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Abstract
This study aimed to investigate the biomass production of Bacillus subtilis in flask and bioreactor conditions. It is necessary 
to carry the culture from the shake flask to the pH, air, temperature and stirring controlled bioreactor in order to reduce the 
working time and increase the production efficiency and product quality. In this study, Bacillus was isolated from soil and 
grown under flask and bioreactor conditions as biocontrol agent against Botrytis cinerea and Fusarium oxysporum. In this 
process, a pH value of 7.5, 100% O2 saturation, 30% dissolved O2, at the temperature of 37 °C, total flow of 0.1 Lmin−1 
and mixing speed of 150 min−1 were preferred for optimal concerning high production yield of B. subtilis in bioreactor. To 
test whether B. subtilis has antifungal activity on the growth of B. cinerea and F. oxysporum, a dual culture assay in a PDA 
medium was carried out. Ultimately, high biomass production in a short incubation period by reaching 2.2 µg/mL after 9 h 
in the bioreactor. It was observed that the bacteria produced in the bioreactor cultivation grew stronger and showed high 
antifungal activity which resulted 33.33% inhibition percentage against B. cinerea. It was concluded that B. subtilis can be 
used as a green-fungicide against B. cinerea and F. oxysporum, and bacterial metabolites from B. subtilis could pave the way 
for the development of next generation green/biopesticides.
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Introduction

Today, approximately 50% of total agricultural fruit pro-
duction is lost after harvesting due to the phytopathogen 
fungi (Carmona-Hernandez et al. 2019). Because of their 
low pH, higher moisture content and nutrient composition, 
fruit can be decomposed by phytopathogen fungi. Post-
harvest diseases generally occur due to the fungal species 
within the genera such as Penicillium, Botrytis, Monilinia, 
Rhizopus, Alternaria, Aspergillus, Fusarium, Geotrichum, 
Gloeosporium and Mucor which release mycotoxins that 
threat human health (Liu et al. 2013). In order to prevent 
postharvest loss, synthetic fungicides are applied to fruits 

generally. Yet, usage of synthetic fungicides cause environ-
mental problems and threat to human and animal health. 
Therefore, their usage is limited because of their carcino-
genicity, teratogenicity, high and acute residual toxicity, long 
degradation period (Tripathi and Dubey 2004). Moreover, 
deterioration in fruit quality also leads to reduction in eco-
nomic value (Liu et al. 2019; Bu et al. 2021). Recently, peo-
ple have become more conscious about consuming organic 
foods and prefer foods that do not use synthetic preserva-
tives. For this reason, researchers are trying to develop a 
safer and more environmentally friendly strategy to treat 
postharvest diseases of fruit (Li et al. 2021).

In recent years, utilizing probiotic bacteria as a biocon-
trol agent come into prominence to control phytopathogens 
(Carmona-Hernandez et al. 2019). As a probiotic, Bacillus 
subtilis is used for the treatment of mild gastrointestinal dis-
eases or as a dietary supplement (Pryor et al. 2007). In addi-
tion to that, gram-positive Bacillus spp. spores can be used 
as biological control agents due to its diverse structure and 
activity, as well as its ability to produce a number of second-
ary metabolites with broad-spectrum antimicrobial poten-
tial (Prakash and Arora 2021; Chen et al. 2010). B. subtilis 
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produces resistant spores and antifungal lipopeptides such 
as iturin, surfactin and fengycin (Pryor et al. 2007; Caulier 
et al. 2019). As a biocontrol agent, the endospore formation 
of Bacillus gives them superiority in nature as well as long-
term storage and enables the conversion of Bacillus-based 
natural products into commercial products. According to the 
literature studies, B. subtilis maximum spore yield values ​​
are between 1.00 × 109 spores/mL and 7.40 × 109 spores/mL 
(Luna et al. 2002; Monteiro et al. 2005).

In large-scale production of bacteria, the stirred tank 
bioreactor is the most preferred bioreactor which provides 
a controlled environment and high oxygen uptake rate dur-
ing fermentation. The bioreactor enables to control the 
temperature, pH and substrate condition which affects the 
cellular metabolism of the bacteria (Lidén 2002). Also, the 
metabolic performance of a microbial culture in bioreactor 
depends largely on the complex interactions between dif-
ferent operating conditions. During the bioprocess, high 
oxygen uptake is also necessary for the product concentra-
tion, yield and volumetric productivity. Since both high cell 
density and viability are crucial for commercial production 
of the fermentation process, detailed evaluation is required 
to carry out appropriate operating conditions (Sarmiento-
López et al. 2022; Hathi et al. 2021).

