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Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis 
and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryp-
tococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle 
to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly 
clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal 
armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal 
vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fun-
gal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida 
spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., 
Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants 
and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and 
Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of 
immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory 
properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the 
design of novel fungal vaccines and adjuvants.
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Fungal infections and antifungal therapy

Fungi are the third largest eukaryotic species next to animals 
and plants and have a globally profound impact on human 
health. Owning to rising immune dysfunctions caused by 
such as long-term antibiotic medication, frequent use of 

immunosuppressants, chemo-/radio-therapy in cancer popu-
lation and emergence of multidrug resistant fungal strains, 
the risks induced by fungal infections are tremendously 
attracting scientific and clinical attentions in recent decades 
(Fisher et al. 2020). The latest data show that the annual 
superficial fungal infections involving, for example, skin, 
hair, nails and eyes, affect about 1 billion people worldwide, 
the yearly oral and vaginal mucosal fungal infections influ-
ence approximate 135 million people around the world, and 
allergic fungal infections endanger nearly 23.3 million popu-
lation (Bongomin et al. 2017). At present, the most com-
mon opportunistic fungi are Candida (~ 23%) followed by 
Aspergillus (~ 8.3%) and Cryptococcus (~ 7.7%) which are 
heavily detrimental to human being in the case of internal 
colonization, propagation and systemic invasive infections 
(Bongomin et al. 2017; Suleyman and Alangaden 2021).

At present, the major antifungal drugs consist of poly-
enes (such as amphotericin B and nystatin), triazoles and 
imidazole derivatives (such as fluconazole, itraconazole, 
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posaconazole, voriconazole and esaconazole), and semi-
synthetic echinocandins (such as caspofungin, anidulafungin 
and micafungin) (Dubey and Singla 2019). However, it is 
known that these traditional antifungal agents are naturally 
futile to inhibit several fungi. For example, C. krusei and 
some C. glabrata have intrinsic resistance to fluconazole 
(Hassan et al. 2021). As a result, increasing incidence of 
antifungal resistance is becoming an obstacle to restrict 
clinical application of antifungals available due to up-reg-
ulation of efflux pumps, metabolic plasticity, impediment 
of cell wall and extracellular matrix, overexpressed target-
encoding genes, presence of persister cells, and biofilm 
formation (Martinez and Casadevall 2006; Mowat et al. 
2008; Johnson et al. 2016; Wu et al. 2017). The side effects 
caused by traditional antifungal drugs including nephrotox-
icity by amphotericin B and hepatotoxicity by azoles are 
also unhelpful for their clinical application for some patients 
with severely damaged immunity. Meanwhile, the economic 
expense is another heavy burden for patients with long-term 
use of antifungal agents. Besides antifungal agents, there 
are several biological preparations including recombinant 
cytokines (e.g. recombinant human IFNα-2b and GM-CSF) 
and mono-/poly-clonal antibodies (anti-IL-17) that are effec-
tive for antifungal purpose in the treatment of, for example, 
vulvovaginal candidiasis, refractory oropharyngeal candidi-
asis and candidiasis (Vazquez et al. 1998; Li et al. 2019; 
Yamanaka-Takaichi et al. 2022). There are also growing 
evidence to support the connection of fungal dysbiosis with 
the aggravation of inflammatory bowel diseases, systemic 
lupus erythematosus, Alzheimer’s disease, colorectal cancer, 
and psoriasis with obscure mechanisms (Ling et al. 2020; 
Bruno et al. 2022; Li et al. 2022; Zhang et al. 2022; Yang 
et al. 2023). In the face of increased fungal or fungus-related 
infections, existing antifungal approaches are still limited 
and new antifungal approaches are desperately required. Due 
to specialized target recognition and relatively low toxicity, 
vaccines aim to protect host from invaded fungi by stimu-
lating antibody-mediated humoral immune response and 
acquire growing interest.

Fungal vaccines and adjuvants

Fungal vaccines are considered an effective way to prevent 
acute and recurrent invasive infections caused by aggressive 
fungi, and usually composed of either killed/weakened fun-
gal cells or purified fungal components. During the past dec-
ades, the development of fungal vaccines is being empha-
sized due to increasing challenges posed by, for example, 
Candida spp., Aspergillus spp., Cryptococcus spp., and Coc-
cidioides spp.. To gain strong immune response, adjuvants 
are concomitantly administered with vaccines.

Fungal vaccines

Candida spp. are a group of well-studied dimorphic oppor-
tunistic fungi that can cause from superficial skin/mucosal 
disturbs to systemic invasive/deep-seated infections with 
high morbidity and mortality. The cell wall components 
(e.g. glucans and adhesins) and live/attenuated strains can be 
proper candidates in the design of Candida vaccines, some 
of which have been tested in pre-clinical trials (Table 1). 
Aspergillus spp. can cause systemic invasive aspergillosis 
through spores and usually involves bronchus, lung, gastro-
intestinal tract, eye, nose, mucosa, and skin. Aspergillus spp. 
were previously known to affect only severely immunocom-
promised patients, making vaccination difficult. However, 
extra studies have shown that immunocompetent subjects 
can also be affected by Aspergillus, some of them can gain 
positive effects after vaccination (Table 1). Cryptococco-
sis is a type of disseminated infectious diseases caused by 
Cryptococcus spp. which frequently induces pneumonia 
and meningitis, and occasionally involves skin, bone and 
visceral organ. Patients with cryptococcosis are usually 
asymptomatic when initially infected with this genus, but 
the immune-deficient or suppressed patients may suffer 
from burrowing abscess and granuloma after Cryptococcus 
spp. change from a latent state to an active state (Brunet 
et al. 2018). Similarly, Cryptococcus vaccines also need to 
work in patients with severe T-cell deficiency, e.g. HIV/
AIDS patients (Caballero Van Dyke and Wormley 2018). 
A number of Cryptococcus vaccines have been designed, 
and their mechanisms of action are elucidated in Table 1. 
Besides, there are also several reported vaccines against 
other endemic fungi including Coccidioides spp., Parac-
cidioides spp., Blastomyces spp., Histoplasma spp., Pneu-
mocystis spp. which are also reviewed in Table 1.

