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Abstract
Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, 
they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae 
endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from 
Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-
culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and 
minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, 
antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting bet-
ter activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic 
bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited 
gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to 
Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four 
showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxyspo-
rum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. 
The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. 
YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be 
investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.
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Introduction

Pathogenic microorganisms causing foodborne infections 
and food spoilage are becoming resistant to common antimi-
crobials, posing risks to human health and food production 
and storage (Jakubczyk and Dussart 2020). In this sense, 
researchers are exploring various sources of antimicrobials 
to discover new drugs, such as macroalgal endophyte bac-
teria (Kizhakkekalam and Chakraborty 2020). They have 
found these microorganisms yield polyphenols, flavonoids, 
anthocyanins (Carlos et al. 2022), alkaloids, steroids, trit-
erpenoids (Habbu et al. 2016), and lipopeptides (Lam et al. 
2021), which could inhibit same pathogenic microorgan-
isms, e.g. Listeria monocytogenes, Staphylococcus aureus, 
Escherichia coli, Salmonella typhimurium, S. enteritidis, S. 
tiphy, and Pseudomonas aeruginosa, Saccharomyces cerevi-
siae, Candida albicans, Fusarium moniliforme, F. cubense, 
Botrytis cinerea, Ceratocystis paradoxa, Sporisorium sci-
tamineum, etc. (Jakubczyk and Dussart 2020; Dao-Jun et 
al. 2020). Among the mechanisms involved in antimicro-
bial activity, there could be the inhibition or blockage of 
enzymes, ribosomes, protein synthesis, or DNA synthesis 
(Carlos et al. 2022), reduction of resistance development, 
and negative effects on pathogens’ morphology and physiol-
ogy (Vega-portalatino et al. 2023).

Commonly, macroalgae play an important role in the 
primary production in marine ecosystems, supporting a 
wide diversity of aquatic organisms including their endo-
phyte microorganisms (Carlos et al. 2022; Kandasamy and 
Kathirvel 2023). In this sense, Peruvian algae have mainly 
been studied for their taxonomic classification, but rarely 
for their biological activities. Chondracanthus chamissoi 
‒ prevalent endemic red algae ‒ has been considered one 
of the most abundant species from Peru (Suárez-alarc et al. 
2021). It is characterized by its green-blue and reddish mem-
branous, flattened, and irregular branching thallus (Carbajal 
et al. 2019; Muñoz et al. 2020), but its antimicrobial activity 
has not been approached yet. However, the ethanolic and 
methanolic extracts from other species of Chondracanthus 
genus exhibited antibacterial activity against S. aureus, 
Streptococcus pyogenes, L. monocytogenes, Salmonella 
enterica, E. faecalis, P. aeruginosa, etc. (Rhimou et al. 
2010; Muñoz-Ochoa et al. 2010; Cox et al. 2010). Other 
macroalgae found on the Peruvian coast belong to Caul-
erpa genus. They are common invasive species, character-
ized by their long, compact fronds and they grow in shallow 
waters, colonizing bare sediments, and forming grasslands 
(Suárez-alarc et al. 2021; Bradley et al. 2021). Their etha-
nolic extracts inhibited Klebsiella pneumoniae, E. coli, P. 
aeruginosa, and Shigella dysenteriae (María et al. 2023). 
Similarly, Ahnfeltiopsis species that grow on the Peruvian 
coast exhibit erect, cylindrical, rigid thallus yellowish 

green to brown or greenish brown darker towards its base 
with numerous dichotomous branches at the top (Carbajal 
et al. 2019) (Rodríguez et al. 2018). Ethanolic extract of 
Ahnfeltiopsis durvillaei collected from the Peruvian cen-
tral coast inhibited S. aureus isolated from clinical patients 
(Magallanes et al. 2003).

Endophyte microorganisms from the algae species 
described above have not been reported yet. However, 
Ulva lactuca, which is defined as green algae with rounded 
lamellar and ovate thallus, lobed, orbicular, or irregular 
shape, without branching and with undulations (Carbajal et 
al. 2019; Muñoz et al. 2020; Arakaki et al. 2023) was stud-
ied for its endophyte microorganism, so, a sample collected 
from Someshwar Beach (Mangalore, Dakshina Kannada, 
Karnataka, India) showed bacterial endophytes with anti-
microbial activity against Enterococcus faecalis, Klebsiella 
pneumoniae, Aspergillus sp., Candida albicans (Habbu et 
al. 2016), E. coli and S. aureus (Dhanya et al. 2016). These 
findings suggest that macroalgae and their endophytes may 
produce a variety of secondary metabolites, potentially 
leading to the development of new drugs (Stincone et al. 
2020). Therefore, isolation of these microorganisms should 
be a priority (Cochrane and Vederas 2016).

Lipopolypeptides - one type of antimicrobial secondary 
metabolites- are classified as new antibiotic drugs, they are 
synthesized by peptide synthases and have D-amino acids 
linked by a β-hydroxy fatty acid (Wang et al. 2023; Geissler 
et al. 2019; Fei et al. 2020). They are classified into diverse 
groups based on their cyclic and linear (non-cyclic) pep-
tides and structure, further, polymyxin B and daptomycin 
are FDA-approved commercial structures, while others are 
in various stages of preclinical or clinical trials. (Cochrane 
and Vederas 2016). Some genes coding lipopolypeptides 
with antibacterial, antifungal, and antiviral activity are 
known, e.g. fengycin genes that encode fengincin A, B, and 
plipastatin (Geissler et al. 2019), iturin genes encoding itu-
rin A-E, bacilomicin D, F, L, mycosubtilin, and mojavencin 
(Stincone et al. 2020), and surfactin genes for surfactin-C11 
and surfactin A, B, C (Medeot et al. 2023; Deutsch et al. 
2021; Díaz-Castillo et al. 2018). Thus, identifying genes 
associated with antimicrobial compounds may be crucial as 
they could encode new natural products (Wang et al. 2023; 
Muñoz-Silva et al. 2019). Moreover, this information can 
be used in functional genetic studies to determine the opti-
mal growing conditions (Zamorano et al. 2022; Singh et al. 
2021) and to monitor antibiotic yielding during biotechno-
logical production.

