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Abstract

This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi,
which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by
various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance.
We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially
by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both
submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and
temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up
processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography—
Mass Spectrometry (LC-MS), Gas Chromatography—Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR),
and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover,
genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production
and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and
metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the
complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.

Keywords Biological activities - Biosynthesis pathways - Analytical methods - Metabolite production enhancement - Yield
optimization
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Endophytic fungi (EFs) are a hyperdiverse group of organ-
isms that during part or all of their life cycle colonize
plant tissues (e.g., stem, flowers, leaves, fruits, roots)
intra and/or extracellularly without causing symptoms
of disease (Jia et al. 2016; dos Reis et al. 2022). These
microorganisms are present in almost all plant species in
natural ecosystems, where they play key roles in the plant
micro-ecosystem, mainly under conditions of biotic or
abiotic stress (Rho et al. 2018; Dastogeer 2018; Molina-
Montenegro et al. 2023). EFs have co-evolved with host
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plants synthesizing numerous bioactive compounds that
contribute to plant-fungus interactions, providing fitness
benefits to host plants (Jia et al. 2016; Rho et al. 2018;
Dastogeer 2018; Molina-Montenegro et al. 2023). These
characteristics make these microorganisms one of the
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largest underexploited natural resources for the discovery
of novel bioactive metabolites.

The EFs are capable of synthesizing a wide diversity
of chemically different metabolites, which include
alkaloids, benzopyrones, cytochalasins, steroids,
phenols, isocoumarins, terpenoids, xanthones, etc.
(Schulz and Boyle 2005; Manganyi and Ateba 2020;
Hashem et al. 2023; Shen et al. 2023). Many of these
metabolites are bioactive and may have antimicrobial,
antioxidant, antiviral, anti-inflammatory, cytotoxic, and
immunosuppressive activities (Manganyi and Ateba 2020;
Mousa et al. 2021; Mohamed et al. 2022). Furthermore,
EFs are capable of synthesizing metabolites similar
to those found in plants, which drives the plant-fungus
relationship comprehension (Kim et al. 2016). However,
numerous challenges arise when studying the diversity
of metabolites produced by EFs due to the complexity
of crude extracts and the fact that classical methods of
extracting and isolating metabolites are time-consuming
and laborious. In addition, some bioactive metabolites of
interest are only detected in trace amounts (Alhadrami
et al. 2021). As an alternative to classical methodologies,
metabolomics has emerged as a powerful tool to allow the
comprehensive characterization of complex crude extracts
and the chemical diversity of EFs metabolites (Alhadrami
etal. 2021; Sayed et al. 2022), including small molecules.

Metabolomics is an “omics” technology defined as the
study of all metabolites or small molecules in biological
systems under specific conditions (Bundy et al. 2008;
Patti et al. 2012; Marchev et al. 2021). This approach
uses technological advances in analytical chemistry such
as mass spectrometry (MS) (Rampler et al. 2021), to
measure and compare the metabolites and small molecules
present in the systems (Martin et al. 2019). However,
although metabolomics provides a more holistic view of
the chemical diversity produced by EFs, this approach is
recent and depends on expensive equipments and a series
of critical steps to obtain and analyze the data, including
raw data preprocessing, peak annotation and multivariate
statistical analysis.

Studying and understanding the chemical diversity of
metabolites synthesized by EFs is extremely important
to comprehend their biology, evolution, ecology, and
possible biotechnological applications, which has
been allowed by metabolomics in a holistic way as an
emerging technology. However, critical steps ranging
from formulation of hypotheses and objectives to data
collection and analysis should be better addressed to study
the chemical complexity produced by EFs successfully.
In this review, we discussed the chemical diversity of
metabolites produced by EFs and its applications, the use
of metabolomics to explore chemical diversity in EFs, the
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inherent challenges, perspectives, limitations, tips and
strategies for studying metabolite-producing EFs.

Biosynthesis of primary and secondary metabolites
by endophytic fungi

Primary and secondary metabolites are two broad categories
of chemical compounds produced by many organisms,
including endophytic fungi, which are highly important
for their overall fitness and survival. Involved in the basic
life processes (i.e., growth, development, and energy
production), primary metabolites are essential compounds
that comprises carbohydrates, proteins, lipids, and nucleic
acids, as well as key intermediates in metabolic pathways
like glucose, amino acids, and ATP (adenosine triphosphate)
(Alam et al. 2021). Secondary metabolites are not directly
involved in primary metabolic processes, but often have
specialized functions mainly associated with the defense
systems or adaptation of organisms to environmental stresses
due to the production of alkaloids, terpenoids, phenolics,
and various other classes of compounds with diverse
roles (Rashmi and Venkateswara Sarma 2018; Alam et al.
2021). Primary metabolites typically occur in all cells and
tissues, and their production is tightly regulated to meet
the organism’s basic metabolic needs. However, some
key steps of the primary metabolism provide precursors
for the synthesis of secondary metabolites (Alam et al.
2021). Mostly synthesized in limited quantities, secondary
metabolites are generally produced in specific tissues or
under particular conditions in response to environmental
factors (e.g., stress, infection, or competition) (Sumarah
and Miller 2009). The production of primary metabolites is
generally continuous and essentially controlled to maintain
the basic metabolic processes of organisms. The synthesis
of secondary metabolites is more flexible and responsive
to external factors, and its production is often induced by
specific cues, such as pathogen attacks or environmental
stressors, varying in response to changing conditions, and
not produced continuously necessarily (Sumarah and Miller
2009). Moreover, primary metabolites are usually more
uniform in structure and function as they play essential roles
in the basic cellular processes. On the other hand, secondary
metabolites exhibit a wide range of structural diversity and
have various functions specific to a particular organism or
ecological niche (Schneider et al. 2008; Bielecka et al. 2022).
In addition, genomic studies have shown that endophytic
fungi possess a larger number of biosynthetic gene clusters
than ever expected for the secondary metabolite production,
since most gene clusters are silent under laboratory
conditions (Rashmi and Venkateswara Sarma 2018).

The main biochemical pathways that guide the
biosynthesis of secondary metabolites by endophytic
fungi involve polyketide synthases (PKSs), non-ribosomal
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peptide synthetases (NRPSs), hybrids (PKS-NRPS),
terpene synthases (TPSs), terpene cyclases (TCs), and
prenyltransferases (PTs) or combinations thereof (Rashmi
and Venkateswara Sarma 2018). A relevant chemical
group of secondary metabolites produced by endophytic
fungi comprises non-ribosomal peptides synthesized by
NRPSs enzymes (Yang et al. 2019) that possess modular
structure and incorporate various building blocks into the
growing peptide chain without the ribosome’s need. Non
ribosomal peptide synthesis is an alternative pathway that
allows production of polypeptides other than through the
traditional translation mechanism. Despite the chemical
diversity produced by NRPSs, the standard NRPS structure
is composed of three canonical domains: adenylation
(A), thiolation (T) or peptidyl carrier protein (PCP), and
condensation (C) domains, which constitute a module within
NRPS (Creamer et al. 2021). Each module is responsible for
the recognition (A domain) and incorporation of a single
amino acid into the growing peptide product. Generally,
NRPSs possess more than one module, which terminates in
a condensation-like (CT) domain that releases the peptide.
Occasionally, epimerase (E) and N-methyltransferase (M)
domains that convert L- to D-amino acids and N-methylate
peptide bonds, respectively, are found within NRPSs.
Deviations of the classical NRPS composition are present
in hybrid PKS/NRPS (Creamer et al. 2021) and stand-alone
monomodular NRPS-like enzymes, since not all canonical
domains are presente. In addition, terpenes are an abundant
and chemically diverse group of natural products synthesized
by endophytic fungi and others, which is biosynthesized
from isoprene units derived through the mevalonate and/
or methylerythritol pathways that ranges from simple linear
hydrocarbon chains to highly complex ring structures
(Nazari et al. 2023).

