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Abstract

In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger,
Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO])
in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room
temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the excep-
tional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust
growth, achieving a remarkable 59.1% expansion across the medium’s surface, accompanied by distinctive macroscopic traits,
including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we
conducted experiments in a liquid medium, quantifying CO, production through gas chromatography, which reached its zenith
at day 30, signifying substantial bioconversion with a 38% increase in CO, production. Additionally, we monitored changes
in surface tension using the Du Noiiy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m.
This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generat-
ing valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing
challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.
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Introduction

Petroleum, a natural hydrocarbon product formed through
Communicated by Yusuf Akhter. microbial biotransformation at elevated temperatures and
pressures, alongside natural gas and coal, constitutes a
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significant portion, roughly 80-90%, of the world’s total
energy production (Graus et al. 2011; Strubinger et al.
2015). Despite ongoing efforts to develop alternative energy
sources such as biofuels, solar, and wind energy, it is pro-
jected that fossil fuels will continue to meet at least 80% of
the global energy demand over the next 20-30 years (IEA
2019; Mirchi et al. 2012; Shibulal et al. 2014).

However, global conventional oil production is on a
downward trajectory due to the aging of existing oil fields
and the challenges associated with discovering new ones
to replace the depleted reserves. This predicament under-
scores the increasing significance of unconventional oil
reserves, including heavy crude, extra-heavy crude, bitu-
men, tar sands, and shale oil, which constitute an estimated
50-70% of the world’s recoverable oil resources (Head et al.
2003; IEA 2019; Demirbas et al. 2016; Central Intelligence
Agency 2018; Singh and Choudhary 2021).

Unconventional or heavy crude oils (HCOs) are charac-
terized by a molecular composition featuring a higher car-
bon content, elevated levels of heteroatoms (such as sulfur,
nitrogen, and oxygen), and substantial quantities of heavy
metals (including nickel, iron, copper, and vanadium). These
unique physicochemical properties give rise to significant
operational challenges throughout the heavy oil production
chain, from extraction to transportation and, ultimately,
refining. Consequently, the handling of HCOs involves lower
recovery rates, increased waste generation, and notable envi-
ronmental impacts (Castro and Vazquez 2009; Madden and
Morawski 2011; Shibulal et al. 2014; He et al. 2015; Speight
2017).

In this context, the use of strategies based on hydrocar-
bon-degrading microorganisms as a biological treatment to
reduce the viscosity and density of unconventional crudes
emerges as a cost-effective and environmentally friendly
alternative (Leon and Kumar 2005; Rana et al. 2007; Harner
et al. 2011). These degrading microorganisms employ a
range of mechanisms for hydrocarbon adsorption, and the
remarkable versatility of microbial metabolism can be har-
nessed to address various challenges posed by unconven-
tional crude oils. This includes the removal of heteroatoms
from oil or modifying their chemical composition through
diverse catabolic pathways capable of breaking down the
complex mixture of compounds. As a result, these microor-
ganisms excrete valuable substances such as biosurfactants,
enzymes, and bioacids (Olivera et al. 2009; Ward 2010;
Gargouri, et al. 2017).

The majority of research in this field has primarily
focused on the degradation of specific petroleum frac-
tions, such as asphaltenes, polycyclic aromatic hydrocar-
bons (PAHSs), or the selective extraction of heteroatoms.
These investigations are rooted in bioconversion princi-
ples encompassing various strategies, including microbial
enhanced oil recovery (MEOR), biodesulfurization (BDS),
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biodenitrogenation (BDN), viscosity reduction/bioupgrading
and/or extra-HCO bioconversion (BKN), and biodemetalli-
zation (BDM) (Borole and Ramirez-Corredores 2007; Spei-
ght 2014, 2017; Ayala et al. 2012; EI-Gendy and Speight
2015; Speight and El-Gendy 2017).