Species belonging to Bacillus, Kluyvera, Pantoea, 
Leclercia, and Enterobacter isolated from marine mac-
roalgae exhibited antibacterial and antifungal activities 
(Kizhakkekalam and Chakraborty 2020; Habbu et al. 2016; 
Dao-Jun et al. 2020; Muñoz et al. 2020; Muñoz-Silva et al. 
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2019; Zamorano et al. 2022; Singh et al. 2021; Edoamodu 
and Nwodo 2022; Rangarajan et al. 2015; Gong et al. 2019; 
Gnanasekaran et al. 2023; Tambekar and Bhutada 2010) 
and they could be a new source of bioactive compounds 
as antibiotics, antimicrobials, anticancer, antibiofilm, and 
antivirals drugs (Gnanasekaran et al. 2023). They could be 
useful against enteric infections and potential substitutes 
for medicinal plants (Dhanya et al. 2016; Rani et al. 2021). 
Hence, they could also be applied as food preservatives to 
ensure food safety and quality (Arshad and Batool 2017) 
substituting ineffective and costly antimicrobials (Rani et 
al. 2021). In addition, they could have industrial and envi-
ronmental applications (Vega-portalatino et al. 2023). This 
research aims to study the diversity of endophytic bacteria 
of marine macroalgae collected from the northern coast of 
Peru (Yacila and Cangrejos beaches, Piura) and determine 
their potential as a source of antimicrobials because these 
algae and their microbial diversity have not been previ-
ously investigated. This study could support future research 
because the findings will open a new approach due to the 
biotechnological potential and benefits identified in some 
endophytic bacteria isolated.

Materials and methods

Collection of macroalgae

The most predominant and easily accessible macroalgae 
(Caulerpa sp., Ahnfeltiopsis sp., Ulva sp., and C. chamissoi) 
were randomly collected from Cangrejo and Yacila beaches 
(GPS decimal degree: − 5.144412, − 81.174492 and 
− 5.128802, − 81.167577, respectively), Paita, Piura, Peru. 
Samples without signs of disease or damage were selected. 
They were externally disinfected with 70° alcohol (Deutsch 
et al. 2021), put in sterile bags with seawater, and trans-
ported to Laboratorio de Biotecnología de la Universidad 
Nacional de Frontera in a refrigerated container (approx. 4 
°C). Taxonomic identification was carried out by the Insti-
tuto del Mar del Peru (IMARPE), Paita, Piura-Peru using 
three samples and the Guide for macroalgae recognition 
from Callao (Carbajal et al. 2019). Isolation of endophytic 
bacteria was performed within 24 h of collection.

Isolation of endophytic bacteria

The samples (discs and fronds macroalgae) were washed 
with tap water to remove external debris. Fragments (1 cm, 
forty-five) were disinfected with ethanol 70° for 30 s, fol-
lowed by 2% NaCIO (60  s), and three successive washes 
(5 min) with sterile distilled water (Rodríguez et al. 2018; 
Muñoz-Silva et al. 2019). They were placed into sterile vials 

with Trypticase Soy Broth (TSB, 2 mL) for 5 min (as sur-
face contamination control). Afterward, the samples were 
transferred to absorbent sterile paper and cut transversely to 
obtain two pieces, which were placed into sterile vials with 
Trypticase Soy Agar (TSA) supplemented with nystatin 
(50 µg/mL). They and their controls were incubated at 25 
°C for 2 to 4 days. It was considered bacteria endophyte 
when its control surface vial did not have bacterial growth, 
afterward, the bacteria around algae fragments were purified 
by successive streaking on Petri plates with TSA and culture 
in TSA-slanted tubes. All axenic bacteria strains were cryo-
preserved in TSB-glycerol (30%) cryovials (Ulloa-Muñoz 
et al. 2020).

Antibacterial activity

Pathogenic bacteria

Algae endophytic bacteria were evaluated against four 
gram-positive bacteria (Enterococcus faecalis ATCC29212, 
Staphylococcus epidermidis ATCC12228, Staphylococ-
cus aureus ATCC25923, and Listeria monocytogenes 
ATCC7644) and three gram-negative bacteria (Escherichia 
coli O157:H7, E. coli ATCC10536 and Salmonella enterica 
sv typhimurium ATCC14028).

Inoculum preparation

Algae endophytic and pathogenic bacteria were cultured in 
TSB (5 ml) at 25 or 37 °C for 16 h (Habbu et al. 2016). 
Afterward, they were centrifuged at 2000 g for 5 min, the 
pellet was diluted in sterile NaCl (0.8%) at 0.08 optical den-
sity at 620 nm, equivalent to approximately 1 × 108 CFU/
mL.

Selection of endophytic bacteria

Algae endophytic bacteria (OD620: 0.08) were inoculated-
making a cross on Petri dishes with TSA and incubated at 
25 °C for 48 h. After, 2 µl fresh culture of pathogenic bac-
terium (OD620: 0.08) was soaked into a sterile filter paper 
disk (6 mm) and inoculated on each edge of the previously 
inoculated plate. Plates were incubated at 25 °C for 96 h. 
(Deutsch et al. 2021). For negative control, pathogens were 
cultured on plates without algae endophytic bacteria. Bac-
terial growth was estimated by comparing the growth of 
pathogens in the plate with/without endophytic bacteria fol-
lowing this formula Ifo%=[(A-B)/A] *100, where A is the 
diameter of the pathogen without the endophytic bacteria 
and B is the diameter of the pathogen when it interacts with 
the endophytic bacteria. It was considered four levels: 100 
to 90% (+++: strong inhibition), 89 to 50% (++: moderate 
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Three replicates and contamination controls were prepared 
and incubated at 37 °C for 24 h. The growth of pathogenic 
bacteria was observed using a magnifying glass, and MIC 
was determined as the minimum concentration of extract 
that inhibited completely bacterial growth (Tamariz-angeles 
et al. 2023). To determine the minimum bactericidal con-
centration (MBC), 10 µL of each well was sub-cultured in 
MHA plates (extract-free), and incubated at 37 °C for 48 h. 
The minimum concentration that did not show bacterial 
growth was considered like MBC (Puškárová et al. 2017).

Molecular taxonomic identification of selected 
strains

It was performed for bacteria strains with better antibacte-
rial activity. Selected endophytic bacteria were cultured in 
Luria Bertani Broth (LB), their pellets were recovered by 
centrifugation and their DNA was extracted by cetyltrimeth-
ylammonium bromide (CTAB) method (Díaz-Castillo et al. 
2018). Amplification of 16 S rDNA fragments was carried 
out by PCR using 27 F and 1492R set primers (Díaz-Cas-
tillo et al. 2018). Amplicon quality was determined by aga-
rose electrophoresis (1.5%). PCR products were sequenced 
by the SANGER method in Macrogen (Seul, Korea) with 
518 F and 800R set primers. The sequences were edited and 
assembled with Chromas lite and Cap3 programs. For taxo-
nomic group identification, sequences were aligned with ref-
erence sequences from the Genbank using BlastN (https://
blast.ncbi.nlm.nih.gov/). According to the taxonomic group, 
its phylogenetic tree was prepared using ClustralX v.2.1 for 
aligning, and Mega v.11 with Neighbor-joining, Kimura-2, 
and 1000 bootstraps algorithms.

