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Abstract
Plants are exposed to a myriad of microorganisms, which can range from helpful bacteria to deadly disease-causing patho-
gens. The ability of plants to distinguish between helpful bacteria and dangerous pathogens allows them to continuously 
survive under challenging environments. The investigation of the modulation of plant immunity by beneficial microbes is 
critical to understand how they impact plant growth improvement and defense against invasive pathogens. Beneficial bacterial 
populations can produce significant impact on plant immune responses, including regulation of immune receptors activity, 
MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) activation, transcription factors, and reactive oxygen species (ROS) 
signaling. To establish themselves, beneficial bacterial populations likely reduce plant immunity. These bacteria help plants 
to recover from various stresses and resume a regular growth pattern after they have been established. Contrarily, pathogens 
prevent their colonization by releasing toxins into plant cells, which have the ability to control the local microbiota via as-
yet-unidentified processes. Intense competition among microbial communities has been found to be advantageous for plant 
development, nutrient requirements, and activation of immune signaling. Therefore, to protect themselves from pathogens, 
plants may rely on the beneficial microbiota in their environment and intercommunity competition amongst microbial 
communities.
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Introduction

The interaction between innate immune receptors in plants 
and immunogenic elicitors originating from microbial com-
munities controls the spatial–temporal crosstalk between 
plants and microorganisms. Microbe-triggered immunity 
(MTI) signaling begins when plant cell surface receptors, 
also known as pattern recognition receptors (PRRs), rec-
ognize the elicitors produced by bacteria, such as microbe-
associated molecular patterns (MAMPs) (Couto and Zipfel 
2016). The majority of the microbes that inhabit the plant 
leaves are non-pathogenic and are able to elicit PRR-medi-
ated pattern-triggered immunity (PTI) responses. PTI mainly 
requires phytohormone signaling, ROS generation, and 

MAPK cascade activation (Bigeard et al. 2015). In conclu-
sion, bacterial immunogenic peptides are recognized by the 
plant PRRs, triggering plant defense.

The bacterial flagellum contains flagellin units that aid 
in bacterial motility and identification by plant PRRs. The 
FLAGELLIN SENSITIVE2 (FLS2) receptor, specific to 
plants and involved in MTI signaling, frequently detects the 
well-known microbial elicitor peptide flagellin-22 (flg22) 
(Chinchilla et al. 2006). Bacterial motility is affected by 
repeated modifications to the flg22 peptide region but not 
immunological recognition via FLS2 (Parys et al. 2021). 
Nevertheless, certain Pseudomonas bacteria have evolved 
specifically for certain mutations in crucial flg22 areas, 
enabling them to avoid immunological detection caused by 
FLS2 without exhibiting aberrant locomotion (Colaianni 
et al. 2021). This indicates a stability between plant and 
microbial adaptability that co-evolved in nature to prevent 
imbalance.

The interaction between plant–pathogens and the environ-
ment, particularly abiotic elements like light, temperature, 
water, and nutrients, is currently being recognized as a new 
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area of study (Saijo and Loo 2020). Many these stresses may 
produce danger-associated molecular patterns (DAMPs), but 
it is unknown how these molecules are perceived. Due to the 
possibility that combinatorial stress responses could influ-
ence interactions between plants and their environment, it 
is plausible that DAMP binding to their cognate receptors 
could cause DAMP-triggered immunity (DTI). These envi-
ronmental factors have a significant impact on how plants 
and microbes interact, but the underlying molecular path-
ways are still unknown. The majority of abiotic stressors 
make plants more susceptible to their pathogens (Bidzin-
ski et al. 2016; Zarattini et al. 2021). They could play an 
important role by modulating the expression of a group of 
immune signaling genes. At low temperatures, the salicylic 
acid (SA)-signaling genes were found to be transcription-
ally active, whereas the jasmonic acid (JA)-signaling genes 
were inhibited (Wu et al. 2019a, b). At high temperatures, 
the suppression of JA-signaling genes was restored. This 
suggests that abiotic and biotic stresses often crosstalk with 
each other and may have a profound impact on plant defense 
signaling.

