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Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and clean-
ing up the stressed environment without harming it. The industrial revolution was followed by the green revolution which 
fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also 
increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has 
led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and 
can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of 
the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms 
perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and 
probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen 
fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and 
heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed 
by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and 
proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environ-
mental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can 
perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics 
techniques reportedly used in environmental monitoring to tackle the pollution load.
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Introduction

Healthy, proficient, and sustainable crop production and 
agriculture need a continuous and sufficient supply of nutri-
ents that can cope with the ever-growing demands of the 

population globally (Mahdi et al. 2010; El-Beltagi et al. et al. 
2018, 2019a, b). Chemical or synthetic fertilizers improve 
plant nutrient requirements immediately, but indiscrimi-
nate use of them has produced many environmental hazards 
which include both ground and surface water pollution, soil 
quality deterioration, pollution in the air, and suppressing 
many other functions of the ecosystem as well (Puglia et al. 
2021). Synthetic fertilizers are toxic chemicals and will 
accumulate in the human body. Poore and Nemecek (2018) 
affirm that air pollution is caused by the manufacturing of 
chemical fertilizers, and that water pollution results when 
the wastes from industries are dumped untreated into nearby 
water bodies. Eutrophication is the most devastating effect 
of chemical waste accumulation in water bodies. Therefore, 
soil pollution occurs when chemical fertilizers are added to 
the soil, resulting in a degradation of soil quality and health 
(Blattner 2020). In the same way, community wastes and 
sewage sludge offer an alternative, but their use can cause 
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higher accumulations of heavy metals, which have adverse 
effects on crop growth (Iglesias et al. 2018). Therefore, an 
alternative strategy is needed to improve crop growth with-
out harming plants as well as soil. As a result, the use of 
biofertilizers is an environmentally friendly way to reduce 
the use of synthetic fertilizers and can enhance crop produc-
tion (Sofy et al. 2020a, b, 2021a, b, c). Hence, the role of 
microbes in promoting the growth of plants as biofertilizers 
regulates many processes like availability of nutrients, espe-
cially Mg, N, Fe, K, P. Organic material decomposition to 
improve crop growth is well understood (Lalitha 2017; Aly 
et al. 2012, 2013, 2017; Abu-Shahba et al. 2021). Biofer-
tilizer, known as a component of specific microbial cells, 
stimulates the growth of plants while increasing the rate of 
nutrients through the phosphorous cycle, and nitrogen fixa-
tion (Mohamed and Gomaa 2012) (Fig. 1).

It is well understood that sustainable agriculture can be 
achieved using microbial inoculants (cost-effective input), 
which is the backbone of integrated nutrient management 
(Mohamed and Gomaa 2012). Biofertilizers are produced 
from potential microbe strains that help plants absorb 
nutrients by forming rhizospheric associations with plants 
in the soil. Biofertilizer or bioinoculant production is an 
easy and cost-effective method. An enormous advance-
ment in the use and research of biofertilizers has been 
made in the past few decades (Kour et al. 2020). Soil can 
be considered a basic and good medium used for micro-
bial growth. P solubilizing fungi and bacteria comprise 
0.1–0.5% and 1–50%, respectively, of the whole microbial 

population in specific entities of the soil surface (Walpola 
and Yoon 2012). The biodegradation terminology is gener-
ally used in relation to pollution and waste management, 
ecology, and is specifically connected to bioremediation 
(Verma and Jaiswal 2016). The bioremediation process 
can be divided into three different phases. First, through 
attenuation naturally, without any amplification, human 
waste products could be vanished by innate microorgan-
isms. Second, biostimulation functions in which both oxy-
gen and nutrients in a system are applied in a way that 
improves their effectiveness and speeds up biodegradation 
as well (Mohamed et al. 2018a). Third, microorganisms 
during bioaugmentation can also be linked with related 
systems. These complementary organisms could be iden-
tified effectively as compared to flora observed natively 
degrading the targeted contaminants (Diez 2010).

Microorganisms that are capable of effective use in pol-
lutant degradation and of fast adaptation to a specific case 
in a short time period are required in remedial technology 
which is feasible (El-Mahdy et al. 2021). Being vital in 
finding solutions to various problems, microorganisms for 
the benefit of mankind have encountered the maintenance 
of a quality environment. Likewise, they are used to affect 
the health of humans and animals, ecological protection, 
genetic engineering, and industrial and municipal waste 
management positively. Responses that were not possible 
through physical or chemical engineering have been found 
to be cost-effective and feasible via microorganisms (El-
Mahdy et al. 2021).

Microorganisms that are naturally associated with 
plants, such as probiotic bacteria, can enhance the growth 
of the host plant, as well as increase yield when applied 
in sufficient amounts (Sharma et al. 2012; Nadeem et al. 
2015) (Fig. 1). Some probiotic bacteria that promote plant 
growth include Acinetobacter, Alcaligenes, Arthrobacter, 
and Serratia. Their beneficial effects on host plants are 
due to the production of phytohormones, antibiotics and 
lytic enzymes, as well as nitrogen fixation, mineral nutri-
ent solubilization, and systemic resistance. They also help 
in improving the structure of soil by mixing its particles 
while secreting extracellular metabolites and breakdown 
of complex insoluble nutrients and organic materials into 
simple forms accessible to plants and induced disease 
and stress resistance (Maheshwari et al. 2012; Song et al. 
2012; Prakash et al. 2016). This review aims to collect 
information about the use of microorganisms in bioleach-
ing, biodegradation, bio composting, nitrogen fixation, 
phosphorous solubilization, soil fertility improvement, 
phytoremediation, biofertilizer and biodegradation process 
to remediate polluted environments and focus on the omics 
techniques reportedly used in environmental monitoring 
to combat the pollution load.