Due to the diversity and complexity of biosynthetic
pathways responsible for the production of secondary
metabolites from endophytic fungi, Table 1 summarizes
some chemically characterized secondary metabolites
and putative associated biosynthetic genes/key enzymes
determined by sequencing, including genes expressed/
underexpressed in specific or mutational conditions.

Endophytic fungi as “hotspots” for discovering
bioactive compounds

The discovery of the endophytic fungus Taxomyces
andreanae as a taxol producer and related compounds, an
anticancer used in the treatment of several types of tumors,
placed EFs in the spotlight of search for bioactive metabo-
lites similar to those found in plants (Strobel et al. 1996;
Manganyi and Ateba 2020; Zhang et al. 2022; Hashem et al.
2023). It is currently well-known that EFs are a prophylactic
source of metabolites from numerous chemical classes and

with the most varied applications (Table 2), which character-
istics make them ““hotspots” of chemical diversity with dif-
ferent biological activities (Fig. 1). In ecology, the term ‘hot-
spots’ can be defined as geographic areas rich in biodiversity
and threatened by habitat loss (Thompson et al. 2021). Here,
“biodiversity hotspots” was adapted to “chemical diversity
hotspots” in reference to EFs, since these microorganisms
represent an important genetic, biological, and biotech-
nological resource for the discovery of novel biologically
active compounds, with unprecedented chemical diversity,
to be used in a wide variety of applications from medicine
to agriculture, and beyond.

Different approaches have been employed to study the
diversity of compounds from EFs (Mohamed et al. 2021,
2022; Hassane et al. 2022). Most protocols involve axenic
cultivation, followed by obtaining a crude extract, screening
based on bioassays (e.g., antimicrobial, antioxidant,
antiparasitic activities, among others), isolation and
purification steps of the target molecules (Orfali et al.
2017; Farooq et al. 2020; Liu et al. 2021; He et al. 2021).
However, fungal extracts are complex and often contain tens
to thousands of metabolites (Nischitha and Shivanna 2021a),
which complicates the purification process. Studying
metabolites produced by EFs in a specific condition
simultaneously using classical approaches is quite laborious
due to the complexity of the extracts, methodological
limitations, laboriousness, and the time required to obtain
pure compounds.

Metabolomic based methodologies is an alternative
to classical methods and has become a powerfull tool to
annotate EFs metabolites (Gonzéilez-Menéndez et al.
2016; Qadri et al. 2017; Toghueo et al. 2020). This new
“omics” has been used to study the chemical diversity
produced by fungi from the most varied ecosystems and
lifestyles, enabling the discovery of new molecules, effects
of epigenetic regulation on the metabolome, knowledge of
the chemical diversity produced by these microorganisms
etc. (Asai et al. 2012a, b, ¢; Zutz et al. 2013; Qadri et al.
2017; Triastuti et al. 2019; de Amorim et al. 2020; Ameen
et al. 2020; Makhwitine et al. 2023). In this sense, we will
address strategies in metabolomics research on EFs below:
experimental designs, cultivation regimes, extraction
methods, analytical methodologies and, data analysis.

Metabolomics applied to studies of endophytic
fungi

Metabolomics comprises the study of all metabolites
(<1500 Da) in biological systems (e.g., cell, tissue, organ,
organisms) in a specific physiological state (Bundy et al.
2008; Johnson et al. 2016; Marchev et al. 2021). This
approach requires modern instrumental analytical meth-
ods of high throughput, sensitivity, and resolution, such

@ Springer
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Table 2 Metabolites produced by endophytic fungi from different host plant species

Endophytic fungi Host plant species Metabolite Metabolite Biological activity ~ References
categorization

Alternaria alternata

Alternaria sp.

Aspergillus
aculeatus

Aspergillus flavipes

Aspergillus flavus

Chaetomium
globosum

Colletotrichum
gloeosporioides

Colletotrichum sp.

Emericella sp.

Fusarium
clamidosporium

Fusarium sp.
Fusarium tricinctum

Penicillium sp.
Penicillium sp.

Perenniporia
tephropora

Pestalotiopsis foedan

Pestalotiopsis sp.

Phomopsis/
Diaporthe sp.

Phomopsis/
Diaporthe sp.

Trichothecium sp.

Verticillium sp.

Azadirachta indica

Ziziphus jujuba

Rosa damascena

Eucommia ulmoides

Garcinia multiflora

Dioscorea Opposita
Piper nigrum
Morus alba

Panax notoginseng
Anvillea garcinii

Mentha longifolia
Hordeum sativum

Gastrodia elata
Panax notoginseng
Taxus chinensis

Bruguiera sexangula

Dendrobium
officinale
Polygonatum
sibiricum

Senna spectabilis

Phyllanthus sp.

Rehmannia glutinosa

phenolics and flavonoids

alternariol

secalonic acid F-7

3,4-dihydroxybenzeneacetic
acid and
3,4-dihydroxyphenylacetic
acid methyl ester

19-amino-19-dehydroxy
5-epi-a-cyclopiazonic acid,
2-hydroxymethyl-5-(3-
oxobutan-2-yl)aminopyran-
4(4h)-one and 4-amino-2-
hydroxymethylpyridin-5-ol

yamchaetoglobosin A

piperine

1,3-dihydroxy-2,8-
dimethoxy-6-
methylanthraquinone

emericelactones A-D

fusarithioamide A

fusaristerol A

enniatins (ens)

preaustinoid d and
dihydroxyneogrifolic acid

brefeldin A and brefeldin A
7-0-acetate

perenniporin A

(1r,4r,51,8s)-8-hydroxy-
4,8-dimethyl-2-
oxabicyclo[3.3.1]
nonan-3-one and (2r)-2-
[(1r)-4-methylcyclohex-3-
en-1-yl]propanoic acid

ergosta-5,7,22-trien-3b-ol

epoxycytochalasin H
cytochalasin H
trichothecin

2, 4-dihydroxy-2’,

6-diacetoxy-3’-methoxy-
5’-methyl-diphenyl ether

Phenolics and
flavonoids

Polysaccharides
Organic acids

Phenols

Alkaloids

Alkaloids
Alkaloids
Quinones
Polypeptides
Benzamide

Steroids
Polypeptides
Terpenoids

Esters
Sesquiterpenoid

Monoterpene

Sterols
Alkaloids

Organic
heterotricyclic
compound

Trichothecene

Diphenyl ether

Antibacterial

Anti-oxidant

Anticancer

Anti-oxidant

a-glucosidase
inhibitory activity

Anticancer

Anti-inflammatory

Anti-inflammatory

Antimicrobial

Antimicrobial and
cytotoxic

Antifungal
Antimicrobial
Antifungal

Anticancer
Cytotoxic

Antifungal

Cytotoxic and
antifungal

Anticancer

Antifungal

Cytotoxic

Cytotoxic and
antifungal

Chatterjee et al.
(2019)

Orfali et al. (2017)
Farooq et al. (2020)

Liu et al. (2021)

He et al. (2021)

Ruan et al. (2018)
Krishna et al. (2020)
Lee et al. (2021)
Pang et al. (2018)
Ibrahim et al. (2016b)

Chester et al. (2017)
Zaher et al. (2015)
Duan et al. (2016)

Xie et al. (2017)
Wu et al. (2013)

Xu et al. (2016)

Wu et al. (2015)

Wang et al. (2020)

Chapla et al. (2014)

Taware et al. (2015)
Peng et al. (2013)

as mass spectrometry (MS), combined with chemometric
methods to measure and compare the metabolites (John-
son et al. 2016; Rampler et al. 2021; Martin et al. 2019).

