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Introduction

Staphylococci are a genus of great significance, as they 
are ubiquitous and affect the health of humans, animals, 
and the overall environment. Staphylococci fall into two 
primary groups: coagulase positive (CoPS) and coagulase 
negative staphylococci (CoNS). CoPS, spearheaded by 
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Abstract
Antimicrobial resistance (AMR) is global health concern escalating rapidly in both clinical settings and environment. 
The effluent from pharmaceuticals and hospitals may contain diverse antibiotics, exerting selective pressure to develop 
AMR. To study the aquatic prevalence of drug-resistant staphylococci, sampling was done from river Yamuna (3 sites) 
and wastewater (7 sites) near pharmaceutical industries in Delhi-NCR, India. 59.25% (224/378) were considered pre-
sumptive staphylococci while, methicillin resistance was noted in 25% (56/224) isolates. Further, 23 methicillin-resistant 
coagulase negative staphylococci (MR-CoNS) of 8 different species were identified via 16S rRNA gene sequencing. 
Multidrug resistance (MDR) was noted in 60.87% (14/23) isolates. PCR based detection of antibiotic resistance genes 
revealed the number of isolates containing mecA (7/23), blaZ (6/23), msrA (10/23), aac(6′)aph (2”) (2/23), aph(3′)-IIIa 
(2/23), ant(4′)-Ia (1/23), dfrG (4/23), dfrA(drfS1) (3/23), tetK (1/23) and tetM (1/23). The current research highlights the 
concerning prevalence of MDR-CoNS in aquatic environment in Delhi.
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Staphylococcus aureus, is responsible for skin infections, 
pneumonia, septicemia, endocarditis and toxic shock syn-
drome. CoNS, like Staphylococcus epidermidis, are often 
associated with catheter and medical device-related infec-
tions, surgical site infections, neonatal sepsis, etc. In recent 
years, some species of CoNS, such as Staphylococcus coh-
nii, Staphylococcus haemolyticus, Staphylococcus arlettae, 
Staphylococcus saprophyticus, and Staphylococcus sciuri, 
have garnered attention due to their emerging pathogenic 
characteristics (Becker et al. 2014; Schoenfelder et al. 
2017). S. hemolyticus also accounts for the largest clini-
cal impacts related to meningitis, nosocomial bloodstream 
infections, endocarditis, urinary tract infection, surgical 
site infection, etc. (Spanu et al. 2003; Huang et al. 2005; 
Becker et al. 2014). Unlike S. aureus, CoNS species were 
considered out of the list of health care-associated patho-
gens until the early nineties. And then since the late nine-
ties, methicillin resistance has been increasingly found in 
the CoNS species (Barbier et al. 2010). In comparing S. epi-
dermidis and S. haemolyticus, publications from the 1980s 
reported high percentages of methicillin-resistant isolates 
from both of these species, but a higher prevalence of meth-
icillin-resistant S. haemolyticus isolates was noted, where 
oxacillin was found to exhibit higher minimum inhibitory 
concentrations (MICs), thus stated the related pathogenicity 
(Eltwisy et al. 2022). In a recently published report, anti-
microbial resistance (AMR) in the genus Staphylococcus 
represents a significant and evolving threat to public health 
worldwide (Antimicrobial Resistance Collaborators, 2023). 
Staphylococci, particularly S. aureus, have demonstrated 
an exceptional capacity to adapt and develop resistance 
mechanisms against a wide range of antibiotics. The emer-
gence of methicillin-resistant S. aureus (MRSA) is perhaps 
the most notorious example, rendering many conventional 
antibiotics ineffective in treating infections caused by these 
bacteria (Uddin et al. 2021). MRSA has become endemic in 
India, with varying incidences ranging from 25% in west-
ern India to 50% in the southern part of the country (Patel 
et al. 2010; INSAR group. 2013). Antibiotic resistance in 
bacteria is often conferred by different antibiotic resistance 
genes (ARGs) present on transposons or plasmids which are 
transferred via transformation, transduction, or conjugation. 
One such gene responsible for the resistance to methicil-
lin in staphylococci species is mecA, which was first trans-
ferred from an interspecies Staphylococcus to S. aureus via 
a mobile genetic element (Hiramatsu et al. 2014). This gene 
is considered one of the major ARGs that confer resistance 
to ß-lactams (Williams et al. 2020). In addition, the blaZ 
gene also has been reported to play an important role in 
ß-lactam resistance in S. aureus and various CoNS species 
(Zhang et al. 2022).

