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Abstract Cytokeratins (CK) constitute a family of
cytoskeletal intermediate Wlament proteins that are
typically expressed in epithelial cells. An abnormal
structure and function are eVects that are clearly
related to liver diseases as non-alcoholic steatohepati-
tis, cirrhosis and hepatocellular carcinoma. We have
previously observed that sodium arsenite (SA) induced
the synthesis of CK18 protein and promotes a dose-
related disruption of cytoplasmic CK18 Wlaments in a
human hepatic cell line. Both abnormal gene expres-
sion and disturbance of structural organization are
toxic eVects that are likely to cause liver disease by
interfering with normal hepatocyte function. To inves-
tigate if a disruption in the CK18 expression pattern is
associated with arsenite liver damage, we investigated
CK18 mRNA and protein levels in liver slices treated
with low levels of SA. Organotypic cultures were

incubated with 0.01, 1 and 10 �M of SA in the absence
and presence of N-acetyl cysteine (NAC). Cell viability
and inorganic arsenic metabolism were determined.
Increased expression of CK18 was observed after
exposure to SA. The addition of NAC impeded the
oxidative eVects of SA exposure, decreasing the pro-
duction of thiobarbituric acid-reactive substances and
signiWcantly diminishing the up regulation of CK18
mRNA and protein. Liver arsenic levels correlated
with increased levels of mRNA. Mice treated with
intragastric single doses of 2.5 and 5 mg/kg of SA
showed an increased expression of CK18. Results sug-
gest that CK18 expression may be a sensible early bio-
marker of oxidative stress and damage induced by
arsenite in vitro and in vivo. Then, during SA expo-
sure, altered CK expression may compromise liver
function.
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Introduction

Cytokeratins (CK) constitute a family of cytoskeletal
intermediate Wlament proteins that are typically
expressed in epithelial cells. CK associate to form hete-
rodimers containing one member of each subfamily.
Type I CK includes CK9 through CK20, while type II
CK includes CK1 through CK8. In simple epithelia
such as liver, exocrine pancreas, and intestine, the two
major intermediate Wlament proteins are cytokeratin
polypeptides 8 and 18 (CK8/CK18) with variable
expression of CK19 and CK20 (Moll et al. 1982; Moll
1993; Calnek and Quaroni 1993). Traditionally, CK
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were considered only as skeletal proteins providing
mechanical stability, but lately evidence has shown that
they also exert several non-skeletal functions (Omary
et al. 2004). The presence of wild-type CK seems to
protect hepatocytes from the transmittal of apoptotic
stimuli under stress conditions (Caulin et al. 2000; Gil-
bert et al. 2001; Ku et al. 2003) by hyperphosphoryla-
tion of CK (Ku et al. 1998; Coulombe and Omary
2002) or possibly by overexpression of CK, as noted in
mouse liver and gallbladder injury models (Cadrin
et al. 2000; Denk et al. 2000; Fickert et al. 2002; Tao
et al. 2003).

In humans, altered patterns of cytokeratin expres-
sion are observed in pathological conditions such as
alcoholic liver, cirrhosis, chronic hepatitis and liver
cancer (Rhodes and Oshima 1998). Also, chronic
intoxication with griseofulvin or 3, 5-diethoxycar-
bonyl-1, 4-dihydrocollidine (DDC) in mice can
induce cytoskeleton alterations highly similar to those
seen in human alcoholic hepatitis (Zatloukal et al.
2000). The increase in cytokeratin expression in
response to liver injury suggests that these proteins
may behave as stress proteins, similar to heat shock
proteins (hsp). This hypothesis is supported by the
known physical and ATP-dependent association of
hsp70 with CK8/CK18 that increases with heat shock
(Liao et al. 1995).

Inorganic arsenic (iAs) is a known human carcino-
gen that contaminates well water worldwide, aVecting
large groups of people in many countries. Human
exposure to iAs is associated with cancer and organ
injury, including squamous and basal cell carcinomas in
the skin, hepatocellular carcinoma, angiosarcoma, cir-
rhosis and hepatoportal sclerosis (IPCS 2001; Centeno
et al. 2002; Patrick 2003). There is evidence suggesting
that iAs toxicity involves oxidative damage (Izquierdo-
Vega et al. 2006; Hughes and Kitchin 2006), mainly by
the interaction of iAs with protein thiols that are cen-
tral components of redox-sensitive proteins in redox
signaling and control pathways (Hansen et al. 2006).
Several studies have demonstrated that liver is the pri-
mary arsenic metabolizing organ (Hughes et al. 2003).
Metabolic conversion of iAs into methylated products
is a multistep process that yields mono–di and tri-
methylated arsenic forms that have diVerent toxic
potential than that of the parent compound iAs.