Fig. 1  Microbiomes of plant and soil with diverse parameters of plant 
growth promoting biofertilizers for soil fertility and PGP under the 
stressed and natural conditions
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Environmental pollution

Agrochemicals are a category of various chemicals used 
and associated activities in agriculture. These chemicals 
or compounds include pesticides, chemical fertilizers, sub-
stances that promote growth, soil stimulants, feed addi-
tives, veterinary substances (Gupta 2019; Mohamed et al. 
2012, 2018b). To increase agricultural production, balance 
and sustain land nutrients and the health of the soil, agro-
chemicals play an important role, protecting crops from 
infections and thus increasing crop yield. In the past, vast 
amounts of agrochemicals have been used to improve food 
production for the increasing world population (Meena 
et al. 2020b). In other terms, those agrochemicals played 
an important part in the success of the green revolution 
in most developed countries where the level of produc-
tion was many times higher than before (Gupta 2019). The 
world population will be about 9.3 billion by 2050, up 
from today 7.2 billion (Meena et al. 2020a). This rise in 
the population would lead to a high increase in the demand 
for food and feed agrochemicals. For global food demand, 
therefore, a sustainable approach is needed. Agrochemi-
cals are unavoidable in this sense. Therefore, farmers 
face a crucial challenge and agrochemicals therefore play 
a growing role (Meena et al. 2020a). The high quality 
and usability of chemicals and their benefits contribute 
significantly to their market development. Nonetheless, 
global food safety problems still demand agrochemicals 
on a steady basis. However, the environmental and human 
health toxicity of these agrochemicals is still a challenge 
(Meena et al. 2020a). Any agricultural activity that relies 
on agrarian chemicals or fertilizers is often evaluated by 
growing income at reduced costs based on their economic 
efficiencies and benefits. However, their possible environ-
mental impacts are clearly less considered (Udeigwe et al. 
2015). Using pesticides typically improves plant develop-
ment by destroying pest, insects, and weeds to avoid or 
minimize plant illnesses. Moreover, the application of fer-
tilizers will provide the land with many nutrients needed 
to grow crops and increase yields (Meena et al. 2020a).

Pesticides

Pesticides are regularly used in pest management in 
modern agriculture, but their overuse has threatened not 
only the environment but plants as well as these pesti-
cides have the ability to pass through living tissues. A 
pesticide is a substance used for repelling, destroying, or 
avoiding pests. Pesticides are categorized generally as 
herbicides, fungicides, and insecticides depending on the 
target killed. Increased food demand due to population 

growth has forced people to use pesticides to boost crop 
production (Jayakumar et  al. 2019). As a result, envi-
ronmentally friendly pest control alternatives should be 
sought. The toxic and harmful effects of pesticides can be 
minimized using different microorganisms. Out of these 
microorganisms, bacterial strains not only reduce the toxic 
effect of pesticides but also promote growth as well. These 
bacterial strains include genera like Bacillus, Gordonia, 
Azospirillum, Klebsiella, Serratia, Azotobacter, Paeni-
bacillus, Enterbacter, and Pseduomonas (Shaheen and 
Sundari 2013). Furthermore, apart from these, Actinomy-
cetes have been reported to degrade and transform the ill 
effects of pesticides. Hydrolases and esterases are some of 
the key lytic enzymes produced by microorganisms while 
oxidases and transferases are found to be the major group 
of enzymes involved in the pesticide degradation process 
(Ortiz-Hernandez et al. 2013). As a result, using growth-
promoting microorganisms is one of the most important 
ways to decontaminate soil with pesticides in a sustainable 
manner.

Heavy metal

Due to increased anthropogenic activities, rapid industri-
alization and modern agricultural practices in recent years, 
heavy metal elements have been increasingly polluted and 
are one of abiotic stresses on plants, especially in develop-
ing countries (Akladious and Mohamed 2017; El-Beltagi 
et al. 2020). At any stage of the life cycle of plants, heavy 
metals play an important role. Unbalanced doses can, how-
ever, lead to both cytotoxic and genotoxic effects and there-
fore to plant genome instability. Soil that is polluted with 
heavy metals such as cadmium and lead, produces one of 
the plant’s essential stress conditions. Several studies have 
shown that seed germination and seedlings are affected by 
heavy metal stress (Mohamed 2011). Inorganic and organic 
fertilizers, sewage sludge, water contaminated by irrigation, 
pesticides, and fungicides are the most important sources 
of heavy metals in agricultural soil. In the industrial and 
neighboring countries, heavy metals are extracted at high 
temperatures, such as smelling and casting, in particulate 
and steam forms into the atmosphere (Wuana and Okieimen 
2011). In addition, heavy metal elements may be added to 
the soil from other industrial sources, such as plastic pro-
cessing, textiles, microelectronics, wood storage, and paper 
processing. The internal effluents often lead to a higher level 
of heavy metals and other chemical elements in the rivers 
and lakes (Tchounwou et al. 2012). About 400 plant species 
are reported to remediate and cleanse sites having contami-
nation. For instance, Zn and Cd affected contaminated soils 
can be effectively remediated by many Brassica sp. such as 
B. napus, B. rapa and B. junica. Plants and microbial activity 
are reduced in highly contaminated soil with metals, while 
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low to moderately contaminated soil with heavy metals can 
be efficiently controlled by phytoremediation. Root length, 
regional temperature, soil, and contaminant nature are some 
of the criteria for plant species selection for phytoremedia-
tion (El-Mahdy et al. 2021). Plants with hyper-accumulator 
characteristics (low biomass) such as Thlaspi and Arabi-
dopsis species or hypo-accumulator characteristics (high 
biomass) such as willow for phytoremediation of contami-
nants. Heavy metal accumulation varies with plant species 
and many researchers have reported that varying amounts 
of heavy metals are found in different plant species or even 
genotypes of species grown on the same soil. Grasses with 
high levels of biomass, effective stabilization of soil, rapid 
growth, and strong resistance, are the most widely used and 
evaluated plant species in the phytoremediation process as 
compared to shrubs and trees. Furthermore, grasses are also 
adaptable to sites of environmental stress and low nutrient 
concentrations. Moreover, leaching, erosion and runoff can 
be reduced due to the larger surface area of their fibrous 
roots and rigorous soil penetration. All these factors com-
bine to make grass an effective tool for phytoremediation 
and soil stabilization (Table 1).