Methicillin-resistant coagulase negative staphylococci 
(MR-CoNS), which are frequently thought to cause hospi-
tal-associated infections, have also been linked to a vari-
ety of biological niches, including the community, wildlife, 
and environmental sources (Seng et al. 2017; Mkrtchyan et 
al. 2013). The quick spread of MR-CoNS in environment 
including rivers and wastewater is receiving more atten-
tion these days. Wastewater released as the pharmaceutical 
industry effluent is significant in this sense because it may 
serve as a reservoir for antibiotics as well as ARGs in the 
environment (Kotwani et al. 2021). This leads to the out-
spread of resistance in the wastewater environment through 
horizontal gene transfer (HGT). HGT initiates the intra and 
interspecies transfer of genes associated with antibiotic 
resistance (Calero-Cáceres et al. 2017). Additionally, AMR 
in CoNS species present in pharmaceutical wastewater may 
also be due to the selection pressure created by low loads of 
antibiotics present in the effluent (Rodriguez et al. 2020). 
Therefore, exploring the prevalence of drug-resistant spe-
cies in urban aquatic environment containing antibiotics is 
highly noteworthy to get an idea of how wastewater systems 
pose environmental risks that may eventually lead to severe 
public health challenges. Globally, staphylococcal species 
have been found in wastewater sources by several studies 
(Börjesson et al. 2009; Goldstein et al. 2012; Gómez et al. 
2016). Porrero and the research team reported the presence 
of S. aureus in a wastewater treatment plant (WWTP) in 
Madrid, Spain, while Faria et al. (2009) and Čuvalova et al. 
(2015) observed the prevalence of CoNS in treated effluents 
and drinking water from Portugal and the Slovak Republic, 
respectively (Porrero et al. 2016; Faria et al. 2009; Čuvalova 
et al. 2015). In particular, wastewater samples from Spain 
and Tunisia were found to include five CoNS species: S. 
lentus, S. cohnii, S. sciuri, S. haemolyticus, and S. xylosus 
(Gómez et al. 2016; Said et al. 2017). Additionally, S. len-
tus, S. sciuri, S. cohnii, and S. haemolyticus were noted in 
a Swedish municipal wastewater treatment facility (Börjes-
son et al. 2009). Few studies have reported the isolation 
of staphylococci from drinking water sources in India but 
reports on wastewater systems are very few till date. A study 
in Jalandhar city reported the occurrence of S. aureus from 
municipal wastewater and they claimed it as the first study 
ever done in India that is based on the sampling of municipal 
wastewater (Kumar et al. 2015). A recent report by Manisha 
Lamba and the group has shown how the wastewater sys-
tem is being converted into the hub for antibiotic-resistant 
bacteria and genes due to the inefficacy of treatment plants 
in New Delhi (Lamba et al. 2017). This study has drawn 
our attention to this emerging problem of AMR in urban 
wastewater in Delhi, NCR, and the role of ARGs thereof. 
This study analyses the molecular characterization of MR-
CoNS species, their phenotypic and genotypic aspects of 
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antibiotic resistance and the insight of complex pattern of 
AMR mechanism. To our best knowledge, no systematic 
study has been reported on the prevalence of MDR-CoNS 
in urban wastewater in Delhi NCR, India and their molecu-
lar basis of multidrug resistance. The results from this study 
will determine the AMR pattern of CoNS and related ARG 
markers. The current research is based on one of the key 
strategic objectives of the “One Health” (human, animal, 
and environment) priority research agenda for AMR, which 
is improving the understanding of AMR transmission and 
surveillance for action.

Materials and methods

Sample collection

Water samples were collected from seven urban wastewa-
ter sites adjacent to pharmaceutical industries among which 
three were located in New Delhi and four sites were in the 
Delhi-NCR area, Ghaziabad, and Faridabad, India (Fig. 1). 
Another three sites were chosen from the 22 km stretch of 
river Yamuna passing through Delhi, India. Upon entering 
Delhi, the river undergoes one of the most polluted stretches 

along its length, spanning from Wazirabad to Okhla. This 
segment constitutes less than 2% of the river’s total length, 
yet it bears the brunt of the pollution burden, primarily 
stemming from sewage and industrial discharges (Mutiyar 
et al. 2018). Water samples were collected thrice during 
the year 2019–2021. Samples were taken in sterilized glass 
bottles transported to the laboratory in ice, and processed 
on the same day for further analysis. The temperature of the 
collected water samples was measured at the time of sam-
pling and pH was measured in the laboratory (Table S1 in 
the Supplementary Information).

