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genome length varies between 220 and 450 nucleotides 
(nt) (Lee et al. 2022). Some viroids have a wide host range 
that systemically induce disease on many agricultural and 
horticultural crops (Diener 2001; Ding 2009). Hop stunt 
viroid (HSVd) is a member of the family Pospiviroidae and 
belongs to the genus Hostuviroid, consisting of 294–309 
nt and was first reported from hops in Japan (Sasaki and 
Shikata 1977b; Hataya et al. 2017; Di Serio et al. 2021). 
HSVd has the most diverse host range, having been detected 
in a wide variety of woody and herbaceous plants and has 
been frequently pathogenic to a certain sensitive host variet-
ies (Sasaki and Shikata 1977a; Yang et al. 2007; Hataya et 
al. 2017). The symptomology of HSVd infection on differ-
ent host plants include leaf curling, vein thickening, clear-
ing and banding, leaf and fruit deformation, yellow speckle 
or dappling on fruit and stunted growth (Sano et al. 1989; 
Yang et al. 2007; Hataya et al. 2017). The infection caused 
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Viroids are the smallest known autonomously replicating 
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Abstract
Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in 
various economically important crop plants. In the present investigation, a study was conducted in the southern part of 
Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry 
plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conven-
tional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. 
Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara 
(1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size 
of ∼ 290–300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings 
through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative 
nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that 
HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. 
On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, 
Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the 
terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study 
is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and 
symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms 
in the mulberry plants.
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by HSVd appears to be latent in most of the hosts studied 
(Polivka et al. 1996; Sano 2013). Several viroid infections 
have been reported in India, of which PSTVd on potato and 
tomato, CEVd on citrus, CSVd and CChMVd on chrysan-
themum, CLVd on Nematanthus and grapevine associated 
AGVd, HSVd and GYSVd (Mishra et al. 1991; Singh et 
al. 2010; Adkar-Purushothama et al. 2013; Singh and Kaur 
2014; Jeevalatha et al. 2015; Kumar et al. 2015; Walia et al. 
2021; Shilpa et al. 2022).

Hop stunt viroid is known to infect a broad range of nat-
ural hosts and thus, pose a potential threat to agricultural 
crops worldwide. It was first identified in hop plants show-
ing abnormal dwarfing of bines and hence termed as hop 
stunt disease (Sasaki and Shikata 1977b). The disease was 
first emerged in Japan during the 1950s and became the big-
gest concern for hop growers in the 1970s, causing huge 
economic losses (Sano 2013). Since then, hop stunts have 
also been epidemic in the United States (Eastwell and Nel-
son 2007), China (Guo et al. 2008) and Slovenia (Radišek 
et al. 2012). Apart from hops, HSVd has a wide host range, 
infecting cucumber, fruit bearing citrus, malus, prunus, 
plum, peach, apricot, sweet cherry, apple, fig and Vitis spp. 
including flower bearing Hibiscus spp. (Hataya et al. 2017; 
Marquez-Molins et al. 2021) and recently reported on eco-
nomically important mulberry plants from Italy, Lebanon, 
Iran and China (Elbeaino et al. 2012; Lu et al. 2023). Almost 
symptomless in many of these host species, HSVd infec-
tion causes specific diseases on wide varieties of cucumber, 
some sensitive cultivars of plum and peach, and specific 
variants have been reported to cause cachexia disease on 
some sensitive citrus varieties (Semancik et al. 1988).

Mulberry (Morus alba) is one of the most economically 
important perennial cash crops cultivated in India and is 
cultivated in 242 thousand hectares with an annual produc-
tion of 24,000 MT in 2021 as the source of silkworm feed 
(Anonymous 2021). In India, the state of Karnataka is the 
leading raw silk producer, with 11,000 MT of raw silk pro-
duced in fiscal year 2022 to feed silkworms (Anonymous 
2022). Recently, HSVd infection has been reported from 
mulberry in Italy, Lebanon, Iran and China (Elbeaino et 
al. 2012; Amiri Mazhar et al. 2014; Lu et al. 2023). In our 
preliminary investigations on mulberry plants showing typi-
cal viral-like symptoms found in different mulberry grow-
ing regions of Karnataka state of India during 2020–2022, 
HSVd was successfully detected from some symptomatic 
plants (Shilpa et al. 2023). Hence, the present investigation 
was undertaken to characterize HSVd in Indian mulberry by 
employing molecular phylogenetic and secondary structure 
analyses along with the sequencing of a new isolate.

