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Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, 
which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by 
various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. 
We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially 
by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both 
submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and 
temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up 
processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography–
Mass Spectrometry (LC–MS), Gas Chromatography–Mass Spectrometry (GC–MS), Nuclear Magnetic Resonance (NMR), 
and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, 
genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production 
and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and 
metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the 
complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.

Keywords Biological activities · Biosynthesis pathways · Analytical methods · Metabolite production enhancement · Yield 
optimization

Introduction

Endophytic fungi (EFs) are a hyperdiverse group of organ-
isms that during part or all of their life cycle colonize 
plant tissues (e.g., stem, flowers, leaves, fruits, roots) 
intra and/or extracellularly without causing symptoms 
of disease (Jia et al. 2016; dos Reis et al. 2022). These 
microorganisms are present in almost all plant species in 
natural ecosystems, where they play key roles in the plant 
micro-ecosystem, mainly under conditions of biotic or 
abiotic stress (Rho et al. 2018; Dastogeer 2018; Molina-
Montenegro et al. 2023). EFs have co-evolved with host 
plants synthesizing numerous bioactive compounds that 
contribute to plant-fungus interactions, providing fitness 
benefits to host plants (Jia et al. 2016; Rho et al. 2018; 
Dastogeer 2018; Molina-Montenegro et al. 2023). These 
characteristics make these microorganisms one of the 
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largest underexploited natural resources for the discovery 
of novel bioactive metabolites.

The EFs are capable of synthesizing a wide diversity 
of chemically different metabolites, which include 
alkaloids, benzopyrones, cytochalasins, steroids, 
phenols, isocoumarins, terpenoids, xanthones, etc. 
(Schulz and Boyle 2005; Manganyi and Ateba 2020; 
Hashem et al. 2023; Shen et al. 2023). Many of these 
metabolites are bioactive and may have antimicrobial, 
antioxidant, antiviral, anti-inflammatory, cytotoxic, and 
immunosuppressive activities (Manganyi and Ateba 2020; 
Mousa et al. 2021; Mohamed et al. 2022). Furthermore, 
EFs are capable of synthesizing metabolites similar 
to those found in plants, which drives the plant-fungus 
relationship comprehension (Kim et al. 2016). However, 
numerous challenges arise when studying the diversity 
of metabolites produced by EFs due to the complexity 
of crude extracts and the fact that classical methods of 
extracting and isolating metabolites are time-consuming 
and laborious. In addition, some bioactive metabolites of 
interest are only detected in trace amounts (Alhadrami 
et al. 2021). As an alternative to classical methodologies, 
metabolomics has emerged as a powerful tool to allow the 
comprehensive characterization of complex crude extracts 
and the chemical diversity of EFs metabolites (Alhadrami 
et al. 2021; Sayed et al. 2022), including small molecules.

Metabolomics is an “omics” technology defined as the 
study of all metabolites or small molecules in biological 
systems under specific conditions (Bundy et  al. 2008; 
Patti et al. 2012; Marchev et al. 2021). This approach 
uses technological advances in analytical chemistry such 
as mass spectrometry (MS) (Rampler et  al. 2021), to 
measure and compare the metabolites and small molecules 
present in the systems (Martin et  al. 2019). However, 
although metabolomics provides a more holistic view of 
the chemical diversity produced by EFs, this approach is 
recent and depends on expensive equipments and a series 
of critical steps to obtain and analyze the data, including 
raw data preprocessing, peak annotation and multivariate 
statistical analysis.

Studying and understanding the chemical diversity of 
metabolites synthesized by EFs is extremely important 
to comprehend their biology, evolution, ecology, and 
possible biotechnological applications, which has 
been allowed by metabolomics in a holistic way as an 
emerging technology. However, critical steps ranging 
from formulation of hypotheses and objectives to data 
collection and analysis should be better addressed to study 
the chemical complexity produced by EFs successfully. 
In this review, we discussed the chemical diversity of 
metabolites produced by EFs and its applications, the use 
of metabolomics to explore chemical diversity in EFs, the 

inherent challenges, perspectives, limitations, tips and 
strategies for studying metabolite-producing EFs.

Biosynthesis of primary and secondary metabolites 
by endophytic fungi

Primary and secondary metabolites are two broad categories 
of chemical compounds produced by many organisms, 
including endophytic fungi, which are highly important 
for their overall fitness and survival. Involved in the basic 
life processes (i.e., growth, development, and energy 
production), primary metabolites are essential compounds 
that comprises carbohydrates, proteins, lipids, and nucleic 
acids, as well as key intermediates in metabolic pathways 
like glucose, amino acids, and ATP (adenosine triphosphate) 
(Alam et al. 2021). Secondary metabolites are not directly 
involved in primary metabolic processes, but often have 
specialized functions mainly associated with the defense 
systems or adaptation of organisms to environmental stresses 
due to the production of alkaloids, terpenoids, phenolics, 
and various other classes of compounds with diverse 
roles (Rashmi and Venkateswara Sarma 2018; Alam et al. 
2021). Primary metabolites typically occur in all cells and 
tissues, and their production is tightly regulated to meet 
the organism’s basic metabolic needs. However, some 
key steps of the primary metabolism provide precursors 
for the synthesis of secondary metabolites (Alam et al. 
2021). Mostly synthesized in limited quantities, secondary 
metabolites are generally produced in specific tissues or 
under particular conditions in response to environmental 
factors (e.g., stress, infection, or competition) (Sumarah 
and Miller 2009). The production of primary metabolites is 
generally continuous and essentially controlled to maintain 
the basic metabolic processes of organisms. The synthesis 
of secondary metabolites is more flexible and responsive 
to external factors, and its production is often induced by 
specific cues, such as pathogen attacks or environmental 
stressors, varying in response to changing conditions, and 
not produced continuously necessarily (Sumarah and Miller 
2009). Moreover, primary metabolites are usually more 
uniform in structure and function as they play essential roles 
in the basic cellular processes. On the other hand, secondary 
metabolites exhibit a wide range of structural diversity and 
have various functions specific to a particular organism or 
ecological niche (Schneider et al. 2008; Bielecka et al. 2022). 
In addition, genomic studies have shown that endophytic 
fungi possess a larger number of biosynthetic gene clusters 
than ever expected for the secondary metabolite production, 
since most gene clusters are silent under laboratory 
conditions (Rashmi and Venkateswara Sarma 2018).

The main biochemical pathways that guide the 
biosynthesis of secondary metabolites by endophytic 
fungi involve polyketide synthases (PKSs), non-ribosomal 
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peptide synthetases (NRPSs), hybrids (PKS-NRPS), 
terpene synthases (TPSs), terpene cyclases (TCs), and 
prenyltransferases (PTs) or combinations thereof (Rashmi 
and Venkateswara Sarma 2018). A relevant chemical 
group of secondary metabolites produced by endophytic 
fungi comprises non-ribosomal peptides synthesized by 
NRPSs enzymes (Yang et al. 2019) that possess modular 
structure and incorporate various building blocks into the 
growing peptide chain without the ribosome’s need. Non 
ribosomal peptide synthesis is an alternative pathway that 
allows production of polypeptides other than through the 
traditional translation mechanism. Despite the chemical 
diversity produced by NRPSs, the standard NRPS structure 
is composed of three canonical domains: adenylation 
(A), thiolation (T) or peptidyl carrier protein (PCP), and 
condensation (C) domains, which constitute a module within 
NRPS (Creamer et al. 2021). Each module is responsible for 
the recognition (A domain) and incorporation of a single 
amino acid into the growing peptide product. Generally, 
NRPSs possess more than one module, which terminates in 
a condensation-like (CT) domain that releases the peptide. 
Occasionally, epimerase (E) and N-methyltransferase (M) 
domains that convert L- to D-amino acids and N-methylate 
peptide bonds, respectively, are found within NRPSs. 
Deviations of the classical NRPS composition are present 
in hybrid PKS/NRPS (Creamer et al. 2021) and stand-alone 
monomodular NRPS-like enzymes, since not all canonical 
domains are presente. In addition, terpenes are an abundant 
and chemically diverse group of natural products synthesized 
by endophytic fungi and others, which is biosynthesized 
from isoprene units derived through the mevalonate and/
or methylerythritol pathways that ranges from simple linear 
hydrocarbon chains to highly complex ring structures 
(Nazari et al. 2023).