Nevertheless, plant immune responses are also targeted 
by the pathogen-derived effectors. Plants have intracellu-
lar immune receptors from the NUCLEOTIDE-BINDING 
DOMAIN LEUCINE-RICH REPEAT (NLR) proteins 
family, which allow them to recognize such effectors with 
racialized immunity (Cesari 2018; Chen et al. 2022). Effec-
tor interactions with plant NLRs led to their oligomeriza-
tion and initiate effector-triggered immunity (ETI) responses 
(Ahn et al. 2023). The hypersensitive reaction (HR), which 
causes localized cell death, is the most common ETI phe-
notype in plants. Pathogens are prevented from migrating 
outside of damaged plant tissues by HR. Therefore, both 
plants and microbes continuously challenge one another in a 
variety of ways under tight selection pressure. In this review, 
we have outlined the characterization of isolated commensal 
bacterial strains and their function in plant defense signaling 
by acting on its innate immune system.

The microbiome influences immune 
signaling pathways in plants

In the past, plant–pathogen interactions were used to deci-
pher plant immune signaling pathways. However, the manip-
ulation of plant defense by the microbiota has added a fresh 
line of research that has deepened our understanding of the 
control of plant–microbe interactions. This microbiota is 
often found to be associated with plants and may have the 
capacity to affect plant immunity (Fig. 1). The potential of 
pathogens to cause disease is resisted by these beneficial 
microbes (Table 1). It can directly combat the pathogen 
or indirectly by getting plants to manufacture antifungal 

chemicals to achieve microbiota-mediated plant protection. 
These microbes may be able to outcompete their niche com-
petitors; e.g., Pseudomonas piscium inhibits the growth of 
the fungus Fusarium graminearum by targeting its histone 
acetyltransferases (Chen et al. 2018).

Plants begin an immune response against microbes after 
binding to the flagellum protein FliC, which is then degly-
cosylated and degraded by plant-derived enzymes (Boutrot 
and Zipfel 2017; Buscaill et al. 2019). As a result, the flg22 
peptide is released into plant apoplastic space and interacts 
with the FLS2 receptor. This in turn causes FLS2 to associ-
ate with its co-receptor, BRI1-ASSOCIATED KINASE 1 
(BAK1). This FLS2–BAK1 immune complex subsequently 
triggers ROS bursts and MAPK activation (Couto and Zipfel 
2016). According to Vogel et al. (2016), MAMP recognition 
by PRRs activated their co-receptor BAK1 to trigger this 
immune response. Notably, this microbiota-mediated protec-
tion is no longer conferred by bak1/bkk1 mutant plants. This 
shows that MTI signaling components also govern microbi-
ota-induced immune signaling in plants. MAMP elicitation 
causes apoplastic ROS bursts that are mediated by the PRR, 
which are important pathways of MTI signaling in plants 
(Qi et al. 2017). P. fluorescens from the rhizosphere inhibits 
flg22-induced ROS bursts (Mavrodi et al. 2011). This shows 
that by reducing the short ROS surge, beneficial bacteria 
might successfully undermine plant immunity for their colo-
nization. In addition, MAPK activation controls the produc-
tion of transcription factors and defense-related genes, which 
is essential for immune signaling (Meng and Zhang 2013). 
Beneficial plant bacteria can target MAPKs, which will have 
negative on subsequent immune signaling events. A helpful 
microorganism named Sinorhizobium sp. strain NGR234 
disrupts MAPK signaling and prevents the transcription of 
defense genes. The study found that this bacterium secretes a 
protein known as NopL that blocks the phenotype of MAPK-
induced cell death (Ge et al. 2016). Pathogens, however, may 
hinder the plant PRRs’ ability to recognize MAMPs by mod-
ifying, sequestering, and degrading MAMPs. Pseudomonas 
syringae DC3000 secreted protease can break down MAMP 
to prevent the MTI responses from being triggered (Pel et al. 
2014). To prevent PTI activation, several fungi can conceal 
their chitin molecules. Additionally, their recognition is hin-
dered by the conversion of chitin to chitosan (de Jonge et al. 
2010). Since the microbiota exhibits these elicitors, it stands 
to reason that they can encourage colonization and immune 
modulation through related mechanisms. Microbiome asso-
ciation, on the other hand, may cause the activation of plant 
immunity. For instance, in response to the bacterial pathogen 
P. syringae DC3000, Sphingomonas melonis can increase 
the expression of immune signaling genes in Arabidopsis 
(Vogel et al. 2016). Therefore, the plant microbiome may 
stimulate immune modulation activity using identical strate-
gies as pathogens.
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Fig. 1   Model depicting the microbiota-mediated manipulation of 
plant immune signaling pathways. Plant-associated beneficial bac-
teria acquire new mutations in their flagellin epitope, which prevent 
FLS2-BAK1-induced MTI signaling. Once microbiota suppress plant 
immune signaling, they encourage other beneficial bacteria to colo-
nize plant tissues. These microorganisms can stimulate transcription 
factors like MYB72 to trigger the biosynthesis of antifungal com-
pounds like scopoletin. PHR1 is another transcription factor that is 
induced by plant–microbiome interactions under Pi-starved condi-