In this study, as an alternative to chemical fungicides, the 
production of microbial-derived biocontrol agents by uti-
lizing the probiotic B. subtilis, and its application on Bot-
rytis cinerea and Fusarium oxysporum which are the most 
common fungal species that cause postharvest disease were 
investigated. It was aimed to put forth the high efficacy of 
the bioreactor culture against fungal species in comparison 
with the conventional productions. In the literature, there are 
studies which Bacillus species were evaluated against vari-
ous fungal species including B. cinerea and F. oxysporum. 
However, neither of these studies investigated B. subtilis 
produced in bioreactor against B. cinerea and F. oxysporum 
to be used as a biocontrol agent. It was seen that the inhibi-
tion rate of the B. subtilis produced in bioreactor was almost 
1.5 times higher than the productions in flask or on solid 
medium owing to the controlled environment and efficient 
production.

Materials and methods

Materials

Luria–Bertani (LB), Tryptic Soy Broth (TSB), Tryptic Soy 
Agar (TSA) and Potato Dextrose Agar (PDA) were supplied 
from Merck (Merck, Darmstadt, Germany). B. cinerea and 
F. oxysporum were isolated from rotten apples and identified 
as mentioned by Yilmaz et al. 2016. B. subtilis was isolated 

from soil and deposited in GenBank under accession number 
OQ000948.

Soil sampling and preparation

One gram of each soil sample was dispersed in 9 mL of 
distilled water and the suspension was heated at 80 °C for 
15 min. This treatment was carried out to distinguish the 
Bacillus genus from other heat-sensitive pathogenic species. 
After that the samples were serially diluted with phosphate-
buffered saline (PBS), and 100 μL of the sample was distrib-
uted on the TSA plate and incubated at 37 °C for overnight. 
The plates were then examined and suspect colonies were 
stained by the Gram stain and spore stain method. Finally, 
gram-positive, spore-forming, rod-shaped colonies were 
selected (Amin et al. 2015). Then, the B. subtilis strain was 
determined by PCR identification among the obtained Bacil-
lus strains.

Identification of B. subtilis isolate

The 16S rRNA gene sequencing was performed with prim-
ers AMP_F (5´-GAG​AGT​TTG​ATY​CTG​GCT​CAG-3´) and 
AMP_R (5´-AAG​GAG​GTG​ATC​CAR​CCG​CA3´) (Baker 
et al. 2003). PCR reaction mixtures and PCR conditions 
for 16S rRNA gene sequencing were used as described by 
Dertli et al. (2016). The amplification products were run 
on gel electrophoresis and sent to Medsantek (Turkey) for 
sequencing.

Production of probiotic bacteria

Before the experiments, B. subtilis was maintained at 
− 20 °C in Luria–Bertani (LB) supplemented with 25% (v/v) 
glycerin. To obtain a single colony of the pure culture of B. 
subtilis, probiotic bacteria were grown on TSA Petri dishes 
at 37 °C for 24 h. After selecting the colony, bacteria were 
inoculated in 10 mL of TSB liquid medium and incubated 
at 37 °C for 24 h (Arutchelvan et al. 2006; Vehapi and Özçi-
men 2021).

Spore production of B. subtilis was firstly carried out in 1 
L Erlenmeyer flask containing 500 mL of TSB medium. The 
flask was inoculated with 1% (v/v) bacteria and incubated at 
37 °C for 30 h on a rotary shaker at 100 rpm.

As for the production in bioreactor, batch fermentation 
was carried out in a 1 L bioreactor (INFORS, Minifors 2). 
The bioreactor was first sterilized by autoclaving at the tem-
perature of 121 °C and 1.2 atm for 15 min. After steriliza-
tion, required values ​​(pH, temperature, mixing speed and air 
inlet speed) were entered to the control system. For calibra-
tion at one point on the oxygen electrodes, the saturation 
value of the dissolved oxygen in the bioreactor medium was 
set to 100% saturation. The preculture of the TSB medium 
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was transferred into the bioreactor with an inoculation rate 
of 1% and 500 mL medium (TSB) was added to the bioreac-
tor with an initial pH of 7.38. The culture was grown with a 
stirring speed of 100 rpm and at the temperature of 37 °C for 
9 h. At the end of the fermentations, ability to form spores 
in the productions in flask and bioreactor was compared and 
growth kinetics were determined.