Adjuvants for fungal vaccines

Adjuvants are non-specific immune enhancers that can 
prime the immune response to an antigen or alter the type 
of immune response when injected with or pre-injected with 
a vaccine. Adjuvants can enlarge or lengthen the response 
and improve the memory response, thus reducing vaccine 
dosage required (Di Pasquale et al. 2015).

Conventional adjuvants

Conventional adjuvants consists of Freund's adjuvant and 
toxin adjuvant. The former consists of complete and incom-
plete Freund's adjuvants. The complete Freund's adjuvant 
can bind to the recombinant N terminal of Als1p and Als3p 
of C. albicans. The incomplete Freund's adjuvant can bind to 
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the antigen protein Eno1p (Spellberg et al. 2005; Shibasaki 
et al. 2013). Toxin adjuvants mainly contains cholera toxin 
(CT), tetanus toxoid (TT) and diphtheria toxin (CRM197). 
These adjuvants can present β-mannan and some Sap anti-
gen proteins to adaptive cells, effectively promoting anti-
gen-specific immune responses (Wu et al. 2007; Bromuro 
et al. 2010; Sandini et al. 2011; De Bernardis et al. 2012). 
MF59 is the commonly used milk adjuvant and composed 
of squalene, span 85 and tween 80 which are dissolved in 
citrate buffer. MF59 can induce significantly higher humoral 
immunity than aluminum salt adjuvant and certain cellular 
immune responses (Pietrella et al. 2010).

Delivery adjuvants

Delivery adjuvants is primarily comprised of nanoparticle 
adjuvants and glucan particles. The advantages of nano-
particle adjuvants involve their interactions with antigen-
presenting cells (APC) to promote cross-presentation and 
cross-protection against fungal antigens. Biocompatible 
materials possess good absorption and low degradation, 
making nanoparticle adjuvants safer than conventional 
adjuvants (Ahmed et al. 2018). Nanoparticle adjuvants can 
deliver traditional antifungal drugs, e.g. amphotericin B, 
fluconazole, itraconazole, to the designated locus, display-
ing potent anti-mycotic effects (Grego et al. 2021). Glucan 
particles, derived from Saccharomyces cerevisiae cell wall, 
own spherical complex internal cavities to load diverse 
antifungal drugs. Since Dectin-1 are widely distributed in 
myeloid cells, most innate cells like macrophages and den-
dritic cells (DC) can recognize the major fungal cell wall 
component β-glucan through Dectin-1, thereby activating 
innate immune response to invaded fungi. As a result, glucan 
particles can not only deliver antifungal cargos to inflam-
matory foci, but also trigger intrinsic immune-stimulatory 
property of innate immunity (Mirza et al. 2017).

Toll‑like receptor (TLR) adjuvants

TLR adjuvants for fungal vaccines mainly contain alum 
and combined adjuvant. Alum can help C. albicans Als and 
Hyr1 antigens induce antibody response and  CD4+T helper 
cell response (Baquir et al. 2010; Luo et al. 2011; De Ber-
nardis et al. 2012). Alum can also rapidly recruit neutrophils 
and other immune cells, and enhance adaptive immunity 
by inducing tissue damages and activating inflammatory 
DCs (Oleszycka and Lavelle 2014). Combined adjuvants 
are prepared by formulating the fungal recombinant protein 
Bl-Eng2 (Blastomyces endoglucanase 2) which contains an 
immunodominant antigen and Dectin-2 agonist/adjuvant 
with δ inulin (Advax) containing TLR agonists. Several 
of these combined adjuvants, i.e. Bl-Eng4 formulated with 
Advax3 containing TLR2 agonists or Advax8 containing 

TLR9 agonists, could provide better protection against pul-
monary infection with Blastomyces dermatitidis than Fre-
und's adjuvant (Wüthrich et al. 2021).