Due to the diversity and complexity of biosynthetic 
pathways responsible for the production of secondary 
metabolites from endophytic fungi, Table 1 summarizes 
some chemically characterized secondary metabolites 
and putative associated biosynthetic genes/key enzymes 
determined by sequencing, including genes expressed/
underexpressed in specific or mutational conditions.

Endophytic fungi as “hotspots” for discovering 
bioactive compounds

The discovery of the endophytic fungus Taxomyces 
andreanae as a taxol producer and related compounds, an 
anticancer used in the treatment of several types of tumors, 
placed EFs in the spotlight of search for bioactive metabo-
lites similar to those found in plants (Strobel et al. 1996; 
Manganyi and Ateba 2020; Zhang et al. 2022; Hashem et al. 
2023). It is currently well-known that EFs are a prophylactic 
source of metabolites from numerous chemical classes and 

with the most varied applications (Table 2), which character-
istics make them “hotspots” of chemical diversity with dif-
ferent biological activities (Fig. 1). In ecology, the term ‘hot-
spots’ can be defined as geographic areas rich in biodiversity 
and threatened by habitat loss (Thompson et al. 2021). Here, 
“biodiversity hotspots” was adapted to “chemical diversity 
hotspots” in reference to EFs, since these microorganisms 
represent an important genetic, biological, and biotech-
nological resource for the discovery of novel biologically 
active compounds, with unprecedented chemical diversity, 
to be used in a wide variety of applications from medicine 
to agriculture, and beyond.

Different approaches have been employed to study the 
diversity of compounds from EFs (Mohamed et al. 2021, 
2022; Hassane et al. 2022). Most protocols involve axenic 
cultivation, followed by obtaining a crude extract, screening 
based on bioassays (e.g., antimicrobial, antioxidant, 
antiparasitic activities, among others), isolation and 
purification steps of the target molecules (Orfali et  al. 
2017; Farooq et al. 2020; Liu et al. 2021; He et al. 2021). 
However, fungal extracts are complex and often contain tens 
to thousands of metabolites (Nischitha and Shivanna 2021a), 
which complicates the purification process. Studying 
metabolites produced by EFs in a specific condition 
simultaneously using classical approaches is quite laborious 
due to the complexity of the extracts, methodological 
limitations, laboriousness, and the time required to obtain 
pure compounds.

Metabolomic based methodologies is an alternative 
to classical methods and has become a powerfull tool to 
annotate EFs metabolites (González-Menéndez et  al. 
2016; Qadri et al. 2017; Toghueo et al. 2020). This new 
“omics” has been used to study the chemical diversity 
produced by fungi from the most varied ecosystems and 
lifestyles, enabling the discovery of new molecules, effects 
of epigenetic regulation on the metabolome, knowledge of 
the chemical diversity produced by these microorganisms 
etc. (Asai et al. 2012a, b, c; Zutz et al. 2013; Qadri et al. 
2017; Triastuti et al. 2019; de Amorim et al. 2020; Ameen 
et al. 2020; Makhwitine et al. 2023). In this sense, we will 
address strategies in metabolomics research on EFs below: 
experimental designs, cultivation regimes, extraction 
methods, analytical methodologies and, data analysis.

Metabolomics applied to studies of endophytic 
fungi

Metabolomics comprises the study of all metabolites 
(< 1500 Da) in biological systems (e.g., cell, tissue, organ, 
organisms) in a specific physiological state (Bundy et al. 
2008; Johnson et  al. 2016; Marchev et  al. 2021). This 
approach requires modern instrumental analytical meth-
ods of high throughput, sensitivity, and resolution, such 
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as mass spectrometry (MS), combined with chemometric 
methods to measure and compare the metabolites (John-
son et al. 2016; Rampler et al. 2021; Martin et al. 2019). 

Metabolomics makes it possible to quickly measure thou-
sands of metabolites simultaneously from minimal quanti-
ties of samples (Johnson et al. 2016; Rampler et al. 2021; 

Table 2  Metabolites produced by endophytic fungi from different host plant species

Endophytic fungi Host plant species Metabolite Metabolite 
categorization

Biological activity References

Alternaria alternata Azadirachta indica phenolics and flavonoids Phenolics and 
flavonoids

Antibacterial Chatterjee et al. 
(2019)

Alternaria sp. Ziziphus jujuba alternariol Polysaccharides Anti-oxidant Orfali et al. (2017)
Aspergillus 

aculeatus
Rosa damascena secalonic acid F-7 Organic acids Anticancer Farooq et al. (2020)

Aspergillus flavipes Eucommia ulmoides 3,4-dihydroxybenzeneacetic 
acid and 
3,4-dihydroxyphenylacetic 
acid methyl ester

Phenols Anti-oxidant Liu et al. (2021)

Aspergillus flavus Garcinia multiflora 19-amino-19-dehydroxy 
5-epi-α-cyclopiazonic acid, 
2-hydroxymethyl-5-(3-
oxobutan-2-yl)aminopyran-
4(4h)-one and 4-amino-2-
hydroxymethylpyridin-5-ol

Alkaloids α-glucosidase 
inhibitory activity

He et al. (2021)

Chaetomium 
globosum

Dioscorea Opposita yamchaetoglobosin A Alkaloids Anticancer Ruan et al. (2018)

Colletotrichum 
gloeosporioides

Piper nigrum piperine Alkaloids Anti-inflammatory Krishna et al. (2020)

Colletotrichum sp. Morus alba 1,3-dihydroxy-2,8-
dimethoxy-6-
methylanthraquinone

Quinones Anti-inflammatory Lee et al. (2021)

Emericella sp. Panax notoginseng emericelactones A-D Polypeptides Antimicrobial Pang et al. (2018)
Fusarium 

clamidosporium
Anvillea garcinii fusarithioamide A Benzamide Antimicrobial and 

cytotoxic
Ibrahim et al. (2016b)

Fusarium sp. Mentha longifolia fusaristerol A Steroids Antifungal Chester et al. (2017)
Fusarium tricinctum Hordeum sativum enniatins (ens) Polypeptides Antimicrobial Zaher et al. (2015)
Penicillium sp. Gastrodia elata preaustinoid d and 

dihydroxyneogrifolic acid
Terpenoids Antifungal Duan et al. (2016)

Penicillium sp. Panax notoginseng brefeldin A and brefeldin A 
7-o-acetate

Esters Anticancer Xie et al. (2017)

Perenniporia 
tephropora

Taxus chinensis perenniporin A Sesquiterpenoid Cytotoxic Wu et al. (2013)

Pestalotiopsis foedan Bruguiera sexangula (1r,4r,5r,8s)-8-hydroxy-
4,8-dimethyl-2-
oxabicyclo[3.3.1]
nonan-3-one and (2r)-2-
[(1r)-4-methylcyclohex-3-
en-1-yl]propanoic acid

Monoterpene Antifungal Xu et al. (2016)

Pestalotiopsis sp. Dendrobium 
officinale

ergosta-5,7,22-trien-3b-ol Sterols Cytotoxic and 
antifungal

Wu et al. (2015)

Phomopsis/
Diaporthe sp.

Polygonatum 
sibiricum

epoxycytochalasin H Alkaloids Anticancer Wang et al. (2020)

Phomopsis/
Diaporthe sp.

Senna spectabilis cytochalasin H Organic 
heterotricyclic 
compound

Antifungal Chapla et al. (2014)

Trichothecium sp. Phyllanthus sp. trichothecin Trichothecene Cytotoxic Taware et al. (2015)
Verticillium sp. Rehmannia glutinosa 2, 4-dihydroxy-2’, 

6-diacetoxy-3’-methoxy-
5’-methyl-diphenyl ether

Diphenyl ether Cytotoxic and 
antifungal

Peng et al. (2013)
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Martin et al. 2019), and, traditionally, can be divided into 
metabolomics targeted and untargeted metabolomics (Fig. 2) 
(Roberts et al. 2012). In general, targeted metabolomics aims 
to qualitatively and quantitatively measure a predefined set 
of metabolites (Roberts et  al. 2012). Recently, targeted 
metabolomics has been subdivided into widely targeted 
metabolomics, pseudo-targeted metabolomics, and quasi-
targeted metabolomics (Lee et al. 2019; Sun et al. 2021; 
Wang et al. 2023). Untargeted metabolomics, on the other 
hand, analyzes all measurable metabolites in a given sample 
(Lippa et al. 2022).