In recent years, numerous bacterial strains, including
those from Bacillus and Petrotoga species, have been iso-
lated from oil reservoirs or oil-contaminated sites, exhibiting
the remarkable ability to degrade the substantial alkyl chains
present in various paraffinic blends and HCOs (Wang et al.
2006; Das and Mukherjee 2007; She et al. 2011; Gudifia
et al. 2012, 2013a, b; Sugai et al. 2014). Microbial strains
such as Pseudomonas spp., Bacillus licheniformis, Bacillus
lentus, Bacillus cereus, and Bacillus firmus have demon-
strated their proficiency by effectivelydegrading 35% to 48%
of asphaltenes after a 2-month incubation period at varying
temperatures (ranging from 28 to 40 °C) using either pure or
mixed cultures (Tavassoli et al. 2012; Gudifia and Teixeira
2017). Additionally, research has reported the valorization of
Heavy Vacuum Gas Oil (HVGO) through the utilization of
Pseudomonas aeruginosa, resulting in improved outcomes,
albeit without significant alterations observed in the distil-
lation profile of the biotreated crude oil (Ismail et al. 2017a,
b). Furthermore, investigations into the crude oil biodegra-
dation capacity of the Stenotrophomonas maltophilia (SS13)
strain have revealed promising results. Following incubation
with SS13, the crude oil exhibited substantial wax removal
and viscosity reduction rates, reaching 74.36% and 47.83%,
respectively (Wang et al. 2020). These findings underscore
the potential of these bacterial strains in enhancing the bio-
processing of crude oil and provide valuable insights into
their applications within the energy industry.

While a substantial body of research has predominantly
focused on hydrocarbon biodegradation, particularly with
bacteria, it is worth noting that the anaerobic hydrocarbon
transformation pathway exhibits a comparatively slower
rate when contrasted with the oxygen degradation path-
way. Anaerobic bacterial degradation of crude oil primarily
occurs under various conditions, including methanogenic,
sulfate-reducing, and iron-reducing environments (Foght
2004; Fida et al. 2016; Chen et al. 2020). Fungi have advan-
tages over bacteria, such as their adaptability to extreme con-
ditions of temperature, pH, and salinity, which allows them
to survive and maintain their activity in highly contaminated
environments, including high-salinity seawater or hypersa-
line water (Varjani and Patel 2017; El-Shall et al. 2023), in
addition to the formation of filamentous structures called
mycelia, which allows them to spread and colonize larger
areas in search of nutrients, which can be beneficial for the
biodegradation of HCO (Amran et al. 2022), as well as the
production of oxidative enzymes and secondary metabolites
such as lipids that improve substrate access (EI-Shall et al.
2023).
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Interestingly, reports indicate that fungi, including
Amorphoteca, Talaromycetes, Fusarium, Penicillium,
Trichoderma, Aspergillus, Neosartorya, Pseudallescheria,
Cladosporium, Pestalotiopsis, Phoma, and Paecillomyces,
synthesize extracellular oxidative enzymes, particularly
those associated with lignin-degrading enzyme systems,
under aerobic conditions. Additionally, they produce
monooxygenase enzymes that effectively degrade a wide
range of aliphatic compounds through terminal or subter-
minal oxidation, while aromatic compounds are broken
down via dioxygenase activity (Naranjo et al. 2007; Al-
Hawash et al. 2018; Singh and Choudhary 2021). Notably,
a strain of Neosartorya fischeri has demonstrated the abil-
ity to grow using asphaltenes as its sole carbon and energy
source, resulting in the degradation of up to 13% of the
asphaltenes. Laccase activity was detected in the medium,
indicating its potential involvement in the degradation pro-
cess (Uribe-Alvarez et al. 2011; Hernandez-Loépez et al.
2016). Moreover, a co-culture of the fungi Pestalotiopsis
spp- NG0O7 and Polyporus spp. S133 exhibited remarkable
efficiency in the degradation of the asphaltic fraction of
crude oil. After a 30-day incubation period at 25 °C, 81%
of the resins and 79% of the asphaltenes were degraded.
This synergy was attributed to the increased production
of degradative enzymes, including catechol dioxygenases,
laccase, manganese peroxidase (MNPp), and lignin peroxi-
dase (LIPp), compared to pure cultures. Furthermore, bio-
degradation tests utilizing crude enzymes extracted from
the fungal cultures revealed that the enzyme mixture pro-
duced by both fungi was more effective in degrading the
asphalt fraction compared to the crude enzymes produced
by each fungus individually (Yanto and Tachibana 2014).