Chinese herbal polysaccharide adjuvant

Since polysaccharides are potent activators of immune 
response, a variety of polysaccharides are extracted from 
Chinese herbal medicines and purified as adjuvants for fun-
gal vaccines. These polysaccharide preparations include 
Rehmannia glutinosa polysaccharide (RGP), Radix isa-
tidis polysaccharide (RIPS), Ganoderma lucidum polysac-
charide (GLP) and Astragalus polysaccharide (APS) and 
their derivatives (Hagan et al. 2015). It was found that RGP 
liposome controlled release preparation was effective to 
improve the immune response and increase the number of 
central memory cells and efficient memory cells through 
enhancing the phagocytosis activity of macrophages and the 
production of IL-6, IL-12, IL-1β and TNF-α (Wang et al. 
2018). Similarly, nano self-assembled lipid RGP adjuvant 
could also significantly promote macrophage proliferation, 
pro-inflammatory cytokine production, and cellular uptake 
through macroendocytosis-dependent and radioimmunother-
apy-mediated endocytosis (Huang et al. 2019). RIPS has 
been demonstrated to enhance spleen cell antigen-specific 
cellular immune responses, T cell activation, and cytokine 
production (Wang et al. 2021). GLP-2, a novel β-glucan 
extracted from Ganoderma lucidum, is a potent TLR4 ago-
nist for adaptive immune response. Studies have shown that 
GLP-carrying liposome drug delivery system could signifi-
cantly improve the activity of GLP in promoting splenocyte 
proliferation and peritoneal macrophage activation (Liu 
et al. 2015). In another study, GLP and ovalbumin (OVA) 
were encapsulated into liposome as a vaccine and inocu-
lated into mice. The results showed that GLP-OVA-loaded 
liposomes (GLPL/OVA) could induce more powerful anti-
gen-specific immune responses, higher antigen-specific IgG 
antibodies, better splenocyte proliferation, stronger cytokine 
secretion by splenocytes and activation of  CD3+CD4+ and 
 CD3+CD8+ T cells than each single-component formula-
tion (Liu et al. 2016). Polysaccharides extracted from the 
fruits of Physalis alkekengi L. are used as an adjuvant of 
a DNA vaccine (pD-HSP90C) which is composed of the 
recombinant plasmid of epitope C (LKVIRK) from heat 
shock protein 90 (HSP90) of C. albicans (Yang et al. 2014). 
The low molecular weight polysaccharides (LMW-ASP) 
isolated from the root of Astragalus membranaceus (Fisch) 
Bge. could enhance immune response of a recombinant pro-
tein (rP-HSP90C) vaccine containing epitope C (LKVIRK) 
of Hsp90. Studies have further shown that LMW-ASP pro-
moted the levels of antibodies IgG, IgG1 and IgG2b and 
cytokines IL-2, IL-4, IL-10 and IL-12 in mice immunized 
with rP-HSP90C (Yang et al. 2016).
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Immune response to fungi

Most opportunistic fungi are symbiotic with and tolerated 
by host when immunocompetent (Cassone and Cauda 
2012). Once the host immune defense is compromised or 
suppressed, these commensal fungi have great opportu-
nity to transform into aggressive pathogens attacking host 
organs and tissues (Del Poeta and Casadevall 2012). In-
depth understanding of potential mechanisms by which 
the immune response to fungal infections is performed 
contributes to the design and application of specific fun-
gal vaccine, and vice versa. Multiple factors including the 
recognition of immune cells, the site of infected tissues 
or organs, the morphology of fungi (yeast/mycelial state), 
the generation of fungal virulence factors, and the struc-
tural changes of cell wall affect the initiation, duration and 
strength of host immune reaction to fungi (Gross et al. 
2006; Brunke et al. 2016). Mostly, innate immunity has to 
work together with adaptive immunity to remove invaded 
or overgrown fungi (Fig. 1).

Candida

The cell wall components of Candida spp., such 
as β-glucans, α-mannan, N-mannan, O-mannan, 
β-mannosides, can be recognized by a set of pattern 
recognition receptors (PRRs) including toll-like recep-
tors (TLRs), C-type lectin receptors (CLRs), RIG I-like 
receptors (RLRs), NOD-like receptors (NLRs), comple-
ment receptors (CRs) and galectins (Zheng et al. 2015). 
One of the most well-studied CLRs Dectin-1 can rec-
ognize β-glucan which is a key constituent of Candida 
cell wall, followed by activation of multiple innate cells 
(macrophages, DCs, neutrophils) and clearance of fungi 
through oxidative stress, apoptosis, phagocytosis, extracel-
lular traps, and antimicrobial peptides (Nikolakopoulou 
et al. 2020). During this process, Dectin-1 can cooperate 
with TLR2 and TLR4 to coordinate antifungal immune 
responses via spleen tyrosine kinase (Syk) dependent 
(Syk-CARD9/NLRP3) or independent (Raf-1) pathways 
and myeloid differentiation factor 88 (MyD88) associated 
NF-κB pathway (Jia et al. 2014; Luisa Gil et al. 2016). 
As the most powerful antigen presenting cell (APC), DC 
connects innate immunity with adaptive immunity, and 
efficiently presents the recognized antigen constituents of 
Candida to T cells. The stimulated IL-12 drives differen-
tiation of naive T cells into  CD4+Th1 subpopulation which 
further produce IFN-γ to upregulate the expression of 
IL-12Rβ2. The upregulated IL-12Rβ2 conversely increase 
IL-12 sensitivity to promote Th1 cell differentiation, 
facilitating Th1 protective response to Candida infections 

(Tong and Tang 2017). Th17 cell is another crucial adap-
tive cells in the protection from Candida infections. The 
differentiation of Th17 is influenced by cytokines IL-17, 
IL-21, and IL-22. Individuals with dysfunctional Th17 
cells are inclined to increased susceptibility to chronic 
mucocutaneous candidiasis (Huppler et al. 2012).