Materials and methods

Chemicals

All the chemicals used during the study were of molecular 
biology grade, which were procured from Hi-Media, India, 
viz., CTAB, lithium chloride, NaCl, EDTA, 2-mercapto-
ethanol, carborundum-600 meshes, agarose, ethidium bro-
mide, TAE buffer, bentonite solution, phenol, chloroform, 
ethanol, nuclease-free water, DNase I, and DTT. dNTPs and 
random hexamer DNA were procured from Thermo-Scien-
tific, India.

Collection of viroid samples

To investigate the presence of HSVd in mulberry plants, a 
field survey was conducted from December 2020 to April 
2022 in many mulberry growing regions of Bangalore rural, 
Chamrajanagara, Chikkaballapur and Ramanagara districts 
of Southern Karnataka (India). Mulberry leaf samples (41 
samples) displaying virus-like symptoms such as vein band-
ing, leaf curling, yellow speckle and leaf deformation were 
collected along with asymptomatic samples. The collected 
samples were thoroughly screened for HSVd infection using 
RT-PCR and bioassay methods.

Total RNA extraction

To extract small RNA from infected and healthy leaf sam-
ples, 2× CTAB-based 4 M lithium chloride (LiCl) precipi-
tation method was employed as described in our previous 
studies (Shilpa et al. 2022). About 100 mg of symptomatic 
and healthy mulberry leaf tissues were ground into a fine 
powder in a sterile mortar and pestle using liquid nitrogen 
and was homogenized with an appropriate volume of pre-
heated 2× CTAB buffer [0.1 M Tris–HCl (pH 9.5), 1.4 M 
NaCl, 0.02  M EDTA (pH 7.0), 2% CTAB, and 0.05% 
2-mercaptoethanol]. To the homogenate, an equal volume 
of phenol: chloroform (1:1) was added and nucleic acid 
was extracted, followed by centrifugation at 13,000 rpm for 
5 min. at 4 °C. The aqueous phase was collected and total 
nucleic acids were precipitated by adding 2.5 volumes of 
99.5% ethanol, incubated overnight at -30 °C, and centri-
fuged at 13,000 rpm for 10 min. The pellets were air-dried 
at room temperature and re-suspended in nuclease-free 
water, followed by the addition of an equal volume of 4 M 
LiCl with gentle shaking and allowed to stand on ice for 
4 h. High molecular weight RNAs were precipitated by cen-
trifugation at 13,000 rpm for 10 min., and 4 M LiCl solu-
ble nucleic acids were recovered by ethanol precipitation 
from the resultant supernatant, followed by DNase I treat-
ment for 30  min. at 37  °C. Low molecular weight- RNA 
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(LMW-RNA) was ethanol precipitated by centrifuging at 
13,000  rpm, and the resultant residues were washed with 
70% ethanol and air-dried. Finally, the obtained RNA pel-
lets were suspended in 100 µl of nuclease-free water. Fur-
ther obtained RNA was quantified using NanoDrop Lite 
Spectrophotometer (Thermo Scientific™, USA) and stored 
at - 20 °C for further analysis.

Reverse transcription (RT)

The first-strand complementary DNA was synthesized as 
described in our previous studies in a 25 µl total reaction 
mixture volume (Shilpa et al. 2022). Where 3 µl (2 µg) of 
purified RNA sample containing 1 µl dNTPs (10 mM) and 
1 µl random hexamer (100 µM) was prepared (total volume 
of 5  µl) and used for the preparation of RT-solution. The 
reaction mixture was thoroughly mixed and incubated for 
5 min. at 95 °C on a Thermal Cycler (Applied Biosystems, 
USA) and immediately chilled on ice for 5 min. Approxi-
mately 5  µl of denatured RNA was added to cDNA syn-
thesis reaction mixture containing 1  µl M-MuLV reverse 
transcriptase (200 U/µl) (Invitrogen, Carlsbad, CA, USA), 
5× first strand buffer (2 µl), 0.1 M DTT (2 µl), 1 µl RNase 
inhibitor (20U/µl) (Thermo Scientific™, USA) and final 
volume was made up with nuclease free water (14 µl). The 
RT reaction was incubated for 60 min. at 37 °C. After incu-
bation, the reaction mixture was heated at 72 °C for 5 min. 
on a Veriti 96-Well Thermal cycler (Applied Biosystems, 
USA), chilled on ice for 2  min. to inactivate the reverse 
transcriptase. The reaction mixture without template RNA 
served as a negative control.