Despite numerous reports showcasing the ability of
various microorganisms to metabolize crude oil or its
fractions, there remains a critical knowledge gap in this
field. This gap primarily stems from the fact that the sub-
strate percentages employed in previous research rarely
exceed 4% v/v. While such concentrations may suffice for
applications like bioremediation, they are often inadequate
and unscalable for bioupgrading or resource utilization
purposes.

In light of these limitations, the objectives of this study
are as follows:

(1) To isolate and identify fungal microorganisms
sourced from a 17°API HCO, specifically from the
Napo region in Ecuador.

(i1)) To quantitatively assess the growth of pre-selected
and isolated fungal strains when cultivated in culture
media containing 20%, 35%, and 50% v/v of HCO as
the sole carbon source.

(iii) To demonstrate the assimilation capacity of the fun-
gal strain that exhibits the most robust growth.

With these objectives in mind, this research endeavors
to bridge the knowledge gap and provide valuable insights
into the potential of fungal microorganisms in utilizing sub-
stantial concentrations of HCO as a carbon source, thereby
contributing to advancements in bioupgrading and resource
utilization technologies.

Materials and methods

The HCO used in this study was generously supplied by
“Empresa Nacional del Petréleo de Chile” (ENAP). This
crude oil originated from Ecuador and possesses specific
characteristics, including an API gravity of 17.1°, a viscosity
of 348.48 ¢ST at 50 °C, and a sulfur content of 2.411%. The
non-isolated microorganisms employed in this research were
sourced from the Chilean Culture Collection of Type Strains
(CCCT) at the BIOREN-UFRO Scientific and Technological
Bioresource Nucleus, affiliated with the “Universidad de La
Frontera.”

Isolation of microorganisms

A HCO sample was introduced into Petri dishes utilizing a
metal clamp and Sabouraud solid medium (Emmons): con-
sisting of peptone at a concentration of 10 g/L, glucose or
dextrose at 20 g/L, and agar at 15 g/L, as per (Hare 2013).

Identification of microorganisms

DNA was extracted from fresh mycelia obtained from plate
cultures of the collected fungi and the isolated strain. Sub-
sequently, the ITS region was amplified via PCR using DNA
from pure cultures, and Sanger sequencing was carried out
utilizing primers ITS1 and ITS4. These primers produce
two sequences, approximately 500 bp each, on both the for-
ward and reverse strands. The resulting sequences were later
assembled, and a blast analysis was conducted, as outlined
by Jasalavich et al. (2000). The sequencing process was
executed using a 3500 Genetic Analyzer instrument.

Preparation of inoculums

The fungi were initially cultured on Sabouraud’s agar in
Petri dishes. Subsequently, to expand the fungal growth, an
increased quantity of this medium was prepared to accom-
modate fungal replication, but in a slanting manner within
1-L bottles. This approach provided a larger surface area
conducive to microbial development. The fungal cultures
were maintained at 25 °C for an initial incubation period
of 15 days, following the protocol outlined by Araujo et al.
(2016). Following incubation, spores were harvested using
10 mL of sterile distilled water and sterile metal tweezers

@ Springer



123 Page4of19

Archives of Microbiology (2024) 206:123

to gently remove the fungus from the surface. The col-
lected spores were then deposited into an amber bottle,
employing sterile gauze as a filtration medium. Subse-
quently, spore quantification was promptly carried out
using a Neubauer chamber Barbedo (2013).

Solid culture medium

To assess the growth capacity of fungi when metabolizing
HCO, an experimental design employing a 3 X 3 X 3 matrix
was conducted. This design encompassed variations in the
culture medium, incubation time, and fungal strain type,
with the response variable being the radial biomass growth
observed in Petri dishes.