Phytoremediation strategies

The key concept of phytoremediation is to effectively clean 
up the environment from pollutants using green plants and 
microorganisms. This technology has great potential in 
the tropics, favoring plant growth and enhancing micro-
bial activity due to climatic conditions (Liu et al. 2020). 

This method is applicable when metal contaminants have 
spread over far-flung places or the plant’s root zone. In 
regions where pollution is low or moderate, phytoreme-
diation is an economical, energy efficient and pleasing 
method.

Plants use different approaches to decontaminate 
wastewater, sludge, soils, and sediments, etc. which can 
be broadly termed as phytoremediation. Various phytore-
mediation technologies such as phytofiltration, volatiliza-
tion, extraction, degradation, and stabilization, are used to 
eliminate organic and inorganic pollutants from contami-
nated places (each having a different mode of action) that 
greatly depends on the cleanup level, contaminant type, 
plant types and condition of the site (Jacob et al. 2018). 
Figure 2 represents the different assisted phytoremedia-
tion strategies. The absorption of pollutants removed from 
the field which are accumulated in different organs using 
plants in combination with crops to cleanse the soil of 
organic contaminants and heavy metals is termed phytoex-
traction. Taking up stowed contaminants from an aqueous 
medium using different plant organs (roots, excised shoots 
and seedlings) is known as phytofiltration. The halting or 
binding of pollutants with soil particles (thereby reducing 
their availability) using plants is known as phytostabliza-
tion (Basu et al. 2020). The use of plants in taking con-
taminants and volatilizing them into the atmosphere is 
known as phytovolatilization. The degradation of organic 
contaminants using related microbes and plants is termed 
phytodegradation. The use of microbes in increasing 
organic contaminant degradation in the root zone of plants 
is known as rhizodegradation (Table 1).

Table 1  Plant adaptation strategies against heavy metal stress

Type of Phytoremediation Mechanism Heavy metals treated

Phytoextraction Plants tend to accumulate heavy metals in harvestable 
parts

Cd, Co, Cr, Ni, Hg, Pb, Se, Zn

Phytostabilization Immobilization of metal through absorption and 
accumulation by roots via vacuolar sequestration or 
cell wall binding, precipitation within the root zone 
(rhizosphere) by formation of complexes

Pb, Zn, Cu

Phytostimulation Root exudates promote development of microorganisms 
(bacteria and fungi) within rhizosphere that are capable 
of degrading heavy metal contaminants into nontoxic 
products

Petroleum hydrocarbons, polyaromatic benzene, toluene, 
etc

Phytovolatilization Plants take up contaminants, convert them into volatile 
forms, and release them into atmosphere via transpira-
tion

Hg, Se, chlorinated solvents (carbon tetrachloride and 
trichloromethane)

Phytodecomposition Both terrestrial and aquatic plants take up organic 
compounds and store or degrade them to less toxic or 
nontoxic by-products

TNT, DNT, nitrobenzene, nitrotoluene, chlorinated
Solvents

Rhizofiltration Plant roots absorb, concentrate, or degrade heavy metals 
from contaminated liquid effluents

Cd, Co, Cr, Ni, Pb, Hg, Se, Zn
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Role of microorganisms in sustainable 
agriculture

Due to their ability to produce plant growth-promoting sub-
stances/metabolites such as phytohormones, siderophores, and 
ammonia, microorganisms can increase soil nutrient availabil-
ity through the solubilization of phosphate, nitrogen fixation, 
and organic compound mineralization.

Microbes as biofertilizers

Biofertilizers made from microorganisms are applied to 
the plant's surroundings, soil, or seed, which then live with 
the plant and increase plant growth because these microbes 
make available, supply, and uptake nutrients to the host 
plant. Biofertilizers are more beneficial for small and mar-
ginal farmers because they are easily available and acces-
sible to them. Bacteria, cyanobacteria, and fungi are some 
of the important microbe groups used for the production of 
biofertilizers. These microorganisms form a symbiotic asso-
ciation with host plants. The nature and function of micro-
bial fertilizer depend on the supply of N and P (Thomas and 
Singh 2019). Table 2 gives the major groups of biofertilizers 
(Singh et al. 2014).

Microbes as nitrogen fixer

The breathing air comprises about 80% of atmospheric  N2. 
Even though nitrogen is the most profuse and pervasive ele-
ment in the air, it is still not available to plants, making it 

the most limiting nutrient to the growth of the plant. There 
are some groups of bacteria with the capability to fix atmos-
pheric nitrogen, hence forming a different association with 
plants that are:

(1) Free living bacteria which fix atmospheric nitrogen in 
the soil.

(2) The host plant assimilates the ammonium produced by 
the nitrogen-fixing endophyte.

(3) Some bacteria live in the rhizosphere of plant roots 
without having endophytic symbioses.

These systems can fix nitrogen substantially, but there 
are some differences observed due to environmental condi-
tions or plant–microbe associations. These microorganisms 
coexist with the host plants, allowing for efficient utilization 
of fixed nitrogen, thereby reducing denitrification, volatiliza-
tion, and leaching (Hoffman et al. 2014).