Isolation and characterization of bacteria

The collected water samples were serially diluted in ster-
ilized saline (0.9% NaCl w/v solution) upto 105-fold and 
100 µl from each dilution was spread on the agar plates in 
triplicate. Luria agar plates (LA) (Difco, India) were used 
to determine the total culturable bacterial load and man-
nitol salt agar plates (MSA) (Hi-media, India) were used 
for staphylococcal load (Silva et al. 2016; Boopathy 2017). 
All the plates were supplemented with 80 µg/mL (284.34 
µM) cycloheximide to prevent the fungal contamination 
(Palumbo et al. 2021). Plates were then incubated at 37 °C 

Fig. 1 Site map showing the study area (Delhi-NCR) and sampling sites of urban wastewater (site 1-site 7) and river Yamuna (site 8-site 10)
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Antimicrobial susceptibility testing

Antibiotic susceptibility patterns of the identified methi-
cillin-resistant staphylococci (MRS) were studied against 
12 different antibiotics belonging to 10 different classes by 
disc diffusion method as per CLSI guidelines (CLSI 2020). 
Antibiotics namely, CX: Cefoxitin (30 µg), AMP: Ampicil-
lin (10 µg), GEN: Gentamicin (10 µg), RIF: Rifampicin 
(5 µg), TR: Trimethoprim (5 µg), TE: Tetracycline (10 µg), 
E: Erythromycin (15 µg), AZM: Azithromycin (15 µg), 
CD: Clindamycin (2 µg), LZ: Linezolid (30 µg), TEI: Tei-
coplanin (30 µg), CIP: Ciprofloxacin (5 µg) were used in 
this study. The multidrug resistance was defined as when the 
bacteria showed resistance to at least three different classes 
of antibiotics (Magiorakos et al. 2012).

Detection of antibiotic resistance genes (ARGs)

The MRS isolates were investigated for the presence of the 
ARGs related to different tested antibiotics. The occurrence 
of total thirteen ARGs namely, mecA and blaZ (β-lactam 
resistance); aac (6′) aph (2”), aph (3′)-IIIa and ant(4”)-Ia 
(gentamicin resistance); ermA, ermC and msrA (macrolide 
and clindamycin resistance); dfrA(drfS1), dfrG and dfrK 
(trimethoprim resistance); tetK and tetM (tetracycline resis-
tance) were screened by conventional PCR. All the informa-
tion related to primer sequences and amplicon sizes is given 
in Table S3 in the Supplementary Information.

Results

Isolation and characterization of bacteria

The temperature and pH of the collected water samples are 
given in Table S1 in the Supplementary Information. The 
temperature ranged from 15 °C to 33 °C, while the pH of 
the samples was recorded mostly in the range of 6 to 9.25 
among all sites. The maximum permissible pH value should 
be between 6.00 and 9.00 for the effluent to be discharged 
into the sea and environment, as directed by the Ministry of 
Environment, Forest and Climate Change, India in the Envi-
ronment (Protection) Amendment Rules, 2015. The water 
samples taken in our study were mostly within the suggested 
limit and found to be neutral to slightly alkaline, a condi-
tion that is conducive to support bacterial growth (Oluseyi 
Osunmakinde et al. 2019). As shown in Fig. 2a, comparing 
all the sampling time, the total suspected staphylococci load 
was found to be maximum in wastewater Site 1 (4.15 ± 0.04 
log10 CFU/mL, 4.46 ± 0.08 log10 CFU/mL and 3.89 ± 0.04 
log10 CFU/mL respectively), while considerably lower load 
were noted in river Yamuna sites (2.13 ± 0.16 log10 CFU/mL 

for 36 h. In our study, the first step screening was done on 
MSA plates from which, the pink and yellow colonies were 
further streaked on Baird Parker agar (BPA) plates for selec-
tive screening. The grey-black colonies from BPA were 
considered as suspected staphylococci and taken forward 
for biochemical characterization. The cell shape and Gram 
characteristics were examined using Gram staining. After-
ward, biochemical tests including the catalase, coagulase, 
and Staphylo Monotec test were performed (Fluka, Sigma-
Aldrich; Kumari et al. 2020). Biochemically positive iso-
lates were considered as presumptive staphylococci (Table 
S2 in the Supplementary Information) and taken forward for 
screening of methicillin resistance.

Screening of methicillin resistance

To detect methicillin resistance, the presumptive staphy-
lococci isolates were subjected to an agar dilution method 
against oxacillin, which is in the same class of drugs and 
is currently used widely for this purpose. Briefly, cation-
adjusted Mueller Hinton agar (MHA) plates with oxacillin 
at 6 µg/mL (13.59 µM) for CoPS and 1 µg/mL (2.26 µM) 
for CoNS were prepared according to Clinical and Labora-
tory Standards Institute recommendations guidelines (CLSI 
2020). All the presumptive isolates that grew on these plates 
were studied for MIC determination of oxacillin by broth 
micro-dilution, according to the CLSI guidelines (CLSI 
2020). The minimum inhibitory concentration (MIC) was 
calculated using a final inoculum concentration of 105 CFU/
mL of bacterial culture. MICs were calculated using S. 
aureus (ATCC 29213) and S. epidermidis (ATCC 14990) as 
reference strains.