Metabolomics makes it possible to quickly measure thou-
sands of metabolites simultaneously from minimal quanti-
ties of samples (Johnson et al. 2016; Rampler et al. 2021;
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«Fig. 1 Guttation produced by endophytic fungi. Guttation is a phe-
nomenon that involves the exudation of water and metabolites pro-
duced by fungal cells. These exudates are rich sources of mycotoxins,
antimicrobials, insecticides, bioherbicides, antiviral, and anticancer
agents. In a, b, the release of red/orange exudates from two strains of
Epicoccum sp. cultured on potato peptone dextrose agar at 28 °C are
shown; In ¢, brown exudates produced by colonies of Diaporthe sp.
grown on potato dextrose agar (PDA) at 30 °C. In d, citrine yellow
exudates produced by Penicillium sp. In e, it is shown the diffusion in
the culture medium (PDA) of reddish-colored compounds produced
by Chaetomium sp. In f, green colored exudate produced by Tricho-
derma sp. is highlighted. In g, h, and k-o, exudates from different
endophytic Fusarium species grown in PDA at 25 °C are shown. In
i, j, exudates produced by Diaporthe spp. In p, translucent exudates
produced by colonies of Penicillium sp. Source: J.B.A.R. (author)

Martin et al. 2019), and, traditionally, can be divided into
metabolomics targeted and untargeted metabolomics (Fig. 2)
(Roberts et al. 2012). In general, targeted metabolomics aims
to qualitatively and quantitatively measure a predefined set
of metabolites (Roberts et al. 2012). Recently, targeted
metabolomics has been subdivided into widely targeted
metabolomics, pseudo-targeted metabolomics, and quasi-
targeted metabolomics (Lee et al. 2019; Sun et al. 2021;
Wang et al. 2023). Untargeted metabolomics, on the other
hand, analyzes all measurable metabolites in a given sample
(Lippa et al. 2022).

Metabolomics has played crucial roles in elucidating
physiological processes in numerous areas of research
and development to discover disease state markers, stress
response, identification of metabolic profiles, among others
(Zutz et al. 2013; Triastuti et al. 2019; Aldholmi et al.
2020; Wei et al. 2020; Ameen et al. 2020; Zhu et al. 2021;
Letertre et al. 2021; Katam et al. 2022). In recent decades,
this approach has also been successfully employed to explore
the chemical diversity of metabolites produced by fungi,
including EFs (Table 3).

Design of experiments to study the chemical
diversity of metabolites produced by endophytic
fungi

According to the hypotheses and objectives of the research,
different workflows are employed to evaluate the chemical
diversity and consequently the bioactive compounds pro-
duced by endophytic fungi (Fig. 3). As hypotheses and/or
objectives precede and guide the choice of the scientific
experimentation methods, these workflows are generally
complex. In metabolomic studies to explore the chemical
diversity or to search for bioactive metabolites produced by
EFs, the experimental design requires contextualization of
the objectives at all stages, as each stage directly interferes
with the results obtained and their interpretations. If the
objective of the study aims to compare how the metabolic

profile of EFs changes depending on different concentra-
tions of heavy metals, the experimental design may contex-
tualize its objective at each stage as follows: (1) the sample
size should be sufficient to reveal differences if they occur;
(2) all treatments should preferably possess the same sam-
ple number; (3) cultures should be maintained consistently
under the same conditions; (4) the extraction methods and
solvents used should be capable of extracting the greatest
possible amount of metabolites; (5) the chosen analytical
method should be capable of highlighting differences if they
occur. If any of these steps are not carefully taken into con-
sideration, the objective is not achieved, and biased results
are generally generated. If temperature varies between dif-
ferent metal concentrations, for instance, differences in the
metabolite profile may arise not only from the effect of metal
concentration, but also from temperature variation.

The experimental design is, therefore, a critical step
to be well structured according to the study’s objectives.
Considering the study’s objectives or hypothesis to explore
the chemical diversity produced by EFs using metabolomics,
four main steps may be still summarized: (1) culture
conditions, (2) sample preparation, (3) data collection and
processing, 4) and data analysis. Since each of these steps
is crucial to the final explanation, different strategies and
tools that may be adopted to increase the sample number of
metabolites from optimizing cultivation conditions, sample
extraction, and data acquisition to choosing analytical
methods and bioinformatics platforms, are discussed next.

Enhancement of metabolites production
from endophytic fungi

Endophytic fungi are known to synthesize a wide variety of
compounds. However, there is an inconsistency between the
actual number of biosynthetic gene clusters (BGCs) present
in the genome of these microorganisms and the number of
compounds detected in any fungal strain under laboratory
cultivation conditions (Fisch et al. 2009; Qadri et al. 2017,
Ul-Hassan et al. 2012; Gonzalez-Menéndez et al. 2016; Pil-
lay et al. 2022; Xue et al. 2023). This divergence between
the actual number of BGCs and the number of chemical
molecules produced by any given fungal strain is attrib-
uted to the fact that the majority of BGCs remain silenced,
low in expression, or not expressed at all under laboratory
conditions (Gonzalez-Menéndez et al. 2016; Pillay et al.
2022; Xue et al. 2023). Furthermore, the activation of these
BGC:s is likely to discover a greater number of compounds,
including the discovery of new metabolites (Ding et al.
2020). As a result of this fact, there is a need to use different
techniques that can induce the activation of these biosyn-
thetic pathways, such as co-culture, One Strain-Many Com-
pounds (OSMAC), epigenetic and molecular modification
methods, thus increasing the biosynthetic capacity of these
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microorganisms (Fig. 4) (Bode et al. 2002; Cichewicz 2009;
Gonzélez-Menéndez et al. 2016; Pillay et al. 2022; Xue et al.
2023).

In natural ecossystems, the different species that make up
microbial communities establish a series of ecological rela-
tionships (e.g., mutualism, commensalism, antagonism, and
parasitism) with other microbial species or organisms (e.g.,
plants, animals, among others) that are mediated mainly by
the production of compounds and small molecules (Toghueo
et al. 2020; Koza et al. 2022) similarly to metabolite pro-
duction expected by co-cultivation (Fig. 5). Thus, numerous
BGCs are dependent on microbe-microbe or microbe-host
interactions to be activated (Toghueo et al. 2020; Koza et al.
2022). The co-cultivation method (Fig. 5) aims to simulate
interactions that occur in the environment naturally between
microorganisms from the same or different ecological niches
(Kim et al. 2021; Boruta et al. 2023), since it consists in

@ Springer

growing one or more microbial species together. In addi-
tion to simulating ecological stress, including nutrient deple-
tion during competition between species, the co-cultivation
method allows the monitoring of metabolites produced over
time through visual morphological changes in the species
growth (Kim et al. 2021; Boruta et al. 2023) (Fig. 5). In
most cases, this approach leads to changes in the biosyn-
thetic profile of the strains analysed, resulting in production
of unusual compounds not found in monocultures (Kim et al.
2021; Boruta et al. 2023). Competition for iron, for instance,
triggers antibiotic biosynthesis in Streptomyces coelicolor
(bacteria) during co-cultivation with Myxococcus xanthus
(bacteria) (Lee et al. 2020).

Co-cultivation does not require knowledge in genetics or
molecular biology, nor laborious methods, which makes it
an advantageous method because of the simplicity and prac-
ticality. Different strategies for co-cultivation that includes
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Fig.3 A workflow for studying the chemical diversity and bioactive molecules produced by endophytic fungi. Figure created in BioRender soft-

ware

co-cultivation in solid or liquid media (mixed fermentation),
and the choice of the co-cultivated microorganisms (e.g.,
fungus-fungus, fungus-bacteria, and bacteria-bacteria) that
may or not belong to the same ecological niche, are widely
explored.