Antifungal activity

Endophytic bacteria exhibiting better antibacterial activi-
ties were selected for evaluation. Anti-yeast activity was 
assessed using OpT, VOCt, and MIC methodologies as pre-
viously described, while anti-filamentous fungi activity was 
determined using over-culture (Ulloa-Muñoz et al. 2020); 
Puškárová et al. 2017).

Anti-candidal activity

Candida albicans ATCC90028 and C. tropicalis ATCC750T 
were used. First, it was performed following OpT and VOCt 
methods using Papa Dextrose Agar (PDA). Furthermore, 
the extract with better activities was used to evaluate MIC 
and MBC against these candida using Potato dextrose broth 
(PDB) (Tamariz-angeles et al. 2023).

inhibition), 49 to 8.5% (+: weak inhibition), and 8.5 to 0% 
(−: no inhibition) (Deutsch et al. 2021).

Over-plate tests (OpT)

Previously, antimicrobial metabolite was produced: 100 µL 
of algae endophytic bacteria (OD620: 0.08) was inoculated 
by incorporation into 20 mL of TSA plates and incubated at 
25 °C for 10 days. Afterward, the culture was cut into 5 mm 
disks. For the OpT, 100 µL of pathogenic bacteria (OD620: 
0.08) was inoculated by extension in TSA plates, and imme-
diately 3 disks of algae bacteria were added and incubated 
at 25  °C for 24  h (Carbajal et al. 2019; Fei et al. 2020). 
TSA without algae endophytic bacteria disks (5 mm) were 
negative control, and penicillin disks (10 IU) and nystatin 
were standard antibiotics. Clear halos indicated antibacte-
rial activity and were measured in millimeters (mm).

Volatile Organic compounds Test (VOCt)

One hundred milliliters of algae endophytic bacteria 
(OD620: 0.08) was inoculated by extension on TSA plates. 
Parallelly, three filter paper disks (6  mm) with 2 µL of 
pathogenic bacteria were inoculated on Müller and Hinton 
agar (MHA) plates. Both bottom plates were put together 
and sealed with Parafilm. The plate with algae endophytic 
bacteria was placed on the bottom and the plate with the 
pathogen was placed on top (Garrido et al. 2020). TSA 
plates without algae endophytic bacteria were pathogenic 
bacteria growth control. The growth inhibition of patho-
genic bacteria was determined as inhibition percentage: 
AH% =[(A-B)/A]*100, where A is the diameter of patho-
genic bacteria without algae endophytic bacteria; and B is 
the diameter of pathogenic bacteria when interacting with 
algae endophytic bacteria.

MIC and MBC test

Three algae endophytic bacteria showing better antimicro-
bial activity in previous tests were chosen to evaluate mini-
mal inhibition concentration (MIC) following the method 
described by Tamariz-Angeles et al. (Tamariz-angeles et 
al. 2023). The endophytic bacteria were grown in TSB (40 
mL) at approx. 25 ± 2 °C with orbital agitation at 150 rpm 
for 10 days. Subsequently, the cultures were centrifuged 
and then filtered through a Millipore filter with a pore size 
of 0.22  μm to obtain their extracts containing secondary 
metabolites. The cell-free extracts were mixed with Müller 
and Hinton II Broth (MHIIB) at dilutions of 100, 75, 50, 25, 
and 10% (Sarasan et al. 2020). Immediately, dilutions (100 
µL) were transferred to a 96-well microplate and inocu-
lated with 10 µL of fresh pathogenic bacteria (OD620: 0.08). 
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Results

Macroalgae collection and isolation of endophytic 
bacteria

Four macroalgae were collected from each beach (Yacila 
and Cangrejos), which were identified as Caulerpa sp., Ahn-
feltiopsis sp., Ulva sp., and C. chamissoi (Fig. 1).

Forty-six algae endophytic bacteria were isolated from 
all macroalgae collected (Table 2). Thirteen (29.3%) endo-
phytic bacteria corresponded to three macroalgae (Caulerpa 
sp., Ulva sp., and C. chamisoi) collected from Cangrejos 
beach, and 33 (71.7%) corresponded to four macroalgae 
(Caulerpa sp., Ulva sp., C. chamisoi, and Ahnfeltiopsis sp.) 
from Yacila beach. Furthermore, most endophytic bacteria 
were isolated from algae stipe.

Concerning marine macroalgae phylum, Chlorophytas 
macroalgae (Caulerpa sp. and Ulva sp.) from Yacila and 
Cangrejo had 8 (17.4%) and 11 (23.9%) isolated endophytic 
bacteria strains, respectively. Rhodophyta macroalgae (Ahn-
feltiopsis sp. and C. chamisoi) from Yacila and Cangrejo 
contributed 5 (10.9%) and 22 (47.8%) endophytic bacteria 
strains, respectively (Fig. 2).

Antibacterial assay

Selection of endophytic bacteria with better antibacterial 
activity

The antimicrobial activity of 46 endophytic bacteria was 
evaluated. Results showed that 10 marine endophytic 
bacteria exhibited strong inhibition against at least 3 of 4 
evaluated gram-positive pathogenic bacteria, 30 showed 
moderate activity, and 6 displayed weak activity (Table 3; 
Fig. 3). Also, 12 algae endophytic bacteria showed strong 
inhibitory activity against at least 2 gram-negative patho-
genic bacteria, 28 exhibited moderate activity, and 6 dis-
played weak activities.

Antifungal activity against filamentous fungi

The filamentous fungi used were Fusarium sp. H (Tamariz-
angeles et al. 2023), F. oxysporum CTLM12 (Muñoz-Silva 
et al. 2019), Alternaria sp. ATCC20084, and Colletotrich-
ium sp. The last strain is a wild fungus isolated from Persia 
americana “avocado” with anthracnosis symptoms. These 
fungi were cultured in PDA plates at 28 °C for 5 days, 
subsequently, their mycelium was cut into discs (diameter 
5 mm). For the assay, the fresh culture of algae endophytic 
bacteria (OD620: 0.08) was swabbed in Petri dishes with 
PDA and immediately 3 discs of mycelium were placed on 
them. The over-culture plates were incubated at 25 °C for 
3 to 5 days. PDA plates without algae endophytic bacteria 
were used as fungus growth control. The inhibitory capac-
ity was determined from the percentage inhibition of fungi 
by Ifo%=[(A-B)/A]*100, where A is the diameter of fungus 
without endophytic bacteria and B is the diameter of fungus 
when interacting with endophytic bacteria(Ulloa-Muñoz et 
al. 2020).