Using the WRL-68 human hepatic cell line, we
observe that sodium arsenite (SA) induces the synthe-
sis of CK18 protein and promotes a dose-related dis-
ruption of cytoplasmic CK18 positive Wlaments
(Ramírez et al. 2000). We speculate that these eVects
result from a stress-response to oxidative damage
caused by SA.

To investigate whether the expression of CK18
could be associated with the oxidative damage induced
by iAs in liver, organotypic cultures of mouse liver
slices were treated with SA. Cells upregulated both
CK18 mRNA and CK18 protein. This eVect was inhib-
ited when the antioxidant N-acetylcysteine (NAC)
(Hirano et al. 2004) was added to cultures. Further-
more, mice treated systemically with 2.5 or 5 mg/kg of
SA also showed an increase of CK18 in the liver. Our
results suggest that CK18 induction occurs in response
to the oxidative damage generated by the iAs and
should be considered as an early indicator of iAs toxic-
ity in the liver.

Materials and methods

Chemicals and solutions

SA, NAC, thiobarbituric acid, trichloroacetic acid, per-
chloric acid, DMEM culture media, antibiotics and the
protease inhibitor cocktail were obtained from Sigma
(St. Louis, MO).

Animals

Inbred male BALB/c mice (5–6 weeks old, weighing
22–25 g), obtained from the animal care facility of the
Biomedical Research Institute of the National Autono-
mous University of Mexico (UNAM), were acclimated
for 1 week before experiments were initiated.

Organotypic liver culture

SA solutions were prepared daily in deionized water.
Livers from BALB/c mice were cut to obtain 250–
500 �m thick slices of approximately 5,000 �m in diam-
eter. Slices were weighed and placed in culture plates
(two slices per well) containing DMEM culture media
supplemented with 8% fetal bovine serum (Invitrogen,
Carlsbad, CA), 10 �g/ml ampicillin and 1% streptomy-
cin. Organotypic cultures were stabilized at 37°C with
5% carbon dioxide for 2 h. The liver slices were then
exposed to 0.01, 1 or 10 �M SA for 3 h, followed by
incubation with 1 or 2.5 mM NAC for 2 h. At the end
of these treatments, tissues were washed in ice-cold
phosphate saline buVer (PBS), pH 7.4, containing a
protease inhibitor cocktail and were homogenized in
the same buVer. The protein concentrations were
determined using the Bradford method (BioRad Labo-
ratories, Hercules CA) using albumin as standard
(Bradford 1976). For polyacrylamide gel electrophore-
sis (PAGE) and immunoblotting, tissues were homog-
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enized in ice-cold 0.1 M PBS, pH 7.4. Samples were
then aliquoted and frozen by immersion in liquid
nitrogen.

Viability of liver slices

The viability of liver slices after treatment was deter-
mined by measuring intracellular K+ levels using the
method described by Azri et al. (1990) with some mod-
iWcations. BrieXy, slices were washed in ice-cold PBS
and homogenized. An aliquot of tissue homogenate
was added to 0.02 ml of concentrated perchloric acid.
The mixture was gently shaken and centrifuged at
12,000 rpm for 10 min at 4°C. K+ levels in the superna-
tant fractions were then analyzed by air-acetylene
Xame atomization using an atomic absorption spectro-
photometer (Perkin Elmer 3100) at 766.5 nm and
reported as �mol per gram of tissue.

Animal exposure

BALB/c mice received a single dose of 0, 2.5 or 5.0 mg
of SA per kg of body weight via the intragastric route
and were sacriWced 24 h later by cervical dislocation.
The dose of SA, in this study, represents one-eighth
and one-fourth of the LD50 dose for mice, respectively
(ATSDR 2000). Livers were extracted and washed in
ice-cold isotonic saline solution to remove debris and
blood. For PAGE and immunoblotting, tissues were
homogenized in ice-cold 0.1 M PBS, pH 7.4, in the
presence of a proteinase inhibitor cocktail, aliquoted
and frozen by immersion in liquid nitrogen.

Determination of arsenic species

We measured the levels of arsenic species in tissue
homogenates by hydride-generation atomic absorption
spectroscopy after column chromatographic separation
of inorganic arsenic and its metabolites: monomethylar-
senic (MMA), dimethylarsenic (DMA) and trimethylar-
senic (TMAO), as described by Hughes et al. (2003).