RT-PCR amplification and cloning

To detect HSVd, a conventional PCR was performed using 
a resultant RT-solutions (2 µl) in a 25 µl PCR reaction 
mixture. The PCR master mixture containing 2 units of 
Taq DNA Polymerase (0.3 µl) (Takara Bio, Shiga, Japan), 
10×Taq PCR buffer (2.5 µl), 2 mM dNTP (2.5 µl), 25 mM 
MgCl2 (2.5 µl), and 20 pmol each (1 µl) of HSVdF1-5’-​
G​G​G​G​C​A​A​C​T​C​T​T​C​T​C​A​G​A​A​T​C​C-3’ and HSVdR1-
5’-​G​G​G​G​C​T​C​C​T​T​T​C​T​C​A​G​G​T​A​A​G​T​C-3’ (Bernad and 
Duran-Vila 2006) and remaining volume was made up with 
nuclease free water (13.2 µl). Similarly, samples were also 
prepared from healthy and symptomatic mulberry plants. 
The reaction mixture was thoroughly mixed before carrying 
out PCR in a thermal cycler with the following PCR cycling 
profile: initial denaturation at 95  °C for 4  min., followed 
by 35 cycles of denaturation at 94 °C for 1 min., annealing 
at 55.3  °C for 1 min., and extension at 72  °C for 1 min., 
and final extension was performed at 72 °C for 10 min. The 
amplified PCR products were separated by 1.5% agarose gel 

electrophoresis with ethidium bromide (0.5 µg/ml), in 1× 
TAE buffer at 100 V for 35 min., and visualized under UV 
transilluminator using Gel Documentation apparatus (Major 
Science, USA). The amplified PCR products were purified 
using a GeneJET Purification Kit (Thermo Scientific, USA) 
following manufacturer’s instructions. Further, the purified 
DNA fragments were cloned into pGEM®-T Easy vector 
(Promega, Madison, USA), and a bacterial transformation 
process was performed following manufacturer’s protocol.

Biological indexing of HSVd

Biological indexing was performed to confirm the pathoge-
nicity of HSVd on cucumber (Cucumis sativus, cv. ‘Suyo’) 
indicator plants. The 100 ng of small RNAs (inoculum) 
from HSVd-positive and healthy mulberry plants were pre-
pared by homogenizing with 0.1 M sodium phosphate buf-
fer (pH 7.0) supplemented with bentonite (1 µg/ ml) (Sano 
et al. 2004). Inoculations were carried out on 25 days-old 
three cucumber seedlings at the two-leaf stage by gentle 
rubbing with 50  µl of the LMW-RNA inoculum on each 
leaflet, which was previously dusted with carborundum-600 
meshes (HiMedia) in greenhouse conditions (Verhoeven et 
al. 2010). The inoculated leaflets were left for 2 min., and 
gently washed with sterile distilled water. Cucumber seed-
lings inoculated only with sterile distilled water served as 
control. All the inoculated seedlings were maintained under 
controlled conditions (25 -30 °C) to screen the infection by 
HSVd, and the experiments were repeated twice. The HSVd 
infections in all the symptomatic cucumber plants were fur-
ther confirmed by RT-PCR product and sequencing.