Azospirillum

Azospirllum, besides rhizobia, is the most reviewed and used 
bacteria with notable advantages for a wide array of plant 
species (Fukami et al. 2016). Beij reported for the first time 
that the genus Spirillum was found and reclassified by Dr. 
Johanna Dobereiner and a group in Brazil during the 1970’s 
due to the nitrogen fixing capability of nitrogen found in 
the atmosphere, such as Azospirillum (Tarrand et al. 1978). 
Later, Azospirillum discovered a diazotrophic, substituted 
nitrogenous fertilizer in crops including wheat (Cassan et al. 

Fig. 2  Mechanism action of 
rhizosphere bacteria activates 
phytoremediation method in 
soil contaminated with metals 
enhance mobilization of metals
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2015), rice (Marks et al. 2015) and many others (Fukami 
et al. 2016). Among the 20 species mentioned so far, A. 
lipoferum and A. brasilense are the most important of all 
for different genetic and physiological studies (Fibach-Paldi 
et al. 2012). Azospirillum has a great potential to colonize a 
great number of perennial and annual plants which can fix 
atmospheric nitrogen. It is also not limited to a specific host; 
hence it is considered as a general potent root colonizer. 
Azospirillum is reported to improve growth and production 
in many crops, especially carrots, tomatoes, peppers, and 
eggplants (Bashan et al. 2013).

Atmospheric nitrogen is converted to ammonium at low 
nitrogen levels under micro-aerobic conditions by Azospiril-
lum using a nitrogenous complex. Two components of these 
enzymes, i.e. denitrogenase protein (MoFe protein, Nif DK) 
and denitrogenase reductase (Fe protein, Nif H) are used 
in this mechanism. The denitrogenate protein contains an 
iron-molybdenum co-factor which is the  N2 reduction site 
while an electron transfer from the electron donor to the 
nitrogenase protein occurs by the denitrogenase reductase 
protein (Burris and Roberts 1993). A genetic study revealed 
that A. brasilense, one of the species of Azospirillum, helps 
with nitrogen fixation. Both the nitrogenous components are 
linked by A. brasilense Nif HDK genes which are similar to 
those of Klebsiella pneumoniae Nif HDK genes (Perroud 
et al. 1985). Moreover, processing and electron transport 
involve Nif and fix (additional genes) and are isolated from 
A. brasilense which are helpful in the nitrogenase enzyme 

complex, nitrogen fixation regulation and FeMo cofactor 
biosynthesis (Frazzon and Schrank 1998).

Azospirillum is known to be a commercially utilized and 
studied bacterial plant growth promoter nowadays. It not 
only has the capability of atmospheric nitrogen fixation but 
is also effectively found in many pathways of plant growth 
promotion, specifically in phytohormone biosynthesis. By 
activation of defense mechanisms in plants, they also play 
a role in plant protection against biotic and abiotic stresses, 
for example, induced systematic resistance and tolerance 
(Fukami et al. 2018) as shown in Fig. 3.

Azotobacter

Azotobacter is a Gram-negative aerobic soil dwelling, free-
living spherical-shaped bacteria forming thick-walled cysts 
belonging to the family Azotobacteriaceae that comprises 
of species like Azotobacter paspali, A. nigricans, A. vine-
landii, A. chroococcum, A. beijerinckii and A. armeniacus 
(Salhia 2013). Azotobacter sp. is usually known as an aero-
bic nitrogen fixer and is free living (Sivasakthi et al. 2017). 
The genus Azotobacter was discovered by a Dutch botanist, 
Beijerinck, in 1901. Among the 6 species of Azotobacter, the 
first aerobic free-living nitrogen was reported as A. chroo-
coccum. These bacteria utilize atmospheric nitrogen gas for 
their cell protein synthesis. This cell protein is then miner-
alized in soil after the death of Azotobacter cells thereby 

Table 2  The important groups of microbial fertilizers

Group of biofertilizers Subgroup Examples

Nitrogen fixing Free-living Beijerinkia, Azotobacter, Derxia, Anabaena, Aulosira, Stigonema, Cylin-
drospermum, Clostridium, Tolypothrix, Stigonema, Nostoc, Rhodospiril-
lum, Klebsiella, Rhodopseudomonas, Bacillus polymvxa, Chromatium and 
Desulfovibrio

Symbiotic Frankia, Symbiotic (Azorhizobium, Rhizobium, Allorhizobium, Sinorhizobium, 
Mesorhizobium, Bradyrhizobium), Trichodesmium, and Anabeana azollae

Associative Azospirillum spp. (A. brasilense, A. lipoferum, A. amazonense, A. halopraefer-
ens, and A. irakense), Acetobacter diazotrophicus, Herbaspirillum sp., Azo-
arcus sp., Bacillus, Klebsiella, Alcaligenes, Pseudomonas, and Alcaligenes

Phosphorus (microphos) Phosphate solubilizers Bacillus subtilis, B. megaterium var. phosphaticum, B. polymyxa, B. circulans, 
Penicillium sp., Pseudomonas straita, Trichoderma, Rhizobium, Aspergillus 
awamori, Rhizoctonia solani, Achromobacter, Burkholderia, Aereobacter, 
Erwinia, Microccocus, Flavobacterium, and Agrobacterium

Phosphate mobilizing Arbuscular mycorrhiza (Glomus sp., Gigaspora sp., Acaulospora sp., Scutel-
lospora sp., and Sclerocystis sp.), ectomycorrhiza (Laccaria spp., Pisolithus 
spp., Boletus spp., Amanita spp.), ericoid mycorrhizae (Pezizella ericae), and 
orchid mycorrhiza (Rhizoctonia solani)

Micronutrients Potassium solubilizing Bacillus edaphicus, B. mucilaginosus, and Paenibacillus Glucanolyticus
Silicate and zinc solubilizing Bacillus subtilis, Thiobacillus thioxidans, and Saccharomyces sp.