Western blot analysis

Normalized homogenates were separated by standard
procedures (Laemmli 1970) on 10% acrylamide gels
under reducing conditions [25 mM �-mercaptoethanol
(BioRad) or 10 mM dithiothreitol (BioRad)]. The pro-
teins were visualized by western blotting using primary
mouse monoclonal antibodies against mouse CK18
(Santa Cruz Biotechnology, Santa Cruz, CA) and sec-
ondary peroxidase-coupled antibodies against mouse
IgG (Santa Cruz). Immunoblot analysis was performed

using a Kodak Gel Logic 100 Imaging System (Roches-
ter, NY).

Lipid peroxidation assay

Lipid peroxidation by liver slices was determined
based on the formation of thiobarbituric acid-reactive
substance (TBARS) as described elsewhere (Buege
and Aust 1978). BrieXy, 0.5 ml of liver homogenate
were added to a reaction mixture containing 2 ml of
2.5% trichloroacetic acid (pH 1.0) and 1 ml of 0.6%
thiobarbituric acid, followed by 30 min heating at 95°C.
After cooling, the chromogen was read spectrophoto-
metrically at 532 nm against a “blank” reaction mix-
ture lacking homogenate but subjected to the entire
procedure. To correct for background absorption,
absorbance values at 572 nm were subtracted from
those at 532 nm, the latter representing the absorption
maximum of the 2:1 TBA:MDA adduct. The concen-
tration of TBARS was expressed in �mol per gram of
tissue.

RT–PCR

CK18 mRNA levels were quantiWed by RT–PCR.
Total RNA was isolated using the TRIZOL method
(Invitrogen). RNA samples were transcribed into Wrst
strand cDNA using RT–MLV retrotranscriptase (Invi-
trogen). The cDNA was ampliWed by PCR with the fol-
lowing primers: 5�-GACGCTGAGACCACACT and
5�-TCCATCTGTGCCTTGTAT (Zhong et al. 2003).
Actin primers were used as an internal reference.
Image analysis was performed using a Kodak Gel
Logic 100 Imaging System.

Statistical analysis

A total of three samples from each of the Wve mice was
used for each treatment dose for both the in vitro and
the in vivo experiments. Values always represent
mean § SD of the Wve triplicate liver slices. Data were
analyzed by ANOVA followed by a Dunn’s post hoc
test. These statistical tests were performed using the
software Stata 8.0 (Stata Corp., College Station, TX).
DiVerences between treatments were considered
signiWcant when P < 0.05.

Ethics

The experiments reported in this article were carried
out following the guidelines stated in “Principles of
Laboratory Animal Care” (NIH publication #85–23,
revised 1985) and the ‘Norma OWcial Mexicana de la
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Secretaría de Agricultura, Ganadería, Desarrollo
Rural, Pesca y Alimentación (SAGARPA)” titled
“EspeciWcaciones técnicas para la producción, cuidado
y uso de los animales de laboratorio” (Clave NOM-
062-ZOO-1999) (published in August 2001).

Results

To test the hypothesis that SA induces expression of
the cytokeratin CK18, we used an organotypic liver
culture model. Culturing liver slices in the presence of
SA did not aVect cell viability, since K+ levels remained
above 100 �mol K+/g of tissue (Table 1). Liver slices
were able to uptake SA and metabolize it to MMA and
DMA metabolites in the presence and absence of the
reduced thiol NAC, which has antioxidant activity

(Table 2). Consistent with our hypothesis, incubation
of liver tissue with diVerent concentrations of SA
resulted in a dose-dependent increase in CK18 mRNA
levels. This induction was statistically signiWcant at 1
and 10 �M SA, which caused a three to sevenfold
increase in basal expression over control cultures
(Fig. 1a). Furthermore, the upregulation of CK18
mRNA correlated with increased levels of the protein
(Fig. 2a). NAC inhibited the induction of CK mRNA

Table 1 Intracellular K+ as an 
indicator of cell viability

SA (�M) K+ (�mol/g)
Mean § SD

0 107.0 § 13.5
0.01 101.5 § 11.3
1.0 115.5 § 11.5
10 106.4 § 14.2

Table 2 Arsenic methylated 
species present in the organo-
typic cultures after 3 h of SA 
and SA + 2.5 mM NAC treat-
ments (mean § SD)

IAs (ng/g) MMA (ng/g) DMA (ng/g) Total As (ng/g)