Sequencing and phylogenetic analysis

The amplified PCR and cloned DNA products were 
sequenced in an automated DNA sequencing system 
(Applied Biosystems, ABI Prism 310, USA) by the Sanger 
sequencing method. The obtained sequences were aligned 
and analyzed using BioEdit sequence alignment editor (ver-
sion 7.2.6.0) and ClustalW software. Further, the sequences 
were subjected to nBLAST tool (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) and analysis using the NCBI-BLAST pro-
gram to compare with the related nucleotide sequences 
available in the NCBI GenBank. The obtained consensus 
nucleotide sequences were assembled and compared for 
similarities to identify the closest match. A phylogenetic tree 
was constructed with the representative homologous viroid 
sequences retrieved from the NCBI GenBank (https://www.
ncbi.nlm.nih.gov/) employing the Neighbor-Joining method 
(NJ) of MEGA 11 version (Tamura et al. 2021) with 500 
bootstrap replications to assess the reliability of the con-
structed evolutionary tree. The evolutionary distances were 
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post-inoculation under greenhouse conditions (Fig.  3). 
Bioassay results were confirmed by RT-PCR, samples 
inoculated using Ramanagra, Doddaballapura and Chikka-
ballapura LMW-RNAs showed an expected amplicon size 
of ∼ 290300 nt by confirming the presence of HSVd.

Sequencing and phylogenetic analysis

A clone from each positive isolate (∼ 290–300 nt) was 
selected and sequenced from both directions to confirm 
HSVd infection. The nBLAST analysis revealed the pres-
ence of HSVd in mulberry by showing 99.0% homology with 
HSVd sequence from Vitis spp. isolated from Russia (Acc. 
No. OL799308), China (Acc. No. AB219944), followed by 
98.7% homology with the Indian isolate of grapevine (Acc. 
No. AB742225), Korean isolate of Japanese apricot (Acc. 
No. KY445746) and Chinese isolate of Japanese plum (Acc. 
No. EF076834). A similar co-efficient of 98.0% identity with 
HSVd infecting hop (Acc. No. AB039270) and peach fruit 
(Acc. No. D13765) in Japan was observed in the study. The 
assembled nucleotide sequences of HSVd isolates obtained 
in this study and also in our previous investigation (Shilpa 
et al. 2023) and the details of the accession numbers of the 
deposited sequences of the present work along with refer-
ence sequences, are provided in Suppl. Table 1. The obtained 
representative consensus sequences were deposited in NCBI 
GenBank with the Acc. No. OP313761, OP313762 (Shilpa 
et al. 2023) and OQ784657 (Suppl.Table 1). The sequence 
of OP313761 and OQ784657 was 100% matched with each 
other, but OP313762 was one nucleotide difference at posi-
tion 86, however, this variation was considered to be an arti-
fact because it was located within the PCR primers used.

The obtained representative nucleotide sequences (Acc. 
No. OP313761, OP313762 and OQ784657) were considered 
for constructing a phylogenetic tree. The HSVd sequences 
from various hosts among the world were selected from 
the NCBI database. To simplify the tree, closely related or 
representative sequences of the HSVd isolates were consid-
ered along with previously deposited sequences of HSVd 
from grapevine and citrus in India. The phylogenetic anal-
ysis among these HSVd sequences from mulberry, grape-
vine, hop, citrus, peach and others, including the present 
sequences, formed several distinct clades. Detailed inspec-
tion revealed that the Indian mulberry sequences belong 
to the grapevine group, which authenticates the close evo-
lutionary relationship but differs from those isolated from 
mulberry in Italy, Lebanon, Iran, and China (Fig. 4).

Secondary structure analysis

The MultAlin analysis of HSVd (Acc. No. OP313761) 
sequence assembled with closely related previously reported 

calculated using the Kimura-2-parameter method (Kimura 
1980).

Secondary structure analysis of HSVd

The sequences of isolated HSVd (Acc. No. OP313761) 
and representative HSVd available in GenBank (Acc. No. 
AB742225) were obtained, and multiple sequence align-
ments were performed using the ClustalW program. The 
possible secondary structure was predicted to identify the 
variations and mismatches at the central conserved, termi-
nal, variable and pathogenicity regions. In addition, the base-
paring probabilities were also predicated among the aligned 
sequences using RNA structure Version 6.3- Mathews Lab 
Computational Biology of RNA (https://rna.urmc.rochester.
edu) and Mfold (Zuker 2003) with the lowest free energy at 
a folding temperature of 37 °C and MFOLD (circular ver-
sion) program from the GCG package and RNA viz. (Zuker 
1989) for prediction of the secondary structure of HSVd.