Growth rate measurement

The PG Instruments T-60 UV Spectrophotometer was used 
for the measurement of optical density (OD) of flask and 
bioreactor fermentation of B. subtilis. The optical density 
of the bacteria was measured at 600 nm at regular intervals 
every hour for 9 h of bioreactor fermentation and 30 h of flask 
cultivation (Arutchelvan et al. 2006). The specific cell growth 
rate and doubling time were calculated using Eqs. 1–3.

where t is the time, X is the CFU mL−1 at time t, X0 is the 
CFU mL−1 at time t0, µ is the specific growth rate (h−1), td 
is the doubling time (h)

Carbohydrate analysis

The total carbohydrate content in the medium where bac-
teria were grown was determined by the phenol–sulfuric 
acid assay. The phenol was prepared to be 80% (w/w), and 
0.05 mL of phenol was added to the samples and glucose 
solutions. Glucose was used as the standard for carbohydrate 
analysis and was prepared at different concentrations in the 
tubes to form the standard curve. Analysis was followed by 
the addition of 5 mL of H2SO4. After 15 min at room tem-
perature, the absorbance of the samples was measured at 
490 nm with a UV spectrophotometer (Dubois et al. 1956).

Extraction of volatile compounds

After the production in bioreactor, bacterial cells were sepa-
rated from the culture broth by centrifugation at 8000 rpm 
for 10 min at 4 °C. The collected supernatant was acidified 
with 6 N HCl to pH 2.0 and allowed to settle at 4 °C over-
night. A white precipitate containing the biosurfactant was 
then recovered by centrifugation at 10,000 rpm for 15 min. 
The precipitate was suspended in a minimal amount of 
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�
,

distilled water and adjusted to pH 7.0 using 1 N NaOH. 
The solution was then lyophilized and stored for GC–MS 
analysis (Fooladi et al. 2018).

Identification of volatile compounds

The volatile compounds were identified by solid phase 
microextraction (SPME) coupled with gas chromatogra-
phy–mass spectrometry (GCMS-QP2010, Shimadzu, Japan) 
combined with a CTC-Combi-PAL-Autosampler (Bender 
and Holbein, Zurich, Switzerland) and the column used for 
chromatographic separation was Restec (Bellefonte, USA) 
Rtx-5MS fused silica capillary column (30 m × 0.25 mm, 
0.25 μm). The vials were hold at 35 °C for 40 min and then 
a SPME fiber 75 mm, carboxen/polydimethylsiloxane (CAR/
PDMS) was exposed to the headspace of the vials while 
maintaining the sample at 35 °C for 10 minutes. Compounds 
were then desorbed for 10 min in the injection port of the gas 
chromatograph at 220 °C for 10 min with the purge valve 
off (split-less mode). The injector temperature was 250 °C; 
detector temperature was 220 °C;  and carrier gas (He) flow 
rate was 1 mL min−1. The GC oven temperature program 
began when the fiber was inserted and was held at 40 °C for 
2 min, ramped to 200 °C at 10 °C per min, then ramped from 
200 to 250 °C at 15 °C per min and finally held at 250 °C for 
5 min (Chaves-López et al. 2015). The volatile compounds 
quantities were expressed as percentage area.

Antifungal activity

30 μL of bacteria which was cultivated in the bioreactor 
in TSB medium at 37 °C for 9 h was used for dual culture 
assay against B. cinerea and F. oxysporum. To produce the 
inoculum, the fungal pathogen was cultivated on PDA plates 
for 6 days at 27 °C in an incubator. A zone of inhibition was 
generated by the inhibition of mycelial growth by the anti-
fungal activity of B. subtilis. The growth inhibition percent-
age (I %) of treated plates (Tp) compared to the control plates 
(Cp) is calculated using the following Eq. (5) (Ryu et al. 
2014; Saravanakumar et al. 2019; Liu et al. 2019; Vehapi 
et al. 2021):

Statistical analysis

Data are presented as means with ± standard deviations 
(n = 3). Analysis of variance was performed using the JMP 
(release 6.0.0, SAS) package program. The significance rat-
ings between the averages were determined by Student’s t 
test (p < 0.05 was considered significant).