tions. It has also been known as an activator of RALF gene transcrip-
tion, a ligand for FERONIA receptor kinase. RALF binding promotes 
FER activation, which causes RESPIRATORY BURST OXIDASE 
HOMOLOGS (RBOHs)-mediated ROS production. This FER-
induced ROS burst in turn negatively regulates microbiota enrich-
ment. FER also appears to function in receptor antagonism during 
plant–microbiota interactions. Contrarily, pathogens secrete effector 
proteins in plants that also affect the surrounding microbiota

Table 1   List of other beneficial bacteria and their role in plant resilience Indole-3-acetic acid, IAA

Name of the bacteria Zone Plant Function References

Rhizobium leguminosarum Rhizosphere Rice Promote seedlings growth Biswas et al. (2000)
Bacillus cereus Rhizosphere Wheat IAA production and enhancing plant growth Çakmakçi et al. (2006)
Sphingomonas sp. Phyllosphere Arabidopsis Prevents P. syringae pv. tomato DC3000 infection Innerebner et al. (2011)
Methylobacterium sp. Phyllosphere Lentil Increase cytokinin levels to aid in plant growth Jorge et al. (2019)
Paenibacillus polymyxa Rhizosphere Arabidopsis Release of antimicrobial compounds and accelerates plant 

growth
Hong et al. (2016)

Streptomyces bikiniensis Rhizosphere Cucumber Triggering ISR response against Fusarium sp. Zhao et al. (2012)
Burkholderia cepacia Rhizosphere Pepper Promotes plant growth and produces antifungal compound Jung et al. (2018)
Burkholderia gladioli Rhizosphere Cotton Plant growth increment, triggering of the ISR, and antifungal 

activity
Wang et al. (2023)

Bacillus amyloliquefaciens Rhizosphere Wheat Exhibits profound fungicidal effects on Fusarium gramine-
arum

Gong et al. (2015)
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Microbiota on leaves protect against foliar 
diseases