Aspergillus

The first line of host immunity against Aspergillus is the air-
way epithelium of upper respiratory tract containing mucus 
secreting cells and ciliated cells. The former generate mucus 
to capture inhaled conidia. The latter drive trapped conidia 
to the oropharyngeal junction. The airway epithelium of 
upper respiratory tract can also produce chitinase to destroy 
the cell wall chitin of A. fumigatus (van de Veerdonk et al. 
2017; Garth et al. 2018). Alveolar macrophages (AMs) and 
neutrophils are the primary phagocytes to clear Aspergillus. 
AMs can produce pentraxin 3 and surface protein-D which 
immediately combine with inhaled conidia of A. fumigatus 
to trigger phagocytosis (Smole et al. 2020). AMs can also 
recognize and swallow conidia via TLR2/4 and Dectin-1 
to elicit inflammatory cytokines and chemokines through 
NF-κB (Anthoney et al. 2018). Captured conidia by AMs 
can also recruit neutrophils by TNF-α and CXCL2 to the site 
of infection, enabling the formation of neutrophils extracel-
lular trap (NET) and the production of lactoferrin which 
can inactivate conidia and mycelium in germination state 
(Guo et al. 2020). Immature DCs can also recognize and 
engulf conidia and mycelia via PRRs and present processed 
antigens to T cells, ultimately activating adaptive immune 
response to Aspergillus (Wang et al. 2017a).

Cryptococcus

Cryptococcosis is the most common cause of meningitis in 
HIV positive patients. The innate immunity to Cryptococ-
cus mainly depends on phagocytic cells including mac-
rophages, DCs and neutrophils (Voigt et al. 2014; Wang 
et al. 2022b). When Cryptococcus spp. are inhaled into 
the lung, they encounter diverse phagocytic effector cells 
and are engulfed through the recognitions of complement 
receptors (CRs, e.g. CR1, CR3, and CR4) and Fc recep-
tors (Guerra et al. 2014; Sun and Shi 2016). The adaptive 
immune response to Cryptococcus mainly relies on T and 
B lymphocytes.  CD4+T cells play a dominant role in pul-
monary Cryptococcus infections by releasing IL-17 (Guo 
et al. 2022).  CD8+T cells can kill Cryptococcus by gran-
ulysin (Ma et al. 2002). γδT cells (mostly  CD4−CD8−T) 
secrete anti-inflammatory Th2 cytokines to balance the 
exaggerated Th1 response, thereby regulating the Th1-Th2 
response to Cryptococcus. However, depletion of γδT cells 
can boost IFN-γ synthesis and Cryptococcus clearance 
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through Th1-mediated lung response (Uezu et al. 2004). 
Cryptococcal infections are lethal in mice deficient of B 
cells compared with those with normal B cells, which 
can be partly due to B-cell secreted IgM that can bind to 
Cryptococcus. Depletion of IgM secreted B cells ends up 

with declined AM phagocytosis and high-risk fungal trans-
mission to brain (Rohatgi and Pirofski 2012). Moreover, 
B-cell defects are closely tied up with pulmonary immuno-
pathology and inflammation in company with cryptococcal 
infections (Feldmesser et al. 2002).

Fig. 1  Immune defense to Fungi. Fungal cell walls contain several 
pathogen-associated molecular patterns (PAMPs) that can be recog-
nized by a group of pattern recognition receptors (PRRs). Activation 
of PRR induces a series of downstream events that contribute to the 
formation of antigen-specific adaptive immune responses. After iden-
tifying the fungal component, TLR (TLR-2, TLR2/6, TLR-4) acti-
vates the TIR domain, leading to stimulation of MyD88 or TRIF and 
downstream complexes (IRAK, TRAF, IKK) followed by transloca-
tion of NF-κB, IRF-3, MAPK and other transcription factors. CLRs 
such as Dectin-1, 2, and Mincle stimulate T cell lineage-specific 
tyrosine kinases (Syk) and downstream complexes (CARD9-BCL10-
MALT1), and initiate the NF-κB signaling. DC-specific intracel-
lular adhesion molecules grab non-integrin (DC-SIGN) receptors 

modulate NF-κB translocations through RAS and Raf1 activation 
pathways. These transcription factors drive the expression of various 
cytokines and regulate T cell differentiations. TLR: Toll like recep-
tor; MyD88: Myeloid differentiation factor 88; IRAK1: Interleukin 
1 receptor associated kinase 1; TRAF: Tumor necrosis factor recep-
tor-associated factor; CLR: C-lectin receptor; Mincle: macrophage 
inducible Ca2 + -dependent lectin receptor; SYK: Spleen tyrosine 
kinase; CARD9: caspase recruitment domain-containing protein 9; 
Malt1: mucosa-associated lymphoid tissue lymphoma translocation 
1; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B 
cells; MAPK: mitogen-activated protein kinase; ERK: Extracellular 
signal-regulated kinase; JNK: c-Jun N-terminal kinase; NLRP3: NLR 
family pyrin domain containing 3
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Coccidioides

Coccidioidosis is characterized by primary respiratory 
infections. Occasional dissemination of Coccidioides 
spores can cause lesions in skin, lung, skeleton, liver, brain 
and lymph nodes. T-cell-mediated immunity is the most 
critical part of the immune response to Coccidioides (Cox 
and Magee 2004). It is reported that neutrophils are more 
effective in inhibiting arthroconidia than mature spherules, 
and pretreatment of macrophages with IFN-γ or TNF-α 
enhances the killing of arthroconidia in vitro (Castro-
Lopez and Hung 2017). When the inhaled arthroconidia 
reach alveoli, they interact with DCs which migrate to 
local lymph nodes where the antigenic information is pre-
sented to and activate Naive T lymphocytes. Activated 
T cells migrate back to the lung infection loci, differen-
tiate into antigen-specific  CD4+Th or  CD8+T cells and 
perform antifungal activity through secreting inflamma-
tory cytokines and triggering granulomatous responses 
(Castro-Lopez and Hung 2017). It should be noted that 
Th1 and Th17 can synergistically enhance the recruitment 
of phagocytic cells to alveoli, ultimately promoting early 
reduction of Coccidioides load and inhibiting inflamma-
tory pathology at the site of infection (Wüthrich et al. 
2011b; Wang et al. 2014). It is believed that MyD88 and 
Card9 are the two pivotal intracellular immune adaptors 
for activating the protective Th17 response to Coccidioides 
infections (Hung et al. 2011, 2016).