SA (�M)
0 7.22 § 0.67 <1 <1 7.22 § 0.67
0.01 11.4 § 1.37 <1 <1 11.4 § 1.37
1 181.81 § 17.55 12.73 § 1.61 20.02 § 5.20 206.97 § 10.74
10 1,052.40 § 54.41 49.08 § 7.89 176.23 § 56.75 1,277.72 § 35.60

SA (�M) + 2.5 mM NAC
0 4.03 § 0.43 <1 <1 2.03 § 0.43
0.1 8.25 § 0.78 <1 <1 8.25 § 0.78
1 113.99 § 1.71 <1 <1 113.99 § 1.71
10 908.02 § 85.03 45.24 § 8.53 24.33 § 5.87 977.61 § 93.37

Fig. 1 Semi-quantitative RT–PCR of CK18 mRNA levels in
mouse liver organotypic cultures treated with 0, 0.01, 1 and 10 �M
of SA (a) and with the same concentrations of SA but in the pres-
ence of 2.5 mM NAC (b). Densitometric evaluation of the aga-
rose gel images was performed using �-actin mRNA as loading

control. CK18mRNA levels are expressed as a percentage of
loading control. Bars represent mean § SD of triplicate cultures.
Asterisks indicate signiWcance (P < 0.05) compared to control cul-
tures according to Dunn’s post hoc test
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and protein by SA but did not modulate the basal
expression of CK18 mRNA or protein (Figs. 1b, 2b).

We speculated that the increase in CK18 resulted
from oxidative damage caused by SA. To test this idea,
we treated liver slices with SA and then with 2.5 mM of
NAC, a GSH agonist with antioxidant eVects.

The presence of intracellular arsenic clearly induced
CK18 mRNA, and this eVect was modulated by the
addition of NAC (Table 2; Fig. 3). A signiWcant dose-
related eVect was demonstrated by a quadratic regres-
sion using CK18 mRNA levels and iAs concentrations
in liver slices exposed to SA and to SA in the presence
of NAC. The slope values of the positive relationships
were 0.015 and 0.0087, respectively (Fig. 3).

We also observed that the total arsenic was slightly
reduced by NAC treatment, similar to what was

observed by Santra et al. (2007) reducing the amount
of methylated species formation.

Our model postulates that SA induces oxidative
damage, which induces CK18 expression. We therefore
measured oxidative damage following SA treatment by
measuring the formation of TBARS during lipid per-
oxidation. We found that arsenite treatments indeed
induced the TBARS production indicative of oxidative
damage. Furthermore, the addition of 2.5 mM of NAC
in the incubation media signiWcantly prevented the
production of TBARS, as expected (Fig. 4).

Finally, we tested our model in vivo. Similar to
what was observed in vitro, 24 h after mice were given
2.5 or 5 mg/kg of SA orally, their livers showed statis-
tically signiWcant increased levels of CK18 mRNA
and protein (Fig. 5).

Discussion

CK participate in the network of cytoskeletal interme-
diate Wlaments, performing a variety of important cel-
lular functions including cell division, motility,
maintenance of cellular mechanical integrity, stress
responses and vesicle transport. Importantly, CK also
play an essential “guardian” role in the liver that is
unmasked after exposure to environmental stresses
(Omary et al. 2004) such as iAs exposure. In this paper,
we tested the hypothesis that arsenite treatment of
liver would generate oxidative damage that would in
turn induce the expression of the major type I cytoker-
atin found in hepatocytes CK18.

Cultured mouse liver slices in fact showed a dose-
dependent modulation of CK18 gene expression fol-
lowing SA treatment. By measuring both CK18
mRNA and protein levels (Figs. 1a, 2a), we found that

Fig. 2 CK18 protein levels in 
mouse liver organotypic cul-
tures treated with 0, 0.01, 1 
and 10 �M of SA (a) and with 
the same concentrations of 
SA but in the presence of 
2.5 mM as percentage NAC 
(b). Densitometric evaluation 
of Western blots was per-
formed using �-actin protein 
of loading control. Bars repre-
sent mean § SD of triplicate 
cultures. Asterisks indicate 
signiWcance (P < 0.05) com-
pared to control cultures 
according to Dunn’s post hoc 
test
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the increased transcription of the gene results in
increased translation into protein in the hepatocyte
cytoplasm. We reported similar results in the WRL-68
human hepatic cell line, where we also observed altera-
tions in the distribution pattern of the CK Wlaments
after treatment with SA (Ramírez et al. 2000). The
increased levels of CK18 mRNA were clearly related

to the intracellular levels of arsenic (Fig. 3), even at the
low level of 1 �M.