Similar to co-culture, the OSMAC approach is a
relatively simple and effective technique used to explore
the biosynthetic potential of microorganisms from the
most diverse habitats (Gao et al. 2020; Schwarz et al. 2021;

Pinedo-Rivilla et al. 2022; Hebra et al. 2022), including
endophytic fungi (Gao et al. 2020; Wei et al. 2021; da Silva
et al. 2023). As the OSMAC’s main idea, each microbial
strain has the potential to produce many compounds, but
subsets of these compounds are produced only under specific
conditions (Bode et al. 2002). Thus, OSMAC involves
combination and alteration of one or more cultivation
parameters (e.g., carbon, nitrogen, and micronutrient
sources; pH; temperature; light regime; addition of enzyme
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Fig.4 Main strategies used to increase the biosynthetic potential of endophytic fungi. Figure created in BioRender software and Canva.com

inhibitors; incubation time; O, and CO, tension; addition of
solvents, heavy metals, precursors and other small molecule
elicitors). Changes in cultivation conditions cause activation
of silent BGCs or overexpression of BGCs that were
underexpressed, resulting in production of a greater diversity
of compounds (Bode et al. 2002). The efficiency of this
approach was demonstrated by the increased production of
griseofulvin derivatives produced by endophytic fungi from
the host plant Moquiniastrum polymorphism when cultivated

@ Springer

in culture media of malt peptone extract and Wickerham
broth (Farinella et al. 2021). A species of endophytic
Penicillium was capable of producing different types of
compounds under combination of different cultivation
media, many of which were specific to each combination
evaluated (da Silva et al. 2023). Co-cultivation combined
with OSMAC increased the biosynthetic production of
compounds by microbial strains under environmental
conditions capable of influencing the microbial interactions
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Fig.5 Co-cultivation of different species of endophytic fungi on
Potato Dextrose Agar (PDA). In a-c, the co-cultivation of six species
of endophytic fungi isolated from Ouratea hexasperma is shown. The
white arrows demonstrate the increased production of red pigment by
a specific colony as a result of interaction with adjacent colonies. In
d, both sides of a specific endophytic fungus colony are shown. In
e, f, co-cultivation of this fungus (edge colony) with another endo-
phytic fungus (middle colony) is shown. It is possible to observe that
the fungus increases the production of yellow pigments (white arrows

prior established, activating biosynthetic pathways that were
initially silenced (Zutz et al. 2013).

Among the inducing strategies, epigenetic chemical
regulation is considered a powerful approach to generate

in e) and starts to produce a red pigment at the edge of the colony
next (white arrows in f). In g, growth inhibition of an endophytic fun-
gus due to the interaction with a saprophytic fungus is shown. In h,
co-cultivation of Fusarium sp. (pink colony) and Diaporthe sp. (gray
colony) is presented. It is possible to observe exudation of yellow
metabolites by the Diaporthe where the colonies meet. In i, co-cul-
tivation of Penicillium sp. and Eremothecium coryli showing the exu-
dation of yellow compounds into the culture medium is indicated by
the white arrow Source: J.B.A.R. (author)

a greater number of compounds biosynthesized by fungi
(Gonzéalez-Menéndez et al. 2016; Qadri et al. 2017;
Toghueo et al. 2020). Epigenetic regulation involves
alteration of the level of chromatin condensation to express

@ Springer



185 Page 16 of 34

Archives of Microbiology (2024) 206:185

silenced genes, which does not require prior knowledge
in genomic content, resulting in the biosynthesis of
previously unexpressed compounds. Generally, small
molecules act as inhibitors of methyltransferase, histone
deacetylase, and histone acetyltransferase, generating
alterations in the structure of DNA, histones, and
proteasomes, which activates cryptic BGCs (Table 4)
(Gonzalez-Menéndez et al. 2016; Qadri et al. 2017;
Toghueo et al. 2020). Fermentation by Aspergillus
calidoustus and Aspergillus westerdijkiae with vorinostat,
an inhibitor of histone deacetylases (HDACS), for instance,
induced changes in the metabolic profile of both species,
with induction and repression of the biosynthesis of
specific metabolites (Aldholmi et al. 2020). Moreover,
addition of hydroxamic suberoylanilide (SAHA) and
sodium valproate (VS), histone deacetylase (HDAC:S)
inhibitors, caused different responses in the biosynthetic
profile of the endophyte Botryosphaeria mamane (Triastuti
et al. 2019). SAHA induced the production of eight
metabolites, while VS induced the biosynthesis of two
metabolites. In addition to the simplicity of the method,
epigenetic regulation mediated by regulatory molecules
can be used in conjunction with other strategies to
stimulate the synthesis of metabolites, including coculture,
OSMAC, and transformation methods (Zutz et al. 2013;
Triastuti et al. 2019; Aldholmi et al. 2020; Ameen et al.
2020). However, alteration in the metabolic profile vary
depending on the fungal species, type of regulatory
molecule, and concentration (Zutz et al. 2013; Triastuti
et al. 2019; Aldholmi et al. 2020; Ameen et al. 2020).

In addition, molecular approaches that include gene
deletion or induction of mutants are valuable strategies
to stimulate the production of compounds and activate
BGCs of interest in fungi (Guzman-Chavez et al. 2018;
Ding et al. 2020; Jo et al. 2023). Deletion of the hdaA
gene in Penicillium chrysogenum strain Fes1701 induced a
significant change in its metabolic profile, resulting in the
bioactive indole alkaloid meleagrin synthesis (Ding et al.
2020). In other strain of P. chrysogenum, deletion of the
hdaA gene caused a decrease in pigment production and
overexpression of the sorbicillinoid biosynthetic gene
cluster, producing overproduction of associated compounds
(Guzman-Chavez et al. 2018). The plasma-induced mutant
of Aspergillus unguis was able to synthesize four compounds
not observed previously in the wild-type strain, one of
them characterized as a novel aspergillusidone G (Yang
et al. 2018). Thus, different molecular approaches have
been efficiently employed to stimulate the biosynthesis and
search for novel compounds. However, genomic knowledge,
laborious methodologies and expensive equipments are
essential.

@ Springer

Sample preparation and obtaining crude extracts

In metabolomics studies to investigate fungal metabolites,
the sample preparation method is considered one of the
most important steps due to its intrinsic sensitivity, since
even small changes in procedures may deeply influence on
the recovery of types and levels of metabolites, and in the
biological interpretation of data consequently (Mohd et al.
2022). The choice of sample preparation and extraction
method is crucial to define the number, type, and abundance
of metabolites detected (Fig. 6). Therefore, an efficient,
robust, simple, and reproducible method to demonstrate
real occurrences and/or changes in the cellular metabolism
is desirable. Generally, the workflow for sample preparation
involves: (1) metabolic arrest by quenching; (2) sample col-
lection, and separation of intra- and extracellular metabo-
lites, and (3) extraction of metabolites.

Quenching is a rapid and sudden disruption of various
metabolic pathways within cells on a timescale, maintaining
stable metabolic contents, and reducing the degradation rates
of investigated metabolites (Mohd et al. 2022). Briefly,
quenching basically consists of cooling the samples in order
to reduce or interrupt cellular metabolism. In microbial
metabolomics research, the main quenching method uses
ice-cold methanol (Mohd et al. 2022) by adding this solvent
(60%—80%) (—80 to —20 °C) to the medium in which cells
are grown to rapid stop the metabolic processes (Mohd et al.
2022). However, this approach is mainly used in bacterial
metabolomic studies (Mohd et al. 2022), and hardly
employed in metabolomic studies of filamentous fungi (Li
et al. 2022). After disruption of metabolic processes, the
next step comprises cell separation from the culture medium
followed by metabolite extraction. To separate cells from the
culture medium, centrifugation or gauze filtration methods
are mainly used (Phan and Blank 2020; Mohd et al. 2022;
Nzimande et al. 2022; Makhwitine et al. 2023).

The physical properties and chemical structure of the
metabolites investigated should not be altered by extraction
methods, which also should maximize the recovery of
the maximum amount of metabolites. These methods are
grouped into physical and chemical methods (Mohd et al.
2022; Li et al. 2022; Gopcevic et al. 2022). Physical methods
include the use of an ultrasonic bath, maceration with glass
beads, freezing and thawing cycles, among others. (Mohd
et al. 2022). Chemical methods mainly use polar and non-
polar organic solvents, non-aqueous inorganic solvents,
and combinations of both ones (Asai et al. 2012b, c¢; Qadri
et al. 2017; Triastuti et al. 2019; Pacheco-Tapia et al. 2022).
To increase extraction efficiency, physical and chemical
methods can be combined (Mohd et al. 2022; Li et al. 2022;
Gopcevié et al. 2022; Makhwitine et al. 2023). In Table 5
are summarized some extraction methods commonly used
in fungal metabolomics studies.