Presence of iturin, fengycin, and surfactin genes

Fragments of Iturin C, Fengycin D, and Surfactin A genes 
were amplified by conventional PCR using previously 
described set primers (Table 6) (Mora et al. 2011). Ampli-
cons were checked by agarose gel electrophoresis (2%), and 
DNA bands with the sizes corresponding to described genes 
in Table 1 were considered positive results.

Statistical analysis

All assays were conducted with 2 or 3 replicates. Mean 
and standard deviation (SD), ANOVA, and Tukey’s test 
(α = 0.05) were analyzed using the Statistical Package for 
Social Sciences (SPSS) v.23.

First Expression 
product

Sequence (5′→3′) Gene Melting T 
(oC)

Prod-
uct 
size 
(Ps)

ITUCF Iturin ​G​G​C​T​G​C​T​G​C​A​G​A​T​G​C​T​T​T​A​T ituC 60.1 423
ITUCR ​T​C​G​C​A​G​A​T​A​A​T​C​G​C​A​G​T​G​A​G
FENDF Fengycin ​G​G​C​C​C​G​T​T​C​T​C​T​A​A​A​T​C​C​A​T fenD 60.1 269
FENDR ​G​T​C​A​T​G​C​T​G​A​C​G​A​G​A​G​C​A​A​A
SRFAF Surfactin ​T​C​G​G​G​A​C​A​G​G​A​A​G​A​C​A​T​C​A​T srfAA 60.4 201
SRFAR ​C​C​A​C​T​C​A​A​A​C​G​G​A​T​A​A​T​C​C​T​G​A

Table 1  Oligonucleotide primers 
used to detect cyclic lipopeptide 
genes
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selected for OpT and VOC tests (Table 5). CUFE2 showed 
higher inhibitory activity against E. coli O157:H7 by OpT, 
also, YCFR5, YUFE8, and CUFE2 showed higher activity 
by VOCt. Furthermore, YAFL1 reached a higher inhibitory 
activity against E. coli ATCC10536 by OpT, and YCFE4, 
CUFE2, YUFE8, YCFEP3, and YCFR5 were more active 
by VOCt. Likewise, YAFL1 inhibited S. enterica cv 
typhimurium by OpT and YAFL6 VOCt.

According to these results, three algae endophytic bacte-
ria were selected for MIC and MBC assays: YCFE4, which 
exhibited antibacterial activity against four gram-positive 
pathogens; CUFE2 and YAFL6, which showed antibacte-
rial activity against three gram-negative pathogens tested. 
The extracts obtained showed variable concentrations 
corresponding to 5.662  mg/ml (CUFE2 and YAFL6) and 
6.52 mg/ml (YCFE4) at maximum concentration for each 

OpT, VOC, and MIC tests

Ten selected endophytic bacterial strains were tested using 
OpT and VOCt against gram-positive pathogens (Table 4). 
YAFL9 showed higher antibacterial activity against E. fae-
calis by VOCt, but by OpT methodology no algae endo-
phytic strains inhibited this pathogen. Furthermore, YAFE21 
showed strong inhibitory activity against S. epidermidis by 
OpT, like YCFE1 and YCFR6 by VOCt. YAFL6 exhibited 
strong inhibition activity against S. aureus by OpT, but 
YCFE1 and YCFR6 strains showed better results by VOCt. 
Only YAFE21 inhibited L. monocytogenes by OpT, but 
YCFE4 and YAFE21 showed higher inhibitory activity by 
VOCt.

Regarding the antibacterial activity against gram-neg-
ative pathogenic bacteria, 12 endophytic bacteria were 

Fig. 1  Marine macroalgae collected at Yacila and Cangrejo beaches. A Caulerpa sp. B Ahnfeltiopsis sp. C Ulva sp. D Chondracantus chamissoi
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to four genera: Kluyvera ascorbata (YAFE21 and YAFL9), 
Pantoea agglomerans (YAFL6), Leclercia adecarboxyl-
ata (CUFE2), Enterobacter sp. (YAFL1) (Fig. 5B). These 
results indicate that the most representative genus was 
Bacillus, followed by Kluyvera.

Antifungal activity of algae endophytic bacteria

Anticandidal activity

Nine endophytic bacteria were selected to evaluate their 
inhibitory activity against yeasts finding that YAFL1, 
YAFL6, CUFE2, YUFE8, and YCFR6 showed strong 
inhibitory activity against at least 1 pathogenic yeast by the 
cross-culture method (Table 6).

Five algae endophytic bacteria were selected for OpT 
(Figs. 6 and 7). Bacillus sp. YUFE8 exhibited higher inhibi-
tory activity against C. albicans, while the inhibitory activ-
ity against C. tropicalis was low. Furthermore, YAFL6 and 
CUFE2 exhibited strong inhibitory activity against C. albi-
cans ATCC90028 and C. tropicalis, respectively by VOCt 
method. However, MIC and MBC of CUFE2 (5.662  mg/
ml), YAFL6 (5.662 mg/ml), and YCFE4 (6.52 mg/ml) crude 
extracts did not show inhibitory activity against both evalu-
ated Candida.

Antifungal activity against filamentous fungi

Nine algae endophytic bacteria were evaluated (Figs. 8 and 
9). Enterobacter sp. YAFL1 and P. agglomerans YAFL6 

bacterial strain. Extract of CUFE2 (5.662  mg/ml, 100%) 
inhibited Escherichia coli O157:H7 and Escherichia coli 
ATCC10536, then, this concentration corresponds to MIC. 
Furthermore, this extract exhibited bactericidal activity 
against Escherichia coli ATCC10536 (100%) (Fig. 4C).

Molecular taxonomic identification

Nine marine endophytic bacteria were selected for molecu-
lar taxonomic analysis. Four bacterial strains belonged to 
genus Bacillus (YCFR5, YCFR6, YUFE8, and YCFE4) 
(Fig.  5A). Likewise, five gram-negative strains belonged 

Table 2  Endophytic bacteria isolated from different marine macroalgae from Cangrejos and Yacila beaches, Piura - Peru
Collection 
site

Phylum Species Algae parts Codes Number of 
fragments

Number of 
isolated algae 
endophytic 
bacteria

Cangrejo 
Beach

Chlorophyta Caulerpa sp. Fixing disc CCDF 15 2
Fronda Stipite CCFE 15 1

Lamina CCFL 15 0
Ulva sp. Fronda Stipite CUFE 15 4

Lamina CUFL 30 1
Rhodophyta Ahnfeltiopsis sp. Fronda Stipite CAFÉ 30 0

Lamina CAFL 15 0
Chondracantus 
chamissoi

Fronda Main shaft CCFEP 30 0
Branching CCFR 15 5

Yacila Beach Chlorophyta Caulerpa sp. Fixing disc YCDF 15 0
Fronda Stipite YCFE 15 5