Other fungi

There are several other opportunistic fungi that can cause 
diverse endemic fungal diseases. Paracocccidioidomycosis 
is a systemic fungal disease caused by the fungi Paracoc-
cidioides brasiliensis and Paracoccidioides lutzii (Santos 
et al. 2020). Blastomycosis, an endemic fungal infection 
by Blastomyces, can cause chronic pneumonia as the 
primary clinical manifestation, and occasionally trigger 
extrapulmonary infections involving skins and subcutane-
ous tissues, bones and joints, prostates and central nervous 
system (Mazi et al. 2021). Histoplasmosis, another com-
mon endemic fungal disease induced by Histoplasma, can 
cause severe acute pulmonary infections in immunocom-
promised patients (Azar and Hage 2017). Th1 and Th17-
mediated immune responses are regarded as major effec-
tors to protect the host from infections caused by these 
fungal pathogens (Wu et al. 2013b; Ketelut-Carneiro et al. 
2019). In non-immunized host, Th17/IL-17 axis confers 
protection to primary infections through recruiting and 
activating neutrophils and macrophages to the site of infec-
tion in the company of producing a group of chemokines 

and pro-inflammatory cytokines. During this process, a 
cluster of well-known PRRs including Dectin-1, Dectin-2, 
TLR, mannose receptor (MR) and galactin-3 are respon-
sible to recognize the pathogen associated molecular pat-
terns (PAMPs) on the fungal cell wall (Wüthrich et al. 
2011a; Ketelut-Carneiro et al. 2019), thereby stimulating 
a series of downstream events. Other than T cells, mul-
tiple effects of neutrophils include phagocytosis, oxida-
tive and non-oxidative cytotoxicity mechanisms that kill 
intracellular and extracellular pathogens, the production 
of pro-inflammatory cytokines and chemokines, as well as 
the elicited neutrophil extracellular traps (NET) are also 
involved in the combat against these endemic fungal infec-
tions (Puerta-Arias et al. 2020).

Fungal vaccine/adjuvant‑host interaction

The antigen used for fungal vaccine preparation is usually 
univalent. Although multivalent fungal vaccines which con-
tain more than one unrelated antigen are of better choice to 
prevent fungal infections, the immune responses elicited by 
fungal vaccines are largely different from those by whole 
fungal cells. In addition, adjuvants can also trigger intense 
and distinctive immune responses (Fig. 2).

Innate immune response to fungal vaccine 
and adjuvant

During vaccination, the innate immune cells including mac-
rophages, DCs, neutrophils are extensively activated to elicit 
multiple downstream events. A recent study showed that chi-
tosan hydrogel (CH-HG) can act as an adjuvant to enhance 
the protection of a recombinant protein vaccine containing 
epitope C from C. albicans HSP90 (rP-HSP90C) against 
systemic candidiasis. The study found that CH-HG was not 
only effective to cross-present and internalize rP-HSP90C in 
BMDCs, but also recruit considerable macrophages and DCs 
in vivo post vaccination for 15 and 5 days (Li et al. 2021). 
Another study revealed that immunization of a recombi-
nant protein mannosyltransferase 4 (rPmt4p) of C. albicans 
could generate IgG antibodies to reduce the fungal burden, 
alleviate kidney inflammation, and prolong the survival 
rate in a murine model of systemic candidiasis. The protec-
tive mechanisms of rPmt4p vaccine could be ascribed to 
the activation of macrophage opsonization and neutrophil 
killing of C. albicans (Wang et al. 2022a). It was believed 
that tyrosine phosphatase SHP-2 renders macrophages and 
neutrophils contributory to the early control of C. albicans 
infection via regulating CLR-induced activation of Syk 
(Deng et al. 2015). The mice vaccinated by a recombinant 
Pb27 protein (rPb27) from P. brasiliensis with CPG oli-
godeoxynucleotide motif as an adjuvant were spared from 
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Paracoccidioidomycosis through a mechanism dependent 
on TLR-9 associated phagocytosis and microbicidal activ-
ity of macrophages (Morais et al. 2016). An avirulent vac-
cine Coccidioides strain NR-166 (∆cts2/∆ard1/∆cts3) could 
influence the activation and polarization of macrophages 
and DCs in response to C. posadasii infection (Diep et al. 
2021). Similar to immune memory established by adaptive 
immunity, the heat killed C. neoformans strain H99γ elic-
ited an innate memory-like phenotype in macrophages that 
was maintained for at least 70 days, providing a pathogen-
specific protection against secondary challenge of wild-type 
C. neoformans strain H99 in the absence of adaptive immune 
cells after immunization in mice. This study revealed that 
the secondary challenge triggered a rapid up-regulation 
of IFN-γ and STAT1 signaling pathways (Leopold Wager 
et al. 2018). Similarly, a sublingual vaccine V132 prepared 

