.255 NM_1449 10554233 $Isg20ll$ 2.215 5.245 1.988 1.381 NM_0265 10426016 $Gtsel$ 1.577 5.151 1.307 1.676 NM_0138 10574545 $Ces5$ 3.072 4.929 1.601 1.437 NM_1727 10489759 $Sulf2$ 1.798 4.551 1.703 1.713 NM_0280 10510464 $Lzic$ 1.719 4.409 1.468 1.469 NM_0269 10579331 $Gdf15*$ 1.669 4.264 1.747 1.847 NM_0118 10501608 $Vcanl*$ 1.702 4.196 1.559 2.491 NM_0014 1048855 $Bcl2ll*$ 1.526 3.755 1.300 1.559 NM_0097 10488575 $-*$ 1.456 3.659 1.206 1.378 $ 10563303$ $Bax*$ 1.655 3.597 1.712 1.375 NM_0076 10397763 $9030617003Rik*$ 3.157 3.550 2.262 1.685 NM_1454 10537102 $Exoc4$ 2.932 3.112 1.983 1.816 NM_0083 10441270 $Ripk4$ 1.323 3.033 1.293 1.248 NM_0236 10441266 $Noch1*$ 1.777 3.004 1.906 1.581 NM_0036	10424404	Pvt1*	1.616	6.018	1.368	1.837	AK043790
10516932 Sesn2 1.832 5.539 1.433 1.255 NM_1449 10554233 Isg2011 2.215 5.245 1.988 1.381 NM_0265 10426016 Gtse1 1.577 5.151 1.307 1.676 NM_0138 10574545 Ces5 3.072 4.929 1.601 1.437 NM_0260 10489759 Sulf2 1.798 4.551 1.703 1.713 NM_0260 10510464 Lzic 1.719 4.409 1.468 1.469 NM_0269 10510464 Lzic 1.719 4.409 1.468 1.469 NM_0269 10510608 Vcam1* 1.702 4.196 1.559 2.491 NM_0116 10561162 Cyp2a22 2.261 4.139 2.192 2.581 XM_0014 1048655 Bcl211* 1.526 3.755 1.300 1.559 NM_0076 1048655 Bcd211* 1.526 3.578 1.712 1.375 NM_0076 <	10406817	Enc1*	1.695	5.674	1.276	2.050	NM_007930
10554233 $Isg20II$ 2.215 5.245 1.988 1.381 NM_0265 10426016 $GiseI$ 1.577 5.151 1.307 1.676 NM_0138 10574545 $Ces5$ 3.072 4.929 1.601 1.437 NM_1727 10489759 $Sulf2$ 1.798 4.551 1.703 1.713 NM_0280 10510464 $Lzic$ 1.719 4.409 1.468 1.469 NM_0269 10579311 $Gdf15*$ 1.669 4.264 1.747 1.847 NM_0118 10501608 $Vcam1*$ 1.702 4.196 1.559 2.491 NM_0014 10561162 $Cyp2a22$ 2.261 4.139 2.192 2.581 XM_0014 1048855 $Bcl211*$ 1.526 3.755 1.300 1.559 NM_0097 10488575 $-*$ 1.456 3.659 1.206 1.378 $ 1056303$ $Bax*$ 1.655 3.597 1.712 1.375 NM_0076 10397763 $9030617003Rik*$ 3.157 3.550 2.262 1.685 NM_1454 10537102 $Exoc4$ 2.932 3.112 1.983 1.816 NM_0091 10424676 $Ly6e*$ 2.467 3.085 3.076 4.567 NM_0085 10441270 $Ripk4$ 1.323 3.033 1.293 1.248 NM_0236 10441050 $Notch1*$ 1.077 3.004 1.906 1.581 NM_00376 <td>10516932</td> <td>Sesn2</td> <td>1.832</td> <td>5.539</td> <td>1.433</td> <td>1.255</td> <td>NM_144907</td>	10516932	Sesn2	1.832	5.539	1.433	1.255	NM_144907
10426016 $Gtsel$ 1.577 5.151 1.307 1.676 NM_0138 10574545 $Ces5$ 3.072 4.929 1.601 1.437 NM_1727 10489759 $Sulf2$ 1.798 4.551 1.703 1.713 NM_0280 10510464 $Lzic$ 1.719 4.409 1.468 1.469 NM_0269 10579331 $Gdf15*$ 1.669 4.264 1.747 1.847 NM_0118 10501608 $Vcam1*$ 1.702 4.196 1.559 2.491 NM_0116 10561162 $Cyp2a22$ 2.261 4.139 2.192 2.581 XM_0014 10488655 $Bcl211*$ 1.526 3.755 1.300 1.559 NM_0076 10488657 $-*$ 1.456 3.659 1.206 1.378 $ 10563303$ $Bax*$ 1.655 3.597 1.712 1.375 NM_0076 10397763 $9030617003Rik*$ 3.157 3.550 2.262 1.685 NM_1454 10537102 $Exoc4$ 2.932 3.112 1.983 1.816 NM_0081 10424676 $Ly6e*$ 2.467 3.085 3.076 4.567 NM_0085 10441270 $Ripk4$ 1.323 3.033 1.293 1.248 NM_0036 10441266 $Notch1*$ 1.777 3.004 1.906 1.581 NM_0086	10554233	Isg2011	2.215	5.245	1.988	1.381	NM_026531