Lamina YCFL 15 3
Ulva sp. Fronda Stipite YUFE 30 3

Lamina YUFL 15 0
Rhodophyta Ahnfeltiopsis sp. Fronda Stipite YAFE 15 8

Lamina YAFL 30 5
Chondracantus 
chamissoi

Fronda Main shaft YCFEP 30 2
Branching YCFR 15 7

Fig. 2  Total number of endophytic algae bacteria isolated according to 
phylum Rhodophytas (Ahnfeltiopsis sp. and C. chamisoi), and Chlo-
rophytas (Caulerpa sp. and Ulva sp.)
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Table 3  Antibacterial activity of algae endophytic bacteria against pathogenic gram-positive and gram-negative bacteria by the cross-culture 
methodology
Sample Algae endophytic bacteria Gram-positive bacteria Gram-negative bacteria

Ef Se Sa Lm EcOH EcAT Sety
Caulerpa sp. CCDF3 ++ ++ +++ + +++ ++ ++

CCDF5 + +++ ++ + +++ ++ ++
CCFE1 + +++ ++ ++ ++ ++ ++
YCFE13 – +++ +++ + +++ +++ +
YCFE6 ++ ++ ++ ++ ++ +++ +
YCFE1 ++ +++ +++ +++ ++ ++ –
YCFE4 +++ +++ ++ +++ +++ +++ ++
YCFE8 +++ ++ ++ ++ +++ +++ ++
YCFL2 + ++ +++ ++ ++ ++ ++
YCFL1 + ++ +++ ++ +++ ++ ++
YCFL11 + + ++ ++ ++ ++ ++

Ahnfeltiopsis sp. YAFE2 + + + – ++ +++ –
YAFE11 – – +++ ++ + ++ ++
YAFE30 +++ + ++ ++ ++ +++ ++
YAFE21 +++ ++ +++ +++ – ++ +++
YAFE10 + ++ +++ +++ ++ ++ +++
YAFE7 ++ + ++ ++ – + ++
YAFE13 + ++ ++ + ++ ++ +++
YAFE12 ++ ++ + ++ ++ + ++
YAFL1 + +++ +++ +++ +++ +++ ++
YAFL6 +++ + +++ +++ +++ ++ +++
YAFL9 +++ ++ +++ +++ + ++ +
YAFL3 +++ ++ +++ ++ + – ++
YAFL5 +++ ++ – + + ++ +++

Ulva sp. CUFE2 + + +++ +++ ++ +++ +++
CUFE6 + +++ ++ ++ – + ++
CUFE11 – – +++ +++ +++ ++ +++
CUFE13 – +++ +++ ++ ++ ++ ++
CUFL2 +++ + +++ +++ + + ++
YUFE6 + ++ + +++ ++ ++ +++
YUFE8 +++ ++ +++ ++ +++ +++ ++
YUFE20 +++ +++ ++ ++ – ++ ++

Chondracantus chamisoi CCFR3 ++ ++ ++ + ++ ++ ++
CCFR10 +++ +++ +++ + ++ ++ ++
CCFR11 +++ +++ ++ ++ +++ ++ ++
CCFR12 + +++ +++ ++ ++ +++ +++
CCFR4 +++ +++ ++ + ++ – +
YCFEP3 + ++ ++ + +++ ++ +++
YCFEP10 +++ +++ ++ – +++ + ++
YCFR1 +++ ++ +++ ++ ++ +++ ++
YCFR14 ++ +++ +++ +++ + +++ +++
YCFR4 ++ +++ +++ ++ ++ ++ +++
YCFR5 ++ ++ +++ +++ +++ +++ +++
YCFR3 – ++ + – ++ ++ ++
YCFR12 ++ +++ +++ – +++ + ++
YCFR6 +++ +++ ++ +++ ++ +++ ++

Ef: Enterococcus faecalis ATCC29212, Se: Staphylococcus epidermidis ATCC12228, Sa: Staphylococcus aureus ATCC25923 and Lm: Lis-
teria monocytogenes ATCC7644, EcOH: Escherichia coli O157:H7, EcAT: Escherichia coli ATCC10536 and Sety: Salmonella enterica sv 
typhimurium ATCC14028. Inhibition compared to control: (+++) strong inhibition (≥ 90–100%), (++) moderate inhibition (≥ 50–89%), (+) 
weak inhibition (≥ 8.5 to 49%), (-) no inhibition (0%)
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Table 4  Antibacterial activity of selected algae endophytic bacteria against gram-positive pathogenic bacteria by OpT and VOC tests
Sample Algae 

endophytic 
bacteria

Ef Se Sa Lm
OpT VOCt OpT VOCt OpT VOCt OpT VOCt

Caulerpa sp. YCFE1 – 42.9 ± 0.0c, d – 100.0 ± 0.0a – 100.0 ± 0.0a – 28.6 ± 0.0c

YCFE4 – 76.2 ± 8.2b – 87.5 ± 0.0b 13.3 ± 0.6c – – 100.0 ± 0.0a

Ahnfeltiopsis 
sp.

YAFE21 – 57.1 ± 0.0c 3.3 ± 0.6b 37.5 ± 0.0e – – 2.7 ± 0.6b 100.0 ± 0.0a

YAFL1 – 19.1 ± 8.2e, f – 12.5 ± 0.0g 9.3 ± 0.6d 26.7 ± 11.5d, e – –
YAFL6 – 4.8 ± 8.2f, g – 50.0 ± 0.0d 23.3 ± 0.6b 53.3 ± 11.5b, c – –
YAFL9 – 100.0 ± 0.0a – 66.7 ± 7.2c – 40.0 ± 0.0c, d – 28.6 ± 0.0c

Ulva sp. CUFE2 – 28.6 ± 0.0d, e – 25.0 ± 0.0f 7.0 ± 0.00e – – –
C. chamissoi CCFR10 – 28.6 ± 0.0d, e – 58.3 ± 7.2c, d – 13.3 ± 11.5e, f – 85.7 ± 0.0b

YCFR14 – 23.8 ± 8.2e – 25.0 ± 0.0f 1.0 ± 0.0f 60.0 ± 0.0b – 19.5 ± 8.2d

YCFR6 – 28.6 ± 0.0d, e – 100.0 ± 0.0a – 100.0 ± 0.0a – 28.6 ± 0.0c

Penicillin (mm) 19.0 ± 0.0 – 11.7 ± 0.6a – 35.0 ± 0.0a – 24.7 ± 0.6a –
OpT: inhibition halo by over plate test (mm), VOCs: volatile organic compounds (percentage inhibition), Ef: Enterococcus faecalis ATCC29212, 
Se: Staphylococcus epidermidis ATCC12228, Sa: Staphylococcus aureus ATCC25923 and Lm: Listeria monocytogenes ATCC7644. (-) No 
inhibitory activity. Letters indicate groups with significant differences according to Tukey’s statistical test (P < 0.05). Values represent the mean 
of three blocks ± SD