Metabolomics has played crucial roles in elucidating 
physiological processes in numerous areas of research 
and development to discover disease state markers, stress 
response, identification of metabolic profiles, among others 
(Zutz et  al. 2013; Triastuti et  al. 2019; Aldholmi et  al. 
2020; Wei et al. 2020; Ameen et al. 2020; Zhu et al. 2021; 
Letertre et al. 2021; Katam et al. 2022). In recent decades, 
this approach has also been successfully employed to explore 
the chemical diversity of metabolites produced by fungi, 
including EFs (Table 3).

Design of experiments to study the chemical 
diversity of metabolites produced by endophytic 
fungi

According to the hypotheses and objectives of the research, 
different workflows are employed to evaluate the chemical 
diversity and consequently the bioactive compounds pro-
duced by endophytic fungi (Fig. 3). As hypotheses and/or 
objectives precede and guide the choice of the scientific 
experimentation methods, these workflows are generally 
complex. In metabolomic studies to explore the chemical 
diversity or to search for bioactive metabolites produced by 
EFs, the experimental design requires contextualization of 
the objectives at all stages, as each stage directly interferes 
with the results obtained and their interpretations. If the 
objective of the study aims to compare how the metabolic 

profile of EFs changes depending on different concentra-
tions of heavy metals, the experimental design may contex-
tualize its objective at each stage as follows: (1) the sample 
size should be sufficient to reveal differences if they occur; 
(2) all treatments should preferably possess the same sam-
ple number; (3) cultures should be maintained consistently 
under the same conditions; (4) the extraction methods and 
solvents used should be capable of extracting the greatest 
possible amount of metabolites; (5) the chosen analytical 
method should be capable of highlighting differences if they 
occur. If any of these steps are not carefully taken into con-
sideration, the objective is not achieved, and biased results 
are generally generated. If temperature varies between dif-
ferent metal concentrations, for instance, differences in the 
metabolite profile may arise not only from the effect of metal 
concentration, but also from temperature variation.

The experimental design is, therefore, a critical step 
to be well structured according to the study’s objectives. 
Considering the study’s objectives or hypothesis to explore 
the chemical diversity produced by EFs using metabolomics, 
four main steps may be still summarized: (1) culture 
conditions, (2) sample preparation, (3) data collection and 
processing, 4) and data analysis. Since each of these steps 
is crucial to the final explanation, different strategies and 
tools that may be adopted to increase the sample number of 
metabolites from optimizing cultivation conditions, sample 
extraction, and data acquisition to choosing analytical 
methods and bioinformatics platforms, are discussed next.

Enhancement of metabolites production 
from endophytic fungi

Endophytic fungi are known to synthesize a wide variety of 
compounds. However, there is an inconsistency between the 
actual number of biosynthetic gene clusters (BGCs) present 
in the genome of these microorganisms and the number of 
compounds detected in any fungal strain under laboratory 
cultivation conditions (Fisch et al. 2009; Qadri et al. 2017; 
Ul-Hassan et al. 2012; González-Menéndez et al. 2016; Pil-
lay et al. 2022; Xue et al. 2023). This divergence between 
the actual number of BGCs and the number of chemical 
molecules produced by any given fungal strain is attrib-
uted to the fact that the majority of BGCs remain silenced, 
low in expression, or not expressed at all under laboratory 
conditions (González-Menéndez et al. 2016; Pillay et al. 
2022; Xue et al. 2023). Furthermore, the activation of these 
BGCs is likely to discover a greater number of compounds, 
including the discovery of new metabolites (Ding et al. 
2020). As a result of this fact, there is a need to use different 
techniques that can induce the activation of these biosyn-
thetic pathways, such as co-culture, One Strain-Many Com-
pounds (OSMAC), epigenetic and molecular modification 
methods, thus increasing the biosynthetic capacity of these 

Fig. 1  Guttation produced by endophytic fungi. Guttation is a phe-
nomenon that involves the exudation of water and metabolites pro-
duced by fungal cells. These exudates are rich sources of mycotoxins, 
antimicrobials, insecticides, bioherbicides, antiviral, and anticancer 
agents. In a, b, the release of red/orange exudates from two strains of 
Epicoccum sp. cultured on potato peptone dextrose agar at 28 °C are 
shown; In c, brown exudates produced by colonies of Diaporthe sp. 
grown on potato dextrose agar (PDA) at 30 °C. In d, citrine yellow 
exudates produced by Penicillium sp. In e, it is shown the diffusion in 
the culture medium (PDA) of reddish-colored compounds produced 
by Chaetomium sp. In f, green colored exudate produced by Tricho-
derma sp. is highlighted. In g, h, and k–o, exudates from different 
endophytic Fusarium species grown in PDA at 25 °C are shown. In 
i, j, exudates produced by Diaporthe spp. In p, translucent exudates 
produced by colonies of Penicillium sp. Source: J.B.A.R. (author)

◂
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microorganisms (Fig. 4) (Bode et al. 2002; Cichewicz 2009; 
González-Menéndez et al. 2016; Pillay et al. 2022; Xue et al. 
2023).

In natural ecossystems, the different species that make up 
microbial communities establish a series of ecological rela-
tionships (e.g., mutualism, commensalism, antagonism, and 
parasitism) with other microbial species or organisms (e.g., 
plants, animals, among others) that are mediated mainly by 
the production of compounds and small molecules (Toghueo 
et al. 2020; Koza et al. 2022) similarly to metabolite pro-
duction expected by co-cultivation (Fig. 5). Thus, numerous 
BGCs are dependent on microbe-microbe or microbe-host 
interactions to be activated (Toghueo et al. 2020; Koza et al. 
2022). The co-cultivation method (Fig. 5) aims to simulate 
interactions that occur in the environment naturally between 
microorganisms from the same or different ecological niches 
(Kim et al. 2021; Boruta et al. 2023), since it consists in 

growing one or more microbial species together. In addi-
tion to simulating ecological stress, including nutrient deple-
tion during competition between species, the co-cultivation 
method allows the monitoring of metabolites produced over 
time through visual morphological changes in the species 
growth (Kim et al. 2021; Boruta et al. 2023) (Fig. 5). In 
most cases, this approach leads to changes in the biosyn-
thetic profile of the strains analysed, resulting in production 
of unusual compounds not found in monocultures (Kim et al. 
2021; Boruta et al. 2023). Competition for iron, for instance, 
triggers antibiotic biosynthesis in Streptomyces coelicolor 
(bacteria) during co-cultivation with Myxococcus xanthus 
(bacteria) (Lee et al. 2020).

Co-cultivation does not require knowledge in genetics or 
molecular biology, nor laborious methods, which makes it 
an advantageous method because of the simplicity and prac-
ticality. Different strategies for co-cultivation that includes 

Fig. 2  Workflow for targeted and untargeted metabolomics studies. Figure created in BioRender software
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co-cultivation in solid or liquid media (mixed fermentation), 
and the choice of the co-cultivated microorganisms (e.g., 
fungus-fungus, fungus-bacteria, and bacteria-bacteria) that 
may or not belong to the same ecological niche, are widely 
explored.

Similar to co-culture, the OSMAC approach is a 
relatively simple and effective technique used to explore 
the biosynthetic potential of microorganisms from the 
most diverse habitats (Gao et al. 2020; Schwarz et al. 2021; 

Pinedo-Rivilla et al. 2022; Hebra et al. 2022), including 
endophytic fungi (Gao et al. 2020; Wei et al. 2021; da Silva 
et al. 2023). As the OSMAC’s main idea, each microbial 
strain has the potential to produce many compounds, but 
subsets of these compounds are produced only under specific 
conditions (Bode et  al. 2002). Thus, OSMAC involves 
combination and alteration of one or more cultivation 
parameters (e.g., carbon, nitrogen, and micronutrient 
sources; pH; temperature; light regime; addition of enzyme 

Fig. 3  A workflow for studying the chemical diversity and bioactive molecules produced by endophytic fungi. Figure created in BioRender soft-
ware
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inhibitors; incubation time;  O2 and  CO2 tension; addition of 
solvents, heavy metals, precursors and other small molecule 
elicitors). Changes in cultivation conditions cause activation 
of silent BGCs or overexpression of BGCs that were 
underexpressed, resulting in production of a greater diversity 
of compounds (Bode et al. 2002). The efficiency of this 
approach was demonstrated by the increased production of 
griseofulvin derivatives produced by endophytic fungi from 
the host plant Moquiniastrum polymorphism when cultivated 

in culture media of malt peptone extract and Wickerham 
broth (Farinella et  al. 2021). A species of endophytic 
Penicillium was capable of producing different types of 
compounds under combination of different cultivation 
media, many of which were specific to each combination 
evaluated (da Silva et al. 2023). Co-cultivation combined 
with OSMAC increased the biosynthetic production of 
compounds by microbial strains under environmental 
conditions capable of influencing the microbial interactions 

Fig. 4  Main strategies used to increase the biosynthetic potential of endophytic fungi. Figure created in BioRender software and Canva.com



Archives of Microbiology (2024) 206:185 Page 15 of 34 185

prior established, activating biosynthetic pathways that were 
initially silenced (Zutz et al. 2013).