Molecular identification of the methicillin-resistant 
isolates

The molecular identification of the methicillin-resistant iso-
lates was conducted by 16S rRNA gene sequencing. Briefly, 
the universal primers, 27 F (5′- A G A G T T T G A T C A T G G C T 
C A G-3′) and 1492R (5′  T A C G G T T A C C T T G T T A C G A C T 
T-3′) were used to amplify the highly conserved ∼1500 bp 
region of 16S rRNA gene following recent reports with brief 
modification (Morshdy et al. 2023). A preliminary denatur-
ation stage of 95 °C for 5 min was followed by 25 cycles 
of 95 °C for 1 min, 45 °C for 30 s, and 72 °C for 2 min in 
the PCR process. The final extension step was carried out 
for 7 min at 72 °C. S. aureus (ATCC 29213) and S. epider-
midis (ATCC 14990) were used as positive control in this 
experiment (Garcha et al. 2016; Gumaa et al. 2021). The 
16S rRNA sequences were subjected to BLAST analysis 
(NCBI) and further deposited at GenBank.
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Site 9 during all the sampling (Fig. 2b). Correspondingly, 
the same midstream site was also found to be at upper limit 
for the total bacteria amid the river sites with a maximum 
load of 5.37 ± 0.06 log10 CFU/mL, implying the probable 
insufficient treatment of effluent by the industries in Delhi 
(Fig. S1b in the Supplementary Information). A total of 378 
isolates were screened through biochemical tests, and out of 
these, 224 (208 coagulase negative and 16 coagulase posi-
tive) isolates were considered as presumptive staphylococci 
(Table S2 in the Supplementary Information).

Screening of methicillin resistance

According to CLSI guidelines, staphylococci that show 
resistance to oxacillin are reported as methicillin-resistant 

and 2.42 ± 0.05 log10 CFU/mL in Site 8, 1.95 ± 0.06 log10 
CFU/mL in Site 10 respectively) (Fig. 2b). Surprisingly, 
the wastewater sites, Site 2 (3.92 ± 0.01 log10 CFU/mL) 
and Site 7 (3.63 ± 0.00 log10 CFU/mL) showed remarkable 
rise in the staphylococci load in 3rd sampling compared to 
the others, indicating the possible increase in drug manu-
facturing by the pharmaceutical industries during COVID-
19 pandemic that might result in the antibiotic pollution in 
the effluent. Conversely, it was noteworthy to observe the 
total culturable bacterial load higher during 2nd sampling, 
in most of the wastewater sampling sites. As depicted in Fig. 
S1a in the Supplementary Information, the range was noted 
from 6.20 ± 0.05 log10 CFU/mL in Site 4 to 4.36 ± 0.02 
log10 CFU/mL in Site 5. Among the river Yamuna sites, the 
staphylococci load was maximum in midstream location, 

Fig. 2 The suspected staphylococci load in the collected water samples 
from (a) urban waste water sites and (b) river Yamuna. The samplings 
were done in three consecutive years from 2019–2021. The bacterial 

load is presented as Log10 CFU/mL. The data represents mean ± stan-
dard deviation (SD) *Due to some COVID-19 related issue, the 2nd 
time sampling at Site 2 could not be performed
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MIC (1 µg/mL -64 µg/mL) (2.27 µM − 144.98 µM). None 
of the coagulase positive isolates were found resistant to 
methicillin. Therefore, only the methicillin-resistant coagu-
lase negative isolates were further identified upto species 
level.

Molecular identification by 16S rRNA sequencing

Upon 16S rRNA sequencing and BLAST analysis, 41.07% 
(23/56) isolates were identified as staphylococci of different 
species in CoNS category; S. haemolyticus (4), S. sciuri (4), 

(CLSI 2020). In our study, 56 out of 224 (25%) presump-
tive isolates were found to be methicillin-resistant, as ana-
lysed by agar dilution and MIC determination. As depicted 
in Fig. 3, the urban wastewater sites showed the highest 
number of resistant isolates in Site 5 with 28.57% (16/56) 
followed by Site 7 with 16.07% (9/56). Site 5 also revealed 
a maximum number of isolates with a higher range of MIC 
(16 µg/mL -128 µg/mL) (36.25 µM − 289.97 µM). Com-
pared to the wastewater samples, the river Yamuna samples 
(Site 8- Site 10) were found to reveal a lesser number of 
resistant isolates (11/56) with a broad range of oxacillin 

Fig. 3 Minimum inhibitory concentration of oxacillin against 56 pre-
sumptive coagulase negative isolates (displayed on a color scale) *The 
nomenclature of the isolates are expressed as ‘S’ that stands for the 