Archives of Microbiology (2024) 206:185

Page 17 0f 34 185

Table 4 Epigenetic modifiers used to induce the biosynthesis of metabolites in fungal species

Epigenetic modifier

Mechanism of action

Fungal species

References

5-azacytidine

S-azacytidine

5-azacytidine

5-azacytidine

S5-azacytidine

5-azacytidine

anacardic acid

BRD4770 (metil-2-(benzoilamino)-1-
(3-fenilpropil)-1H-benzimidazol-5-
carboxilato)

butyrate

N-acetyl-D-glucosamine

N-butiril-DL-homosserina lactona
nicotinamide

nicotinamide

N-phthalyl-L-tryptophan

octanoylhydroxamic acid

procaine

sodium butyrate
sodium butyrate
sodium butyrate
sodium valproate (VS)

suberoyl bis-hydroxamic acid (SBHA)

suberoyl bis-hydroxamic acid (SBHA)

suberoylanilide hydroxamic acid (SAHA)
suberoylanilide hydroxamic acid (SAHA)

suberoylanilide hydroxamic acid (SAHA)

trichostatin A

valproic acid (Sigma-Aldrich,
Johannesburg, South Africa)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of histone acetyltransferase

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of histone deacetylases
(HDACs)

Inhibition of DNA methyltransferase

Quorum-sensing (QS) molecule

Inhibition of nicotinamide adenine
dinucleotide (NAD+)-dependent
HDACs

Inhibition of nicotinamide adenine
dinucleotide (NAD+)-dependent
HDACs

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of HDAC of classes I and 11

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of histone deacetylases
(HDACs)

Inhibition of histone deacetylases
(HDACs)

Inhibition of histone deacetylases
(HDACs)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of nicotinamide adenine
dinucleotide (NAD+)-dependent
HDACs

Inhibition of nicotinamide adenine
dinucleotide (NAD+)-dependent
HDACs

Inhibition of histone deacetylases
(HDACs)

Inhibition of DNA methyltransferase
(DNMT)

Inhibition of histone deacetylases
(HDACs)

Inhibition of histone deacetylases
(HDACs)

Inhibition of histone deacetylases
(HDACs)

Muscodor yucatanensis
Penicillium funiculosum
Penicillium citreonigrum
Cophinforma mamane
Aspergillus calidoustus
Aspergillus westerdijkiae
Anteaglonium sp.
Diaporthe longicolla
Aspergillus clavatus

Aspergillus clavatus
Cophinforma mamane

Chaetomium cancroideum

Cophinforma mamane

Gibellula formosana

Drechslera sp.

Aspergillus unguis
Penicillium chrysogenum
Phomopsis heveicola
Cophinforma mamane
Botryosphaeria mamane

Chaetomium mollipilium

Cordyceps indigotica

Muscodor yucatanensis
Botryosphaeria mamane
Aspergillus sp.
Aspergillus clavatus

Penicillium chrysogenum

Qadri et al. (2017)

Liu et al. (2014)

Wang et al. (2010)
Pacheco-Tapia et al. (2022)
Aldholmi et al. (2020)
Aldholmi et al. (2020)
Mafezoli et al. (2018)
Nishad et al. (2021)

Zutz et al. (2013)

Zutz et al. (2013)
Pacheco-Tapia et al. (2022)
Asai et al. (2016)

Pacheco-Tapia et al. (2022)

Asai et al. (2012¢)

Siless et al. (2018)
Yang et al. (2018)

Makhwitine et al. (2023)
Ameen et al. 2020
Pacheco-Tapia et al. (2022)
Triastuti et al. (2019)

Asai et al. (2012a)

Asai et al. (2012b)

Qadri et al. (2017)
Triastuti et al. (2019)

de Amorim et al. (2020)
Zutz et al. (2013)

Makhwitine et al. (2023)
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Table 4 (continued)

Epigenetic modifier

Mechanism of action Fungal species References

valproic acid (Sigma-Aldrich,
Johannesburg, South Africa)

Inhibition of histone deacetylases
(HDACs)

Phomopsis heveicola Ameen et al. (2020)

vorinostat Inhibition of histone deacetylases Aspergillus calidoustus Aldholmi et al. (2020)
(HDACs)
vorinostat Inhibition of histone deacetylases Aspergillus westerdijkiae  Aldholmi et al. (2020)
(HDACs)
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Fig.6 Variation in the metabolomic profile according to different
extraction methods employed. Each extraction method reflects the
metabolic profile accessed effectively. The combination of different

The choice of the extraction method depends on the
study’s objective, which may include a combination of dif-
ferent strategies for extracting metabolites efficiently. In
general, the main extraction method used for metabolomics
studies in fungi comprises the liquid—liquid extraction
employing ethyl acetate (EtOAc) (Asai et al. 2012b, c; Qadri
et al. 2017; Triastuti et al. 2019; Pacheco-Tapia et al. 2022).
However, other solvents and combinations of solvents are
used according to the objectives established (Phan and Blank
2020; Makhwitine et al. 2023) as shown in Fig. 7. EtOAc,
for instance, was used to extract the extracellular metabolites
from a fermented broth by the endophytic fungus A. unguis,

@ Springer

extraction strategies, solvents, temperature, sonication conditions, and
extraction time result in different metabolic profiles. Figure created in
BioRender software and Canva.com

while methanol was used to extract intracellular metabo-
lites (Yang et al. 2018). Other approaches include combining
solvents with physical extraction methods. Using ethanol
(EtOH:H,0; 7:2), methanol (MeOH:H,0; 7:2), and a chloro-
form/MeOH/water mixture (2:5:2) at different temperatures
and sonication conditions, Phan and Blank (2020) quantified
intracellular metabolites from Ustilago maydis. To study the
metabolome of the endophyte P. chrysogenum, the extraction
method selected consisted of adding methanol to the fer-
mented broth, followed by incubation overnight on a rotary
shaker at 150 rpm (Makhwitine et al. 2023). Currently,
there is no standard extraction method to be recommended,
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Table 5 Methods used in fungal metabolomics studies

Fungal species

Extraction method

Analytical method References

Alternaria alternata

Aspergillus flavus, Cladosporium
cladosporioides, Curvularia
tsudae and Penicillium citrinum

Aspergillus unguis

Curvularia protuberata and Penicillium
citrinum

Neofusicoccum parvum and Buergenerula
spartinae

Penicillium chrysogenum

Extraction by adding an equal volume
of absolute methanol to the fungal
culture followed by incubation at 25 °C
overnight with shaking on a rotary shaker
at 150 rpm. The mycelium was then
separated with gauze and the culture
supernatant was transferred to a centrifuge
tube. The retained supernatant was
evaporated at 40 °C to dry the extracts

The culture broth was filtered to separate
the mycelium from the fermented broth.
Metabolites from the fermented broth and
dried mycelium (40 °C) were extracted
with EtOAc and methanol, respectively

After filtration to remove the mycelium,
metabolites from the fermentation broth
were extracted three times with EtOAc.
The mycelium was extracted three times
with methanol

The culture broth was filtered to separate
the mycelium from the fermented broth.
An equal volume of EtOAc was added
to the filtrate, mixed well for 10 min,
and allowed to settle to obtain clear
immiscible layers. The filtrate was
extracted three times with the same
solvent and pooled. The mycelium was
dried in an oven (40 °C, for 24 h), and
ground to a fine powder using a sterilized
pestle and mortar. The powder was then
transferred to a flask containing methanol,
stirred in a water bath at 40 °C for
3—4 h, and filtered to obtain the filtrate.
The EtOAc and MeOH extracts were
evaporated to dryness under ambient
conditions using a rotary evaporator