Pathogenic and non-pathogenic microbes can also be 
found in leaf microbiomes. Plants' innate immune sys-
tems also interfere with their colonization in a species-
specific manner. To colonize plant leaves, both helpful 
and harmful bacteria generated from phyllosphere go 
through particular adaption processes. The shift in the 
leaves environment depends on its physical and chemi-
cal characteristics, which makes its adaptation extremely 
distinct from that of the root microbiota (Chaudhry et al. 
2021). A recent study discovered that HopM INTERAC-
TOR 7 (MIN7) and CONSTITUTIVE ACTIVE DEFENSE 
1 (CAD1) are the PTI signaling components control the 
development of the leaf endophytic bacteria (Chen et al. 
2020). The endophytic microbial diversity in the leaves 
was altered in Arabidopsis mutants for these genes. It is 
also important to highlight that these elements are found 
in various plant species and are connected to vesicle traf-
ficking during plant immunological responses. Previous 
studies have shown that phytohormone-mediated protec-
tion against fungi is activated by both proteobacteria and 
actinobacteria, suggesting that the soil-borne bacteria may 
trigger immunity against foliar pathogens (Ritpitakphong 
et al. 2016; Vergnes et al. 2020). Fungal microbiomes 
found on Tricyrtis macropoda leaves produced metabolic 
compounds and increase endophytic microbial popula-
tions (Wang et al. 2021a, b). The study has found that the 
green areas of leaves contain higher Cercospora fungi, 
less metabolites, and higher levels of lipids, organic acids, 
and amino acids. As metabolites build up, the color of 
the leaves may alter. These findings show that commensal 
microorganisms stimulate PTI in the leaves, promoting 
the growth of advantageous microbes that defend against 
pathogenic fungus.

Environmental stress, microbe–microbe interactions, 
and plant–microbe interactions are currently the main 
topics of research into microbe-mediated biocontrol in 
the phyllosphere. Therefore, both in vitro and field stud-
ies are needed to evaluate sustainable biocontrol methods 
against foliar diseases (Legein et al. 2020). For instance, 
the Pseudomonas genus is rich in the phyllosphere and 
comprises both commercial biocontrol strains and plant 
pathogens (Delmotte et al. 2009; Innerebner et al. 2011). 
Diverse Pseudomonas strains have been proven to suppress 
leaf-invading pathogens in the lab and field conditions 
(Romero et al. 2016; Simionato et al. 2017). Bacillus spp. 
are also commonly used as commercial biocontrol treat-
ments because of their antagonistic actions on microbial 
rivals (Table 1). They produce polyketides and antipath-
ogenic peptides that fight off diseases like Sclerotinia 

sclerotiorum and Fusarium head blight (Fernando et al. 
2007; Dunlap et al. 2013). Overall, plant microbiomes can 
benefit plant health through direct and indirect effects on 
foliar pathogens.

Rhizobacteria weaken root immunity, 
and promote microbiome association

Rhizobacteria usually inhibit root-specific immune 
responses in order to encourage the attachment of commen-
sal bacteria to plant roots (Teixeira et al. 2021). It was found 
that Pseudomonas simiae WCS417 and Bacillus subtilis 
FB17, two isolated commensals, prevent the expression of 
MAMP-induced genes in Arabidopsis roots (Stringlis et al. 
2018a; Lakshmanan et al. 2013). P. simiae WCS417 also 
produces scopoletin, a coumarin root exudate, under the 
control of transcription factor MYB72 (Fig. 1). Scopole-
tin promotes the recruitment of the root microbiome and 
has antimicrobial effects on soil-borne fungus Fusarium 
oxysporum and Verticillium dahliae (Stringlis et al. 2018b). 
Pseudomonas capeferrum WCS358, a different intriguing 
commensal bacterium, produced gluconic acid derivatives 
that lower the extracellular pH of the medium (Yu et al. 
2019). Due to its acidity, P. capeferrum WCS35 was able 
to subvert the immune responses at the roots. The gluconic 
acid-induced pH decrease suppresses the flg22-triggered 
events, such as the ROS bursts and the expression of marker 
genes, to promote colonization of beneficial microbiota. As 
a result, the suppression in plant immune responses initiated 
by rhizobacteria encourages their colonization in the roots, 
which causes plants to produce antimicrobial compounds to 
fight off infections.