from heat-inactivated C. albicans was able to induce innate 
trained immunity in combination with a polyvalent bacte-
rial vaccine MV140 by promoting metabolic and epigenetic 
reprogramming in human DCs through activating mitogen-
activated protein kinases (MAPK), nuclear factor-κB (NF-
κB) and mammalian target of rapamycin (mTOR)-mediated 
signaling pathways in the prevention of recurrent urinary 
tract infections (RUTIs) (Martin-Cruz et al. 2020). As a 
main force in antifungal immunity, different DC subsets are 
considered to be target candidates in fungal vaccine design 
(Roy and Klein 2012). Intranasal immunization of a DC-
vaccine (Ag2-DC) prepared by transfecting the primary 
BMDCs with a plasmid DNA encoding a protective epitope 
of Coccidioides called Antigen-2 or proline rich antigen 
(Ag2/PRA) contributes to significant retention of DCs and 
IFN-γ, IL-4 and IL-17 cytokine-secreting T cells in lungs 
(Awasthi et al. 2019).

Fig. 2  Interactions between fungal vaccines (adjuvants) and host 
immune system. Fungal vaccines and adjuvants orally and subcutane-
ously enter into host and encounter at first the innate immune cells 
including macrophages, dendritic cells (DCs) and neutrophils. Rec-
ognizing vaccine epitopes by pattern recognition receptors (PRRs), 
the innate cells can be widely primed with the help of adjuvants. 
The antigen processing cells (APCs) like DC gain antigenic infor-
mation and present to naïve  CD4+ and  CD8+ T cells. Subsequently, 
naïve  CD4+ T cells are activated and evolve into Th1, Th2 and Th17 
cells, whereas  CD8+ T cells are stimulated and differentiate into Tc1, 

Tc2 and Tc17 subtypes. These responsive T cells trigger a variety 
of inflammatory cytokine release. For example, IL-4 and IL-13 pro-
duced by Th1 and Th2 cells facilitate B cells to produce IgM, IgG 
and IgA subtypes in the serum and mucosa. Th17 cell-produced IL-
17A/F and IL-22 recruit and activate neutrophils and macrophages to 
the site of infection, thereby promoting epithelial homeostasis, tissue 
repair and fungal eradication. Tc1, Tc2 and Tc17 cells produce IFN-γ 
TNF-α, IL-4, IL-5, IL-13, IL-17A and IL23 to promote phagocytosis 
of macrophages, maturation of B cells and antibody release, as well 
as apoptosis, thereby enhancing fungal clearance
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Humoral immune response to fungal vaccine 
and adjuvant

When fungal vaccines in combination with adjuvants come 
into contact with antigen-reactive B cells, the humoral 
immune response will commence (Cyster and Allen 2019). 
Compared with complement system, collectins and antimi-
crobial peptides, B-mediated antibodies confer principal 
and indispensable protections to invasive candidiasis (Xin 
and Cutler 2011). The responses of antibody to diverse 
pathogenic fungi comprise neutralization of antigen, 
inhibition of pathogen adherence to host cells, opsoniza-
tion, antibody-dependent cellular cytotoxicity (ADCC), 
complement activation, blockage of filament and biofilm 
formations, and immune regulation (Torosantucci et al. 
2005; Shukla et al. 2021). Among the five antibody iso-
types, IgG, IgM and IgA are the major protectors upon the 
stimulation of fungal vaccines. It is known that antibodies 
are useful in bloodstream infections, but fungal hematog-
enous dissemination seldom occurs in, for example, AIDS 
patients unless neutropenia is confronted. A recombinant 
DNA vaccine containing epitope C (LKVIRK) from 
HSP90 of C. albicans (pD-HSP90C) enhanced specific 
antibody titers IgG, IgG1, IgG2b assisted by a polysac-
charide adjuvant isolated from the fruits of Physalis 
alkekengi L., significantly elongating the survival rate in 
a systemic candidiasis murine model (Yang et al. 2016). 
A study observed that vaccination with secreted aspartyl 
proteinase 2 protein (Sap2) from C. parapsilosis increased 
titers of Sap2-specific IgG and IgM antibodies, inhibited 
C. tropicalis biofilm formation, and enhanced neutrophil-
mediated fungal killing in C. tropicalis-associated sys-
temic candidiasis (Shukla and Rohatgi 2020). Recently, 
with a multi-kingdom antibody profiling (multiKAP) 
approach, a mechanism by which gut mycobiota modu-
lates the human B cell expansion and CARD9-dependent 
induction of host-protective antifungal IgG was expounded 
(Doron et al. 2021). Although B cell-mediated antibody 
generation provides potent antifungal protection during 
vaccination, vaccine-induced antibodies are pivotal driv-
ers to initiate and promote cellular response. For exam-
ple, post immunization with Pneumocystis, the responses 
of IgG, IgM and IgA to Pneumocystis protein, β-glucan 
and chitosan/chitin are heavily dependent on  CD4+T cells 
(Rapaka et al. 2019). Due to a challenging fact that most 
individuals with high-risk of fungal infections are usually 
immunocompromised, normal vaccination is unable to 
elicit effective and lasting humoral immune response. As 
a result, direct injection/gavage of antibody is becoming 
a well-recognized passive immunotherapy for antifungal 
purpose. Monoclonal antibodies (MAbs) C7 (against C. 
albicans cell wall mannoprotein), A9 (against A. fumigatus 

cell wall glycoprotein), 18B7 (against cryptococcal capsu-
lar polysaccharide) and Mycograb (against Candida Hsp90 
protein) were exploited to prevent and treat fungal infec-
tions (Chaturvedi et al. 2005; Larsen et al. 2005; Sevilla 
et al. 2006; Bugli et al. 2013). Recently, an antibody-like 
Dectin1-Fc(IgG)(s) from distinct subclasses (IgG2a and 
IgG2b) was devised and demonstrated to have a dose-
dependent protections against fungal infections by C. albi-
cans SC5314, H. capsulatum G217B and C. neoformans 
H99 (Ruiz Mendoza et al. 2022).