10574545 Ces5 3.072 4.929 1.601 1.437 NM_1727 10489759 Sulf2 1.798 4.551 1.703 1.713 NM_0260 10510464 Lzic 1.719 4.409 1.468 1.469 NM_0260 10579331 Gdf15* 1.669 4.264 1.747 1.847 NM_0118 10501608 Vcan1* 1.702 4.196 1.559 2.491 NM_0146 10561162 Cyp2a22 2.261 4.139 2.192 2.581 XM_0014 10488655 Bcl211* 1.526 3.755 1.300 1.559 NM_0097 10488655 Bcl211* 1.526 3.659 1.206 1.378 - 10563303 Bax* 1.655 3.597 1.712 1.375 NM_0076 10438967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_0087	10426016	Gtsel	1.577	5.151	1.307	1.676	NM_013882
10489759 Sulf2 1.798 4.551 1.703 1.713 NM_0280 10510464 Lzic 1.719 4.409 1.468 1.469 NM_0269 10579331 Gdf15* 1.669 4.264 1.747 1.847 NM_0118 10501608 Vcam1* 1.702 4.196 1.559 2.491 NM_0116 10561162 Cyp2a22 2.261 4.139 2.192 2.581 XM_0014 10488655 Bcl2l1* 1.526 3.755 1.300 1.559 NM_0097 10488575 -* 1.456 3.659 1.206 1.378 - 10563303 Bax* 1.655 3.597 1.712 1.375 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0085 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 N	10574545	Ces5	3.072	4.929	1.601	1.437	NM_172759
10510464Lzic1.7194.4091.4681.469NM_026910579331Gdf15*1.6694.2641.7471.847NM_011810501608Vcan1*1.7024.1961.5592.491NM_011610561162Cyp2a222.2614.1392.1922.581XM_001410488655Bcl2l1*1.5263.7551.3001.559NM_009710488575-*1.4563.6591.2061.378-10563303Bax*1.6553.5971.7121.375NM_007510436967Cbr1*1.7863.5781.7301.452NM_0076103977639030617003Rik*3.1573.5502.2621.685NM_145410537102Exoc42.9323.1121.9831.816NM_009110424676Ly6e*2.4673.0853.0764.567NM_008510441270Ripk41.3233.0331.2931.248NM_023610481056Notch1*1.7773.0041.9061.581NM_0087	10489759	Sulf2	1.798	4.551	1.703	1.713	NM_028072
10579331Gdf15*1.6694.2641.7471.847NM_011810501608Vcam1*1.7024.1961.5592.491NM_011610561162Cyp2a222.2614.1392.1922.581XM_001410488655Bcl2l1*1.5263.7551.3001.559NM_009710488575-*1.4563.6591.2061.378-10563303Bax*1.6553.5971.7121.375NM_007510436967Cbr1*1.7863.5781.7301.452NM_0076103977639030617003Rik*3.1573.5502.2621.685NM_145410537102Exoc42.9323.1121.9831.816NM_008710424676Ly6e*2.4673.0853.0764.567NM_008510441270Ripk41.3233.0331.2931.248NM_008710481056Notch1*1.7773.0041.9061.581NM_0087	10510464	Lzic	1.719	4.409	1.468	1.469	NM_026963
10501608 Vcan1* 1.702 4.196 1.559 2.491 NM_0116 10561162 Cyp2a22 2.261 4.139 2.192 2.581 XM_0014 10488655 Bcl2l1* 1.526 3.755 1.300 1.559 NM_0097 10488575 -* 1.456 3.659 1.206 1.378 - 10563303 Bax* 1.655 3.597 1.712 1.375 NM_0075 10436967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0236 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087 <td>10579331</td> <td>Gdf15*</td> <td>1.669</td> <td>4.264</td> <td>1.747</td> <td>1.847</td> <td>NM_011819</td>	10579331	Gdf15*	1.669	4.264	1.747	1.847	NM_011819