Among the inducing strategies, epigenetic chemical 
regulation is considered a powerful approach to generate 

a greater number of compounds biosynthesized by fungi 
(González-Menéndez et  al. 2016; Qadri et  al. 2017; 
Toghueo et  al. 2020). Epigenetic regulation involves 
alteration of the level of chromatin condensation to express 

Fig. 5  Co-cultivation of different species of endophytic fungi on 
Potato Dextrose Agar (PDA). In a-c, the co-cultivation of six species 
of endophytic fungi isolated from Ouratea hexasperma is shown. The 
white arrows demonstrate the increased production of red pigment by 
a specific colony as a result of interaction with adjacent colonies. In 
d, both sides of a specific endophytic fungus colony are shown. In 
e, f, co-cultivation of this fungus (edge colony) with another endo-
phytic fungus (middle colony) is shown. It is possible to observe that 
the fungus increases the production of yellow pigments (white arrows 

in e) and starts to produce a red pigment at the edge of the colony 
next (white arrows in f). In g, growth inhibition of an endophytic fun-
gus due to the interaction with a saprophytic fungus is shown. In h, 
co-cultivation of Fusarium sp. (pink colony) and Diaporthe sp. (gray 
colony) is presented. It is possible to observe exudation of yellow 
metabolites by the Diaporthe where the colonies meet. In i, co-cul-
tivation of Penicillium sp. and Eremothecium coryli showing the exu-
dation of yellow compounds into the culture medium is indicated by 
the white arrow Source: J.B.A.R. (author)
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silenced genes, which does not require prior knowledge 
in genomic content, resulting in the biosynthesis of 
previously unexpressed compounds. Generally, small 
molecules act as inhibitors of methyltransferase, histone 
deacetylase, and histone acetyltransferase, generating 
alterations in the structure of DNA, histones, and 
proteasomes, which activates cryptic BGCs (Table 4) 
(González-Menéndez et  al. 2016; Qadri et  al. 2017; 
Toghueo et  al. 2020). Fermentation by Aspergillus 
calidoustus and Aspergillus westerdijkiae with vorinostat, 
an inhibitor of histone deacetylases (HDACs), for instance, 
induced changes in the metabolic profile of both species, 
with induction and repression of the biosynthesis of 
specific metabolites (Aldholmi et al. 2020). Moreover, 
addition of hydroxamic suberoylanilide (SAHA) and 
sodium valproate (VS), histone deacetylase (HDACs) 
inhibitors, caused different responses in the biosynthetic 
profile of the endophyte Botryosphaeria mamane (Triastuti 
et  al. 2019). SAHA induced the production of eight 
metabolites, while VS induced the biosynthesis of two 
metabolites. In addition to the simplicity of the method, 
epigenetic regulation mediated by regulatory molecules 
can be used in conjunction with other strategies to 
stimulate the synthesis of metabolites, including coculture, 
OSMAC, and transformation methods (Zutz et al. 2013; 
Triastuti et al. 2019; Aldholmi et al. 2020; Ameen et al. 
2020). However, alteration in the metabolic profile vary 
depending on the fungal species, type of regulatory 
molecule, and concentration (Zutz et al. 2013; Triastuti 
et al. 2019; Aldholmi et al. 2020; Ameen et al. 2020).

In addition, molecular approaches that include gene 
deletion or induction of mutants are valuable strategies 
to stimulate the production of compounds and activate 
BGCs of interest in fungi (Guzman-Chavez et al. 2018; 
Ding et al. 2020; Jo et al. 2023). Deletion of the hdaA 
gene in Penicillium chrysogenum strain Fes1701 induced a 
significant change in its metabolic profile, resulting in the 
bioactive indole alkaloid meleagrin synthesis (Ding et al. 
2020). In other strain of P. chrysogenum, deletion of the 
hdaA gene caused a decrease in pigment production and 
overexpression of the sorbicillinoid biosynthetic gene 
cluster, producing overproduction of associated compounds 
(Guzman-Chavez et al. 2018). The plasma-induced mutant 
of Aspergillus unguis was able to synthesize four compounds 
not observed previously in the wild-type strain, one of 
them characterized as a novel aspergillusidone G (Yang 
et al. 2018). Thus, different molecular approaches have 
been efficiently employed to stimulate the biosynthesis and 
search for novel compounds. However, genomic knowledge, 
laborious methodologies and expensive equipments are 
essential.

Sample preparation and obtaining crude extracts

In metabolomics studies to investigate fungal metabolites, 
the sample preparation method is considered one of the 
most important steps due to its intrinsic sensitivity, since 
even small changes in procedures may deeply influence on 
the recovery of types and levels of metabolites, and in the 
biological interpretation of data consequently (Mohd et al. 
2022). The choice of sample preparation and extraction 
method is crucial to define the number, type, and abundance 
of metabolites detected (Fig. 6). Therefore, an efficient, 
robust, simple, and reproducible method to demonstrate 
real occurrences and/or changes in the cellular metabolism 
is desirable. Generally, the workflow for sample preparation 
involves: (1) metabolic arrest by quenching; (2) sample col-
lection, and separation of intra- and extracellular metabo-
lites, and (3) extraction of metabolites.

Quenching is a rapid and sudden disruption of various 
metabolic pathways within cells on a timescale, maintaining 
stable metabolic contents, and reducing the degradation rates 
of investigated metabolites (Mohd et al. 2022). Briefly, 
quenching basically consists of cooling the samples in order 
to reduce or interrupt cellular metabolism. In microbial 
metabolomics research, the main quenching method uses 
ice-cold methanol (Mohd et al. 2022) by adding this solvent 
(60%–80%) (−80 to −20 °C) to the medium in which cells 
are grown to rapid stop the metabolic processes (Mohd et al. 
2022). However, this approach is mainly used in bacterial 
metabolomic studies (Mohd et  al. 2022), and hardly 
employed in metabolomic studies of filamentous fungi (Li 
et al. 2022). After disruption of metabolic processes, the 
next step comprises cell separation from the culture medium 
followed by metabolite extraction. To separate cells from the 
culture medium, centrifugation or gauze filtration methods 
are mainly used (Phan and Blank 2020; Mohd et al. 2022; 
Nzimande et al. 2022; Makhwitine et al. 2023).

The physical properties and chemical structure of the 
metabolites investigated should not be altered by extraction 
methods, which also should maximize the recovery of 
the maximum amount of metabolites. These methods are 
grouped into physical and chemical methods (Mohd et al. 
2022; Li et al. 2022; Gopčević et al. 2022). Physical methods 
include the use of an ultrasonic bath, maceration with glass 
beads, freezing and thawing cycles, among others. (Mohd 
et al. 2022). Chemical methods mainly use polar and non-
polar organic solvents, non-aqueous inorganic solvents, 
and combinations of both ones (Asai et al. 2012b, c; Qadri 
et al. 2017; Triastuti et al. 2019; Pacheco-Tapia et al. 2022). 
To increase extraction efficiency, physical and chemical 
methods can be combined (Mohd et al. 2022; Li et al. 2022; 
Gopčević et al. 2022; Makhwitine et al. 2023). In Table 5 
are summarized some extraction methods commonly used 
in fungal metabolomics studies.
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Table 4  Epigenetic modifiers used to induce the biosynthesis of metabolites in fungal species

Epigenetic modifier Mechanism of action Fungal species References

5-azacytidine Inhibition of DNA methyltransferase 
(DNMT)

Muscodor yucatanensis Qadri et al. (2017)

5-azacytidine Inhibition of DNA methyltransferase 
(DNMT)

Penicillium funiculosum Liu et al. (2014)

5-azacytidine Inhibition of DNA methyltransferase 
(DNMT)