Fig. 3  Antibacterial cross-culture assay of algae endophytic bacteria. A Staphylococcus aureus growth control, B YAFL6 exhibited strong inhibi-
tion against S.aureus, C CCDF5 showed moderate inhibition against S.aaureus, D YAFL5 without inhibitory effect
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Detection of iturin, fengycin, and surfactin genes

Iturin gene was detected in K. ascorbata YAFE21 with a 
length of 423 base pairs (bp) corresponding to iturin C frag-
ment. Further, fengycin gene was detected in Bacillus sp. 

inhibited completely Colletotrichium sp. and F. oxyspo-
rum CTLM12. Also, P. agglomerans YAFL6, Bacillus sp. 
YCFR6, and Bacillus sp. YUFE8 exhibited complete inhibi-
tion activity against Fusarium sp. H, similarly Bacillus sp. 
YUFE8 inhibited 100% Alternaria sp. ATCC20084.

Table 5  Antibacterial activity of selected algae endophytic bacteria against gram-negative pathogenic bacteria by OpT and VOC tests
Sample Algae endophytic bacteria EcOH EcAT Sety

OpT VOCt OpT VOCt OpT VOCt
Caulerpa sp. YCFE13 – 53.3 ± 5.8b, c – 40.0 ± 0.0b, c – –

YCFE4 – 40.0 ± 0.0d, e 8.7 ± 0.6c 46.7 ± 5.8a, b – –
YCFE8 – 23.3 ± 5.8f, g – – – 25.0 ± 0.0b

Ahnfeltiopsis sp. YAFL1 – 53.3 ± 5.8b, c 10.3 ± 0.6b – 9.7 ± 0.6b 25.0 ± 0.0b

YAFL6 2.0 ± 0.0d – 8.7 ± 0.6c 23.3 ± 5.8e 7.7 ± 0.6c 45.8 ± 7.2a

Ulva sp. CUFE2 18.3 ± 0.6b 60.0 ± 0.0a, b 1.3 ± 0.6d 53.3 ± 5.8a – 4.17 ± 7.2c

CUFE11 – 30.0 ± 0.0e, f – 30.0 ± 0.0d, e – 4.17 ± 7.2c

YUFE8 11.7 ± 0.6c 60.0 ± 0.0a, b – 50.0 ± 0.0a – –
C. chamissoi CCFR12 – 16.7 ± 5.8g – 10.0 ± 0.0f – –

YCFEP3 – 23.3 ± 5.8f, g – 50.0 ± 0.0a – 4.17 ± 7.2c

YCFR14 – 46.7 ± 5.8c, d – 33.3 ± 5.8c, d – –
YCFR5 – 66.7 ± 5.8a – 50.0 ± 0.0a – 4.17 ± 7.2c

Penicillin (mm) 23.0 ± 0.6a – 16.67 ± 0.6a – 12.0 ± 0.0a –
OpT: inhibition halo by over plate methodology (mm), VOCt: volatile organic compounds (percentage of inhibition), EcOH: Escherichia coli 
O157:H7, EcAT: Escherichia coli ATCC10536 and Sety: Salmonella enterica sv typhimurium ATCC14028. (-) No inhibitory activity. Letters 
indicate groups with significant differences according to Tukey’s statistical test (P < 0.05). Values represent the mean of three blocks ± SD

Fig. 4  Antibacterial activity by OpT and DpT of selected algae endo-
phytic bacteria. Inhibitory assay against Escherichia coli O157:H7 
by OpT: A growth control without the marine endophytic bacteria, B 
inhibitory action of CUFE2 (top) and lack of activity of bacterial strain 

YAFL6 (bottom), C activity of penicillin 10 IU discs. Inhibitory assay 
against Enterococcus faecalis by VOCt: D growth control without 
marine endophytic bacteria, E antibacterial activity of YAFL9, and F 
YAFL6 without antibacterial activity
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YCFE4 with a length of 269 bp corresponding to fengycin 
D (Mora et al. 2011) (Table 1).

Discussion

Algae endophytic bacteria were isolated from four mac-
roalgae (Caulerpa sp., Ahnfeltiopsis sp., Ulva sp., and 
C. chamisoi), most of them (71.7%) are from algal stipe 
collected in Yacila beach (Table 1). In addition, the high-
est number (66.7%) of endophytes belong to Rhodophyta 
phylum (Ahnfeltiopsis sp. and C. chamisoi) (Fig. 2). Sev-
eral studies have reported variation of endophytic bacterial 

Table 6  Anticandidal activity of endophytic bacteria from marine mac-
roalgae by cross-culture method
Sample Algae endophytic bacteria C. 

albicans
C. tropi-
calis

Caulerpa sp. Bacillus sp. YCFE4 ++ ++
Ahnfeltiopsis 
sp.

K. ascorbata YAFE21 ++ +
Enterobacter sp. YAFL1 +++ +++
P. agglomerans YAFL6 +++ +++
K. ascorbata YAFL9 + ++

Ulva sp. L. adecarboxylata CUFE2 +++ ++
Bacillus sp. YUFE8 +++ +++

Chondracan-
tus chamissoi

Bacillus sp. YCFR5 ++ –
Bacillus sp. YCFR6 ++ +++

(+++) strong inhibition (≥ 90–100%), (++) moderate inhibition 
(≥ 50–89%), (+) weak inhibition (≥ 8.5 to 49%), (-) no inhibition

Fig. 6  Anti-candidal activity of selected algae endophytic bacteria by 
OpT and VOC test. A Activity by OpT and B Percentage inhibition by 
VOCt. Values represent the mean of three blocks ± SD. Letters indicate 

groups with significant differences according to Tukey’s statistical test 
(P < 0.05). Ct: Candida tropicalis ATCC750 and Ca: Candida albicans 
ATCC90028

 

Fig. 5  Phylogenetic analysis of endophytic bacteria from marine 
macroalgae using 16  S rDNA. A Bacterial strain corresponding to 
the genus Bacillus and B Bacterial strains from the Enterobacteria-

ceae group. Isolated bacterial strains are in green letters, and bacterial 
strains obtained from GenBank-type material are in black letters. The 
accession number is presented in parentheses
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associations of host-endophytes within marine environ-
ments, but it may also be related to anthropogenic factors 
(Hagaggi and Abdul-Raouf 2022).