Results

HSVd symptoms and molecular detection through 
RT-PCR

During the study period, samples were collected from 
mulberry plants that showed typical virus-like symptoms, 
such as leaf curling, yellow speckle, yellow mottling, vein 
thickening, clearing and banding, leaf deformation and 
stunted growth (Fig.  1). Of the 41 symptomatic mulberry 
leaf samples from different locations (Fig. 2A and B), six 
from Ramanagara (1 sample), Chikkaballapur (3 samples) 
and Doddaballapura (2 samples) regions tested positive for 
HSVd with an expected amplicon size of ∼ 290-300 nt for 
HSVd (Fig. 2C). The HSVd positive samples showed severe 
symptoms like yellow spots, leaf curling with leaf rugosity, 
leaf thickening along with stunted growth. However, none 
of the other asymptomatic samples showed amplicons for 
HSVd. Three individual samples, each taken from a differ-
ent location at the sample collection site, were selected, and 
the amplified full-length cDNA fragments were recovered 
from gel purification for further cloning and sequencing 
analysis.

Biological indexing

After 6-7 weeks post-inoculation, all three small RNA inoc-
ulated cucumber plants displayed typical HSVd symptoms 
such as leaf curling, stunted growth, yellowing, and thick-
ening. Whereas water-inoculated cucumber plants remained 
asymptomatic and tested negative even after 7 weeks of 
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Fig. 1  Mulberry leaf samples showing viral-like symptoms. A: Healthy leaf; B: Yellow spots; C: Leaf curling with leaf rugosity; D: Leaf thickening
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not seem to cause structural changes between HSVd isolate 
from mulberry and grapevine in India.

Discussion

Hop stunt viroid is known to infect a wide range of natu-
ral hosts, making it a potential hazard to agricultural crops 
globally. In India, HSVd has been detected in grapevine 
(Sahana et al. 2013) and citrus (Roy and Ramachandran 
2003). However, HSVd infection on mulberry has not been 
diagnosed and reported until recently (Shilpa et al. 2023). 
During the study, the preliminary RT-PCR identified the 
HSVd infection for the first time in six mulberry samples 
collected from various fields of Karnataka state of India. 
Besides, the sequence data of the same confirmed the HSVd 
association with mulberry with a high percentage homology 

representative Indian isolate of HSVd sequences from 
grapevine species (Acc. No. AB742225) revealed that there 
were not many differences among the nucleotide sequences 
studied. The secondary structure analysis by mfold thermo-
dynamically predicted a rod-shaped structure that fit well 
with a molecular model consisting of five structural domains 
(Fig. 5A). The predicted structure revealed the presence of 
27 loops with a slight difference compared to the reference 
structure predicted from an Indian grapevine sequence (Acc. 
No. AB742225; Fig. 5B) (Sahana et al. 2013). It was also 
noted that the HSVd from mulberry isolate showed 4 sub-
stitutions in the positions 58 (U58→G), 126 (C126→U), 253 
(C253→U) and 272 (U272→C) and shared PWIS of 98.7%. 
Of them, a U58→G transversion closed an internal loop and 
a U272→C transition enlarged the other internal loop in the 
predicted secondary structure. The other two substitution do 

Fig. 2  Amplification of HSVd 
(∼ 290-300 nt) from mulberry 
samples showing amplified 
products on 1.5% agarose gel. 
A–B: Representative mulberry 
samples showing symptoms of 
yellow spots and vein banding; 
C: Lane M: 100 bp marker; Lane 
1–4: Chikkaballapur sample; 
Lane 5–7: Dodaballapura sample; 
Lane 8–9: Ramanagara sample; 
Lane 2,5 and 8: Asymptomatic 
sample from representive regions 
(Control)

 

1 3

240  Page 6 of 10



Archives of Microbiology (2024) 206:240

the nucleotide sequence, the secondary structure analysis 
revealed the presence of 27 loops in the Indian mulberry 
isolate, which was apparently different in two loops located 
in the TL and P domains, both responsible for the pathoge-
nicity, compared to those of Indian grapevine, suggesting a 
close relationship between the two isolates but might have a 
possible difference in the pathogenicity.