10561162 Cyp2a22 2.261 4.139 2.192 2.581 XM_0014 10488655 Bcl2l1* 1.526 3.755 1.300 1.559 NM_0097 10488575 -* 1.456 3.659 1.206 1.378 - 10563303 Bax* 1.655 3.597 1.712 1.375 NM_0075 10436967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0085 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0236 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10501608	Vcam1*	1.702	4.196	1.559	2.491	NM_011693
10488655 Bcl2l1* 1.526 3.755 1.300 1.559 NM_0097 10488575 -* 1.456 3.659 1.206 1.378 - 10563303 Bax* 1.655 3.597 1.712 1.375 NM_0075 10436967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0087 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10561162	Cyp2a22	2.261	4.139	2.192	2.581	XM_001480937
10488575 -* 1.456 3.659 1.206 1.378 - 10563303 Bax* 1.655 3.597 1.712 1.375 NM_0075 10436967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0087 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10488655	Bcl2l1*	1.526	3.755	1.300	1.559	NM_009743
10563303 Bax* 1.655 3.597 1.712 1.375 NM_0075 10436967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0087 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10488575	_*	1.456	3.659	1.206	1.378	_
10436967 Cbr1* 1.786 3.578 1.730 1.452 NM_0076 10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0087 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10563303	Bax*	1.655	3.597	1.712	1.375	NM_007527
10397763 9030617003Rik* 3.157 3.550 2.262 1.685 NM_1454 10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0087 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10436967	Cbr1*	1.786	3.578	1.730	1.452	NM_007620
10537102 Exoc4 2.932 3.112 1.983 1.816 NM_0091 10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0087 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10397763	9030617003Rik*	3.157	3.550	2.262	1.685	NM_145448
10424676 Ly6e* 2.467 3.085 3.076 4.567 NM_0085 10441270 Ripk4 1.323 3.033 1.293 1.248 NM_0236 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087	10537102	Exoc4	2.932	3.112	1.983	1.816	NM_009148
10441270 <i>Ripk4</i> 1.323 3.033 1.293 1.248 NM_0236 10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087 10472002 P220120112111* 1.041 2.022 1.012 1.500 NM_0087	10424676	Ly6e*	2.467	3.085	3.076	4.567	NM_008529
10481056 Notch1* 1.777 3.004 1.906 1.581 NM_0087 10472002 D2201201121 1.011 2.022 1.012 1.500 NM_0087	10441270	Ripk4	1.323	3.033	1.293	1.248	NM_023663
	10481056	Notch1*	1.777	3.004	1.906	1.581	NM_008714
104/2893 B230120H23Rik* 1.941 2.992 1.813 1.509 NM 0230	10472893	B230120H23Rik*	1.941	2.992	1.813	1.509	NM_023057
10375234 Nudcd2 1.638 2.826 1.455 1.234 NM 0260	10375234	Nudcd2	1.638	2.826	1.455	1.234	NM_02602
10581538 Ngol* 2.332 2.806 2.251 2.607 NM 0087	10581538	Nqo1*	2.332	2.806	2.251	2.607	NM_008706
10573549 Fbxw9 1.298 2.802 1.218 1.293 NM 0267	10573549	Fbxw9	1.298	2.802	1.218	1.293	NM_026791
10393341 Rhbdf2 1.346 2.662 1.326 1.561 NM_1725	10393341	Rhbdf2	1.346	2.662	1.326	1.561	NM_172572