The fermented samples were subjected to
chemical maceration with the addition
of 50 mL of a 1:1 (v/v) mixture of
dichloromethane (CH,Cl,—PA 90%)
and methanol (CH;OH—PA 90%). After
maceration, a simple filtration process
was carried out to remove cell debris,
followed by rotary evaporation using
a maximum pressure pneumatic pump
(Biinchi—Vacuum Pump V-700, Sigma
Aldrich, Sdo Paulo, Brazil). The water
bath temperature was maintained between
30 and 55 °C. The resulting total extract
was subsequently subjected to freeze-
drying for 24 h

Extraction was performed by adding an
equal volume of absolute methanol to
the fungal culture followed by incubation
overnight with shaking on a rotary shaker
at 150 rpm. The mycelium was then
separated with gauze and the culture
supernatant was transferred to a centrifuge
tube. The retained supernatant was
evaporated at 40 °C to dry the extracts

GC-MS

LC-MS

HPLC

LC-MS

LC-MS

GS-MS

Nzimande et al. (2022)

Nischitha et al. (2020)

Yang et al. (2018)

Nischitha and Shivanna (2021a)

Cadamuro et al. (2023)

Makhwitine et al. (2023)
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Table 5 (continued)

Fungal species

Extraction method

Analytical method References

Penicillium chrysogenum

Penicillium citrinum

Penicillium pinophilum

Aspergillus flavus

The mycelia in the fermentation mixture HPLC
were broken using a macerator, and then

the fermentation mixture was extracted

with an equal volume of EtOAc. The

extract was evaporated under reduced

pressure and redissolved in 2 mL of

MeOH

The cultures were filtered through Whatman LC-MS
filter paper to separate the mycelium
from the fermented broth. The filtrate
was extracted with EtOAc using a
separatory funnel and the mycelium was
extracted with ice-cold MeOH. The ethyl
acetate and methanol fractions were then
evaporated to dryness using a rotary
vacuum evaporator

The cultures were filtered with Whatman LC-MS
filter paper to separate the mycelium from

the fermented broth. The fermented broth

was extracted with EtOAc in a separatory

funnel. The mycelium was dried under

laboratory environmental conditions, cut

into segments, pulverized with a sterile

mortar and pestle, and extracted with

MeOH

Sonication was used to lyse and
homogenize the mycelium for extraction
of compounds, which was dispersed
in 10 mL of EtOAc and subjected to
sonication at a power of up to 80 W
cm? intensity for 0.5 pulse cycles at a
temperature of 40 °C. After sonication,
the content was filtered through Whatman
No. 1 paper to eliminate mycelia, and the
filtered was centrifuged at 2500 rpm

GC-MS

Ding et al. (2020)

Nischitha and Shivanna (2022)

Nischitha and Shivanna (2021b)

Kalimuthu et al. (2022)

EtOAc—Ethyl acetate; MeOH—Methanol

Fig. 7 Main solvents used for

metabolite extraction from wg
fungal cultures. Figure created o
in BioRender software 8
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since they vary greatly and depend on the sample nature and
research objectives. However, the selected extraction method
should prioritize the main compounds to meet the study’s
objectives effectively.

Instrumental analysis methods used
for metabolomic studies of endophytic fungi

The main analytical methods used in metabolomics studies
of fungi extracts are gas chromatography/mass spectrom-
etry (GC-MS), liquid chromatography/mass spectrometry
(LC-MS), nuclear magnetic resonance spectroscopy (NMR),
and nuclear magnetic resonance spectroscopy/mass spec-
trometry (NMR-MS) (David 2008; Zutz et al. 2013; Asai
et al. 2012c; Qadri et al. 2017). Table 6 summarizes some of
the advantages and limitations of these analytical platforms.

However, capillary electrophoresis/mass spectrometry
(CE-MS) (Ibrahim et al. 2016a) and matrix-assisted laser
desorption ionization mass spectrometry (MALDI-MS)
(Chen et al. 2021) have also been employed.

GC-MS is used to analyze volatile metabolites or metab-
olites that are easily volatilized after derivatization reac-
tion (Qadri et al. 2017; Nzimande et al. 2022; Makhwitine
et al. 2023). This approach possesses good repeatability
and reproducibility and, is used in metabolomic analysis
of various components that includes alcohols, aldehydes,
amino acids, fatty acids, among others (Fiehn 2016; Qadri
et al. 2017; Nzimande et al. 2022; Makhwitine et al. 2023).
GS-MS was successfully employed to analyze fractions
of crude extracts obtained from the fermented broth by
the endophyte Alternaria alternata, and revealed the pres-
ence of 48 compounds (Nzimande et al. 2022). The main

Table 6 Advantages and disadvantages of the main analytical platforms commonly used in metabolomics studies

Techniques Advantages

Disadvantages

References

CG-MS Easy to use (analysis time and operational
costs)

High capacity to separate metabolites

High sensitivity and selectivity

Availability of several corresponding
mass spectral databases/libraries
for comparison and identification of
metabolites

GC-MS avoids problems common to
LC-MS such as matrix effects and ion
suppression by co-eluting compounds,
providing greater chromatographic
resolution

Analysis of samples of alcohols, fatty
acids, essential oils, esters, gases,
and volatile and easily derivatized
compounds

600 Da)

metabolites

LC-MS Low sample volume

Relatively simple sample preparation

Relatively fast analysis time

High capacity to separate metabolites

High sensitivity (detection limit can reach
ng mL~! in biological samples)

High coverage of metabolites (polar and
nonpolar)

Ability to analyze complex samples
containing hundreds of metabolites

Ability to analyze high molecular weight
metabolites (~2000 Da)

It is not a destructive method

Features high reproducibility

Non-biased and allows quantification

Simple sample preparation

Allows identification of new compounds
and does not require chemical
derivatization

Suitable for identifying compounds such
as sugars, amines, volatile ketones, and
relatively non-reactive compounds

used

and lipids

NMR

Only allows the identification of low
molecular weight compounds (50—

Low sensitivity (detection limit
approximately 1-5 pM)

Requires large sample sizes (~ 500 pL)

Requires biological samples with a limited
number of metabolites (from 1 to 50)

Beale et al. (2018)

It only allows the identification and
separation of volatile or easily volatilized

Detection of polar, thermolabile, and non-
volatile metabolites requires the use of
derivatization

The derivatization process may alter the
biological interpretation of the results

There are few corresponding mass spectral Seger (2012), Zhou et al. (2012); Zhou
databases/libraries for metabolite
comparison and identification

Reproducibility depends on the equipment

and Zhong (2022), Chen et al. (2023)

Need for sample preparation to reduce
matrix effects arising from salts, proteins

Cannot analyze gases
Isobaric interference

Wishart (2008), Crook and Powers (2020)
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compounds were cyclotrisiloxane octamethyl, propanini-
trile, pyrrolol[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-
methyl propyl), diethylethoxy(2-ethoxyethyloxy), coumarin,
3,4-dihydro-4,5,7-trimethyl-4,5,7-trimethyl-2-chromanone,
and 1,2-cyclobutanedicarbonitrile (Nzimande et al. 2022).
Also, GC-MS was used to study volatile organic compounds
(VOCs) produced by Muscodor yucatanensis, and demon-
strated the presence of more than 40 compounds, including
trans-3-dodecene, tau-gurjunene, benzene propanoic acid,
3,5-bis(1,1-dimet), 1-chloroheptacosane, and 2-hexyl-
1-octanol as the main ones (Qadri et al. 2017). Moreover,
GC-MS analysis demonstrated the presence of more than
110 compounds synthesized by the endophyte Penicillium
chrysogenum, with some of the identified compounds known
to exhibit antiviral activity (Makhwitine et al. 2023). How-
ever, GC-MS analysis has some disadvantages, since non-
volatile compounds require derivatization (Bollenbach and
Tsikas 2022).