(5)I% =
Cp − Tp

Cp

× 100.
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Results and discussion

Identification of B. subtilis isolate

In this study, probiotic bacteria were isolated from soil 
samples in Turkey and identified as B. subtilis (Table 1). 
The sequence obtained was aligned with the NCBI data-
base using the BLAST algorithm with a similarity crite-
rion of 100%. The partial 16S sequence of the identified 
strain was deposited in GenBank under accession number 
OQ000948. 

The isolates were analyzed for cell shape, colony 
appearance (size, shape, smoothness of the edges and sur-
face, matt and gloss state, etc.) and endospore formation. 
To determine the morphological features of Gram-positive 
Bacilli, it was cultured in liquid TSB and solid TSA media 
and various morphological features such as Gram staining, 
spore staining, colony type, colony color, and colony size 
were determined (Table 1).

Production of probiotic bacteria

Bioreactor and flask cultivation were compared to study 
cultures that underwent both growth and sporulation, spe-
cifically to study the effects of growth rate on sporulation 
or changes in growth rate. In addition to that the kinetics 
of cell growth were investigated under similar conditions 
(Fig. 1). It was determined that the specific growth rates of 
the cells cultivated in flask and bioreactor were 0.36 and 
0.67 h−1, respectively. Doubling time of the cells grown 

in flask was almost twice as cells grown in bioreactor. 
Doubling time of the cells was found as 1.92 and 1.08 h for 
cells grown in flask and bioreactor, respectively.

According to Fig. 1, in the flask cultivation, B. subtilis 
reached the stationary phase after 23 h of incubation with 
an absorbance value of 1.150 and the maximum absorbance 
value of the B. subtilis was found as 1.33 at the 30th h. On 
the other hand, the maximum absorbance value of the bio-
reactor cultivation reached 1.67 after 9 h (Fig. 1). Therefore, 
it was found that the cultivation in bioreactor resulted in a 
higher growth in less time in comparison with the growth 
in flask.

During the production in bioreactor, pH values were also 
observed automatically and it was found that while the cell 
concentration increased rapidly, the pH decreased. As the 
cells grew rapidly within 5 h, the oxygen level decreased. 
The oxygen saturation, which was 100% at the beginning, 
decreased to 10%, but since the reactor was initially set not 
to fall below 30% oxygen saturation, the stirring speed was 
increased from 150 to 600 rpm to increase the oxygen satu-
ration (Table 2).

In addition to that it was observed that the carbohydrate 
concentration decreased rapidly in the 3 h and the rate of 
decrease in the carbohydrate concentration decreased after 
4 h. After 7 h, the carbohydrate concentration gradually 
decreased to 15.43 µg/mL. At the end of the treatment, more 
than 96.40% of the initial carbohydrate concentration had 
been consumed (Fig. 2). The change of carbohydrate con-
centration with the biomass concentration is also presented 
in Fig. 3.

Similar results were reported in the following literature 
studies. Yeh et al. studied B. subtilis ATCC 21,332 produc-
tion in an innovative bioreactor. Time versus cell growth, 
pH and residual glucose concentration results showed that 
while cell concentration increased, pH and residual glucose 
concentration decreased as expected (Yeh et al. 2006). In 