Table 5 continued

Probe ID	Gene symbol	Fold change	Accession no.			
		AAF 7d	DEN 7d	AAF 91d	DEN 91d	
10483809	Nfe212*	1.784	2.425	1.911	1.539	NM_010902
10437639	Emp2*	1.371	2.073	1.456	1.750	NM_007929
10360684	Ephx1*	1.956	2.063	1.568	1.478	NM_010145
10462473	Mbl2	2.545	1.737	1.950	1.314	NM_010776
10488589	5430432M24Rik	1.265	1.608	1.291	1.269	NM_028666
10424781	Grina	1.341	1.447	1.232	1.304	NM_023168
Down-regulation	on					
10515574	St3gal3	-1.247	-1.218	-1.294	-1.348	NM_009176
10575706	Wwox*	-1.680	-2.204	-1.250	-1.260	NM_019573
10584187	-	-1.440	-2.209	-1.292	-1.821	_
10451559	1700001C19Rik	-1.304	-2.304	-1.360	-1.529	NM_029296
10493494	ENSMUSG0000074470	-1.514	-2.402	-1.479	-1.629	AK140090
10430899	Cyp2d40	-1.333	-2.918	-1.507	-1.708	NM_023623
10548931	9830102E05Rik	-1.535	-3.124	-1.698	-1.605	NM_177787
10582466	Sult5a1	-1.805	-3.357	-2.454	-2.853	NM_020564
10496462	Adh6-ps1	-1.935	-3.591	-2.090	-2.720	AK004863
10399801	Sntg2	-1.657	-4.466	-1.581	-1.464	NM_172951
10442625	Igfals	-1.309	-4.490	-1.593	-2.646	NM_008340
10388430	Serpinf1*	-1.266	-6.154	-1.243	-1.252	NM_011340
10494085	Selenbp2*	-1.576	-6.926	-2.513	-1.597	NM_019414
10451818	Sult1c2*	-2.350	-7.407	-1.444	-1.864	NM_026935
10575685	Nudt7	-2.305	-8.766	-2.567	-2.538	NM_024437
10407876	5033411D12Rik	-2.136	-22.829	-1.441	-1.756	NM_138654

* The genes were selected as candidate cancer biomarkers using the IPA biomarker filter module

performed to screen for carcinogenicity and to discern the potential mode of action of carcinogens by identifying chemical hepatocarcinogen-specific gene expression signatures (Ellinger-Ziegelbauer et al. 2004, 2005, 2008; Fielden et al. 2008; Nakayama et al. 2006). As reviewed by Waters et al. (2010), these approaches have indicated that distinctive gene expression signatures provide a useful database for the prediction of chemical hepatocarcinogencity. However, thus far, toxicogenomic approaches have been focused primarily on short-term (≤ 28 days) effects and have used a limited number of rodent models, especially rats. In order for the biomarker data accumulated thus, far to be of utmost value, distinctive gene signatures resulting from short-term toxicogenomic studies should be validated by long-term studies employing different animal species. In the present study, we focused on genes that demonstrated sustained up- or down-regulation through the duration of the study period following treatment with AAF and DEN and identified 68 genes that were deregulated in both groups and which demonstrated sustained deregulation throughout the study period (up to 91 days). Of the 68