N-acetylcysteine (NAC) inactivates free radical spe-
cies thereby protecting cells against oxidative damage
(De Flora et al. 2001). The induction of CK18 was sig-
niWcantly inhibited (by approximately twofold) by the
presence of NAC. We also observed (Table 2; Fig. 3)

Fig. 4 Thiobarbituric acid-reactive substance (TBARS) produc-
tion as a measure of oxidative damage in mouse liver organotypic
cultures treated with diVerent concentrations of SA and NAC.

Bars represent mean § SD of triplicate cultures. Asterisks repre-
sent Dunn’s post hoc test, P < 0.05
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that the total arsenic burden in liver slices was slightly
reduced by NAC reducing the amount of methylated
species formation. The key point in the metabolism of
arsenic is the repetitive reduction of pentavalent forms
of arsenic and oxidative methylation of trivalent forms
of arsenic (Thomas et al. 2004). There is ample evi-
dence demonstrating in these series of reactions, the
generation of reactive oxidative species that cause cell
and tissue damage (Yamanaka and Okada 1994;
Kitchin and Ahmad 2003). Thus, a reduction in the for-
mation of methylated species would also reduce the
formation of reactive damaging species. Taken
together, these results strongly support the idea that
oxidative stress could be modulating the expression of
CK18 in mouse hepatocytes. In this regard, several
studies have proposed oxidative stress as a mechanism
of action of arsenic toxicity (Hansen et al. 2006).

Arsenic compounds have high aYnity for thiol
groups such as those present in NAC. It is therefore
possible that some arsenite may be trapped by NAC so
that its delivery to liver cells may be impaired. How-
ever, the cysteine analog is readily taken up by cells
and can directly scavenge ROS (Kelly 1998; De Flora
et al. 2001). Moreover, a number of studies have dem-
onstrated that NAC is able to reduce or counteract oxi-
dative damage. Electron spin resonance and confocal
microscope studies showed that As (III) stimulated
ROS generation and Hsp70 expression in human pul-
monary epithelial and MDA231 cells, and these eVects
were inhibited by NAC (Han et al. 2005; Kim et al.
2005). In addition, NAC was able to inhibit the cyto-
toxicity of the iAs metabolites, monomethylarsonous
acid (MMAIII), dimethylarsinic acid (DMAV), dime-
thylarsinous acid (DMAIII) and trimethylarsine oxide
(TMAO) in rat bladder cells (Wei et al. 2005).

It is important to mention that NAC did not modu-
late basal CK18 expression (Figs. 1, 2) although
2.5 mM of NAC was able to reduce signiWcantly
TBARS formation (Fig. 4). Similar results were
obtained while TBARS formation and antioxidant
enzyme activities (Sudheer et al. 2007) or gene expres-
sion modulation were evaluated (Chen et al. 2005) in
the presence or absence of NAC.

Our observations together with the eVect observed
in the animals after SA administration suggest that
CK18 expression could be an early biomarker of the
oxidative stress and damage induced by iAs in vitro
and in vivo. Consistent with this idea, the overexpres-
sion of CK18 was dramatically elevated in the hepato-
cellular carcinomas that developed in adult mice
exposed transplacentally to arsenic during gestation
(Liu et al. 2004). In humans, accumulation of CK18
is a histopathological feature seen in hepatocellular

carcinoma, a tumor type associated with iAs exposure
(Centeno et al. 2002). It is also well documented that
arsenic accumulates in tissues with high keratin content
such as hair and skin. If this accumulation is due to
sequestration of arsenic by CK, the induction of CK18
by iAs in hepatocytes would increase the accumulation
of arsenic in the liver.

Our in vitro and in vivo results (Ramírez et al. 2000
and this paper) indicate that the increased presence of
CK18 protein could be considered as an early indicator
of iAs liver toxicity. CK18 synthesis in liver cells is
tightly correlated with diVerentiation programs and
with several cellular processes such as apoptosis and
cell proliferation. In addition, CK18 seems to be a sub-
strate for a variety of protein kinases involved in mito-
sis, apoptosis and stress (Caulin et al. 2000; Gilbert
et al. 2001; Omary et al. 2004). Thus during chronic iAs
exposure, the altered CK18 expression could modify
diVerentiation patterns in liver, compromising the cel-
lular physiology by impairing the protective role of
CK18 and inducing hepatic susceptibility to further
toxic injury (Ku et al. 2003; Omary et al. 2004).
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