Growth promoting Plant growth promoting rhizobacteria Agrobacterium, Achromobacter, Alcaligenes, Arthrobacter, Actinoplanes, Azo-
tobacter, Bacillus, Pseudomonas fluorescens, Rhizobium, Bradyrhizobium, 
Erwinia, Enterobacter, Amorphosporangium, Cellulomonas, Flavobacte-
rium, Streptomyces, and Xanthomonas
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contributing towards the nitrogen availability of the crop 
plants. They pose advantageous impacts on the crop growth 
and yield through the biosynthesis of biologically active 
substances, instigation of rhizospheric microbes, produc-
tion of phytopathogenic inhibitors, alteration of nutrient 
uptake and eventually magnifying the biological nitrogen 
fixation (Lenart 2012). Azotobacter has the capability of 
nitrogen fixation (15–20 kg  ha−1) and acts as a bio-inocu-
lant that enhances 10–12% of crop productivity (Jaga and 
Singh 2010). Azotobacter is one of the alternative methods 
instead of chemical fertilizers and pesticides. Treatment with 
Azotobacter caused increment in root and shoot dry matter 
content, plant height, root length, and disease control (Arora 
et al. 2018).

Blue green algae (BGA) and Azolla

Free-living cyanobacteria, also known as blue green algae, 
fix atmospheric nitrogen through photosynthesis. Initially 
found in rice fields, they are now found in a wide range 
of ecosystems, including the oceans, forests, and wetlands. 
Cyanobacteria require a humid climate with adequate water, 
temperature, light, and nutrient availability. The dominant 
nitrogen fixers include Anabaena, Aulosira, Culothrix and 
Nostoc (Sahu et  al. 2012). Cyanobacteria can increase 
soil fertility, thereby increasing crop yield. Anabaena 
and Nostoc, which live in soils, rocks and form symbiotic 
relationships with plants in liquid medium can fix about 
20–25 kg  ha−1 of nitrogen (Kour et al. 2020). They have 

evolved multiple specialized cell types, including nitrogen-
fixing heterocysts, spore-like akinetes, and the cells of 
motile hormogonia filaments. Vegetative cells, under favora-
ble conditions, are common photosynthetic cells. Hetero-
cysts are thick-walled cells that are specialized structures 
for atmospheric nitrogen fixation into ammonia, nitrates, 
and nitrites as they contain vital nitrogenous enzymes while 
spores forming cells under stress conditions are known as 
akinetes. Cyanobacteria contain vitamins, phytohormones, 
and amino acids which are growth-promoting substances. 
They also improve water-holding capability, decrease saline 
stress, suppress weed growth and improve the availability of 
phosphorus in the soil. Moreover, they are also potent biode-
grading organisms proficient at elevating different types of 
pollutants (Vijayakumar and Manoharan 2012).

Anabaena‑azollae symbiosis

Anabaena azollae, a potential biofertilizer is a symbiotic 
cyanobacterium, used for rice production and forms a rela-
tionship with ferns (Parween et al. 2017). Azolla can fix 
atmospheric  N2 in a symbiotic relationship with Anabaena 
azollae, which is a cyanobacterium. It can fix 40–60 kg  ha−1 
of atmospheric nitrogen in rice and is considered as an alter-
native to synthetic nitrogenous fertilizers (Kour et al. 2020). 
The colonies of Anabaena azollae are related to the shoot 
apex of Azolla which contains generative filaments (with-
out heterocysts). The nitrogenase activities are increased by 
cyanobacterial filaments which are present in the cavity of 

Fig. 3  Mechanisms of tolerance 
of biotic and abiotic stresses 
induced by Azospirillum in 
plants (Fukami et al. 2018)
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older leaves that terminate to grow (Adams et al. 2012). 
Chloroplast present in the mesophyll cells of Azolla can also 
reduce photosynthetic carbon by an important enzyme called 
RuBisCO (Rae et al. 2013).

Acetobacter

Acetobacter, anaerobic nitrogen fixation agent, is a key inoc-
ulant for sugarcane, forming colonies with their roots and a 
symbiotic relationship with coffee (Wani et al. 2016). The 
genus was divided into two groups, the Acetobacter aceti 
group and the Acetobacter pasteurianus group phylogeneti-
cally (Yamada 2016). The species of the genus were char-
acterized by the oxidation of acetate and lactate, acetic acid 
production from ethanol, no production of 2,5-diketo-d-glu-
conic acid from d-glucose, and UQ-9 as the major (Malimas 
et al. 2017). Acetobacter diazotrophicus was first reported as 
an acetic acid bacterium capable of nitrogen fixation (Gillis 
et al. 1989). Acetobacter nitrogenifigens was the second spe-
cies to possess a nitrogen-fixing ability and considered to be 
a plant growth-promoting bacterium as well (Pedraza 2016). 
The two nitrogen-fixing species are quite distant phyloge-
netically; the former was classified in the A. pasteurianus 
group, and the latter was in the A. aceti group. Because of 
the high nitrogen content, symbioses with rhizobia and acti-
norhizal are important organisms for biofertilizers. About 
70% (150 kg  ha−1) of the nitrogen requirement of sugarcane 
is fixed by Acetobacter (Boddey et al. 1995).