genes, significant alterations were observed mainly in genes involved in cell cycle arrest (Cdkn1a, Mdm2, and Ccng1) and apoptosis (Tnfrsf10b and Trp53inp1); these changes could be induced by the activation of p53 following DNA damage caused by exposure to AAF and DEN. The DNA damage response, which is one of the major cellular pathways induced by genotoxic carcinogens, involves activation of the ATM-p53 pathway, which can lead to cell cycle arrest, apoptosis, or DNA repair by activating p53 target molecules (Amundson et al. 2001). Several toxicogenomic studies of rat liver have shown that the transcriptional activation of p53 genes by genotoxic carcinogens increased the expression of Cdkn1a, Ccng1, Bax, Btg2, and Mdm2 (Ellinger-Ziegelbauer et al. 2004, 2005, 2008). The prominent hepatic induction of *Cdkn1a*, Ccng1, Bax, Btg2, and Mdm2 in response to four genotoxic hepatocarcinogens dimethylnitrosamine, 2-nitrofluorene, aflatoxin B1, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone has been observed up to 14 days in Wistar rats (Ellinger-Ziegelbauer et al. 2004, 2005). Moreover, the deregulation of these five genes in DEN- and ethylnitrourea

Fig. 5 mRNA expression of 11 selected genes as determined by RT-qPCR and microarray analyses. The gene expression level determined by RT-qPCR was normalized to *Gapdh*. *, **Significantly different from the controls at P < 0.05 or 0.01, respectively, according to Student's *t*-test

(ENU)-treated mouse liver was demonstrated by RT-qPCR analysis (Watanabe et al. 2009). Up-regulation of similar p53 target genes induced by genotoxic stress has been also reported in several cell culture models (Amundson et al. 2001; Islaih et al. 2004). CCNG1 is a transcriptional target of p53 that is directly associated with Mdm2 and regulates the accumulation and degradation of p53 in a negative feedback loop (Kimura and Nojima 2002). In response to DNA damage, CCNG1 prevents Mdm2-mediated p53 ubiquitination by associating with the Mdm2-ARF complex, which promotes cell cycle arrest and DNA repair (Amundson et al. 2001). Cdkn1a, Bax, and Btg2 have also been shown to be p53-dependent effectors associated with the anti-proliferative pathway triggered in response to DNA damage (Abukhdeir and Park 2008; Rouault et al. 1996). Cdkn1a encodes a potent cyclin-dependent kinase inhibitor that mediates the p53-dependent G1 phase arrest by inhibiting cyclin-CDK2 or -CDK4 activity (Abukhdeir and Park 2008). The expression of Cdkn1a is tightly controlled by p53 in response to radiation and genotoxic carcinogens (Amundson et al. 2003; Snyder and Morgan 2004). Among the genes selected as candidate biomarkers in the present study, Cdkn1a was most prominently induced on day 7 in both the AAF- and DEN-treated mice (Fig. 5). Cdkn1a expression was sharply decreased at day 91 but was still up-regulated (>10-fold) in both the AAF and DEN groups. In addition to Bax and Btg, two apoptosis- and cell cycle arrest-related genes, Tp53inp1and *Tnfrsf10b*, were significantly up-regulated after exposure to AAF and DEN. *Tp53inp1* is a p53 target gene with roles in cellular homeostasis through its anti-proliferative and proapoptotic activity response to genotoxic stress (Okamura et al. 2001); moreover, its expression is lost in preneoplastic lesions induced by DEN and AAF in rats (Ogawa et al. 2005). Tnfrsf10b, a p53-independent molecule, is known to induce apoptosis by binding to death domaincontaining transmembrane receptors, and it preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells (LeBlanc and Ashkenazi 2003; MacFarlane et al. 2005). Collectively, the prominent and

sustained up-regulation of p53 target genes including *Cdkn1a*, *Ccng1*, *Bax*, *Btg2*, *Mdm2*, *Tp53inp*, and *Tnfrsf10b* in the present study corresponded with the results of earlier studies, which have been observed in different hepatocarcinogenesis models with a variety of genotoxic stresses (Fig. 5).