Table 1   Morphological 
properties of B. subtilis soil 
isolate

Isolate Colony Type Shape Surface Aspect Gram staining Spore staining

B. subtilis Cream Mucoid Large Smooth Wet + +

Fig. 1   Cell growth curves of bioreactor and flask incubation

Table 2   Growth condition of B. subtilis and parameter setting of bio-
reactor

Parameter Value at 2 h Value at 5 h Set point

Temperature 37 °C 37 °C 37 °C
Stirrer 150 min−1 600 min−1 150 min−1

pH 7.5 6.34 7.5
pO2 107% 10% 30%
Total flow 0.49 Lmin−1 0.00 Lmin−1 0.1 Lmin−1

Gas mix 21% O2 100% O2 100% O2
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another study carried out by Posada-Uribe et al., culture 
conditions were optimized to increase spore production of 
B. subtilis EA-CB0575. It was reported that biomass con-
centration (g/L) increased for 10 h and reached to 3.5 g/L. 
On the other hand, cells consumed 96.9% of reducing sugars 
(Posada-Uribe et al. 2015). Pandey and Vakil were evalu-
ated the growth of Bacillus coagulans in shake flasks and 
stirred tank bioreactor. It was found that, while the shake 
flask fermentation of B. coagulans yielded 8.0 g/L produc-
tivity, stirred tank bioreactor fermentation of B. coagulans 
yielded 18 g/L biomass with 60% spore efficiency (Pandey 
and Vakil 2016). In studies with bacteria other than Bacillus 
species, efficient productions were conducted by using bio-
reactors rather than shaken flasks. Gamboa-Suasnavart et al. 
investigated the production of Streptomyces lividans under 
flask and bioreactor conditions to obtain a specified com-
pound from Mycobacterium tuberculosis. It was reported 
that increase in the biomass concentration in bioreactor 
was carried out quicker than shaken flasks. Moreover after 
30 h, biomass concentration was still continued to increase 
(Gamboa-Suasnavart et al 2013).

Identification of volatile compounds

Volatile compounds produced by B. subtilis were ana-
lyzed by GC–MS. Eighteen compounds were identified 
(Table 3). The area of major peaks was detected as 26.41%, 
26.05%, 7.94%, 6.54%, 5.94%, and 4.78% which corre-
sponds to hexadecane, 2, 6, 10, 14-tetramethyl, heptade-
cane, heneicosane, octadecane, 1-chloro-, hexadecane and 
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Table 3   Volatile compounds of 
B. subtilis 

Detected compounds Molecular formula Area %

1 Dodecane C12H26 3.72 ± 0.05
2 Decane, 1-iodo- C10H21 1.02 ± 0.02
3 Hexadecane C16H34 5.94 ± 0.04
4 4-tert-Butylcyclohexyl acetate C12H22O2 4.78 ± 0.02
5 Octadecane, 5-methyl- C19H40 1.26 ± 0.01
6 Hexadecane, 2,6,10,14-tetramethyl- C20H42 26.41 ± 0.10
7 Triacetin C9H14O6 1.71 ± 0.02
8 Eicosane, 2,4-dimethyl- C20H42 1.05 ± 0.01
9 Alpha.-terpinenyl acetate C12H20O2 1.67 ± 0.02
10 Heptadecane C17H36 26.05 ± 0.08
11 Eicosane C20H42 1.24 ± 0.02
12 Octadecane, 1-chloro- C18H37Cl 6.54 ± 0.03
13 Phenol, 2,4-bis(1,1-dimethylethyl)- C14H22O 3.21 ± 0.01
14 Heneicosane C21H44 7.94 ± 0.02
15 Hexadecamethylcyclooctasiloxane C16H48O8Si8 1.95 ± 0.03
16 Docosane C22H46 1.13 ± 0.02
17 Octadecamethylcyclononasiloxane C18H54O9Si9 2.23 ± 0.02
18 Eicosamethylcyclodecasiloxane C20H60O10Si10 1.03 ± 0.01
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4-tert-butylcyclohexyl acetate. Minor peaks were detected 
as 3.72%, 3.21%, 2.23%, 1.95%, 1.71%, 1.67%, 1.26%, 
1.24%, 1.13%, 1.05%, 1.03%, and 1.02% which corre-
sponds to dodecane, phenol, 2,4-bis(1,1-dimethylethyl), 
octadecamethylcyclononasiloxane, hexadecamethylcyclooc-
tasiloxane, triacetin, alpha.-terpinenyl acetate, octadecane, 
5-methyl-, eicosane, docosane, eicosane, 2,4-dimethyl, 
eicosamethylcyclodecasiloxane and decane, 1-iodo-. The 
hydrophobic components of the hexane extract allow for 
strong interactions with microbial membranes. As a result, 
modifications to the microbial membrane increase perme-
ability and allow microbial cells to consume a large amount 
of the active substance (Chaieb et al. 2011).