Soil mineral content determines 
the enrichment of microbiota in plants

Deficits in iron (Fe) and phosphate (Pi) can balance the 
relationship between immune activation and growth in 
plants. P. simiae WCS417 increases the absorption of Fe 
in Arabidopsis roots and initiates the systemic immune 
responses in the shoots (Verbon et al. 2019). However, 
it has been demonstrated that Fe deficit in Arabidopsis 
results in enhanced resistance against pathogens. Botrytis 
cinerea infection promotes the Fe deficiency response 
in roots, which in turn stimulates the production of eth-
ylene (ET) in leaves and ultimately leads to resistance 
to B. cinerea. This resistance phenomenon to B. cinerea 
is further regulated by basic Helix–Loop–Helix (bHLH) 
transcription factors. Arabidopsis mutants lacking bHLH 
genes were susceptible to B. cinerea infection and exhib-
ited a reduced level of ET synthesis. Moreover, they 
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found that two S-adenosyl methionine (SAM) members, 
i.e., SAM1 and SAM2, are associated with increased ET 
production in Arabidopsis leaves under Fe-deficient con-
ditions. As a result, Fe availability regulates leaf resist-
ance to B. cinerea via a bHLH-SAM-dependent mecha-
nism (Lu and Liang 2023). Interestingly, the bacterial 
pathogen Dickeya dadantii also manipulates Fe uptake 
in plants. According to the study, the defense activation 
in Arabidopsis by D. dadantii depends on the Fe status 
of the plant (Kieu et al. 2012). Low Fe content results in 
reduced susceptibility of the Arabidopsis to D. dadantii. 
The reduced susceptibility has been found to be asso-
ciated with increased levels of SA accumulation and 
defense gene expression. P. syringae effector AvrRps4 
binds the plant Fe sensor protein BRUTUS (BTS) to pro-
mote Fe uptake and bacterial proliferation in Arabidopsis 
(Fig. 2). Additionally, AvrRps4-expressing P. syringae pv. 
tomato (Pst) DC3000 infection causes Fe accumulation 
in the apoplast of Arabidopsis resistance to P. syringae 
4 (rps4) and enhanced Disease Susceptibility1 (eds1) 
mutants (Xing et al. 2021). This implies that NLR pro-
tein guards BTS, and its association with AvrRps4 results 
in RPS4-triggered immunity and low Fe accumulations 
in plant apoplast. Both beneficial and pathogenic bacte-
ria have the ability to produce siderophores, which bind 
Fe. Bacterial pathogens receive Fe from plants through 
siderophores (Fig. 2). On the other hand, plant-beneficial 
bacteria also generate siderophores exhibiting high affin-
ity Fe-binding activity, which prevents pathogens from 
obtaining Fe and eventually causing disease (Verbon et al. 

2017). Beneficial Pseudomonas bacteria produce these 
siderophores, which trigger induced systemic resistance 
(ISR) in plants under Fe stress (Meziane et al. 2005; De 
Vleesschauwer et al. 2008). Recent research also sug-
gests that root colonization by Bacillus velezensis SQR9 
depends on secreted YukE protein. YukE protein enters 
plant plasma membrane, promoting Fe leakage and stim-
ulate root colonization. The first instance of a helpful 
rhizobacterium exploiting a toxin delivery system to 
encourage colonization and subsequently plant–microbe 
interactions has been documented (Liu et al. 2023). Fur-
thermore, Arabidopsis roots respond to Pi-limiting situa-
tions by reprogramming transcription to stop its defense 
signaling gene expression and overcome nutrient short-
age. PHOSPHATE STARVATION RESPONSE 1 (PHR1), 
a transcriptional regulator, directs microbiome attachment 
to Arabidopsis roots while adversely modulating the 
expression of a subset of immune signaling genes under 
Pi stress. The expression of SA-responsive genes was 
increased in phr1 mutants rather than JA-signaling genes. 
PHR1 therefore controls both the Pi starvation response 
(PSR) and plant immunity (Castrillo et al. 2017). The 
receptor-like kinase FERONIA (FER) is known to play a 
variety of roles in immune responses, plant growth, and 
development (Zhang et al. 2020). Under different mecha-
nisms PHR1 directly binds to the Rapid Alkalinization 
Factor (RALF) gene promoters in Arabidopsis thaliana, 
activating the expression of these genes in Pi-starved 
environments (Fig.  1). Being a FER ligand, RALFs 
allow root bacteria to colonize by preventing the complex 