On the other hand, the antimicrobial activity of 46 algae 
endophytic bacteria showed that algae collected in this 
research could be better sources not only of microbial diver-
sity but also for diverse antibacterial drugs. In this sense, 
selected bacteria strains (10 that inhibited gram-positive 
pathogen and 12 to gram-negative) were tested using two 

diversity according to organ and collection place (Kizhak-
kekalam and Chakraborty 2020; Muñoz-Silva et al. 2019; 
Ulloa-Muñoz et al. 2020). This diversity could be associ-
ated with the endophyte’s ability to colonize its host, as well 
as the genetic and nutritional status of the host-endophyte 
(Sarasan et al. 2020), also, geographical and seasonal vari-
ables could affect their abundance and diversity (Flewelling 
et al. 2013). However, there is still no clear understand-
ing of the symbiotic relationships and possible specific 

Fig. 8  Antifungal activity of algae endophytic bacteria against fila-
mentous fungi expressed in percent inhibition: A Activity against 
Colletotrichium gloeosporoides, B Activity against Fusarium oxy-
sporum CTLM12, C Activity against Fusarium sp. H and D Activ-
ity against Alternaria sp. ATCC20084. Values represent the mean of 
three blocks ± SD. Letters indicate groups with significant differences 

according to Tukey’s statistical test (P < 0.05). YAFL1: Enterobacter 
sp., YAFL6: Pantoea agglomerans, CUFE2: Leclercia adecarbox-
ylata, YAFE21: Kluyvera ascorbata, YAFL9: Kluyvera ascorbata, 
YCFR5: Bacillus sp., YCFR6: Bacillus sp, YUFE8: Bacillus sp. and 
YCFE4: Bacillus sp

 

Fig. 7  Anti-candidal activity in the three methods: A Cross-culture 
method: growth control of C. albicans and C. tropicalis (left) and anti-
candidal activity of Bacillus sp. YUFE8 (right), B OpT: growth control 
of C. albicans and anti-candidal activity of Bacillus sp. YUFE8 (right), 

C VOCt test: Control growth of Leclercia adecarboxylata CUFE2 
(left) and Candida albicans growth without algae endophytic bacteria 
(right). Ct: Candida tropicalis ATCC750 and Ca: Candida albicans 
ATCC90028
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(Habbu et al. 2016), and Phaeophyta (Deutsch et al. 2021). 
Furthermore, different marine Bacillus species have shown 
antimicrobial activity (Kizhakkekalam and Chakraborty 
2020; Habbu et al. 2016; Muñoz-Silva et al. 2019) against 
S. aureus, P. aeruginosa, B. subtilis (Tareq et al. 2013, 2014; 
Shafi et al. 2017), Salmonella typhi (Tareq et al. 2013; Shafi 
et al. 2017), B. cereus, E. coli (Tareq et al. 2013), B. cinerea 
(Shafi et al. 2017); Tareq et al. 2014), Aspergillus flavus, C. 
albicans (Habbu et al. 2016), F. oxysporum, Macrophomina 
Phaseolina (Chowhan et al. 2023), Rhizoctonia solani, and 
C. acutatum (Tareq et al. 2014). Similarly, most species of 
this genus isolated from marine environments are known 
for their ability to produce bioactive metabolites (Gopi et 
al. 2012; Mondol et al. 2011) with antibacterial activities, 
such as alkaloids, steroids, triterpenoids, flavonoids (Habbu 
et al. 2016), lipoamides (Berrue et al. 2009), gageostatins 
A-C (Tareq et al. 2014), Ieodomycins A-D (Mondol et al. 
2011), 4,4’-oxybis[3-phenilpropionic acid] (Devi et al. 
2010), and macrolactins (Tareq et al. 2013), placing them 
as promising candidates for biotechnological applications. 
In addition, their ability to form endospores, thrive under 
extreme conditions, and antagonist ability (Galaviz-silva et 
al. 2018); Abdul et al. 2013); Sayem et al. 2011), make them 
suitable for cultivation and metabolites production at low 
cost. In this study, Bacillus strains inhibited S. epidermidis, 
S. aureus (YCFR6), E. coli O157:H7 (YCFR5, YUFE8), 
E. coli ATCC10536 (YCFE4, YUFE8 and YCFR5), C. 

methodologies to evaluate antibacterial activity related to 
non-volatile/volatile compounds (OpT) and only volatile 
compounds (VOCt). Most of them exhibited better activ-
ity in VOCt than OpT, which could mean that antibacterial 
activities are associated with volatile compounds (Tables 3 
and 4). Bacterial VOCs could regulate pathogenic infec-
tions, reduce colonization of endophytes or pathogens 
(Chandrasekaran et al. 2023), and activate defenses or pro-
mote the growth of their host (Poveda 2021). However, 
five strains (YA21, YCFE4, YAFL1, YAFL6, and CUFE2) 
showed antibacterial activity tested by over-plate too, which 
could be related to the production of non-volatile com-
pounds associated with their activity. In addition, MIC and 
MBC of CUFE2 crude extract (5.662 mg/ml) were deter-
mined against E. coli strains. This interesting result could 
support deeper research, such as chemical isolation, func-
tional genetics, and the optimization of metabolite produc-
tion. Moreover, this bacterium could produce volatile and 
non-volatile compounds.

Microbial diversity was evaluated by molecular taxonomy 
identification. It was found species belong to Bacillus genus 
and enterobacteria group (Fig.  5). Concordantly, Bacillus 
strains are commonly reported as endophytes in marine 
macroalgae (Kizhakkekalam and Chakraborty 2020; Habbu 
et al. 2016; Muñoz-Silva et al. 2019), which some species 
have been isolated from Rhodophyta (Kizhakkekalam and 
Chakraborty 2020; Muñoz-Silva et al. 2019), Clorophyta 