It was stated that heptadecane is an antifungal compound 
(Ponnusamy et al. 2018). Rajaofera et al. (2019) showed that 
octadecane and docosane produced by B. atrophaeus HAB-5 
had antifungal activity against Colletotrichum gloeospori-
oides (Rajaofera et al. 2019). Prakash and Arora (2021) 
reported that the phenol, 2,4-bis(1,1-dimethylethyl) had a 
significant role in biocontrol activity of several phytopatho-
gens (Prakash and Arora 2021). Another metabolite octa-
decamethylcyclononasiloxane was indicated as an antifungal 
compound (Isbilen and Volkan 2020). Vanitha et al. (2020) 
investigated the antimicrobial activity of heneicosane from 
leaf extract. They found that it has a good inhibitory activity 
against Aspergillus fumigatus (Vanitha et al. 2020). Triacetin 
which is one of the minor compounds also has antifungal 
activity (Quinn and Ziolkowski 2015).

Antifungal effect of B. subtilis

The biocontrol of pathogens using probiotics as antagonists 
is currently recognized as an important part of integrated 
management in crops. Among microbial antagonists, Bacil-
lus spp. plays a fundamental role as potential biocontrol 
agents against pathogens due to their ability to produce 
numerous antimicrobial compounds such as fengycin, sur-
factin and iturin (Sarwar et al. 2018). According to the study 
of Li et al., MALDI-TOF–MS analysis showed a broad m/z 
peak range, indicating that Bacillus atrophaeus strain B44 
produces a complex mixture of iturin, surfactin and fengycin 
lipopeptides (Li et al. 2021). Particularly B. subtilis produces 
surfactin, iturin, and fengycin lipopeptides with antifungal 
activity, and the antifungal activity of these peptides has 
been attributed to changes in cell membrane permeability 
(Popov et al. 2021). In the study Mohd Isa et al. carried out, 
HPLC analysis results of surfactin from isolated B. subtilis 
were compared to the standard chromatogram of 100 mg/L 
surfactin standard. 41.6 mg/L, 59.75 mg/L, 26.90 mg/L and 
84.08 mg/L surfactin were produced from B-budu, B-cin-
calok, B-tapai and B-tempeh strain of B. subtilis (Mohd Isa 
et al. 2020).

Bacillus strains have been shown to have broad-spectrum 
antifungal activities in various biocontrol studies (Elsha-
ghabee et al. 2017; Liu et al. 2017). In the study by Chitarra 
et al., it was shown that the antifungal compound produced 
by B. subtilis YM10-20 strain isolated from corn before har-
vest inhibited spore germination and growth of Penicillium 
roqueforti (Chitarra et al. 2003). Kumar et al., investigated 
the effects of variables such as different media content, pH, 
incubation period, aeration and temperature on the antifun-
gal activity of B. subtilis MTCC8114 strain isolated from 
soil. Nutrient broth (NB), sucrose broth (SB), trypticase 
dextrose broth (TDB) and trypticase soy broth (TSB) were 
used as the medium and it was determined that the antifun-
gal production in the TSB medium was maximum (Kumar 
et al. 2009).

To test whether B. subtilis has antifungal activity on the 
growth of pathogenic fungi, a dual culture assay was car-
ried out. In the presented study, B. subtilis and fungi were 
incubated in the same petri dish (PDA) medium using dual 
culture method. For this reason, the antifungal effect was 
not only due to volatile compounds, but also as a result of 

Table 4   In vitro mycelial growth levels (mm) of F. oxysporum at dif-
ferent incubation periods (n = 3)

Data are presented as mean ± standard deviation (n = 3)
*a–cWithin each column, different superscript lowercase letters show 
differences between the incubation periods (p < 0.05)
*A–BWithin each row, different superscript uppercase letters show dif-
ferences between the sample and control (p < 0.05)

Incubation periods
day

F. oxysporum

Control Mycelial growth

3 24.5 ± 0.70c,A 22.5 ± 0.00c,B

4 35.0 ± 0.00b,A 29.5 ± 0.70b,B

5 41.5 ± 0.70a,A 35.5 ± 0.50a,B

6 47.0 ± 1.41a,A 39.16 ± 0.76a,B

Table 5   In vitro mycelial growth levels (mm) of B. cinerea at differ-
ent incubation periods (n = 3)