For this purpose, Czapeck base culture media were
meticulously prepared with yeast extract (CzY), which
consisted of the following components: Dipotassium phos-
phate at 1 g/L, a concentrated solution of salts at 10 mL/L,
yeast extract at 5 g/L, sucrose at 30 g/L, and agar at 15 g/L.
These media were sterilized using an autoclave at 120 °C
for a duration of 15 min. The concentrated solution of
salts, an essential component, comprised of distilled water
at 100 mL, sodium nitrate at 30 g, potassium chloride at
5 g, magnesium sulfate heptahydrate at 5 g, and ferrous
sulfate heptahydrate at 5 g. This solution was stored at
room temperature in a sealed flask, following the proce-
dure detailed by Carrillo (2003) and Carrillo et al. (2007).
To replace the carbon source (sucrose) with HCO, concen-
trations of 20% v/v, 35% v/v, and 50% v/v were utilized.
Emulsification of these culture media was achieved using
Triton X-100, as (Martinez-Martin et al. 2016).

In the experimental setup, the original culture medium
(CzY) containing sucrose served as the positive control,
while the CzY0O medium, devoid of sucrose and, thus,
lacking a carbon source, was prepared as the negative
control. Each of these media was prepared in triplicate
for all five fungal strains, resulting in 75 Petri dishes for
experimentation.

Seeding of microorganisms

In the Petri dishes containing solid media, 10 uL of fungal
inoculum was carefully deposited at the center of each
dish. Specifically, for each fungus, five plates with differ-
ent media were inoculated in triplicate. This process was
carried out within a UV hood, and burners were employed
to prevent contamination. Subsequently, these plates were
incubated for a period of 30 days at room temperature,
which ranged between 25 and 30 °C, in accordance with
the methodology established by Hildebrand (1938).

@ Springer

Biotransformation test

Three Czapeck liquid nutrient media, devoid of agar, were
meticulously prepared, each incorporating yeast extract.
These media were formulated by substituting the carbon
source (sucrose) with HCO at concentrations of 20% v/v,
35% viv, and 50% v/v. Notably, no emulsification was per-
formed. Each of these nutrient solutions was dispensed into
300 mL bottles at a volume of 200 mL.

In addition to the experimental media, a positive con-
trol, consisting of Czapeck liquid nutrient medium with the
original yeast extract, was prepared and inoculated with a
10 mL fungal inoculum. Furthermore, a negative control was
established, comprising a culture medium containing 35%
uninoculated HCO. These media were prepared in triplicate,
resulting in a total of 15 bottles.

All bottles were stored at ambient temperature, main-
tained between 25 and 30 °C, and subjected to orbital shak-
ing at 200 rpm for 10 weeks. This experimental protocol
adhered to the methods outlined by Yanto and Tachibana
(2013) and Ismail et al. (2017).

Production de CO,

Headspace analysis was conducted daily for the first week,
followed by measurements every other day for the subse-
quent 2 weeks. Subsequently, weekly measurements were
continued until a total of 10 weeks had been covered. For
each analysis, 250 uL of the sample was extracted and sub-
jected to analysis using an Agilent Technologies 7820A gas
chromatograph. This instrument was equipped with an Agi-
lent 250361-01 Carboxen 1010 Plot column and a Thermal
Conductivity Detector (TCD). The oven temperature was
maintained at 200 °C, while the detector temperature was
set at 230 °C. The operational temperature range spanned
from — 60 °C to 250 °C, and the column dimensions were
30 mx 530 pum X 30 pm.

To quantify the results, a standard calibration curve was
previously established to correlate CO, concentrations with
peak area. The data obtained from the analysis are expressed
as a percentage of the total volume generated, in accord-
ance with the methodology outlined by Uribe-Alvarez et al.
(2011).

Changes in surface tension

Sample measurements were conducted at the same frequency
as the headspace analysis using a Kruss Tensiometer, Model
Easy Dine K20, manufactured by Kruss in Germany. This
equipment was outfitted with a platinum ring and operated
at room temperature, which was maintained within the range
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of 25-30 °C. The measurements were carried out utilizing
the Du Noiiy ring method, following the protocol established
by Walter et al. (2010).

To ensure accuracy, the instrument was meticulously
calibrated by adjusting the measurements to achieve a water
surface tension reading of 72 mN/m, as outlined in the pro-
cedure described by Ismail et al. (2014). Subsequently, the
culture media were subjected to centrifugation at 5000 rpm
for 10 min.

Results and discussion
Microorganisms identification

A total of five active fungi, consisting of four purchased
fungi and one fungus isolated from crude oil, were subjected
to sequencing for identification purposes. Photographic doc-
umentation was captured of the prominent growth, highlight-
ing the most pertinent observations (refer to Table 1).