Fig. 2   The Fe status of soil 
regulates plant immunity to 
microbes. Low levels of Fe can 
trigger plant immunity, while 
high levels of Fe promote sus-
ceptibility. Pathogenic microbes 
can stimulate Fe accumulation 
in plants, leading to enhanced 
susceptibility and disease 
development. By contrast, 
plant-beneficial microbes pro-
duce molecules with higher Fe-
binding activity than pathogenic 
bacteria called siderophores. 
These siderophores retain Fe-
scavenging properties and also 
trigger immune responses in 
plants. Moreover, pathogenic 
bacteria secrete effector proteins 
that target Fe regulatory pro-
teins to cause Fe uptake and aid 
their colonization
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formation between the FLS2 and BAK1 and subsequently 
MTI signaling (Tang et al. 2022). According to Duan 
et al. (2010), RHO-like GTPases (ROP), which control 
the growth of root hairs, can be recruited by GUANINE 
NUCLEOTIDE EXCHANGE FACTORS (GEFs) through 
their interaction with the FER receptor-like kinase. To 
activate Rho GTPase in Arabidopsis, phosphatidylserine 
accumulates in the plasma membrane under the control 
of FER. Recently, it was found that FER-induced ROS 
generation also regulates the enrichment of advantageous 
pseudomonads in the rhizosphere microbiome (Fig. 1). 
In the study, it has been shown that reduced ROS lev-
els enriched beneficial Pseudomonas population in the 
complex rhizosphere microbiome in the Arabidopsis fer-8 
mutants (Song et al. 2021). Therefore, by regulating ROS 
production, FER–GEFs–ROP signaling can control the 
development of root hairs and the accumulation of advan-
tageous bacteria at roots. This shows that the mineral sta-
tus of the soil affects the signaling pathways underlying 
plant immunity.

Rhizobacteria trigger ISR in plants 
to aboveground pathogens

ISR is a key plant defense tactic that is induced by com-
mensal root-derived bacteria (Pieterse et al. 2014). ISR is 
commonly characterized by an early priming of defense 
against foliar infections, which is also an indirect process 
by which microbiota protect plants against disease-caus-
ing pathogens. Rhizobacteria commonly induced systemic 
defensive responses in plants to protect distal tissues from 
ongoing pathogen invasion (Shalev et al. 2022). Plants 
typically exhibit JA/ ET-mediated ISR rather than SA-
induced systemic acquired resistance (SAR) responses 
following rhizobacteria inoculation (Pieterse et al. 1996, 
1998; Pozo et al. 2008). The primary elicitors in rhizobac-
teria that trigger systemic defensive signals in plants are 
siderophores, flagella, and lipopolysaccharides generated 
from cell walls (Meziane et al. 2005). Several Arabidopsis 
mutants known to be defective in the JA and ET signal-
ing pathways also affect ISR mediated by P. fluorescens 
(Pieterse et al. 1998; Pozo et al. 2008). On the other hand, 
rhizobacterial-induced systemic immune responses do not 
generate the accumulation of PR proteins, a precursor to 
SAR signaling in the distal tissues (Pieterse et al.1996). 
In a recent study, it was shown that azelaic acid (AZA), a 
mobile SAR signal, increases the accumulation of hybrid 
proline-rich proteins, which in turn regulates P. simiae 
WCS417 interactions with Arabidopsis roots (Banday 
et al. 2022). Therefore, rhizospheric bacteria contribute to 

ISR, which works as the main plant defense mechanism, 
whereas SAR operates redundantly against pathogens.

Effector proteins affect the colonization 
of the plant microbiome

Effector proteins released by pathogens frequently have 
an impact on the colonization of plant microbiota (Fig. 1; 
Snelders et al. 2018). It is unknown if effectors produced 
by pathogens directly interact with plant microbiomes. 
VdAMP3, an antimicrobial effector protein from the fungus 
Verticillium dahliae, outcompetes its microbial competitors 
(Snelders et al. 2021). Brg11, a transcription activator-like 
effector (TALE) secreted from T3SS of Ralstonia solan-
acearum, raises polyamine levels in the host plant by acti-
vating arginine decarboxylase (ADC) gene expression. R. 
solanacearum's growth was unaffected by the greater poly-
amine buildup caused by Brg11, although it inhibits other 
niche rivals (Wu et al. 2019a, b). Together, how effectors 
interact with the plant microbiome is governed by both their 
immune modulation activity in the plant and their antibacte-
rial effects.