Site number followed by the sampling time and isolate number. For 
example: S1F06, S1 Stands for Site 1, F stands for first sampling and 
06 is the isolate number
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linezolid, an oxazolidinone antimicrobial agent (Fig. 5), that 
is currently considered a promising candidate for the infec-
tions caused by MRS and vancomycin-resistant enterococci 
(VRE) (Zahedi Bialvaei et al. 2017). Moreover, it was noted 
that 60.86% (14/23) of the tested MR-CoNS isolates were 
multidrug-resistant (Fig. 4, Fig. S2 in the Supplementary 
Information). It was notable to observe all 5 isolates, S. 
haemolyticus (4) and S. epidermidis (1), obtained from Site 
5 were found to be MDR. These species were considered 
as the most frequent aetiological agents of staphylococcal 
infections (Takeuchi et al. 2005). Additionally, S. hominis 
(4) frequent in Site 7, was found to be the second most 
occurring species exhibiting multidrug resistance (Fig. S2 
in the Supplementary Information). Site 1 and Site 3 were 
the locations that accounted for three MDR isolates of S. 
arlettae, the species that are generally reported in the micro-
biota of animals (Karakulska et al. 2022). Overall, the study 
revealed the prevalence of MDR in wastewater sites, as 13 
out of 14 MDR staphylococci were isolated thereof. This is 
concerning that the NCR area (Site 5 and Site 7) reported 
more MDR CoNS species than Delhi (Fig. 4).

Detection of antibiotic resistance genes (ARGs) in 
identified staphylococci

The presence of antibiotic resistance genes (ARGs) was 
analyzed among the 23 identified MR-CoNS isolates. 
30.43% (7/23) were found to be positive for mecA and 
26.09% (6/23) for blaZ genes responsible for the resistance 
to the β-lactam class of antibiotics (Table 2). Related to 
macrolide resistance, none of the 17 resistant isolates were 
found to carry the ermA and ermC genes. However, 58.82% 
(10/17) of the isolates were detected to contain the msrA 
gene. Notably, the msrA gene is also responsible for confer-
ring clindamycin resistance and was detected in 60% (3/5) 
of clindamycin-resistant isolates (Table 3). Phenotypic-
genotypic disparities (phenotypic antibiotic resistance was 
detected without the related ARGs and vice-versa) were 
observed for tetK and tetM genes. The same phenomenon 
was also observed for 11 MR-CoNS isolates phenotypically 
resistant to trimethoprim, while only 6 of them were found 
to contain the related ARGs. Likewise, phenotypic disparity 
was also noted in 2 isolates from Site 5, where the gentami-
cin resistance genes were absent (Table 3).

Discussion

The current study investigated the presence of antibiotic-
resistant bacteria particularly, MR-CoNS, their MDR 
pattern, and the assessment of their ARGs in the urban 
wastewater taken from the sites adjacent to hospitals, 

S. hominis (5), S. arlettae (3), S. cohnii (3), S. epidermidis 
(1), S. saprophyticus (2) and S. capitis (1) (Table 1). The 
16S rRNA sequences of all the isolates have been deposited 
in GenBank under the accession numbers given in Table 1. 
The MR-CoNS were detected from 8 out of 10 sites while 
both Site 1 and Site 5 were found to report a maximum num-
ber of isolates.

Antimicrobial susceptibility pattern of identified 
staphylococci

The antimicrobial susceptibility pattern of 23 MR-CoNS 
isolates against 12 antibiotics is presented in Fig. 4. The iso-
lates were found to exhibit the highest percentage of resis-
tance against macrolide and cephalosporin class, such as 
erythromycin 73.91% (17/23), azithromycin 60.86% (14/23) 
and cefoxitin 65.22% (15/23) (Fig. 5). Comparatively lesser 
percentage of resistance was observed against trimethoprim 
47.82% (11/23), ampicillin 34.78% (8/23), ciprofloxacin 
30.43% (7/23) and clindamycin 21.74% (5/23). Most of the 
isolates were noted to be susceptible to tetracycline and tei-
coplanin, where resistance was detected in only 8.6% (2/23) 
and 4.35% (1/23) of the isolates respectively. The same phe-
nomenon was observed for both gentamicin and rifampicin 
with 17.39% (4/23) of resistance. Conceivably, it is to be 
hoped that 100% (23/23) susceptibility was noticed against 

Table 1 List of the methicillin-resistant coagulase negative staphylo-
cocci species identified by 16S rRNA sequencing with their GenBank 
accession numbers
Sites Isolate ID Identified

species
Accession
Number

Site 1 S1F06 S. arlettae PP434793
S1S01 S. cohnii PP389921
S1S02 S. cohnii PP389922
S1T03 S. hominis PP389923
S1T32 S. arlettae PP389924

Site 3 S3S04 S. sciuri PP389926
S3S03 S. sciuri PP389925
S3T20 S. arlettae PP389927