LC-MS possesses numerous advantages, including
simple sample preparation, high sensitivity, and high
qualitative and quantitative capabilities (Gathungu et al.
2020). Thousands of peaks are detected by LC-MS in
metabolomics studies (Nischitha and Shivanna 2021a).
Each of the peaks can correspond to a detected ion with
a mass-to-charge ratio (m/z) and a certain retention time
that characterizes the metabolite. Moreover, with the
development of high-performance liquid chromatography
(HPLC) and ultra-performance liquid chromatography
(UHPLC), peak resolution has been widely improved
(Behnoush et al. 2015). Due to the high-resolution generated
to detect most metabolites, LC-MS is the main technique
to study the metabolic profile of fungi (Zutz et al. 2013;
Mafezoli et al. 2018; Pacheco-Tapia et al. 2022). Four
crude extracts of EFs from the host plant Alisma orientale
analyzed by LC-MS revealed the presence of more than 50
compounds per extract, with a predominance of metabolites
belonging to different chemical classes (flavonoids, non-
flavonoids, phenolic acids, and flavonolignans). LC-MS
analysis performed on the EFs Curvularia protuberata and
Penicillium citrinum demonstrated the presence of 2352
and 2500 compounds, respectively, which were separated
by positive and negative ion modes (Nischitha and Shivanna
2021a). Furthermore, LC-MS enabled the identification of
some compounds known to exhibit antimicrobial activities.
It is worth noting that despite the high resolution and
sensitivity of this technique, overlapping peaks may occur,
making decovolution necessary during the data processing
stages.

NMR and NMR-MS are generally the analytical methods
of choice when structural characterization of unknown
compounds is required (Bingol and Briischweiler 2016;
Markley et al. 2017; Grienke et al. 2019; Gathungu et al.
2020). This analytical method is based on the interaction of a

@ Springer

magnetically active nuclei with an applied external magnetic
field, and is highly advantageous because of the high
reproducibility, accurate quantification, simple preparation,
measurable analytes in various solvents, clear identification
of unknown metabolites, and complete detection of
metabolites (Bingol and Briischweiler 2016; Markley et al.
2017; Gathungu et al. 2020). NMR, for instance, was used
to elucidate the structure of bipolarisenol produced by the
endophyte Bipolaris sorokiniana (Khan et al. 2015), and
four new chromium derivatives produced by the endophyte
Phomopsis sp. (Huang et al. 2016). However, NMR-based
methods have low sensitivity, which limits their applications
in metabolomics (Markley et al. 2017).

Finally, the advantages and disadvantages of the different
analytical tools should be considered in metabolomics
research. A single tool cannot characterize and quantify
efficiently thousands of metabolites produced by the fungal
metabolism, requiring in some cases the combination of
different methods to achieve the research objectives. In
addition, other factors must be considered, which include
errors associated with the platform used, implementation of
internal standards, blanks (culture medium and solvents),
quality controls (QC), which in metabolomics experiments
of crude fungal extracts can be a mixture of all samples to
be tested, and random sample injections.

Processing and analysis of metabolomics data
from endophytic fungi

Data obtained in metabolomics experiments contains a
large amount of important biological information from bio-
molecules (Gonzalez-Menéndez et al. 2016; Nischitha and
Shivanna 2021a). Interpreting these data involves inferring
the mass and abundance of the biomolecules injected into
the device. However, raw data may not provide a clean and
reliable metabolite spectra (Lommen 2009; Katajamaa et al.
2006; Smith et al. 2006). Therefore, the raw data should be
preprocessed to reduce the noise and to promote the baseline
correction, peak detection and deconvolution, and data nor-
malization as summarized in Fig. 8. Table 7 provides some
online and open-source software as well as workflows for
data analysis in metabolomics studies.

Briefly, tandem MS datasets are captured into binary files
or databases by the software that controls the instruments
(Chambers et al. 2012). However, the file format provided
by different analytical platforms differs depending on the
supplier (Kessner et al. 2008; Holman et al. 2014; Chambers
et al. 2012). Thus, access to primary data can critically
affect subsequent steps and the comparability of analytical
platforms because some tools and workflows are designed
for specific types of file formats. Therefore, in metabolomics
studies, one of the first steps is file format conversion. To
this end, numerous tools have been developed (Sturm
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> Raw data pre-processing

Data format convertion

Smoothing and resolving

Deconvoluting

Alignment

P Multivariate analysis

Principal-component analysis
Hierarchical clustering analysis
Partial least squares analysis

Orthogonal to partial least
squares analysis

% Biological annotation >

Peak identification

Annotation and Molecular
network

Integration with other omics (genomics
transcriptomics, and proteomics)

Biological interpretation

Fig. 8 Main data processing steps in fungal metabolomics studies. Figure created in BioRender software

et al. 2008; Kessner et al. 2008; Chambers et al. 2012;
Holman et al. 2014), with the MS Convert tool, available
on the ProteoWizard platform (Kessner et al. 2008; Holman
et al. 2014), as the most tool employed. MS Convert is
a command-line tool used for mass spectrometry data
format conversion (Holman et al. 2014) that accepts raw
data from several commercial companies and developers,
including AB SCIEX (file format: WIFF; T2D), Agilent
(file format: MassHunter;.d directories), Bruker (file
format: fid;.d directories; xmassa; xml), Thermo (file
format: raw), Waters (file format: raw directories), HUPO
PSI (file format: mzML), ISB Seattle Proteome Center (file
format: mzXML), Matrix Science ( file format: mgf), Yates/
MacCoss Laboratories (file format: ms2; cms2; bms2), and
Steen & Steen Laboratory (file format: mz5). Output files
include mzML, mzXML, mz5, mgf, text, ms1, cms1, ms2,
and cms2 formats.

After the file format conversion, the next step is the data
preprocessing. Among the software developed, the XCMS
(Smith et al. 2006) and MZmine (Katajamaa et al. 2006)
are considered powerful tools for pre-processing, including
deconvolution of analytical signals, noise filtering, detection
and alignment of chromatographic peaks, baseline correction
and gap filling and quantification of data from experiments
analyzed by LC-MS and GC-MS. However, the processing
in this software appears to underestimate GC-MS data (Ma
and Qi 2021), with the MSDIAL software as an interesting
alternative to be considered (Tsugawa et al. 2015).

Next, statistical analysis is applied after data pre-
processing. Single variable or multivariable analyses are
commonly used to evaluate groups as classical methods,
with multivariate analysis as the most used in metabolomic
studies of fungi (van Tilburg Bernardes et al. 2020; Swift
et al. 2021; Castafio et al. 2022; Kandasamy et al. 2023).
These analyses are generally employed to evaluate changes
in the metabolic profiles between groups, and are divided

into supervised and unsupervised analyzes (van Tilburg
Bernardes et al. 2020; Swift et al. 2021; Castafio et al.
2022; Kandasamy et al. 2023). The major unsupervised
analysis comprise Principal Component Analysis (PCA)
and Hierarchical Clustering Analysis (HCA), and the
supervised ones include Partial Least Squares Discriminant
Analysis (PLS-DA) and Orthogonal Partial Least Squares
Discriminant Analysis that is based on orthogonal
signal correction (OPLS-DA) (Xia et al. 2015). PCA,
for example, can be used to discriminate the metabolic
profile between samples under different treatments (Du
et al. 2021). PLS-DA and OPLS-DA can be employed to
distinguish samples under different treatments and show
the potential metabolites that contribute to these differences
(Du et al. 2021; Maserumule et al. 2023; Singh et al.
2023). The main platform used for this type of analysis in
metabolomics studies is MetaboAnalyst (Xia et al. 2015).
In addition to these analyses, other statistical analysis (one
factor), biomarker analysis, enrichment analysis, pathway
analysis, functional meta-analysis of MS peaks, MS peaks
to pathways, and network analysis, are included in this
platform. Moreover, other tools are summarized in Table 7
in addition to MetaboAnalyst, as previously shown.