Furthermore, a microscopic image was acquired for the
isolated fungus, and based on its distinctive characteristics,
it was identified as belonging to the Penicillium genus (see
Fig. 1). The spore count in the inocula was determined to be
150,000 colony-forming units (CFU) per 10 uL.

Plate growth analysis

Images of the growth plates were captured daily over a
30-day period, and the irregular areas were quantified using
the ImageJ software. Growth patterns were compared across
different culture media, as depicted in Fig. 2a—e. The stand-
ard deviation among the triplicate measurements was less
than 1, indicating consistency close to the mean. Conse-
quently, the calculated growth areas were averaged among
the triplicates, facilitating a comparison of growth trends, as
summarized in Table 2.

Fungal growth became evident on the 3rd day across all
grow media. Notably, in media with a white base (+y-),
the peak growth occurred between the 8th and 10th days
for all fungi. In contrast, media containing HCO as the sole
carbon source exhibited peak growth between the 14th and
16th days for all fungal strains. Beyond this point, growth
ceased, and a stationary state was observed (refer to Table 2
and Fig. 2a—e). Among the fungal strains, A. flavus consist-
ently exhibited the highest growth area across all media.
Notably, in the presence of HCO, the greatest growth was
recorded in the medium containing 35%v/v HCO as the
carbon source, with a diameter of 5.32 cm out of the 9 cm
total Petri dish diameter. This corresponded to an impres-
sive coverage of 59.1% of the plate’s growth area. Figures 3
and 4 illustrate the initial growth and growth at the peak day

(15 days), offering a visual comparison of the fungal growth
across media.

These results affirm the tolerance of these five fungal
microorganisms to HCO, aligning with previous findings
regarding the aerobic degradation abilities of fungal spe-
cies such as Aspergillus, Penicillium, and Cunninghamella.
These fungi are known to activate monooxygenase, which
reduces molecular oxygen and promotes degradation.
Moreover, the activity of lignin-degrading enzymes like lac-
case (LACp), LIPp, MNPp, versatile peroxidase (VEPp),
and non-lignolytic enzymes like cytochrome P450 further
facilitates the degradation of polyaromatic hydrocarbons,
n-alkanes, and crude oil (Naranjo et al. 2007; Elshafie et al.
2007; Aydin et al. 2017; Singh and Choudhary 2021).

Among the fungal strains, A. flavus demonstrated the
highest growth on the plates, followed by Aspergillus niger,
Penicillium chrysogenum, Penicillium rubens (isolated
strain), and Penicillium glabrum. It is worth noting that pre-
vious studies reported favorable results for hydrocarbon and
crude oil degradation by A. flavus; however, these experi-
ments involved low substrate concentrations ranging from
0.1% to 1% v/v crude oil in the culture medium. These stud-
ies revealed that A. flavus degraded 82.7% of total PAH com-
pounds after 15 days of incubation (Al-Dossary et al. 2020).

While these percentages are acceptable for bioremedia-
tion studies involving small hydrocarbon quantities, research
related to oil spills and heavy oil bioupgrading necessitates
investigations with substantially higher substrate percent-
ages. Such studies provide valuable insights for biotechno-
logical applications and reduce water consumption. Hence,
this research employed culture media with elevated HCO
concentrations by volume (20%, 35%, and 50%).

To comprehensively assess A. flavus’s proficiency in
metabolizing HCO as a carbon source, detailed observations
of its macroscopic characteristics were conducted across
different culture media with varying HCO percentages.
Comparisons were made with the original culture medium
(containing sucrose) and the medium devoid of a carbon
source, enabling the qualitative identification of evolution-
ary differences.

Figure 5 offers a detailed view of the macroscopic char-
acteristics of A. flavus growth. In the medium containing
sucrose (A), the fungal growth is remarkable, exhibiting a
cottony appearance with white hues toward the outer region
and vibrant yellow circles toward the center. The coloration
is vivid, and spores are distinctly visible. Notably, growth
is observed radiating outward from the center, giving it a
three-dimensional aspect.