A. aceti is economically important because it is used in 
the production of vinegar by converting the ethanol in wine 
into acetic acid. The acetic acid created by A. aceti is also 
used in the manufacturing of acetate rayon, plastics pro-
duction, rubber production, and photographic chemicals. A. 
aceti is considered an acidophile, which means it can survive 
in acidic environments, due to having an acidified cytoplasm 
which makes nearly all proteins in the genome to evolve acid 
stability. A. aceti has become important in helping to under-
stand the process by which proteins can attain acid stability 
(Wani et al. 2016).

Microbes as phosphate solubilizer 
and mobilizer

Global food scarcity is one of the most serious challenges 
of the twenty-first century, putting pressure on the agricul-
tural sector to increase food demand in the future. To cope 
with the situation, scientists put a great deal of effort into 
centralizing the soil plants interactions. It needs a better 
understanding of the agro-ecosystem and synergy to utilize 
agricultural land in an ideal way. Presently, due to the green 
revolution, food availability is not a problem to deal with, 

rather the timely distribution to far lands are an issue. The 
green revolution proved to be one of the most acknowledged 
human achievements that transformed developing countries 
(food deficient) into developed ones (food surplus). Macro 
and micronutrient deficiencies have been tackled through 
the green revolution, such as the use of chemical fertilizers, 
superphosphates are commonly recommended to overcome 
phosphorus deficiencies.

These fertilizers are often in limited supply in host 
countries; therefore, their import is a major outlay for poor 
farmers in developing countries. After the green revolu-
tion, increased agricultural production entailed the addi-
tion of phosphate to increase soil phosphate status but 
also improved crop production. The multiple applications 
of chemical fertilizers are not only expensive but also an 
environmental risk (Battaglia et al. 2018) which adversely 
affects the microbial population in the rhizosphere and 
bioenergy production (Kumar et al. 2019). There is also a 
risk of xenobiotic contamination in manure used to fertilize 
agricultural soils (Meena et al. 2020a; Molaei et al. 2017). 
P is generally known to be involved in plant growth and 
development (promoting the development of roots, rapid 
maturity of the plant, and the production of seeds), biotic 
stresses, and the efficiency of water use (Magalhaes et al. 
2017). Its preliminary controls vital physiological processes 
controlling plant growth and development which are mainly 
dependent on energy utilization by two phosphate molecules 
such as adenosine diphosphate and triphosphate (ADP and 
ATP) (Krishnaraj and Dahale 2014). P constitutes 0.05% of 
soil content where only a small quantity is available to plant 
biologically a fraction of 0.2% of the total dry mass of the 
plant (Alori et al. 2017). P exceeds (10 mM) in the bioavail-
able form which is distributed to all plant tissues through 
special transporters and transducers. The reduced quantity 
of P in the soil solution apparently makes the element a vital 
factor for plant growth, given that P is relatively substan-
tial for crop production (Bhat et al. 2017). Additionally, the 
activity of P as deposition and fixation, pH dependent may 
lead to P availability being reduced, and thus low efficiency 
of fertilizers containing P. Likely, due to precipitation and 
adsorption of P in lime soils, this severely hampered the 
efficiency of available P (Sanders et al. 2012). Therefore, a 
significant challenge faced by modern agriculture and tech-
nology requires advanced solutions to improve the bioavail-
ability of P.

Microbes as phosphate solubilizer

The way of meeting global food demand is a challenge, the 
use of conventional phosphorus (P) fertilizers potentially 
causes water and soil pollution through waterway eutrophi-
cation, depletion of soil fertility, and accumulation of toxic 
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elements such as excess amounts of selenium (Se), arse-
nic (As) in the soil. Phosphorus is a vital nutrient for the 
growth and development of plants, it is available in soil in 
a huge quantity but in most plants it is unavailable (Oteino 
et al. 2015) that may lead to the problem of the applica-
tion of phosphate fertilizer in agroforestry exercises. Soil 
phosphorus depletion is a major limiting factor in the yield 
of agroforestry globally (Turner et al. 2018; Nikolic et al. 
2011). Seed inoculation with phosphate solubilize micro-
organisms (PSM) is an environmentally friendly budding 
strategy to improve crop production. Numerous microorgan-
isms are capable of mineralizing insoluble phosphate and 
releasing plant available soluble P, resulting in high crop 
yields. Despite their importance in soil fertility, PSM has 
yet to replace chemical fertilizer on a commercial scale due 
to a lack of understanding of the mode of action and proper 
application in sustainable agriculture (Alori et al. 2017).

There are various microorganisms that secrete enzymes 
and organic acids (nuclease, phytase, and phosphatase) for 
insoluble P degradation in soil (Bashan et al. 2013). How-
ever, they are less efficient in their natural state (Collavino 
et al. 2010). However, it is important to inoculate P solubi-
lizing microorganisms with high efficiency in an artificial 
way to increase the quantity of available P (Prodhan et al. 
2019). Therefore, improved P absorption and use by crops 
is of great importance both ecologically and economically 
(Abbas et al. 2018). As a result, inoculation with highly effi-
cient mutant strains is critical (Prodhan et al. 2019) to crop P 
absorption, which represents both ecological and economic 
perspectives (Abbas et al. 2018). Numerous soil microorgan-
isms have been reported which can reverse the process of 
phosphate fixation by solubilizing inorganic soil phosphate 
compounds (Zhu et al. 2012). Soil borne bacteria (Pseu-
domonas, Enterobacter, and Bacillus) and fungi (Penicillium 
and Aspergillus) capable of plant growth promotion have 
been proven effective as phosphate solubilizers (Babalola 
and Glick 2012).