In the present study, direct targets of the Ras pathway such as Raf, c-Fos, c-Myc, JunB, Cyclin D1, and endogenous Ras were not examined as part of the 66 gene signature. It has been reported that over-expression of the human c-Ha-ras oncogene plays an important role in the enhanced carcinogenesis in rasH2 mice (Maruvama et al. 2001; Tamaoki 2001). In addition to transgene overexpression, increased levels of endogenous Ha-, N-, and Ki-ras induced by the transgene are thought to be involved in the enhanced carcinogenesis in ENU- and DMBA-treated rasH2 mice (Okamura et al. 2004, 2007). However, McDonald et al. (1994) reported that the over-expression of Ha-, K-, and Ni-ras might mainly be associated with the late stages of tumorigenesis in head and neck cancer in humans. Given this, one could conclude that the expression of endogenous Ras genes and target genes downstream of the Ras pathway are unlikely to be affected in the early stages of hepatocarcinogenesis. Furthermore, the fact that the expression of Ras genes and downstream effectors is unaffected will facilitate the identification and discrimination of candidate genomic biomarkers capable of predicting the effects of AAF and DEN in rasH2 mice.

In summary, we identified 68 candidate biomarker genes that were deregulated by AAF and DEN and whose expression pattern was clearly discriminated from the control-, Mel-, and ANIT-treated groups through unsupervised hierarchical clustering. This signature, which represents gene expression changes induced by two hepatocarcinogens at early (7 days) and late (91 days) time points, may reflect the early molecular events associated with hepatic carcinogenesis in rasH2 mice and may therefore enable the identification and confirmation of candidate biomarkers of hepatocarcinogenesis.

Acknowledgments This work was supported by a 2009 grant from the National Institute of Food and Drug Safety Evaluation (NiFDS) of the Korean Food and Drug Administration (KFDA) (09152KFDA644).

References

- Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10:e19
- Alden C, Smith P, Morton D (2002) Application of genetically altered models as replacement for the lifetime mouse bioassay in pharmaceutical development. Toxicol Pathol 30:135–138
- Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ Jr (2001) Physiological function as regulation of large transcriptional

programs: the cellular response to genotoxic stress. Comp Biochem Physiol B Biochem Mol Biol 129:703–710