In contrast, the negative control without a carbon source
(only containing 0.5% yeast extract) (B) displays growth
extending across the plate but with weaker and less clustered
spores. This variant lacks the cotton-like appearance, the
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Fig. 1 Image taken with a 2MP
microscope camera, from a
model 902N microscope at 40X
objective, showing 1:conidi-
ophores, 2:metula, 3:phialides,
4:ascospore of the fungus
isolated from the heavy crude,
indicating that it belongs to the
genus Penicillium

yellow coloration, and the outward radial growth. Instead,
growth is confined to the agar surface.

Examining the fungus’s growth in media containing crude
oil (C and D), while the radial expansion may not be as
extensive, it still exhibits significant macroscopic charac-
teristics. Notably, spores appear denser, imparting a three-
dimensional cotton-like appearance.

Similar to the sucrose-containing medium, there are white
regions toward the outer periphery and yellow hues at the
center. This indicates that the fungus effectively metabolizes
HCO, utilizing it as a substrate for growth while harnessing
other nutrients from the culture medium.

Considering the structural complexity of HCO, char-
acterized by its high content of heavy fractions such as
asphaltenes and resins, as well as heteroatoms, it can be con-
fidently stated that the fungus activates its enzymatic arse-
nal. This activation process aligns with previous research
(Speight 2014, 2017; Hernandez-Lopez et al. 2015; Naranjo
et al. 2007) and potentially involves secondary metabolites
like biosurfactants or cometabolites.

These substances facilitate substrate availability and con-
tribute to the degradation of HCO into simpler compounds.
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Notably, the depolymerization of asphaltenes and resins
likely occurs through cleavage at active sites containing het-
eroatoms, liberating trapped small molecules (Gudifia and
Teixeira 2017; Heimann et al. 2017; Speight 2019; Nikolova
and Gutierrez 2020).

The tests conducted in the solid medium provided valu-
able qualitative insights into the growth of fungal microor-
ganisms and served as an initial indicator of HCO metabo-
lization. However, to precisely quantify the utilization of
HCO as a carbon source by A. flavus, a series of tests were
replicated, this time in a liquid medium. The liquid medium
encompassed the same range of HCO percentages (20%,
35%, and 50%) v/v and extended over a longer duration
(10 weeks). Continuous agitation at 200 rpm was maintained
at room temperature (25-30 °C).

CO, production directly correlates with substrate (HCO)
degradation, particularly in a hydrocarbon mixture rich
in heavy fractions such as asphaltenes and resins. In a
prior study, the focus was solely on the mineralization of
asphaltenes from Mayan crude oil. This research employed
a strain, N. fischeri, isolated from a natural asphalt lake. The
study observed CO, evolution over 9 weeks, considering
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Fig.2 (continued)

initial and final weights, as well as the weight of the inocu-
lum. Additionally, an elemental analysis of carbon revealed
that carbon represented 83.5% of the total weight of
asphaltenes in the crude oil. The balance indicated a miner-
alization of at least 15.5% of the asphaltenes (Durand et al.
2010; Uribe-Alvarez et al. 2011).

In our current research, CO, production was meticulously
monitored through headspace analysis employing gas chro-
matography, as displayed in Table 3 and Fig. 6. The percent-
age by volume of CO, gas produced exhibited a consistent
increase until day 30. The positive control (with sucrose)
demonstrated a 58% production of CO,, indicating proper
inoculation of the media. In contrast, the control medium

@ Springer

15 20 25 30

Time (days)

or negative blank (without inoculum) did not exhibit any
significant CO, production. Concerning the media contain-
ing HCO as a carbon source, higher gas production was
observed in the media with 20% and 35% substrate, regis-
tering production rates of 33% and 35%, respectively. This
finding aligns with the outcomes of the solid media experi-
ments. Notably, the medium containing 50% HCO displayed
lower gas production, suggesting substrate supersaturation
in the medium, rendering it impossible to achieve correct
mineralization.