Microbes as phosphate mobilizer

Leguminous plants (nitrogen fixing plants) require more 
P than non-leguminous plants (those that need mineral N 
fertilizer) as the nodule’s formation involves a high P level. 
An inadequate concentration of P is a prerequisite for bio-
logical nitrogen fixation (BNF) and deficiency results in 
reduced BNF potential. P fertilization will not only give rise 
to enhance number and mass of nodules, but a better BNF 
potential too. Phosphate solubilizers are soil microbes that 
play a vital role in P transformation with a combination of 
other abiotic factors like soil type and environment. These 
microorganisms affect the soil pH of the rhizosphere, eventu-
ally producing chelating agents that lead to the solubilization 

of phosphates (Zhu et al. 2012). Soil borne bacteria, fungi, 
and Actinomycetes species are predominately considered as 
phosphate solubilizing microorganisms (Babalola and Glick 
2012). Agricultural lands are a huge sink of organic and 
inorganic P available either in unavailable or in immobilized 
form. PSM is responsible for the mobilization of unavailable 
P to plants by direct or indirect means. The net P in degraded 
and productive reserves remains constant (Fonte et al. 2014), 
but the level in later reserves has increased to 40%. The 
reason enumerated in the study is the availability of P that 
is inorganically high in degraded soil and is adsorbed by the 
soil. Generally, P in inorganic form is known to be highly 
reactive with metallic ions (calcium, aluminum, and iron) 
present in such strata which help P adsorption by 75–90%. 
The external application of P fertilizers may not solve the 
problem as a very low amount will be available for plants 
due to high adsorption (Zhu et al. 2012). Microbial inocu-
lants called P-mobilizing microbes help in recovering obsta-
cles by mobilization of available P, even in insoluble ground 
form (Yadav et al. 2014; Owen et al. 2015).

Microbes as nutrient manager

Remotion of the top layers of the soil profile which are 
rich in nutrients and organic matter can cause depletion of 
nutrients, water holding capacity, soil structure, and loss of 
fertility (Montgomery 2007). Agricultural crop production 
mainly depends on better soil structure and the availability 
of nutrients in such types of soil to support the growth of 
plants. Globally, synthetic fertilizers with excessive use have 
polluted soil and air with a residual effect on water as well. 
Thus, some essential efforts could be required as an alter-
native and environmentally friendly solution to hazardous 
and costly chemical fertilizers. This encouraging approach 
to soil structure improvement and bioavailability of nutrients 
can be enhanced by microbes like bacteria or fungi, either 
soil borne or applied as biofertilizers. These organic amend-
ments or bacterial and fungal inoculants can be taken as a 
significant option incorporated as nutrient management in 
crop integration strategy in degraded types of soils (Medina 
et al. 2010). Introducing all these inoculants can translocate, 
achieve, mobilize and mineralize phosphorous (P), potas-
sium (K) and iron (Fe) resources, and also helps with atmos-
pheric nitrogen fixation and surging organic matter (Leifheit 
et al. 2014; Ahemad and Kibret 2014).

In the early ages, agricultural specialists were used to 
practicing the application of organic fertilizers and earth-
worms for soil fertility improvement (Rashid et al. 2014a, b; 
Shah et al. 2013). These practices have proved to be useful in 
the agroecosystem while managing and improving nutrients 
in the soil (Lubbers et al. 2013). However, the cost of main-
taining a healthy microbial population may have a direct 



5868 Archives of Microbiology (2021) 203:5859–5885

1 3

impact on crop price indices, whereas these microorganisms, 
bacteria, and fungi may be found in some earth constituents 
such as soil and water. These are known to be the cheapest 
microbial beings enhancing soil aggregates and soil pores 
formation, improving soil fertility (Miller and Jastrow 2000), 
as polysaccharides with outer cellular layers are considered 
beneficial and responsible for aeration and porosity in the 
soil forming aggregates (Gupta and Germida 2015).

Microorganisms as probiotics and their 
potential to enhance crop productivity

Probiotics are defined as live microorganisms that when 
administered in adequate amounts, confer a health benefit 
on the host. Health benefits have mainly been demonstrated 
for specific probiotic strains of the following genera: Lac-
tobacillus, Bifidobacterium, Saccharomyces, Enterococ-
cus, Streptococcus, Pediococcus, Leuconostoc, Bacillus, 
and Escherichia coli (Hill et al. 2014). Even though micro-
bial cells found in nature can be used to formulate and use 
commercially effective probiotics, they must first be iden-
tified and studied for disease-causing potential, isolation, 
and probiotic perspective to gain approval for use (Soccol 
et al. 2010). Numerous studies have also been reported on 
probiotics in humans, where plant probiotics, on the other 
hand, have attained great attention these days. Plant probi-
otics, as cultured microbials, have plant growing potential 
with features such as phosphate solubilization, nitrogen fixa-
tion, siderophore production, and boosting plant immunity 
against various diseases (Nadeem et al. 2015; Sharma et al. 
2012). While secreting extracellular metabolites, combined 
soil particles, and breaking down of insoluble nutrients and 
compound organic materials into simpler forms enhance 
the structure of the soil and make them all available for the 
growth of plants and encourage resistance to diseases and 
stress (Song et al. 2012; Maheshwari et al. 2012; Abd El- 
Rahman et al. 2012; Abd El- Rahman and Mohamed 2014).

Probiotics have been extensively researched for human 
and animal health (Thomas et al. 2015; Nakatsuji et al. 
2017). On the other hand, it has been reported that benefi-
cial microbes of plants may also contribute to improving the 
quality of sustainable production in the agricultural sector 
(Timmusk et al. 2017). The increased population with chal-
lenges of demands and needs on a daily basis is a great issue 
to be faced by the agricultural division. Production and yield 
of crops have been disturbed by climate change effects, var-
ied temperature, and rainfall patterns, and also urbanization, 
which has affected agricultural sectors and water quality 
either for irrigation or drinking purposes (Olesen and Bindi 
2002). However, new investment techniques, policies and 
studies should be carried out to mark a strong relationship 
between crops and probiotics on an influential track in the 

environment (Mauchline and Malone 2017). Plant probiotics 
reported as Phyllobacterium, performed as root colonial, are 
a source of vitamin C enhancer and plant growth promoter in 
strawberries (Flores et al. 2015), where these in the form of 
Pseudomonas play a significant role through biotic control 
action (Hu et al. 2017).