Cellular immune response to fungal vaccine 
and adjuvant

Vaccine/adjuvant‑mediated  CD4+T responses

Of note, the pathogen-specific  CD4+T cells primarily induce 
Th1, Th2 and Th17 immune responses which become the 
major cellular defense during vaccination (Becattini et al. 
2015). The three T subtypes have disparate cytokine pro-
files. It is known that IFN-γ and TNF-α are the signature 
cytokines for Th1, while IL-4, IL-5 and IL13 are charac-
teristic factors for Th2, IL-17A, IL-17F and IL-22 are clas-
sical Th17 associated cytokines (Annunziato et al. 2015). 
It is well-accepted that Th1 cells can help B lymphocytes 
produce IgG2a isotype in mice and IgM, IgG, and IgA, but 
not IgE, in human. Both IL-4 and IL-13 can facilitate B 
cells to produce IgG1 and IgE in mice and the five classes 
of immunoglobulin in human. IL-17A and IL-17F can target 
either immune or nonimmune cell types and play a key role 
in the recruitment, activation, and migration of neutrophils, 
while IL-22 can promote epithelial cell homeostasis, anti-
microbial defense and tissue repair (Annunziato et al. 2015). 
Multiple types of fungal vaccines are competent to arouse 
Th1, Th2 and Th17 responses and alter Th1/Th2 and Th1/
Th17 ratios in the treatment of systemic candidiasis (Spell-
berg et al. 2006; Li et al. 2021), invasive cryptococcosis 
(Masso-Silva et al. 2018), and aspergillosis (Clemons et al. 
2014a). It is noteworthy that the cellular immune response 
to these vaccines is usually characterized by increased Th1 
and Th17 responses together with diminished Th2 reac-
tion (Masso-Silva et al. 2018). An immunoproteomic study 
further indicated that Th2-related antigens represent hope-
ful candidates for the design of immunotherapy regimens, 
whereas Th1-related antigens may serve as alterative option 
for vaccine device (Firacative et al. 2018). The vaccine-
motivated Th1/Th2 differentiation might partly attribute to 
oxidized/reduced mannan derived from fungal cell walls 
which could activate DCs to stimulate the polarization 
of Th1 and Th2. It appeared that oxidized mannan could 
stimulate Th1 responses via phosphorylated p38 depend-
ent IL-12p70 production, while reduced mannan instructed 
a Th2 bias via phosphorylated ERK dependent IL-10 and 



Archives of Microbiology (2024) 206:293 Page 17 of 24 293

IL-4 (Tong et al. 2016). It is well-recognized that Th17 
responses provide protection against cutaneous fungal infec-
tions, while Th1 responses offer protection against systemic 
fungal infections (Kashem et al. 2015; Shukla and Rohatgi 
2020). The protective features of Th1 and Th17 are cor-
roborated in vaccinations against diverse pathogenic fungi 
(Specht et al. 2015; Ueno et al. 2019; Li et al. 2021; Wang 
et al. 2023). Consistently, the fungal vaccines/adjuvants also 
skew Th1/Th2/Th17 polarization against diverse endemic 
fungi. For example, a subunit vaccine by encapsulating a 
recombinant coccidioidal antigen (rCpa1) in Rhodotorula 
mucilaginosa yeast-derived glucan-chitin particles (GCPs) 
could stimulate a robust Th17 immunity to confer protec-
tion against pulmonary coccidioidomycosis in mice caused 
by Coccidioides posadasii through a mechanism requiring 
activation of CARD9-associated Dectin-1 and Dectin-2 sig-
nal pathways (Campuzano et al. 2020). The mice vaccine 
made from Sporothrix schenckii cell wall proteins (ssCWP) 
and the adjuvant Montanide™ Pet Gel A (PGA) stimulated 
a preferential Th1/Th2 profile, promoting S. schenckii yeast 
to be phagocytosed (Portuondo et al. 2017). The combined 
use of a pan-fungal vaccine calnexin and the conjugates of 
glycoprotein Blastomyces Eng2 (Bl-Eng2) and Dectin-2 as 
the adjuvant could augment activation of immune effectors 
to kill fungi and safeguard mice from lethal fungal challenge 
by B. dermatitidis (Wang et al. 2017b).