Furthermore, the production of biosurfactants plays a
pivotal role in enhancing the availability of water-insol-
uble or immiscible hydrocarbons, facilitating improved
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Fig.3 Growth of A. flavus on

2 media: A CzY20 (Czapeck
medium with yeast extract and
20% HCO as carbon source) at
3 days of growth; B CzY20 at
15 days of growth. C CzY35
(Czapeck medium with yeast
extract and 35% HCO as carbon
source) at 3 days of growth; D
CzY35 at 15 days of growth

microorganism access to these substrates. Consequently, this
promotes biodegradation efficiency. When faced with hydro-
phobic substrates like HCO, some microorganisms produce
biosurfactants as secondary metabolites, a common physi-
ological adaptation (Ward 2010; Mnif et al. 2011; Ismail
et al. 2014, 2017a, b).

To provide direct evidence of biotensioactive production,
we closely monitored the alteration in surface tension within
the cultures over time, as depicted in Fig. 7. Several control
measurements were incorporated into the study. First, the
surface tension of Milli Q water, which typically registers
at 72 mN/m, was employed as a reference, and used to cali-
brate the instrument during each measurement. Second, the
surface tension of the heavy crude (HCO) devoid of cul-
ture medium was measured, yielding a value of 30 mN/m.
Lastly, a negative blank consisting of a culture medium with
35% HCO as the sole carbon source, devoid of inoculum,
resulted in a surface tension measurement of 30.80 mN/m,
indicative of minimal emulsification due to the absence of
microorganisms.

In contrast, when considering the culture media contain-
ing HCO as the carbon source with inoculum, we observed

@ Springer

fluctuations in surface tension. In comparison to the surface
tension of heavy crude and the negative blank, these media
exhibited an increase in surface tension. Conversely, when
compared to the surface tension of water, a decrease was
observed, signifying biosurfactant production and emulsi-
fication of the media. Notably, the most substantial altera-
tion occurred between days 9 and 11, representing the peak
increase in media tension. Among these media, the most
significant change was observed in the medium with 20%
HCO, followed closely by the medium with 35% HCO.

At the culmination of the 10-week bioconversion process,
all media underwent centrifugation at 5000 rpm for 10 min,
separating the phases and allowing for the measurement
of surface tension in the supernatants. Figure 8 illustrates
that the surface tension of the aqueous phase experienced
the most significant decrease in the media with 20% HCO,
reaching a measurement of 47 mN/m.

This decline in surface tension serves as strong confir-
mation that the fungal microorganism A. flavus effectively
utilized HCO as a carbon source for its own growth and the
production of biotensioactives. Moreover, it demonstrates
that the biosurfactants derived from HCO were subsequently
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Fig.4 Growth of A. flavus on
3 media: A CzY50 (Czapeck
medium with yeast extract and
50% HCO as carbon source)

at 3 days of growth; B CzY50
at 15 days of growth. C CzY
(Czapeck medium with yeast
extract and 3% sucrose as
carbon source—positive blank)
at 10 days of growth; D CzY0
(Czapeck medium with yeast
extract and no carbon source—
negative blank) at 10 days of
growth

Fig.5 Macroscopic characteristics of A. flavus according to dif-
ferent media. A CzY (Czapeck medium with yeast extract and 3%
sucrose as carbon source-positive blank); B CzY0(Czapeck medium
with yeast extract without carbon source—negative white); C

CzY35 (Czapeck medium with yeast extract and 35% HCO as car-
bon source); D CzY50 (Czapeck medium with yeast extract and 50%
HCO as carbon source)
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Table 3 Production de CO,

o,

time (days) FCZ20 (%) FCZ35 (%) FCZ50 (%) FCZOW (%) WCZ35 (%)
0 0 0 0 0 0
1 2 4 2 10 2
2 3 6 3 14 2
3 8 11 5 20 4
4 8 12 5 20 4
5 9 13 6 21 4
6 9 13 6 23 5
7 11 14 7 24 5
9 13 15 9 25 8
11 14 20 15 30 9
13 19 26 18 35 9
15 20 28 19 42 9
17 24 28 19 47 9
19 25 28 19 48 9
21 29 29 19 48 9
23 30 32 19 48 10
30 35 38 20 51 10
37 33 35 17 58 9
44 28 28 16 54 7
51 29 20 15 52 7
58 26 18 15 50 6
65 2 14 15 48 5

excreted into the extracellular medium (Soberén-Chavez and
Maier 2011; Ismail et al. 2017a, b).