Fig. 9  Antifungal assays of algae macroalgae endophytic bacteria. A 
C: growth control of Colletotrichium sp. and its inhibition by Pantoea 
agglomerans YAFL6. B C: growth control of Fusarium oxysporum 
CTLM12 and its inhibition by Enterobacter sp. YAFL1. C C: growth 

control of Fusarium sp. H and its inhibition by Bacillus sp. YUFE8 
and D C: growth control of Alternaria sp. ATCC20084 and its inhibi-
tion by Bacillus sp. YUFE8
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et al. 2001), S. pyogenes, K. pneumoniae, S. typhi, P. aeru-
ginosa, P. mirabilis (Aldujaili et al. 2017), Acinetobacter 
hemolyticus, Serratia marcescens (Said 2020), Erwinia 
amylovora. Its activities are possibly associated with the 
synthesis of pulicatin H and F, aeruginaldehyde, (Thissera 
et al. 2020), pantocin A and B (Wright et al. 2001), and 
microcin (Vanneste et al. 2002) reported for this species. 
Furthermore, these compounds could be utilized to prevent 
and treat infectious diseases because they have a wide range 
of therapeutic properties (Gong et al. 2019; Zhou et al. 
2021a, b). Concordantly, P. agglomerans YAFL6 isolated 
from macroalgae Ahnfeltiopsis sp. also showed a wide range 
of antimicrobial activity against some bacteria and fungi, 
such as S. aureus, S. enterica (Tables 4 and 5), C. albicans, 
C. gloeosporoides, F. oxysporum, and Fusarium sp. (Fig-
ures 7 and 8). Another species found in the present work 
was Enterobacter sp. YAFL1. Species of this genus have 
been reported as sugarcane (Dao-Jun et al. 2020), mulberry 
(Zhou et al. 2021a, b) and other terrestrial plant endophytes 
(Asis and Adachi 2004; Patil et al. 2022). Moreover, some 
Enterobacter species displayed plant growth-promoting 
traits (Singh et al. 2021) and have been isolated from marine 
sediments (Edoamodu and Nwodo 2022). Enterobacter sp. 
isolated from fish showed a probiotic role with a broad anti-
bacterial spectrum (Gopi et al. 2012). Furthermore, some 
marine Enterobacter species exhibited antifungal activity 
against Fusarium moniliforme, F. cubense, Botrytis cinerea, 
Ceratocystis paradoxa, Sporisorium scitamineum (Dao-Jun 
et al. 2020; Gnanasekaran et al. 2023), and Aspergillus fla-
vus (Gong et al. 2019). This species may produce antifungal 
peptides (Dao-Jun et al. 2020), moreover, VOCs yielded 
by Enterobacter asburiae Vt-7 displayed antifungal activ-
ity and down-regulated the aflatoxin gene expression of A. 
flavus preventing its production (Gong et al. 2019). Simi-
lar, Enterobacter sp. YAFL1 isolated from Ahnfeltiopsis sp. 
showed a wide range of antifungal activity against C. gloeo-
sporoides, and F. oxysporum (Fig. 8), also it exhibited anti-
bacterial activity against E. coli ATCC10536 and S. enterica 
(Table 5).

Among non-ribosomal peptide synthetases (NRPS) 
known, three genes coding antimicrobial compounds were 
evaluated with specific primers (Table 6) finding the pres-
ence of iturin and fengycin genes. NRPS consists of a hydro-
philic amino acids chain linked to a hydrophobic fatty acid 
tail, moreover, these compounds are antimicrobial lipopep-
tides highly effective for controlling agricultural pathogens 
(Patil et al. 2022). Iturin has been associated with antifun-
gal activity but has limited antibacterial activity (Zhao et al. 
2021). However, K. ascorbata YAFE21, which showed the 
presence of iturin C gene, strongly inhibited S. epidermidis 
and L. monocytogenes, whereas antifungal activity against 
Alternaria sp. was only moderate. Then, it was possible that 

albicans (YUFE8), Fusarium sp. (YCFR6 and YUFE8) and 
Alternaria sp. (YUFE8) (Figs. 6, 7 and 8).

The remaining endophytic bacterial strains isolated 
from macroalgae in this study were enterobacteria spe-
cies. YAFL9 and YAFE21 are Kluyvera ascorbate strains, 
an environmental bacterium that can develop resistance to 
aquatic environments, giving it an adaptive advantage and 
allowing it to outcompete other microorganisms (Alves 
Resende et al. 2020). It is employed to transfer resistance 
genes to bacterial species for medicinal or animal (wild fish) 
purposes (Sellera et al. 2018). Furthermore, K. ascorbate 
showed antimicrobial activity against plant phytopathogens 
(Timofeeva et al. 2022), Pseudomonas sp., Bacillus sp., and 
S. aureus (Amraoui et al. 2017). Similarly, K. ascorbata 
strains evaluated in this research showed antibacterial activ-
ity against E. faecalis, S. epidermidis, and L. monocytogenes 
(Table 4), also moderate antifungal activity was exhibited 
against F. oxysporum and Alternaria sp. (Fig. 8). Another 
endophytic species found was Leclercia adecarboxylata 
CUFE2; this species was previously described as Esche-
richia adecarboxylata, a non-lethal Enterobacteriaceae that 
regularly colonizes soil, water (Sellera et al. 2018; Timofe-
eva et al. 2022), and marine environments (Broderick et al. 
2019). Some strains of this species were reported as maize 
endophyte (Snak et al. 2021), as well as they showed plant 
growth-promoting traits and silver nanoparticle production 
(AgNP) which inhibited S. aureus, B. cereus, E. coli, Vibrio 
cholera, P. aeruginosa, K. pneumoniae, C. albicans (Abdel-
moneim et al. 2022), and A. flavus (Tong et al. 2018). In 
this work, L. adecarboxylata CUFE2 showed bacteriostatic 
and bactericidal activity against E. coli O157:H7 and E. 
coli ATCC10536 (Table 5, MIC, and MBC), furthermore, 
it displayed broad-spectrum antifungal activity over 50% 
of growth inhibition against Candida tropicalis, C. gloeo-
sporoides, Fusarium oxysporum CTLM12, and Alternaria 
sp. ATCC20084 (Fig. 8). Previous studies reported that K. 
ascorbate and L. adecarboxilata strains displayed antimi-
crobial traits but the chemical compounds associated with 
their activities have not been described yet, giving an inter-
esting topic for continuing future research.

Pantoea agglomerans YAFL6 was another species iso-
lated in this research. This species was not reported for 
marine environments but is distributed in agricultural envi-
ronments as an epiphyte and endophyte bacteria of several 
plants (Amraoui et al. 2017; Snak et al. 2021). It was also 
isolated from humans and animals (Gutiérrez-Barranquero 
et al. 2019) and is widely used in biological control against 
bacterial and fungal plant and human pathogens (Edoamodu 
and Nwodo 2022; Rangarajan et al. 2015; Gong et al. 2019), 
such as Penicillium citrinum (Thissera et al. 2020), Vibrio 
alginolyticus, V. haeveyi, S. iniae, S. agalactiae (Amen-
yogbe et al. 2021), E. coli, S. aureus (Said 2020; Wright 
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agents. Also, they are candidates for deeper studies focused 
on optimizing culture conditions to better metabolite pro-
duction and description of chemical structures and studies 
of genes associated with antimicrobial activities, which 
support their pharmacology, food, agriculture, industry, and 
environment application.
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