Data are presented as mean ± standard deviation (n = 3)
*a–bWithin each column, different superscript lowercase letters show 
differences between the incubation periods (p < 0.05)
*A–BWithin each row, different superscript uppercase letters show dif-
ferences between the sample and control (p < 0.05)

Incubation periods
day

B. cinerea

Control Mycelial growth

3 32.50 ± 0.50b,A 27.50 ± 0.00b,B

4 66.16 ± 1.04a,A 48.50 ± 1.41a,B

5 85.50 ± 0.50a,A 58.00 ± 0.70a,B

6 90.00 ± 0.00a,A 60.00 ± 0.70a,B
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microbial competition. As shown in Tables 4, 5, B. subtilis 
isolate showed antifungal activity against F. oxysporum and 
B. cinerea. The in vitro effect of B. subtilis on the sixth day 
of incubation, the mean mycelium diameter of B. cinerea 
was 60.00 mm. In addition, the mean mycelium diameter of 
control B. cinerea was observed as 90.00 mm. It was seen 
that an inhibition rate of B. subtilis against F. oxysporum 
was 39.16 mm on the sixth day of incubation and the control 
mycelium had an average diameter of 47.00 mm. The high-
est antifungal activity was observed with B. subtilis isolate 
against B. cinerea. The results revealed that B. subtilis plays 
a vital role in biocontrol efficacy. Mean values of all groups 
were further analyzed by the comparison test when a signifi-
cant (p < 0.05) main effect was found (Table 6).

Fungistatic rates showed that B. cinerea and F. oxyspo-
rum were successfully inhibited as 33.33% and 16.68% in 
the dual culture assay at 6th incubation day, respectively. As 
a result, it can be reported that B. subtilis showed higher 
inhibition rate against B. cinerea compared to F. oxysporum. 
In the literature, similar antifungal effects were observed 
against these fungal pathogens and other pathogens. The 
investigation of Gajbhiye et al., was based on the isolation 
of B. subtilis from cotton rhizosphere and it was evalu-
ated as a biological control agent against F. oxysporum and 
exhibited more than 50% mycelial inhibition in dual cul-
ture bioassay (Gajbhiye et al. 2010). In the study of Rong 
et al., the antifungal activities of the B. safensis B21 against 
Magnaporthe oryzae were evaluated. B. safensis B21 iso-
lated from Osmanthus fragrans fruit showed high antifungal 
activity against M. oryzae (Rong et al. 2020). Hussain and 
Khan described that B. subtilis HussainT-AMU strain sig-
nificantly inhibited the growth of R. solani by 45 ± 0.30% 
growth inhibition rate in comparison to control (Hussain 
and Khan 2020).

It was also seen that the antifungal activity of the B. sub-
tilis produced in bioreactor was higher than the productions 
in flask owing to the controlled environment and efficient 
production. On the sixth day, inhibition of B. subtilis grown 
in flasks on B. cinerea and F. oxysporum was calculated as 

26.5% and 10.42%, respectively. This result can be explained 
with the quality of the spores. It can be said that there were 
more alive spores in bioreactor culture which grew and 
affect the fungi more than the culture in flask. The results 
from Kefi et al. (2015), Mardanova et al. (2016), Khan et al. 
(2018) and Khedher et al. (2021) who investigated the anti-
fungal effect of various Bacillus species cultivated in flask or 
solid medium against fungal pathogens including B. cinerea 
and F. oxysporum showed that the inhibition rate calculated 
from this study is superior to these results.

Conclusion

In this study, the biomass yield of B. subtilis in shake flask 
and bioreactor production was compared and an effective 
approach to the environmentally friendly biocontrol of fun-
gal pathogens by using probiotic bacteria that were grown 
under bioreactor conditions was suggested. It was found that 
B. subtilis can inhibit mycelial growth, the germination of 
Botrytis cinerea and Fusarium oxysporum. The antifungal 
activity of B. subtilis was attributed with the synthesis of 
antimicrobial volatile compounds. It was also put forth that 
the importance of controlled environment for probiotic pro-
duction to achieve higher productivity and improved anti-
fungal activity. In conclusion, B. subtilis grown in suitable 
and controlled conditions can be utilized in agriculture as an 
effective biocontrol agent for agriculturally important plants 
to prevent postharvest diseases.
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