Vaccine/adjuvant‑mediated  CD8+T responses

CD8+T cells are mostly referred to cytotoxic T or Tc cells 
which mainly consist of three subtypes, i.e. Tc1, Tc2 and 
Tc17 (Annunziato et al. 2015). The representative cytokines 
produced by Tc1 cells are IFN-γ and TNF-α, while those 
by Tc2 include IL-4, IL-5, IL-13 without IFN-γ (Annun-
ziato et al. 2015). Although  CD8+T cells target intracellular 
pathogens and provide protections in diverse inflamma-
tions and autoimmune diseases (allergy and asthma), sev-
eral fungal vaccines/adjuvants can evoke a skewed  CD8+T 
responses. A previous study showed that co-immunization 
with rP-HSP90C and CH-HG provoked a stronger  CD8+T 
responses than rP-HSP90C alone in a systemic candidi-
asis (Li et  al. 2021). Although depletion of  CD8+T or 
 CD4+T cells did not affect the protection from a C. neofor-
mans mutant (Δsgl1) vaccine, the immune protection was 
completely lost once both  CD8+T and  CD4+T cells were 
exhausted (Normile et al. 2021). It appears that  CD4+T cells 
can help elicit  CD8+T-cell responses upon viral and bacte-
rial infections. However, there may have distinct intracellular 
pathways for the priming of  CD4+ and  CD8+T responses 
to A. fumigatus (De Luca et al. 2012). It was assumed that 
TLR3 was an essential receptor to sense fungal RNA by 
cross-presenting DCs, promoting antifungal memory  CD8+T 
responses to aspergillosis in high-risk patients (Carvalho 

et al. 2012). Tc17 cells, a unique subgroup of IL-17-pro-
ducing  CD8+T cells, are found to be an essential player in 
systemic autoimmune pathology, such as experimental auto-
immune encephalomyelitis (EAE), due to its in vivo plas-
ticity (Liang et al. 2015). Several documents demonstrated 
the protective role of Tc17 cells elicited by HBV DNA 
vaccination (pcD-S2) and Mycobacterium vaccine therapy 
(Wu et al. 2013a; Kannan et al. 2020). Recently, a study 
revealed that vaccine-induced Tc17 cells could persist and 
confer resistance against B. dermatitidis and H. capsulatum, 
and are indispensable in vaccine immunity against lethal 
fungal pneumonia in  CD4+T cell-deficient hosts (Nanjappa 
et al. 2012). In contrast to largely normal IFN-γ+  CD8+T 
cell (Tc1) responses, sustaining the proliferation of Tc17 
cells requires the activation of intrinsic MyD88-Akt1-mTOR 
signaling during vaccine immunity against fungal pneumo-
nia caused by B. dermatitidis (Nanjappa et al. 2015). Due 
to high levels of basal homeostatic proliferation and low 
levels of anti-apoptotic molecules Bcl-2 and Bcl-xL, vac-
cine-induced antifungal Tc17 cells are durable and stable 
with long-lasting memory without plasticity towards IFNγ-
producing Tc1 cells (Nanjappa et al. 2017). Intriguingly, 
vaccine-induced GM-CSF+ Tc17 cells, a lineage more like 
Tc17 cells than IFN-γ-producing Tc1 cells, are instrumental 
to prevent pulmonary fungal infection caused by B. derma-
titidis without inflamed pathology. During the vaccination, 
IL-23 is dispensable for memory GM-CSF+ Tc17 cell main-
tenance and recall responses (Mudalagiriyappa et al. 2022). 
Given that evidence available focuses on the functionality of 
 CD8+T responses to a limited fungal vaccines mainly from 
Aspergillus and Blastomyces, extra efforts are warranted to 
decipher the underlying mechanisms of  CD8+T responses to 
other commonly encountered fungal vaccines.

Perspective

Over the past few decades, we have achieved a great pro-
gression toward understanding of host immune responses to 
opportunistic fungi in multiple context of fungal infections, 
providing useful thoughts for design of novel fungal vac-
cines and associated adjuvants. Yet, there is no successful 
fungal vaccines approved for clinically purposes. Consider-
ing extremely low immune-competence of at-risk patients 
with fungal infections, it is a challenging task for fungal 
vaccines and adjuvants available to induce safe and suffi-
cient immune reactions to eradicate overgrown fungi at no 
expense of immune system breakdown by such as cytokine 
release syndrome (CRS). It is important to notice that most 
antibody vaccines may be useful in mouse intravenous 
infection models. However, in patients with AIDS there 
may be a lot of fungi attached to the mucosal surface, but 
if the patient is not neutropenic, it is difficult for antibody 
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vaccines to encounter the spread fungus via bloodstream. 
Although a promising approach to combining the vaccine 
with a cytokine or cytokines known to enhance the immune 
system can enhance the safety and efficacy of fungal vac-
cines, a thorough understanding of the interaction between 
fungi and host immune defense is a prerequisite which still 
require more efforts in animal and even pre-clinical tests. 
Nevertheless, it is still worth looking forward to several 
emerging potential technologies and platforms for designing 
fungal vaccines and adjuvants. These promising candidates 
include adoptive T-cell therapy, chimeric antigen receptor 
(CAR) T-cell therapy, fungal extracellular vesicles-medi-
ated vaccines, as well as mRNA vaccines (Tso et al. 2018; 
Rivera et al. 2022; Loh and Lam 2023). Of note, consistent 
with long-lasting protective memory responses by adaptive 
immune cells, innate immune memory known as “trained 
immunity” can also be strongly elicited by non-fungal com-
ponents, such as Bacillus Calmette-Guerin (BCG), offering 
a possibility to be used for the design of fungal vaccines 
and adjuvants to generate cross-species protection (Yang 
et al. 2016). As a result, in-depth exploration of the interac-
tion between fungal vaccines (adjuvants) and host immune 
system will benefit for understanding the host immune 
response to opportunistic fungi, which in reverse, accelerates 
the development of universal and effective fungal vaccines 
and adjuvants with trans-species protections.
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