The Molecular Networking (MN) is a useful data
analysis workflow for untargeted MS/MS-based metab-
olomics studies, since it provides means of identifying
known compounds/molecular families, putatively novel
molecular families, and evaluate differences associated
with changes in culture conditions, among others (Ernst
et al. 2019; Fan et al. 2019; Xu et al. 2021; Beniddir et al.
2021). MN organizes the MS/MS spectra of metabolites
present in an extract according to their fragment similari-
ties, which can be visualized by suitable software such
as Cytoscape (Fan et al. 2019). MN uses the GNPS plat-
form (Wang et al. 2016) to integrate a publicly available
spectral library and the experimental MS/MS spectra for

@ Springer
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Table 7 (continued)

References

Language

Compatibility

Description

Category

Software

Haug et al. (2012)
Sud et al. (2016)

Servidor web

MS/MS
MS/MS
SMILES

Public repository for metabolomics data

Repository

MetaboLights

Servidor web

Public repository for metabolomics data

Repository

Metabolomics workbench

Gfeller et al. (2014)

Servidor web

A combination of 2D and 3D similarities with

Bioactivity prediction

Swiss target prediction

known ligands

Keiser et al. (2007)
Nickel et al. (2014)

Servidor web

SMILES

Similarity searching

Bioactivity prediction

SEA search

Servidor web

SMILES

E-value indicating the reliability of the

Bioactivity prediction

Super-PRED

prediction

comparisons. GNPS offers a user-friendly workflow and
numerous tools for analyzing MS/MS data, including Mol-
NetEnhancer and Spec2Vec (Ernst et al. 2019; Huber et al.
2021). MolNetEnhancer integrates GNPS molecular net-
work results, molecular mining tools (MN and MS2LDA),
in silico annotation (NAP and DEREPLICATOR), and
automated chemical annotation (Ernst et al. 2019). Thus,
this approach allows annotation of multiple compounds,
providing a comprehensive view of chemodiversity within
a metabolome (Liu et al. 2022). It is worth noting that the
MN created in the GNPS workflow are based on cosine
scoring. Cosine-based methods are very good at revealing
almost identical spectra, but are not as suitable for deal-
ing with molecules with multiple local chemical modi-
fications (Huber et al. 2021). The Spec2Vec, integrated
into the GNPS workflow, can be an alternative, as it con-
siders fragmentary relationships within a spectral dataset
to derive abstract spectral embeddings that can be used
to assess spectral similarities (Huber et al. 2021). There
is also the SIMILE tool, which produces structural con-
nections inferred from spectral alignment in MN (Treen
et al. 2022). This tool makes it possible to classify spec-
tral alignments based on p-values in order to explore the
structural relationships between compounds and improve
the chemical connectivity obtained with MN (Treen et al.
2022).

Other tools can also be used to exploit the data obtained
from metabolomic studies of endophytic fungi or molecules
isolated from these microorganisms, such as in silico
bioactivity prediction tools. This type of approach has
been considered promising for rapid, low-cost screening
to discover potentially bioactive molecules and their
mechanisms of action (Keiser et al. 2007; Gfeller et al. 2014,
Gu et al. 2023). Currently, there are numerous protocols
used to predict bioactivity in silico, which can be classified
as approaches based on molecular similarity (Nickel et al.
2014), network-based models (Wang and Zeng 2013), and
advanced machine learning methods (Pahikkala et al. 2015).
An example of such a tools is the Swiss Target Prediction
web server, which makes it possible to combine 2D and 3D
similarity measurements of molecules with known ligands
and map predictions between and within organisms based on
target homology (Gfeller et al. 2014). There are also other
in silico prediction tools, such as ChemMapper (Gong et al.
2013), SuperPred (Nickel et al. 2014), PharmMapper (Wang
et al. 2017), and DrugBank (Wishart et al. 2006). Each of
these tools has advantages and disadvantages, and the choice
of tool depends on the objectives of the study. Furthermore,
in silico bioactivity prediction does not replace biological
assays, but serves as a quick guide for the search for new
compounds.
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Eco-Metabolomics of interaction
between endophytic fungi and host plant

Endophytic fungi are an important component of the plant
microecosystem and perform key functions for physiological,
biological, and adaptive processes of host plants (Baron
and Rigobelo 2021). The mechanisms of interaction
between endophytes and host plants are complex and
generally involve production of compounds by both fungus
and plant, which act as effectors of a multidimensional
interaction (Alam et al. 2021). Therefore, the colonization
of plant tissue by endophytic fungi does not occur merely
through chemotaxis, but depends on a complex and specific
relationship, which is the result of the coevolution of these
two groups of organisms (Alam et al. 2021). Plants secrete
chemical compounds that are recognized by endophytic
fungi (Tripathi et al. 2022; Hashem et al. 2023). This most
often results in the production of specialized enzymes and
compounds by endophytic fungi that are recognized by
the host plant and act to mediate the colonization process
(Tripathi et al. 2022; Hashem et al. 2023). Once inside the
plant tissue, endophytic fungi can act directly on the fitness
and physiology of their host through the production of
numerous secondary metabolites (Alam et al. 2021; Tripathi
et al. 2022). The plant, in turn, offers the fungus a habitat
with stable environmental conditions and nutrients (Alam
et al. 2021). However, it is worth highlighting that most of
the metabolic pathways and compounds that mediate and/
or originate from this interaction are unknown mainly due
to methodological limitations.

Recently, a new disciplinary area within metabolomics
has emerged, eco-metabolomics. This area of knowledge
is focused on the application of metabolomics techniques
to ecology aiming at characterizing the biochemical
interactions of organisms at different spatio-temporal scales
(Nagler et al. 2018; Peters et al. 2018; Wong et al. 2020).
Therefore, the application of metabolomics to study the
different interactions between species provides not only
a comprehensive view of metabolic pathways involved,
but also helps explain the mechanisms underlying the
interactions (Gupta et al. 2022).

Many studies on interaction between EFs and host plant
to decipher and/or understand ecological relationships have
been published using metabolomics (Sziics et al. 2018;
Plaszké et al. 2022; Poveda et al. 2022; Ma et al. 2023). The
use of untargeted metabolomics (LC-MS) combined with
metagenomics correlated the structure of the root mycobiome
of Armoracia rusticana with significant changes in its
metabolome (Plaszké et al. 2022). Also, the concentration
of kaempferol flavonoid glycosides positively correlated
with the abundance of specific fungal taxa, while indole
and glutathione isothiocyanate phytoalexins were negatively
correlated with other fungal taxa (Plaszko et al. 2022). Ma

@ Springer

et al. (2023) used metabolomics to understand the symbiotic
relationship between soil-plant—fungi and secondary
metabolites in Fagopyrum dibotrys, demonstrating positive
and negative correlations between certain fungal taxonomic
groups with specific classes of compounds. These findings
reinforce the importance of metabolomics to study the
interaction between endophytes and host plants, aiming at
elucidating and understanding the processes of endophytic
community assembly, the environmental filter effect exerted
by the host plant, and the effects of the EFs community on
plant physiology, among other ecological aspects.

Final considerations

The exploration of metabolite production by EFs holds
tremendous potential for a wide range of applications
from medicine to agriculture, and beyond. Currently, EFs,
with their vast genetic diversity and ability to produce an
array of bioactive compounds, are an invaluable resource
for addressing some of the most pressing challenges
worldwide. The potential benefits from these multifaceted
microorganims comprise life-saving antibiotics and
antifungal agents, and new solutions to combat drug-
resistant pathogens, with sustainable alternatives to
traditional chemical pesticides and fertilizers in agriculture,
enabling environmentally friendly and resilient practices.
Furthermore, the commercial applications of fungal
metabolites extend to various biotechnological innovations,
offering solutions for a cleaner environment and reduced
carbon footprint. As promising research continues to
advance, the metabolite production potential by EFs tends
to increase consistently. However, it is essential to focus
on some associated challenges that includes optimization
of the production methods in adittion to ensure sustainable
sourcing. Finally, the EFs metabolite-producing capabilitiy
represent a new era of scientific discovery and innovation to
minimize environmental damages coupled with new drugs
for a wide variety of human and animals needs.
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