Amiri Mazhar et al. (2014) specifically detected HSVd 
from mulberry trees exhibiting vein-clearing and yellow 
speckle symptoms and showed that the mulberry disease in 
question is transmitted from mulberry to mulberry by graft-
ing the buds of the diseased tree onto the mulberry seedlings 
and by mechanical inoculation of the mulberry seedlings 
with the sap (but not purified preparation) from the diseased 
leaves. Since HSVd was detected again from inoculated 
seedlings, they concluded that vein clearing and deforma-
tion of mulberry leaves is a transmissible disease associated 
with HSVd, the involvement of other viral infectious agents 
cannot be completely excluded. In this study, HSVd was 
also detected only from samples showing severe viral-like 
symptoms, although the detection frequency was not very 
high. The mechanical inoculation experiment confirmed 
HSVd infection in indicator cucumber (cv. Suyo) plant 

to HSVd-grapevine, isolated from Russia, China, India 
(Sahana et al. 2013; Singhal et al. 2019) and worldwide. The 
phylogenetic analysis of the HSVd Indian mulberry iso-
lates showed an evolutionary relationship with those from 
the grapevine, plum, peach, and hop reported from various 
countries, including India; i.e.,“grapevine”or “grapevine-
hop” group (Amari et al. 2001; Sano et al. 2001). In accor-
dance, the results were found somewhat different from those 
reported from Italy–Lebanon, Iran, and China, wherein mul-
berry isolates which clustered together with those of “cit-
rus” group, “plum” group, and “hop” group, respectively 
(Elbeaino et al. 2012; Amiri Mazhar et al. 2014; Lu et al. 
2023). These results indicate that the HSVd mulberry iso-
lates reported so far from Italy-Lebanon, Iran, China, and 
now from India belong to distinct groups depending on the 
region and do not show host specificity. Incidentally, while 
the PWIS between Indian mulberry and Indian grapevine 
was 99% (4 nucleotides differences), those between Indian 
mulberry and Italian-Lebanese mulberry, Iranian mulberry, 
and Chinese mulberry was ∼ 95.7% (13–16 nucleotides 
differences), 89.0% or less (33 or more nucleotides dif-
ferences), and ∼ 94.6% (17–18 nucleotides differences), 
respectively (Fig.  4). In spite of the high similarlity of 

Fig. 3  Bioassay studies with mulberry-HSVd on indicator plant. A–B: Inoculated and healthy cucumber indicator plants under greenhouse condi-
tions; a: Healthy plant; b–d: HSVd inoculated plants exhibiting symptoms of stunted growth, curling and small leaves with yellow spots
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further analysis of its origin and potential role as a source of 
infection for other horticultural plants is important. Further 
investigation is also required to find out the exact source 
of the HSVd infection in mulberry and also the mechanism 
of transmission from source plant(s) to mulberry or from 
mulberry to mulberry, as it was observed that nucleotide 
sequence divergence suggests HSVd infection in mulberry 
is not origined from single host but varies by the regions 
observed, in other words, it may be significantly influenced 
by the surrounding crop environment.

with the expression of typical HSVd-inducing symptoms. 
It is essential to analyze the relationship between HSVd 
and viral-like symptoms on mulberry trees in India by con-
ducting infection experiments using mulberry seedlings. 
Studies also showed that agricultural tools could transmit 
HSVd during trimming, mechanical stripping, and grafting 
of infected scions (Hadidi et al. 2022). Since the outbreak, 
HSVd-associated crops have become widespread in recent 
years, they often remain symptomless but can act as poten-
tially dangerous viroid-reservoir crop plants. Since mul-
berry is an important cash crop for feeding silkworms and 
now found as a new natural host for HSVd in India, hence, 

Fig. 4  Molecular phylogenetic 
relationships of HSVd-mulberry 
isolates from India in this study, 
mulberry in Italy, Lebanon, Iran, 
and China, and major HSVd iso-
lates from various crops reported 
so far. Mulberry isolates detected 
in this work are marked with a 
black star, and mulberry isolates 
in other countries are marked 
with a white star. Five repre-
sentative groups [P-C, P-H/Cit3 
(Amari et al. 2001), plum, citrus 
(Hadidi et al. 2017), grapevine-
hop (Sahana et al. 2013) found 
in HSVd isolates are shown. The 
number of nucleotide differences 
and PWIS (pairwise identity 
scores) between mulberry isolates 
from India and those from Italy, 
Lebanon, Iran, China, and grape-
vines are shown in the right side 
of the figure
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