Site 4 S4S19 S. saprophyticus PP389928
Site 5 S5F05 S. haemolyticus PP389929

S5F09 S. haemolyticus PP434794
S5F10 S. haemolyticus PP390029
S5F11 S. haemolyticus PP390030
S5T09 S. epidermidis PP390031

Site 6 S6F06 S. hominis PP390032
S6S06 S. sciuri PP406861

Site 7 S7S10 S. sciuri PP406865
S7T19 S. hominis PP390034
S7T12 S. hominis PP390033
S7T20 S. hominis PP390035

Site 9 S9S07 S. saprophyticus PP390036
Site 10 S10S12 S. cohnii PP389877

S10T04 S. capitis PP389935
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(WHO 2020). The manufacturing process is usually fol-
lowed by the release of effluent via wastewater disposal that 
may retain the antibiotics and therefore, serve as the key 
factor for evolving drug-resistant pathogens through selec-
tive pressure (Rees 2020; UNEP 2017). To the best of our 
knowledge, no systematic study on the surveillance of AMR 
and molecular basis of MDR with reference to coagulase 
negative staphylococci species has been reported in the 
Indian aquatic scenario yet.

pharmaceutical industries, and river Yamuna in Delhi, NCR. 
The current research is based on one of the key strategic 
objectives of the “One Health” (human, animal, and envi-
ronment) vision for AMR, which is improving the under-
standing of AMR transmission and surveillance required for 
understanding the human-environment association (Jin et 
al. 2022). Of note, the manifestation of COVID-19 (2019) 
has inflated antibiotic manufacturing by pharmaceuticals to 
combat secondary bacterial infections during the pandemic 

Fig. 5 Percentage of 23 identified 
coagulase negative staphylococci 
isolates resistant to different 
antibiotics; OXA: Oxacillin, CX: 
Cefoxitin, AMP: Ampicillin, 
GEN: Gentamycin, RIF: Rifam-
picin, TR: Trimethoprim, TE: 
Tetracycline, E: Erythromycin, 
CD: Clindamycin, LZ: Linezolid, 
TEI: Teicoplanin, AZM: Azithro-
mycin, CIP: Ciprofloxacin

 

Fig. 4 Drug resistance profiles of 23 methicillin-resistant coagulase 
negative staphylococci collected in this study. Green, susceptible; 
Red, resistant; Purple, multidrug-resistant (≥ 3 classes of antibiotics). 
CX: Cefoxitin, AMP: Ampicillin, GEN: Gentamycin, RIF: Rifam-

picin, TR: Trimethoprim, TE: Tetracycline, E: Erythromycin, AZM: 
Azithromycin, CD: Clindamycin, LZ: Linezolid, TEI: Teicoplanin, 
CIP: Ciprofloxacin
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In this study, it was noted from our study that, the sus-
pected staphylococci load was higher in most of the urban 
wastewater sites, whereas, comparatively lower loads were 
eminent in the Yamuna sites. The reason may be because 
of the continuous flow of the river, moving from upstream 
to downstream in the 22 km stretch in Delhi, where abiotic 
chemical pollutants like drugs, antibiotics and biotic pol-
lutants like microbes get carried along with the river flow, 
leading to their initial dilution. Following biochemical char-
acterization, total 224 isolates were considered as presump-
tive of which, 56 MRS were taken forward for molecular 
identification. The biochemical tests designed for staphylo-
cocci may also give similar test results for Micrococcaceae, 
Aerococcus urinae, and other bacteria (Reiner 2010), sug-
gesting the importance of 16S rRNA sequencing for reli-
able identification. Following the 16S rRNA sequencing, 
41.07% (23/56) of the presumptive isolates were identified 
as MR-CoNS of 8 different species.

According to our data, the prevalence of MR-CoNS 
can be noticed in both wastewater and river water. Simi-
lar observations were reported previously in the study con-
ducted in Spain by Gomez and the research team. They have 
found 16.67% of CoPS and 83.33% of CoNS including 12 
different species from the superficial water (Gómez et al. 
2017). Our study reported the two mostly occurring CoNS 
species, i.e. S. haemolyticus and S. hominis from Site 5 and 
Site 7 respectively. Both these species are known to cause 
bacteremia, septicaemia and several bloodstream infections 
(Eltwisy et al. 2022; Sorlozano et al. 2010). Importantly, 
in our study, the isolates of S. haemolyticus and S. hominis 
were highly resistant to oxacillin having MIC in the range 
of 16 µg/mL -128 µg/mL (36.25 µM- 289.97 µM). The 
highly resistant CoNS were also reported previously in the 
isolates from the clinical settings (Ahmed et al. 2021). The 
species like S. cohnii found in our study is corroborative 
of the results obtained earlier (Chen et al. 2015; Gomez et 
al. 2016). Further, other species like methicillin-resistant S. 
sciuri, S. arlettae, S. saprophyticus, and S. capitis were also 
found in the water samples.