Penicillium citreonigrum Wang et al. (2010)

5-azacytidine Inhibition of DNA methyltransferase 
(DNMT)

Cophinforma mamane Pacheco-Tapia et al. (2022)

5-azacytidine Inhibition of DNA methyltransferase 
(DNMT)

Aspergillus calidoustus Aldholmi et al. (2020)

5-azacytidine Inhibition of DNA methyltransferase 
(DNMT)

Aspergillus westerdijkiae Aldholmi et al. (2020)

anacardic acid Inhibition of histone acetyltransferase Anteaglonium sp. Mafezoli et al. (2018)
BRD4770 (metil-2-(benzoilamino)-1-

(3-fenilpropil)-1H-benzimidazol-5-
carboxilato)

Inhibition of DNA methyltransferase 
(DNMT)

Diaporthe longicolla Nishad et al. (2021)

butyrate Inhibition of histone deacetylases 
(HDACs)

Aspergillus clavatus Zutz et al. (2013)

N-acetyl-D-glucosamine Inhibition of DNA methyltransferase Aspergillus clavatus Zutz et al. (2013)
N-butiril-DL-homosserina lactona Quorum-sensing (QS) molecule Cophinforma mamane Pacheco-Tapia et al. (2022)
nicotinamide Inhibition of nicotinamide adenine 

dinucleotide (NAD+)-dependent 
HDACs

Chaetomium cancroideum Asai et al. (2016)

nicotinamide Inhibition of nicotinamide adenine 
dinucleotide (NAD+)-dependent 
HDACs

Cophinforma mamane Pacheco-Tapia et al. (2022)

N-phthalyl-L-tryptophan Inhibition of DNA methyltransferase 
(DNMT)

Gibellula formosana Asai et al. (2012c)

octanoylhydroxamic acid Inhibition of HDAC of classes I and II Drechslera sp. Siless et al. (2018)
procaine Inhibition of DNA methyltransferase 

(DNMT)
Aspergillus unguis Yang et al. (2018)

sodium butyrate Inhibition of histone deacetylases 
(HDACs)

Penicillium chrysogenum Makhwitine et al. (2023)

sodium butyrate Inhibition of histone deacetylases 
(HDACs)

Phomopsis heveicola Ameen et al. 2020

sodium butyrate Inhibition of histone deacetylases 
(HDACs)

Cophinforma mamane Pacheco-Tapia et al. (2022)

sodium valproate (VS) Inhibition of DNA methyltransferase 
(DNMT)

Botryosphaeria mamane Triastuti et al. (2019)

suberoyl bis-hydroxamic acid (SBHA) Inhibition of nicotinamide adenine 
dinucleotide (NAD+)-dependent 
HDACs

Chaetomium mollipilium Asai et al. (2012a)

suberoyl bis-hydroxamic acid (SBHA) Inhibition of nicotinamide adenine 
dinucleotide (NAD+)-dependent 
HDACs

Cordyceps indigotica Asai et al. (2012b)

suberoylanilide hydroxamic acid (SAHA) Inhibition of histone deacetylases 
(HDACs)

Muscodor yucatanensis Qadri et al. (2017)

suberoylanilide hydroxamic acid (SAHA) Inhibition of DNA methyltransferase 
(DNMT)

Botryosphaeria mamane Triastuti et al. (2019)

suberoylanilide hydroxamic acid (SAHA) Inhibition of histone deacetylases 
(HDACs)

Aspergillus sp. de Amorim et al. (2020)

trichostatin A Inhibition of histone deacetylases 
(HDACs)

Aspergillus clavatus Zutz et al. (2013)

valproic acid (Sigma-Aldrich, 
Johannesburg, South Africa)

Inhibition of histone deacetylases 
(HDACs)

Penicillium chrysogenum Makhwitine et al. (2023)
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The choice of the extraction method depends on the 
study’s objective, which may include a combination of dif-
ferent strategies for extracting metabolites efficiently. In 
general, the main extraction method used for metabolomics 
studies in fungi comprises the liquid–liquid extraction 
employing ethyl acetate (EtOAc) (Asai et al. 2012b, c; Qadri 
et al. 2017; Triastuti et al. 2019; Pacheco-Tapia et al. 2022). 
However, other solvents and combinations of solvents are 
used according to the objectives established (Phan and Blank 
2020; Makhwitine et al. 2023) as shown in Fig. 7. EtOAc, 
for instance, was used to extract the extracellular metabolites 
from a fermented broth by the endophytic fungus A. unguis, 

while methanol was used to extract intracellular metabo-
lites (Yang et al. 2018). Other approaches include combining 
solvents with physical extraction methods. Using ethanol 
(EtOH:H2O; 7:2), methanol (MeOH:H2O; 7:2), and a chloro-
form/MeOH/water mixture (2:5:2) at different temperatures 
and sonication conditions, Phan and Blank (2020) quantified 
intracellular metabolites from Ustilago maydis. To study the 
metabolome of the endophyte P. chrysogenum, the extraction 
method selected consisted of adding methanol to the fer-
mented broth, followed by incubation overnight on a rotary 
shaker at 150 rpm (Makhwitine et al. 2023). Currently, 
there is no standard extraction method to be recommended, 

Table 4  (continued)

Epigenetic modifier Mechanism of action Fungal species References

valproic acid (Sigma-Aldrich, 
Johannesburg, South Africa)

Inhibition of histone deacetylases 
(HDACs)

Phomopsis heveicola Ameen et al. (2020)

vorinostat Inhibition of histone deacetylases 
(HDACs)

Aspergillus calidoustus Aldholmi et al. (2020)

vorinostat Inhibition of histone deacetylases 
(HDACs)

Aspergillus westerdijkiae Aldholmi et al. (2020)

Fig. 6  Variation in the metabolomic profile according to different 
extraction methods employed. Each extraction method reflects the 
metabolic profile accessed effectively. The combination of different 

extraction strategies, solvents, temperature, sonication conditions, and 
extraction time result in different metabolic profiles. Figure created in 
BioRender software and Canva.com
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Table 5  Methods used in fungal metabolomics studies

Fungal species Extraction method Analytical method References

Alternaria alternata Extraction by adding an equal volume 
of absolute methanol to the fungal 
culture followed by incubation at 25 °C 
overnight with shaking on a rotary shaker 
at 150 rpm. The mycelium was then 
separated with gauze and the culture 
supernatant was transferred to a centrifuge 
tube. The retained supernatant was 
evaporated at 40 °C to dry the extracts

GC–MS Nzimande et al. (2022)

Aspergillus flavus, Cladosporium 
cladosporioides, Curvularia 
tsudae and Penicillium citrinum

The culture broth was filtered to separate 
the mycelium from the fermented broth. 
Metabolites from the fermented broth and 
dried mycelium (40 °C) were extracted 
with EtOAc and methanol, respectively

LC–MS Nischitha et al. (2020)

Aspergillus unguis After filtration to remove the mycelium, 
metabolites from the fermentation broth 
were extracted three times with EtOAc. 
The mycelium was extracted three times 
with methanol

HPLC Yang et al. (2018)

Curvularia protuberata and Penicillium 
citrinum

The culture broth was filtered to separate 
the mycelium from the fermented broth. 
An equal volume of EtOAc was added 
to the filtrate, mixed well for 10 min, 
and allowed to settle to obtain clear 
immiscible layers. The filtrate was 
extracted three times with the same 
solvent and pooled. The mycelium was 
dried in an oven (40 °C, for 24 h), and 
ground to a fine powder using a sterilized 
pestle and mortar. The powder was then 
transferred to a flask containing methanol, 
stirred in a water bath at 40 °C for 
3–4 h, and filtered to obtain the filtrate. 
The EtOAc and MeOH extracts were 
evaporated to dryness under ambient 
conditions using a rotary evaporator

LC–MS Nischitha and Shivanna (2021a)

Neofusicoccum parvum and Buergenerula 
spartinae

The fermented samples were subjected to 
chemical maceration with the addition 
of 50 mL of a 1:1 (v/v) mixture of 
dichloromethane  (CH2Cl2—PA 90%) 
and methanol  (CH3OH—PA 90%). After 
maceration, a simple filtration process 
was carried out to remove cell debris, 
followed by rotary evaporation using 
a maximum pressure pneumatic pump 
(Bünchi–Vacuum Pump V-700, Sigma 
Aldrich, São Paulo, Brazil). The water 
bath temperature was maintained between 
30 and 55 °C. The resulting total extract 
was subsequently subjected to freeze-
drying for 24 h