- Amundson SA, Bittner M, Fornace AJ Jr (2003) Functional genomics as a window on radiation stress signaling. Oncogene 22:5828– 5833
- Astrom A, Maner S, DePierre JW (1986) Induction of cytochrome P-450 and related drug-metabolizing activities in the livers of different rodent species by 2-acetylaminofluorene or by 3-methylcholanthrene. Biochem Pharmacol 35:2703–2713
- Becker FF, Sell S (1979) Differences in serum alpha-fetoprotein concentrations during the carcinogenic sequences resulting from exposure to diethylnitrosamine or acetylaminofluorene. Cancer Res 39:1437–1442
- Contrera JF, DeGeorge JJ (1998) In vivo transgenic bioassays and assessment of the carcinogenic potential of pharmaceuticals. Environ Health Perspect 106(Suppl 1):71–80
- Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ (2004) Characteristic expression profiles induced by genotoxic carcinogens in rat liver. Toxicol Sci 77:19–34
- Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ (2005) Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 575:61–84
- Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637:23–39
- Ellinger-Ziegelbauer H, Aubrecht J, Kleinjans JC, Ahr HJ (2009) Application of toxicogenomics to study mechanisms of genotoxicity and carcinogenicity. Toxicol Lett 186:36–44
- Factor VM, Radaeva SA, Thorgeirsson SS (1994) Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol 145:409–422
- Fielden MR, Nie A, McMillian M, Elangbam CS, Trela BA, Yang Y, Dunn RT 2nd, Dragan Y, Fransson-Stehen R, Bogdanffy M, Adams SP, Foster WR, Chen SJ, Rossi P, Kasper P, Jacobson-Kram D, Tatsuoka KS, Wier PJ, Gollub J, Halbert DN, Roter A, Young JK, Sina JF, Marlowe J, Martus HJ, Aubrecht J, Olaharski AJ, Roome N, Nioi P, Pardo I, Snyder R, Perry R, Lord P, Mattes W, Car BD (2008) Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol Sci 103:28–34
- Giri RK, Das BR (1996) Differential expression of c-jun and c-myc in N-nitroso diethylamine-induced hepatic oncogenesis in AKR mice. Cancer Lett 109:121–127
- Gold LS, Manley NB, Slone TH, Rohrbach L (1999) Supplement to the Carcinogenic potency database (CPDB): results of animal bioassays published in the general literature in 1993–1994 and by the national toxicology program in 1995–1996. Environ Health Perspect 107(Suppl 4):527–600
- Gold LS, Manley NB, Slone TH, Rohrbach L, Garfinkel GB (2005) Supplement to the Carcinogenic potency database (CPDB): results of animal bioassays published in the general literature through 1997 and by the national toxicology program in 1997–1998. Toxicol Sci 85:747–808
- Islaih M, Li B, Kadura IA, Reid-Hubbard JL, Deahl JT, Altizer JL, Watson DE, Newton RK (2004) Comparison of gene expression changes induced in mouse and human cells treated with directacting mutagens. Environ Mol Mutagen 44:401–419
- Kimura SH, Nojima H (2002) Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells 7:869–880
- Koen H, Pugh TD, Nychka D, Goldfarb S (1983) Presence of alphafetoprotein-positive cells in hepatocellular foci and microcarcinomas induced by single injections of diethylnitrosamine in infant mice. Cancer Res 43:702–708

- Kramer JA, Curtiss SW, Kolaja KL, Alden CL, Blomme EA, Curtiss WC, Davila JC, Jackson CJ, Bunch RT (2004) Acute molecular markers of rodent hepatic carcinogenesis identified by transcription profiling. Chem Res Toxicol 17:463–470
- LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75
- Leighton JK, Brown P, Ellis A, Harlow P, Harrouk W, Pine PS, Robison T, Rosario L, Thompson K (2006) Workgroup report: review of genomics data based on experience with mock submissions: view of the CDER pharmacology toxicology nonclinical pharmacogenomics subcommittee. Environ Health Perspect 114:573–578
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25:402–408
- Lord PG, Nie A, McMillian M (2006) Application of genomics in preclinical drug safety evaluation. Basic Clin Pharmacol Toxicol 98:537–546
- MacFarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJ, Cohen GM (2005) TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 65:11265–11270
- Maronpot RR, Mitsumori K, Mann P, Takaoka M, Yamamoto S, Usui T, Okamiya H, Nishikawa S, Nomura T (2000) Interlaboratory comparison of the CB6F1-Tg rasH2 rapid carcinogenicity testing model. Toxicology 146:149–159
- Maruyama C, Tomisawa M, Wakana S, Yamazaki H, Kijima H, Suemizu H, Ohnishi Y, Urano K, Hioki K, Usui T, Nakamura M, Tsuchida T, Mitsumori K, Nomura T, Tamaoki N, Ueyama Y (2001) Overexpression of human H-ras transgene is responsible for tumors induced by chemical carcinogens in mice. Oncol Rep 8:233–237
- McDonald JS, Jones H, Pavelic ZP, Pavelic LJ, Stambrook PJ, Gluckman JL (1994) Immunohistochemical detection of the H-ras, K-ras, and N-ras oncogenes in squamous cell carcinoma of the head and neck. J Oral Pathol Med 23:342–346
- Morton D, Alden CL, Roth AJ, Usui T (2002) The Tg rasH2 mouse in cancer hazard identification. Toxicol Pathol 30:139–146
- Nakayama K, Kawano Y, Kawakami Y, Moriwaki N, Sekijima M, Otsuka M, Yakabe Y, Miyaura H, Saito K, Sumida K, Shirai T (2006) Differences in gene expression profiles in the liver between carcinogenic and non-carcinogenic isomers of compounds given to rats in a 28-day repeat-dose toxicity study. Toxicol Appl Pharmacol 217:299–307
- Ogawa K, Asamoto M, Suzuki S, Tsujimura K, Shirai T (2005) Downregulation of apoptosis revealed by laser microdissection and cDNA microarray analysis of related genes in rat liver preneoplastic lesions. Med Mol Morphol 38:23–29
- Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, Monden M, Nakamura Y (2001) p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 8:85–94
- Okamura M, Sumida K, Muto T, Kashida Y, Machida N, Watanabe T, Mitsumori K (2004) Analysis of gene expression profiles of forestomach tumors in rasH2 mice initiated with N-ethyl-Nnitrosourea. Arch Toxicol 78:688–696