Next, the MDR pattern of identified MR-CoNS isolates 
was thoroughly investigated. In our study, it was found that 
60.86% (14/23) of the MR-CoNS isolates were MDR, as 
they were found to be resistant to at least three classes of 
antibiotics (Magiorakos et al. 2012). Moreover, we have 
observed that two isolates of S. haemolyticus from Site 
5 were resistant to 10 out of 12 tested antibiotics. After 
β-lactam category (oxacillin, cefoxitin, and ampicillin), a 
maximum number of isolates were reported to be resistant 
to the macrolide class. In a recent study, a high concentra-
tion of macrolide class of antibiotics, particularly eryth-
romycin was detected in the active form in river Yamuna, 
that may be the possible reason for this high percentage of 

Table 2 Presence of mecA and blaZ genes in methicillin-resistant 
coagulase negative staphylococci isolates
Species Isolate 

ID
Phenotypic resistance to 
β-lactam antibiotics
a(OXA, CX, AMP)

Genotypic 
resistance 
(mecA & 
blaZ)

S. haemolyticus S5F05 OXA, CX, AMP mecA, blaZ
S5F09 OXA, CX, AMP mecA, blaZ
S5F10 OXA, CX, AMP mecA, blaZ
S5F11 OXA, CX, AMP mecA, blaZ

S. epidermidis S5T09 OXA, CX mecA, blaZ
S. hominis S7T19 OXA, CX, AMP mecA, blaZ
S. saprophyticus S9SO7 OXA, AMP mecA
aAntibiotics; OXA: Oxacillin, CX: Cefoxitin, AMP: Ampicillin

Table 3 Antibiotic resistance genes in methicillin-resistant coagulase 
negative staphylococci isolates
Species Isolate ID Phenotypic antibiotic 

resistance
Antibiotic 
resistance 
genes (ARGs)

S. haemolyticus S5F05 E, AZM, CD, pGEN, 
TR

msrA, dfrG

S5F09 E, AZM, CD, GEN, 
pTR

msrA, aac (6′) 
aph (2”)

S5F10 pE, pAZM, pCD, 
GEN, TR

dfrG, aac (6′) 
aph (2”), aph 
(3′)-IIIa

S5F11 E, AZM, TR msrA, dfrG
S. hominis S1T03 pE, pAZM gant(4′)-Ia

S7T19 E, AZM, TR msrA, dfrA 
(drfS1)

S7T12 pE, pTR --
S7T20 pTR --
S6F06 pE, pAZM,pCD pTE gaph (3′)-IIIa

S. saprophyticus S4S19 TR dfrA(dfrS1)
S9S07 pE, pAZM --

S. cohnii S1S01 E, AZM msrA
S1S02 E, AZM msrA
S10S12 E, AZM, pTR msrA

S. arlettae S1F06 E, AZM, CD msrA,gtetK
S3T20 E, AZM msrA
S1T32 E, AZM, TR msrA, dfrG

S. epidermidis S5T09 pE, pTE, pGEN gdfrA (drfS1)
S. capitis S10T04 --- gtetM
S. sciuri S3S03 pE --

S3S04 -- --
S6S06 pTR --
S7S10 -- --

pPhenotypic antibiotic resistance was detected without the related 
ARGs
gARGs were detected without the related phenotypic antibiotic resis-
tance
Antibiotics; GEN: Gentamycin, TR: Trimethoprim, TE: Tetracy-
cline, E: Erythromycin, AZM: Azithromycin, CD: Clindamycin
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gene encodes an ATP-dependent efflux pump of the ABC 
(ATP-binding cassette) family, responsible for conferring 
macrolide-lincosamide-streptogramin B (MLSb) resistance 
(Mišić et al. 2017). The fact that the erm and msr genes are 
also associated with clindamycin resistance highlights the 
potential of cross-resistance and inducible resistance that 
may lead to failure in therapy. Notably, the msrA gene was 
detected in 3 clindamycin-resistant isolates validating their 
phenotypic resistance to clindamycin in the current study. 
The results suggest that the tetracycline resistance con-
ferred by the isolates devoid of tetK and tetM genes may 
be mediated by other classes of tet genes, like tetL and tetO 
(Trzcinski et al. 2000), but were not included in this study. 
Conversely, the presence of tet genes in phenotypically 
susceptible isolates was also supported by the recent study 
(Rasheed et al. 2023), which suggests that ARGs are not 
only the factors for conferring antibiotic resistance in staph-
ylococci. Comparable results were also obtained from the 
study done in Iran where they found tetK in 30% and tetM 
in 75% of the susceptible isolates (Akya et al. 2020). These 
findings imply that certain ARGs that may remain dormant 
or inactive under specific conditions, can later become 
active when integrated into suitable genetic loci within the 
bacterial genome.