LC–MS Cadamuro et al. (2023)

Penicillium chrysogenum Extraction was performed by adding an 
equal volume of absolute methanol to 
the fungal culture followed by incubation 
overnight with shaking on a rotary shaker 
at 150 rpm. The mycelium was then 
separated with gauze and the culture 
supernatant was transferred to a centrifuge 
tube. The retained supernatant was 
evaporated at 40 °C to dry the extracts

GS–MS Makhwitine et al. (2023)
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EtOAc—Ethyl acetate; MeOH—Methanol

Table 5  (continued)

Fungal species Extraction method Analytical method References

Penicillium chrysogenum The mycelia in the fermentation mixture 
were broken using a macerator, and then 
the fermentation mixture was extracted 
with an equal volume of EtOAc. The 
extract was evaporated under reduced 
pressure and redissolved in 2 mL of 
MeOH

HPLC Ding et al. (2020)

Penicillium citrinum The cultures were filtered through Whatman 
filter paper to separate the mycelium 
from the fermented broth. The filtrate 
was extracted with EtOAc using a 
separatory funnel and the mycelium was 
extracted with ice-cold MeOH. The ethyl 
acetate and methanol fractions were then 
evaporated to dryness using a rotary 
vacuum evaporator

LC–MS Nischitha and Shivanna (2022)

Penicillium pinophilum The cultures were filtered with Whatman 
filter paper to separate the mycelium from 
the fermented broth. The fermented broth 
was extracted with EtOAc in a separatory 
funnel. The mycelium was dried under 
laboratory environmental conditions, cut 
into segments, pulverized with a sterile 
mortar and pestle, and extracted with 
MeOH

LC–MS Nischitha and Shivanna (2021b)

Aspergillus flavus Sonication was used to lyse and 
homogenize the mycelium for extraction 
of compounds, which was dispersed 
in 10 mL of EtOAc and subjected to 
sonication at a power of up to 80 W 
 cm2 intensity for 0.5 pulse cycles at a 
temperature of 40 °C. After sonication, 
the content was filtered through Whatman 
No. 1 paper to eliminate mycelia, and the 
filtered was centrifuged at 2500 rpm

GC–MS Kalimuthu et al. (2022)

Fig. 7  Main solvents used for 
metabolite extraction from 
fungal cultures. Figure created 
in BioRender software
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since they vary greatly and depend on the sample nature and 
research objectives. However, the selected extraction method 
should prioritize the main compounds to meet the study’s 
objectives effectively.

Instrumental analysis methods used 
for metabolomic studies of endophytic fungi

The main analytical methods used in metabolomics studies 
of fungi extracts are gas chromatography/mass spectrom-
etry (GC–MS), liquid chromatography/mass spectrometry 
(LC–MS), nuclear magnetic resonance spectroscopy (NMR), 
and nuclear magnetic resonance spectroscopy/mass spec-
trometry (NMR–MS) (David 2008; Zutz et al. 2013; Asai 
et al. 2012c; Qadri et al. 2017). Table 6 summarizes some of 
the advantages and limitations of these analytical platforms. 

However, capillary electrophoresis/mass spectrometry 
(CE–MS) (Ibrahim et al. 2016a) and matrix-assisted laser 
desorption ionization mass spectrometry (MALDI–MS) 
(Chen et al. 2021) have also been employed.

GC–MS is used to analyze volatile metabolites or metab-
olites that are easily volatilized after derivatization reac-
tion (Qadri et al. 2017; Nzimande et al. 2022; Makhwitine 
et al. 2023). This approach possesses good repeatability 
and reproducibility and, is used in metabolomic analysis 
of various components that includes alcohols, aldehydes, 
amino acids, fatty acids, among others (Fiehn 2016; Qadri 
et al. 2017; Nzimande et al. 2022; Makhwitine et al. 2023). 
GS–MS was successfully employed to analyze fractions 
of crude extracts obtained from the fermented broth by 
the endophyte Alternaria alternata, and revealed the pres-
ence of 48 compounds (Nzimande et al. 2022). The main 

Table 6  Advantages and disadvantages of the main analytical platforms commonly used in metabolomics studies

Techniques Advantages Disadvantages References

CG–MS Easy to use (analysis time and operational 
costs)

High capacity to separate metabolites
High sensitivity and selectivity
Availability of several corresponding 

mass spectral databases/libraries 
for comparison and identification of 
metabolites

GC–MS avoids problems common to 
LC–MS such as matrix effects and ion 
suppression by co-eluting compounds, 
providing greater chromatographic 
resolution

Analysis of samples of alcohols, fatty 
acids, essential oils, esters, gases, 
and volatile and easily derivatized 
compounds

Only allows the identification of low 
molecular weight compounds (50–
600 Da)

It only allows the identification and 
separation of volatile or easily volatilized 
metabolites

Detection of polar, thermolabile, and non-
volatile metabolites requires the use of 
derivatization

The derivatization process may alter the 
biological interpretation of the results

Beale et al. (2018)

LC–MS Low sample volume
Relatively simple sample preparation
Relatively fast analysis time
High capacity to separate metabolites
High sensitivity (detection limit can reach 

ng  mL−1 in biological samples)
High coverage of metabolites (polar and 

nonpolar)
Ability to analyze complex samples 

containing hundreds of metabolites
Ability to analyze high molecular weight 

metabolites (~ 2000 Da)

There are few corresponding mass spectral 
databases/libraries for metabolite 
comparison and identification

Reproducibility depends on the equipment 
used

Need for sample preparation to reduce 
matrix effects arising from salts, proteins 
and lipids

Cannot analyze gases
Isobaric interference

Seger (2012), Zhou et al. (2012); Zhou 
and Zhong (2022), Chen et al. (2023)

NMR It is not a destructive method
Features high reproducibility
Non-biased and allows quantification
Simple sample preparation
Allows identification of new compounds 

and does not require chemical 
derivatization

Suitable for identifying compounds such 
as sugars, amines, volatile ketones, and 
relatively non-reactive compounds

Low sensitivity (detection limit 
approximately 1–5 μM)

Requires large sample sizes (∼ 500 μL)
Requires biological samples with a limited 

number of metabolites (from 1 to 50)

Wishart (2008), Crook and Powers (2020)



 Archives of Microbiology (2024) 206:185185 Page 22 of 34

compounds were cyclotrisiloxane octamethyl, propanini-
trile, pyrrolol[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-
methyl propyl), diethylethoxy(2-ethoxyethyloxy), coumarin, 
3,4-dihydro-4,5,7-trimethyl-4,5,7-trimethyl-2-chromanone, 
and 1,2-cyclobutanedicarbonitrile (Nzimande et al. 2022). 
Also, GC–MS was used to study volatile organic compounds 
(VOCs) produced by Muscodor yucatanensis, and demon-
strated the presence of more than 40 compounds, including 
trans-3-dodecene, tau-gurjunene, benzene propanoic acid, 
3,5-bis(1,1-dimet), 1-chloroheptacosane, and 2-hexyl-
1-octanol as the main ones (Qadri et al. 2017). Moreover, 
GC–MS analysis demonstrated the presence of more than 
110 compounds synthesized by the endophyte Penicillium 
chrysogenum, with some of the identified compounds known 
to exhibit antiviral activity (Makhwitine et al. 2023). How-
ever, GC–MS analysis has some disadvantages, since non-
volatile compounds require derivatization (Bollenbach and 
Tsikas 2022).

LC–MS possesses numerous advantages, including 
simple sample preparation, high sensitivity, and high 
qualitative and quantitative capabilities (Gathungu et al. 
2020). Thousands of peaks are detected by LC–MS in 
metabolomics studies (Nischitha and Shivanna 2021a). 
Each of the peaks can correspond to a detected ion with 
a mass-to-charge ratio (m/z) and a certain retention time 
that characterizes the metabolite. Moreover, with the 
development of high-performance liquid chromatography 
(HPLC) and ultra-performance liquid chromatography 
(UHPLC), peak resolution has been widely improved 
(Behnoush et al. 2015). Due to the high-resolution generated 
to detect most metabolites, LC–MS is the main technique 
to study the metabolic profile of fungi (Zutz et al. 2013; 
Mafezoli et  al. 2018; Pacheco-Tapia et  al. 2022). Four 
crude extracts of EFs from the host plant Alisma orientale 
analyzed by LC–MS revealed the presence of more than 50 
compounds per extract, with a predominance of metabolites 
belonging to different chemical classes (flavonoids, non-
flavonoids, phenolic acids, and flavonolignans). LC–MS 
analysis performed on the EFs Curvularia protuberata and 
Penicillium citrinum demonstrated the presence of 2352 
and 2500 compounds, respectively, which were separated 
by positive and negative ion modes (Nischitha and Shivanna 
2021a). Furthermore, LC–MS enabled the identification of 
some compounds known to exhibit antimicrobial activities. 
It is worth noting that despite the high resolution and 
sensitivity of this technique, overlapping peaks may occur, 
making decovolution necessary during the data processing 
stages.