Additionally, commensal bacteria have toxin delivery 
mechanisms that lower interbacterial competition (Bernal 
et al. 2018). Horizontal gene transfer is the primary mecha-
nism by which plant-associated bacterial populations retain 
such toxin delivery systems. Pantoea ananatis, Burkholderia 
glumae, P. syringae pv. actinidiae, and others have multiple 
toxin delivery systems with diverse roles (Shyntum et al. 
2015; Kim et al. 2020; Wang et al. 2021a, b). For exam-
ple, the commensal bacteria Dyella japonica MF79 uses 
type II effectors to drastically reduce root-specific immune 
responses in Arabidopsis (Teixeira et al. 2021). The ben-
eficial rhizobacteria P. simiae WCS417 and Pseudomonas 
defensor WCS374 both include Type III toxin delivery sys-
tems (T3SS), which harbor putative effectors with unknown 
activities (Stringlis et al. 2019). After the injection of these 
microorganisms, tobacco leaves exhibited no ETI-induced 
cell death. The cause might be that these toxins are either 
not recognized or incapable of being delivered into tobacco 
leaves. Future research on the function of these effectors in 
interactions between plants and beneficial microorganisms 
may, therefore, be required.

Synthetic microbial communities (SynComs) 
may increase plant protection from diseases

It has been showed that the diverse communities of advan-
tageous microorganisms that make up the microbiome can 
improve plant development and defense mechanisms. How-
ever, it is not known whether certain microbial combinations 
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or the entire microbiome are required to mediate the function 
that promote plant resilience. Studies have demonstrated that 
consortium prepared from bacteria associated with sugar-
cane and pine can speed up the development of maize (Puri 
et al. 2015; Armanhi et al. 2018). In this regard, it has been 
suggested to engineer and create SynComs, which are like 
microbiome inoculants (Liu et al. 2019). In recent years, 
SynCom has been successfully developed, employing micro-
bial communities originating from the phyllosphere and 
rhizosphere (Castrillo et al. 2017; Chen et al. 2020). Plants 
already exposed to pathogens have been recovered after a 
SynCom application (Durán et al. 2018). According to the 
study, the capacity of phylogenetically unrelated bacteria 
from the Comamonadaceae and Pseudomonadaceae can pro-
tect Arabidopsis against harmful fungi and oomycetes. But 
how SynCom functions in varied environmental situations 
is still a mystery. The majority of the SynCom treatment 
was completed in a controlled setting to maintain all of the 
factors, including inoculum density, nutritional availability, 
and plant genotypic background. Despite that, it is still con-
ceivable that diverse plant genotypes may utilize microbes 
that can adapt to varied ecological settings.

Conclusions and future directions

The microbiome determines how the plant immune system 
responds to pathogens and modulates its defense signal-
ing. In addition to protecting against diseases, the innate 
immune system must function suitably for FLS2-mediated 
surveillance of commensal bacteria in the plant microbi-
ota. According to recent studies, commensal bacteria can 
obstruct MTI, suggesting that flg22 mutations may be pre-
sent in the commensal microbiota (Fig. 1). The majority 
of flg22 mutations in commensal bacteria enable them to 
take advantage of colonization (Colaianni et al. 2021). This 
shows that flg22 mutations also escape FLS2 recognition by 
plant microbiomes. As a result, flagellin's immunogenic and 
motility activities may conflict with commensal bacteria's 
ability to suppress MTI, leading to antagonistic pleiotropy 
(Parys et al. 2021).