The presence of the dfrG and dfrA(dfrS1) genes in some 
isolates aligns with their phenotypic resistance to trim-
ethoprim. According to our results, the presence of these 
ARGs in species like S. haemolyticus, S. saprophyticus, 
S. hominis, and S. epidermidis raises concerns about their 
potential role as reservoirs for these ARGs. The current 
study also revealed the resistance to aminoglycoside such 
as gentamicin in few CoNS isolates not possessing any of 
the three studied genes, aac (6′) aph (2”), aph (3′)-IIIa, 
ant(4′)-Ia. This disparity was also observed earlier (Chan-
drakanth et al. 2008), where they found clinical isolates 
of aminoglycoside-resistant S. aureus lacking the ARGs 
and defined as aminoglycoside-modifying enzyme (AME) 
independent. The authors reported that these AME-deficit 
isolates underwent cell elongation with altered morphol-
ogy and septa formation under sub-MIC concentration of 
aminoglycosides, thereby showing varied resistance. This 
phenomenon was termed adaptive resistance that was devel-
oped in the ARG-deficient strains under stress. Moreover, 
some CoNS isolates in our study were also found to harbor 
the resistance genes but showed susceptibility towards gen-
tamicin. The results were in accordance with a study (Kime 
et al. 2019), where the authors explained the phenomenon 
as silencing of antibiotic resistance by mutation (SARM). 
Various mutations like frameshift, nucleotide deletions, or 
disruption of coding sequences in ARGs may suppress the 
gene functionality and strains show antibiotic susceptibil-
ity. However, SARM may be reversible under favourable 

erythromycin resistance observed in our study (Akhter et al. 
2023). Another study conducted in Portugal in 2009, also 
stated the high occurrence of erythromycin resistance in the 
CoNS species isolated from wastewater and drinking water 
(Faria et al. 2009). Additionally, 47.82% of the CoNS spe-
cies showed resistance toward the antibiotic trimethoprim, 
that is of great concern. Isolates resistant to clindamycin, 
ciprofloxacin, rifampicin, and gentamicin were detected in 
the wastewater but not in river Yamuna samples. However, 
a low level of antibiotic resistance was noticed against tei-
coplanin and tetracycline, similar to the findings reported 
earlier (Stevoska et al. 2022). In the same line, the isolated 
MR-CoNS exhibited 100% sensitivity towards the oxa-
zolidinone antibiotic linezolid. While resistance to linezolid 
is not as widespread as resistance to other antibiotics, it is 
essential to maintain proper stewardship of linezolid use to 
help preserve its effectiveness (Hashemian et al. 2018).

It is well known that staphylococci possess a variety of 
ARGs that provide resistance to distinct antibiotic classes. 
As previously indicated, the mecA gene produces a modified 
penicillin-binding protein (PBP2a) that has a lower bind-
ing affinity for β-lactam antibiotics, while blaZ also confers 
β-lactam resistance by producing β-lactamase enzyme, ren-
dering these antibiotics ineffective (Shalaby et al. 2020). In 
our study, the presence of the mecA in 30.43% of isolates 
and blaZ in 26.09% of isolates were supportive of the high 
MIC of oxacillin in the range of 8 µg/mL -128 µg/mL (18.12 
µM − 289.97 µM) against the isolates containing both genes. 
In this regard, it is worth to mention that all the S. haemo-
lyticus species, obtained in the current study harbour those 
genes, and may be capable of interspecies transfer of resis-
tance genes and pose a significant threat in the context of 
dwindling antibiotic efficacy (Czekaj et al. 2015). Next, the 
strain of S. saprophyticus (S9S07) against which oxacillin 
showed a comparatively lower MIC of 1 µg/mL (2.27 µM), 
was found to possess mecA, but not blaZ. Similarly, Zehra et 
al. (2017) obtained borderline oxacillin-resistant S. aureus 
(BORSA) negative for the mecA gene and found them as 
hyperproducers of β-lactamases. These studies suggest that 
genetic detection of mecA is not always enough for studying 
methicillin resistance in staphylococci. In several reports, 
variants of mecA (mecC) were found in MRSA as well as in 
CoNS justify the observation (Loncaric et al. 2019; Laurent 
et al. 2012; Paterson et al. 2014; Silva et al. 2021).

The absence of ermC and ermA genes in the 23 iso-
lates suggests that macrolide resistance in these isolates 
is not mediated by these ARGs. However, the presence of 
the msrA gene in 43.47% of the isolates indicates that as a 
possible contributor to macrolide resistance in these CoNS 
(Duran et al. 2012). Specifically, the erm cluster is respon-
sible for altering the ribosomal binding site alteration (by 
mutation within the 23S rRNA gene), whereas, the msrA 
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