NMR and NMR-MS are generally the analytical methods 
of choice when structural characterization of unknown 
compounds is required (Bingol and Brüschweiler 2016; 
Markley et al. 2017; Grienke et al. 2019; Gathungu et al. 
2020). This analytical method is based on the interaction of a 

magnetically active nuclei with an applied external magnetic 
field, and is highly advantageous because of the high 
reproducibility, accurate quantification, simple preparation, 
measurable analytes in various solvents, clear identification 
of unknown metabolites, and complete detection of 
metabolites (Bingol and Brüschweiler 2016; Markley et al. 
2017; Gathungu et al. 2020). NMR, for instance, was used 
to elucidate the structure of bipolarisenol produced by the 
endophyte Bipolaris sorokiniana (Khan et al. 2015), and 
four new chromium derivatives produced by the endophyte 
Phomopsis sp. (Huang et al. 2016). However, NMR-based 
methods have low sensitivity, which limits their applications 
in metabolomics (Markley et al. 2017).

Finally, the advantages and disadvantages of the different 
analytical tools should be considered in metabolomics 
research. A single tool cannot characterize and quantify 
efficiently thousands of metabolites produced by the fungal 
metabolism, requiring in some cases the combination of 
different methods to achieve the research objectives. In 
addition, other factors must be considered, which include 
errors associated with the platform used, implementation of 
internal standards, blanks (culture medium and solvents), 
quality controls (QC), which in metabolomics experiments 
of crude fungal extracts can be a mixture of all samples to 
be tested, and random sample injections.

Processing and analysis of metabolomics data 
from endophytic fungi

Data obtained in metabolomics experiments contains a 
large amount of important biological information from bio-
molecules (González-Menéndez et al. 2016; Nischitha and 
Shivanna 2021a). Interpreting these data involves inferring 
the mass and abundance of the biomolecules injected into 
the device. However, raw data may not provide a clean and 
reliable metabolite spectra (Lommen 2009; Katajamaa et al. 
2006; Smith et al. 2006). Therefore, the raw data should be 
preprocessed to reduce the noise and to promote the baseline 
correction, peak detection and deconvolution, and data nor-
malization as summarized in Fig. 8. Table 7 provides some 
online and open-source software as well as workflows for 
data analysis in metabolomics studies.

Briefly, tandem MS datasets are captured into binary files 
or databases by the software that controls the instruments 
(Chambers et al. 2012). However, the file format provided 
by different analytical platforms differs depending on the 
supplier (Kessner et al. 2008; Holman et al. 2014; Chambers 
et al. 2012). Thus, access to primary data can critically 
affect subsequent steps and the comparability of analytical 
platforms because some tools and workflows are designed 
for specific types of file formats. Therefore, in metabolomics 
studies, one of the first steps is file format conversion. To 
this end, numerous tools have been developed (Sturm 
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et al. 2008; Kessner et al. 2008; Chambers et al. 2012; 
Holman et al. 2014), with the MS Convert tool, available 
on the ProteoWizard platform (Kessner et al. 2008; Holman 
et al. 2014), as the most tool employed. MS Convert is 
a command-line tool used for mass spectrometry data 
format conversion (Holman et al. 2014) that accepts raw 
data from several commercial companies and developers, 
including AB SCIEX (file format: WIFF; T2D), Agilent 
(file format: MassHunter;.d directories), Bruker (file 
format: fid;.d directories; xmassa; xml), Thermo (file 
format: raw), Waters (file format: raw directories), HUPO 
PSI (file format: mzML), ISB Seattle Proteome Center (file 
format: mzXML), Matrix Science ( file format: mgf), Yates/
MacCoss Laboratories (file format: ms2; cms2; bms2), and 
Steen & Steen Laboratory (file format: mz5). Output files 
include mzML, mzXML, mz5, mgf, text, ms1, cms1, ms2, 
and cms2 formats.

After the file format conversion, the next step is the data 
preprocessing. Among the software developed, the XCMS 
(Smith et al. 2006) and MZmine (Katajamaa et al. 2006) 
are considered powerful tools for pre-processing, including 
deconvolution of analytical signals, noise filtering, detection 
and alignment of chromatographic peaks, baseline correction 
and gap filling and quantification of data from experiments 
analyzed by LC–MS and GC–MS. However, the processing 
in this software appears to underestimate GC–MS data (Ma 
and Qi 2021), with the MSDIAL software as an interesting 
alternative to be considered (Tsugawa et al. 2015).

Next, statistical analysis is applied after data pre-
processing. Single variable or multivariable analyses are 
commonly used to evaluate groups as classical methods, 
with multivariate analysis as the most used in metabolomic 
studies of fungi (van Tilburg Bernardes et al. 2020; Swift 
et al. 2021; Castaño et al. 2022; Kandasamy et al. 2023). 
These analyses are generally employed to evaluate changes 
in the metabolic profiles between groups, and are divided 

into supervised and unsupervised analyzes (van Tilburg 
Bernardes et  al. 2020; Swift et  al. 2021; Castaño et  al. 
2022; Kandasamy et al. 2023). The major unsupervised 
analysis comprise Principal Component Analysis (PCA) 
and Hierarchical Clustering Analysis (HCA), and the 
supervised ones include Partial Least Squares Discriminant 
Analysis (PLS-DA) and Orthogonal Partial Least Squares 
Discriminant Analysis that is based on orthogonal 
signal correction (OPLS-DA) (Xia et  al. 2015). PCA, 
for example, can be used to discriminate the metabolic 
profile between samples under different treatments (Du 
et al. 2021). PLS-DA and OPLS-DA can be employed to 
distinguish samples under different treatments and show 
the potential metabolites that contribute to these differences 
(Du et  al. 2021; Maserumule et  al. 2023; Singh et  al. 
2023). The main platform used for this type of analysis in 
metabolomics studies is MetaboAnalyst (Xia et al. 2015). 
In addition to these analyses, other statistical analysis (one 
factor), biomarker analysis, enrichment analysis, pathway 
analysis, functional meta-analysis of MS peaks, MS peaks 
to pathways, and network analysis, are included in this 
platform. Moreover, other tools are summarized in Table 7 
in addition to MetaboAnalyst, as previously shown.

The Molecular Networking (MN) is a useful data 
analysis workflow for untargeted MS/MS-based metab-
olomics studies, since it provides means of identifying 
known compounds/molecular families, putatively novel 
molecular families, and evaluate differences associated 
with changes in culture conditions, among others (Ernst 
et al. 2019; Fan et al. 2019; Xu et al. 2021; Beniddir et al. 
2021). MN organizes the MS/MS spectra of metabolites 
present in an extract according to their fragment similari-
ties, which can be visualized by suitable software such 
as Cytoscape (Fan et al. 2019). MN uses the GNPS plat-
form (Wang et al. 2016) to integrate a publicly available 
spectral library and the experimental MS/MS spectra for 

Fig. 8  Main data processing steps in fungal metabolomics studies. Figure created in BioRender software
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comparisons. GNPS offers a user-friendly workflow and 
numerous tools for analyzing MS/MS data, including Mol-
NetEnhancer and Spec2Vec (Ernst et al. 2019; Huber et al. 
2021). MolNetEnhancer integrates GNPS molecular net-
work results, molecular mining tools (MN and MS2LDA), 
in silico annotation (NAP and DEREPLICATOR), and 
automated chemical annotation (Ernst et al. 2019). Thus, 
this approach allows annotation of multiple compounds, 
providing a comprehensive view of chemodiversity within 
a metabolome (Liu et al. 2022). It is worth noting that the 
MN created in the GNPS workflow are based on cosine 
scoring. Cosine-based methods are very good at revealing 
almost identical spectra, but are not as suitable for deal-
ing with molecules with multiple local chemical modi-
fications (Huber et al. 2021). The Spec2Vec, integrated 
into the GNPS workflow, can be an alternative, as it con-
siders fragmentary relationships within a spectral dataset 
to derive abstract spectral embeddings that can be used 
to assess spectral similarities (Huber et al. 2021). There 
is also the SIMILE tool, which produces structural con-
nections inferred from spectral alignment in MN (Treen 
et al. 2022). This tool makes it possible to classify spec-
tral alignments based on p-values in order to explore the 
structural relationships between compounds and improve 
the chemical connectivity obtained with MN (Treen et al. 
2022).