To ensure the reliability of the data, a statistical analysis
of variance (ANOVA) was conducted, yielding a p-value
of less than 0.05, further reinforcing the robustness of the
findings.

Study limitations

While this study presents novel insights into the capacity of
fungal microorganisms, particularly A. flavus, to metabo-
lize HCO as a carbon source, some limitations and poten-
tial biases must be acknowledged. First, the study primarily
relied on laboratory-based experiments conducted under
controlled conditions, which may not fully replicate the
complexities of real-world environments where HCO deg-
radation occurs. The study’s duration of 10 weeks may not
capture long-term dynamics and variations in HCO biodeg-
radation. Nevertheless, this research highlights the potential
of A. flavus and other fungi in addressing challenges related
to HCO bioupgrading. It offers valuable insights into sus-
tainable and environmentally friendly solutions for uncon-
ventional oil resources, bridging the gap between laboratory
findings and practical applications in the field.

@ Springer

Economic aspects motivating the research and use
of bioupgrading systems

The use of HCO biodegradation systems prior to the
refining process can have a significant economic impact,
although the specific costs depend on several factors (oper-
ating costs, process efficiency, external factors, among oth-
ers), but an effective biodegradation system can improve
the quality of HCO, making it easier and more economical
to refine. Reducing viscosity or the presence of impuri-
ties can reduce the costs associated with refining, such
as energy consumption, the need for additives or more
complex separation processes.

Considering the demand and use of this energy
resource, any improvement, no matter how small, trans-
lates into a higher percentage of recovery, a greater amount
of valuable product and less production of pollutants into
the environment.

This research was challenging due to the high percent-
ages of HCO (20%, 35%, 50%) v/v to which the fungal
microorganisms were subjected, obtaining encouraging
results that provide important information that can be
complemented with rigorous analysis for future scale-up.
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Fig.6 CO, production according to culture media where: FCZ20
Czapeck medium with yeast extract inoculated with fungus and 20%
HCO, FCZ35 Czapeck medium with yeast extract inoculated with
fungus and 35% HCO, FCZ50 Czapeck medium with yeast extract

Conclusion

The five fungal microorganisms examined in this study
exhibited remarkable tolerance to high-volume percentages
(20%, 35%, and 50%) of HCO in the culture media. To assess
their metabolic potential in degrading HCO, we closely
monitored their growth and observed macroscopic charac-
teristics over time. Among these fungi, A. flavus emerged as
the most promising performer, achieving substantial growth
at 25 °C, with 50% growth in plates containing 20% HCO,
59.1% in plates with 35% HCO, and 48.44% in plates with
50% HCO. It was followed by A. niger, P. chrysogenum, P.
rubens (isolated from HCO samples), and P. glabrum. The
analysis of CO, production further confirmed the superior

30

Time (da_\'s)- :

58%

35 40 45 50 55 60

inoculated with fungus and 50% HCO, FCZOW Czapeck medium
with yeast extract, sucrose and inoculated with fungus (control),
WCZ35 Czapeck medium with yeast extract and 35% HCO without
inoculum (control)

performance of A. flavus, particularly in media contain-
ing 20% and 35% v/v HCO, with a 35% and 38% increase,
respectively. Notably, the most significant reduction in the
surface tension of the aqueous phase was observed in the
culture medium with 20% v/v HCO, decreasing from 72.3 to
47 mN/m. These findings underscore A. flavus’s capability
to metabolize HCO for growth and biosurfactant production,
positioning it as a promising candidate for bioremediation
of oil spills and bioupgrading of crude oil. Further research
should focus on determining which fractions of crude oil
are most susceptible to attack by this microorganism and
elucidating the associated metabolic pathways, paving the
way for viable biotechnological solutions.
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FCZ20 Czapeck medium with yeast extract inoculated with fungus

Fig.8 Changes in the surface
tension of the aqueous phase
where: Mili-Q water control,
CZ35 aqueous phase of the
medium with 35% of HCO
without inoculum (control),
FCZ20 aqueous phase of the
inoculated medium and 20%
HCO, FCZ35 aqueous phase of
the inoculated medium and 35%
HCO, FCZ50 aqueous phase

of the inoculated medium and
50% HCO
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