Plants are also able to recruit beneficial bacteria at the 
roots when infected with foliar pathogens. Upon pathogen 
challenges, plants can modify their root microbiome and 
particularly promote a population of disease-suppressive 
and growth-promoting beneficial microorganisms, thereby 
increasing the chance that their progeny would survive. In 
the rhizosphere, Arabidopsis thaliana attracts helpful bacte-
rial species that produce biofilms and induce ISR response 
against downy mildew pathogen Hyaloperonospora arabi-
dopsidis (Berendsen et al. 2018). As a result, the subsequent 
generation of plants raised in the same soil develops resist-
ance to the disease. This implies that the development of 

disease-suppressive soils results from the gathering of pro-
tective bacteria. Therefore, a complete understanding of the 
mechanisms that regulate the establishment and interaction 
of helpful microorganisms by plant roots would create new 
opportunities to increase agricultural productivity.

Microorganisms are important for plant function and can 
boost crop yield (Table 1). The fundamental problem in the 
study of plant–microbe interactions is enhancing plant health 
under environmental stress situations by utilizing naturally 
occurring microbiota. The microbiome can be manipu-
lated to create SynComs that can be used to study the link 
between the root microbiome and plant phenotypes. There-
fore, high-throughput experimental methods are needed to 
construct SynComs by understanding their microbiological 
features, such as microbial library preparation in accordance 
to their genomes (de Souza et al. 2020). However, SynComs 
research struggle to replicate real soil ecosystems because 
of their complexity. Additional study is required to authen-
tically replicate rhizosphere ecosystems that can suppress 
plant diseases.

P. simiae WCS417 is a popular plant growth-promoting 
rhizobacterium (PGPR) that has been proven to cause ISR. It 
has been used in numerous studies on plant–microbe interac-
tions, demonstrating the potential of PGPRs to manipulate 
the rhizosphere microbiome and protect plants from patho-
gens (Verbon et al. 2019). Rhizobacteria also play key role 
in regulating root-specific immune responses. Cucurbitacin 
B, a triterpenoid compound, is attracted to rhizospheric bac-
teria and inhibits the growth of pathogenic fungus (Zhong 
et al. 2022). These compounds promote antifungal activity, 
combat infections, and support the colonization of benefi-
cial microbes. By contrast, pathogen deployed effectors can 
interact with the microbiome by activating plant immune 
signaling gene expression and antagonizing microbial com-
petitors. V. dahliae, a pathogen, secretes VdAve1, a small 
protein that disables the plant's defense mechanisms, allow-
ing pathogens to colonize and spread disease. VdAve1 also 
has the ability to modify the plant microbiomes (Snelders 
et al. 2020). However, the role of these effectors in interac-
tions between plants and beneficial bacteria is still elusive.

Ecological studies and fundamental discoveries have 
improved our understanding of plant microbiomes. Micro-
biota interaction with diverse plant backgrounds in both 
stressed and non-stressed environments could fill knowledge 
gaps in plant–microbiome interactions research. The use of 
commercial agrochemicals may be replaced by microbe-
mediated plant protection. Therefore, finding appropriate 
biocontrol agents that could have both direct and indirect 
favorable impacts on plant health must be a component of 
microbiome research. In comparison to the phyllosphere, 
the rhizosphere has a greater diversity and accumulation of 
microorganisms. As a result, it is probable that the envi-
ronment will include large quantities of MAMPs that can 
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continuously cause plants to activate their immune systems. 
On the other hand, it is important to understand how plants 
selectively react and continue growth in MAMP-rich envi-
ronments. Recently, rhizosphere microbiome management 
by plant genotypes have been examined using genome-wide 
association studies (GWAS) method (Deng et al. 2021; Wang 
et al. 2022). The research found a correlation between the 
microbial taxa of the rhizosphere in foxtail millet cultivars 
and the plant immune receptor FLS2 (Wang et al. 2022). 
This study demonstrates the use of GWAS to harness the 
microbiome for the development of high-yielding cultivars, 
with the potential for agricultural sustainability through the 
regulation of immune signaling gene expression in plants. 
However, substantial research is required to fully compre-
hend the molecular mechanisms of immune signaling path-
ways between plant genes and the rhizospheric bacteria.
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