Other tools can also be used to exploit the data obtained 
from metabolomic studies of endophytic fungi or molecules 
isolated from these microorganisms, such as in silico 
bioactivity prediction tools. This type of approach has 
been considered promising for rapid, low-cost screening 
to discover potentially bioactive molecules and their 
mechanisms of action (Keiser et al. 2007; Gfeller et al. 2014; 
Gu et al. 2023). Currently, there are numerous protocols 
used to predict bioactivity in silico, which can be classified 
as approaches based on molecular similarity (Nickel et al. 
2014), network-based models (Wang and Zeng 2013), and 
advanced machine learning methods (Pahikkala et al. 2015). 
An example of such a tools is the Swiss Target Prediction 
web server, which makes it possible to combine 2D and 3D 
similarity measurements of molecules with known ligands 
and map predictions between and within organisms based on 
target homology (Gfeller et al. 2014). There are also other 
in silico prediction tools, such as ChemMapper (Gong et al. 
2013), SuperPred (Nickel et al. 2014), PharmMapper (Wang 
et al. 2017), and DrugBank (Wishart et al. 2006). Each of 
these tools has advantages and disadvantages, and the choice 
of tool depends on the objectives of the study. Furthermore, 
in silico bioactivity prediction does not replace biological 
assays, but serves as a quick guide for the search for new 
compounds.

Ta
bl

e 
7 

 (c
on

tin
ue

d)

So
ftw

ar
e

C
at

eg
or

y
D

es
cr

ip
tio

n
C

om
pa

tib
ili

ty
La

ng
ua

ge
Re

fe
re

nc
es

M
et

ab
oL

ig
ht

s
Re

po
si

to
ry

Pu
bl

ic
 re

po
si

to
ry

 fo
r m

et
ab

ol
om

ic
s d

at
a

M
S/

M
S

Se
rv

id
or

 w
eb

H
au

g 
et

 a
l. 

(2
01

2)
M

et
ab

ol
om

ic
s w

or
kb

en
ch

Re
po

si
to

ry
Pu

bl
ic

 re
po

si
to

ry
 fo

r m
et

ab
ol

om
ic

s d
at

a
M

S/
M

S
Se

rv
id

or
 w

eb
Su

d 
et

 a
l. 

(2
01

6)
Sw

is
s t

ar
ge

t p
re

di
ct

io
n

B
io

ac
tiv

ity
 p

re
di

ct
io

n
A

 c
om

bi
na

tio
n 

of
 2

D
 a

nd
 3

D
 si

m
ila

rit
ie

s w
ith

 
kn

ow
n 

lig
an

ds
SM

IL
ES

Se
rv

id
or

 w
eb

G
fe

lle
r e

t a
l. 

(2
01

4)

SE
A

 se
ar

ch
B

io
ac

tiv
ity

 p
re

di
ct

io
n

Si
m

ila
rit

y 
se

ar
ch

in
g

SM
IL

ES
Se

rv
id

or
 w

eb
K

ei
se

r e
t a

l. 
(2

00
7)

Su
pe

r-P
R

ED
B

io
ac

tiv
ity

 p
re

di
ct

io
n

E-
va

lu
e 

in
di

ca
tin

g 
th

e 
re

lia
bi

lit
y 

of
 th

e 
pr

ed
ic

tio
n

SM
IL

ES
Se

rv
id

or
 w

eb
N

ic
ke

l e
t a

l. 
(2

01
4)



 Archives of Microbiology (2024) 206:185185 Page 26 of 34

Eco‑Metabolomics of interaction 
between endophytic fungi and host plant

Endophytic fungi are an important component of the plant 
microecosystem and perform key functions for physiological, 
biological, and adaptive processes of host plants (Baron 
and Rigobelo 2021). The mechanisms of interaction 
between endophytes and host plants are complex and 
generally involve production of compounds by both fungus 
and plant, which act as effectors of a multidimensional 
interaction (Alam et al. 2021). Therefore, the colonization 
of plant tissue by endophytic fungi does not occur merely 
through chemotaxis, but depends on a complex and specific 
relationship, which is the result of the coevolution of these 
two groups of organisms (Alam et al. 2021). Plants secrete 
chemical compounds that are recognized by endophytic 
fungi (Tripathi et al. 2022; Hashem et al. 2023). This most 
often results in the production of specialized enzymes and 
compounds by endophytic fungi that are recognized by 
the host plant and act to mediate the colonization process 
(Tripathi et al. 2022; Hashem et al. 2023). Once inside the 
plant tissue, endophytic fungi can act directly on the fitness 
and physiology of their host through the production of 
numerous secondary metabolites (Alam et al. 2021; Tripathi 
et al. 2022). The plant, in turn, offers the fungus a habitat 
with stable environmental conditions and nutrients (Alam 
et al. 2021). However, it is worth highlighting that most of 
the metabolic pathways and compounds that mediate and/
or originate from this interaction are unknown mainly due 
to methodological limitations.

Recently, a new disciplinary area within metabolomics 
has emerged, eco-metabolomics. This area of knowledge 
is focused on the application of metabolomics techniques 
to ecology aiming at characterizing the biochemical 
interactions of organisms at different spatio-temporal scales 
(Nagler et al. 2018; Peters et al. 2018; Wong et al. 2020). 
Therefore, the application of metabolomics to study the 
different interactions between species provides not only 
a comprehensive view of metabolic pathways involved, 
but also helps explain the mechanisms underlying the 
interactions (Gupta et al. 2022).

Many studies on interaction between EFs and host plant 
to decipher and/or understand ecological relationships have 
been published using metabolomics (Szűcs et al. 2018; 
Plaszkó et al. 2022; Poveda et al. 2022; Ma et al. 2023). The 
use of untargeted metabolomics (LC–MS) combined with 
metagenomics correlated the structure of the root mycobiome 
of Armoracia rusticana with significant changes in its 
metabolome (Plaszkó et al. 2022). Also, the concentration 
of kaempferol flavonoid glycosides positively correlated 
with the abundance of specific fungal taxa, while indole 
and glutathione isothiocyanate phytoalexins were negatively 
correlated with other fungal taxa (Plaszkó et al. 2022). Ma 

et al. (2023) used metabolomics to understand the symbiotic 
relationship between soil–plant–fungi and secondary 
metabolites in Fagopyrum dibotrys, demonstrating positive 
and negative correlations between certain fungal taxonomic 
groups with specific classes of compounds. These findings 
reinforce the importance of metabolomics to study the 
interaction between endophytes and host plants, aiming at 
elucidating and understanding the processes of endophytic 
community assembly, the environmental filter effect exerted 
by the host plant, and the effects of the EFs community on 
plant physiology, among other ecological aspects.

Final considerations

The exploration of metabolite production by EFs holds 
tremendous potential for a wide range of applications 
from medicine to agriculture, and beyond. Currently, EFs, 
with their vast genetic diversity and ability to produce an 
array of bioactive compounds, are an invaluable resource 
for addressing some of the most pressing challenges 
worldwide. The potential benefits from these multifaceted 
microorganims comprise life-saving antibiotics and 
antifungal agents, and new solutions to combat drug-
resistant pathogens, with sustainable alternatives to 
traditional chemical pesticides and fertilizers in agriculture, 
enabling environmentally friendly and resilient practices. 
Furthermore, the commercial applications of fungal 
metabolites extend to various biotechnological innovations, 
offering solutions for a cleaner environment and reduced 
carbon footprint. As promising research continues to 
advance, the metabolite production potential by EFs tends 
to increase consistently. However, it is essential to focus 
on some associated challenges that includes optimization 
of the production methods in adittion to ensure sustainable 
sourcing. Finally, the EFs metabolite-producing capabilitiy 
represent a new era of scientific discovery and innovation to 
minimize environmental damages coupled with new drugs 
for a wide variety of human and animals needs.
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