- Okamura M, Unami A, Matsumoto M, Oishi Y, Kashida Y, Mitsumori K (2006) Gene expression analysis of urethaneinduced lung tumors in ras H2 mice. Toxicology 217:129–138
- Okamura M, Unami A, Moto M, Muguruma M, Ito T, Jin M, Oishi Y, Kashida Y, Mitsumori K (2007) The possible mechanism of enhanced carcinogenesis induced by genotoxic carcinogens in rasH2 mice. Cancer Lett 245:321–330
- Pritchard JB, French JE, Davis BJ, Haseman JK (2003) The role of transgenic mouse models in carcinogen identification. Environ Health Perspect 111:444–454
- Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, Shaw P, Berger R, Samarut J, Magaud JP, Ozturk M, Samarut C, Puisieux A (1996) Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 14:482–486
- Saitoh A, Kimura M, Takahashi R, Yokoyama M, Nomura T, Izawa M, Sekiya T, Nishimura S, Katsuki M (1990) Most tumors in transgenic mice with human c-Ha-ras gene contained somatically activated transgenes. Oncogene 5:1195–1200
- Sell S, Dunsford HA (1989) Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am J Pathol 134:1347–1363
- Snyder AR, Morgan WF (2004) Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev 23:259–268
- Storer RD, Sistare FD, Reddy MV, DeGeorge JJ (2010) An industry perspective on the utility of short-term carcinogenicity testing in transgenic mice in pharmaceutical development. Toxicol Pathol 38:51–61
- Svoboda D, Higginson J (1968) A comparison of ultrastructural changes in rat liver due to chemical carcinogens. Cancer Res 28:1703–1733
- Tamaoki N (2001) The rasH2 transgenic mouse: nature of the model and mechanistic studies on tumorigenesis. Toxicol Pathol 29:81–89
- Thomas RS, Pluta L, Yang L, Halsey TA (2007) Application of genomic biomarkers to predict increased lung tumor incidence in 2-year rodent cancer bioassays. Toxicol Sci 97:55–64
- Travis CC, Zeng C, Nicholas J (1996) Biological model of ED01 hepatocarcinogenesis. Toxicol Appl Pharmacol 140:19–29
- Watanabe T, Tanaka G, Hamada S, Namiki C, Suzuki T, Nakajima M, Furihata C (2009) Dose-dependent alterations in gene expression in mouse liver induced by diethylnitrosamine and ethylnitrosourea and determined by quantitative real-time PCR. Mutat Res 673:9–20
- Waters MD, Jackson M, Lea I (2010) Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. Mutat Res. (In press)
- Yamamoto S, Mitsumori K, Kodama Y, Matsunuma N, Manabe S, Okamiya H, Suzuki H, Fukuda T, Sakamaki Y, Sunaga M, Nomura G, Hioki K, Wakana S, Nomura T, Hayashi Y (1996) Rapid induction of more malignant tumors by various genotoxic carcinogens in transgenic mice harboring a human prototype c-Ha-ras gene than in control non-transgenic mice. Carcinogenesis 17:2455–2461