Role of microorganisms in biodegradation 
and energy recycling

The global environment faces huge stress on natural 
resources due to population pressure, the industrial revolu-
tion, and rapid urbanization. Pollution is caused by large 
quantities of waste produced by the intuitive activities of 
modern advancement (Raj et al. 2018). Large-scale indus-
tries consume a huge amount of raw materials, leading to 
radioactive waste and chemical contaminants piling up 
to a large extent, making the environment and biosphere 
unhealthy. Materials and energy losses arose due to the 
increase in the production of waste (Jhariya et al. 2018). 
Hence, significant management of these waste materials 
should be given prime importance (Sharma and Shah 2005).

One of the effective measures for a sustainable and 
healthy environment is to introduce an effective system for 
waste management using beneficial microbes. Among the 
most common methods are the incineration method, sanitary 
landfills, recycling and avoidance and reduction (Mondal 
and Palit 2019). Whether the sustainable environment should 
be free from pollutants or pollutants must be clean. Recently, 
waste management and biodegradation of contaminants have 
been made possible due to the use of microorganisms. Bio-
degradation, biotransformation, bioremediation, and com-
posting are some of the biotechnological tools to reduce a 
large number of contaminants efficiently (Banerjee et al. 
2018). Green algae (Cladophora sp.) have been reported to 
have a high range for removing toxic metals, making them 
potential and alternative agents for waste management. The 
smooth running of wastewater treatment methods involves 
a potent role in microbial ecology (Maghraby and Hassan 
2018). Therefore, microorganisms are cost-effective, envi-
ronmentally safe, and eco-friendly and can also be used in 
different biotechnological systems for the treatment of waste 
(Mondal and Palit 2019). The process exploits contemporary 
methods and tools using a wide range of microbes in an 
organized way without distressing the ecosystem. Biodeg-
radation, biotransformation, and composting are some of the 
common and effective techniques used in the waste manage-
ment process, while Scenedesmus platydiscus, Staphylococ-
cus sp., Bacillus sp., Streptococcus sp., Corynebacterium 
sp., Chlorella vulgaris, and S. quadricaudare some of the 
beneficial microorganisms used in the process of waste 
management (Mondal and Palit 2019). Biodegradation of 
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solid wastes can be achieved by different types of microor-
ganisms which include fungi, mesophilic bacteria, protozoa 
and actinomycetes that colonize the heaps of these wastes 
(Gajalakshmi and Abbasi 2008).

Different types of bacteria can degrade hydrocarbons 
that are taken from the aquatic environment. These include 
Corynebacterium sp., Streptococcus sp., Enterobacter, 
Staphylococcus sp., Shigella sp., Acinetobacter sp., Alcali-
genes sp., Klebsiella sp., Escherichia sp., and Bacillus sp. 
Which have the powerful capability to degrade hydrocarbon. 
Many bacteria can remove and remediate the pesticide atra-
zine from the soil (Wang et al. 2013). Zhang et al. (2012) 
isolated Rhodobacter sphaeroides W16 and Acinetobac-
ter lwoffii DNS32 from the soil in cold areas subjected to 
long-term atrazine application in China. Both bacteria can 
produce reactive oxygen species (ROS), but subsequently, 
ROS is scavenged in response to the oxidative stress caused 
by atrazine. This may be the reason for the lower oxidative 
damage in atrazine-degrading bacteria cells upon atrazine 
exposure. Furthermore, dichlorodiphenyltrichloroethane 
from contaminated soil is degraded by Bacillus sp., Staphy-
lococcus sp. and Stenotrophomonas sp. (Kanade et al. 2012). 
Moreover, biodegradation of toxic materials in contaminated 
soil can be made possible by endophytic and rhizospheric 
bacteria associated mostly with plants (Divya and Deepak 
2011). These rhizoshperic bacteria, especially Pseudomonas 
sp., can also help with the recycling of nutrients and fixation 
of nitrogen (Meena et al. 2015). Besides nutrient recycling, 
Pseudomonas along with Bacillus sp. can also efficiently 
degrade xenobiotic compounds as well (Janssen et al. 2005). 
Among the waste materials, plastic is considered the most 
vulnerable material in almost all types of ecosystems. This 
is due to its non-degradable properties which can result in 
severe environmental hazards. The accumulation of plastic 

materials can significantly hamper both aquatic as well 
as terrestrial habitats (Mondal and Palit 2019). Microbial 
degraders and their metabolic enzymes are among the envi-
ronmental agents that participate in the degradation process, 
which results in the conversion of the carbon in the polymer 
chains into smaller biomolecules or into carbon dioxide and 
water (Mir et al. 2017). Biodegradation by various microbes, 
such as heterotrophic bacteria and fungi, is reported for both 
biodegradable and non-biodegradable polymers (Muhamad 
et al. 2015). Table 3 describes some of the various plastic 
materials which can be degraded by different types of bacte-
rial strains.

Role of microorganisms in pollution 
biodegradation

Biodegradation refers to the decay of organic substances 
as performed by a wide range of living organisms, primar-
ily fungi, yeast, and bacteria, but also possibly other organ-
isms in the microbiological sense. In a very large variety 
of compounds such as hydrocarbons like oil, polyaromatic 
hydrocarbons, radionuclides, metals, and polychlorinated 
biphenyls endeavor to harness the naturally occurring, and 
surprising catabolic diversity to accumulate, transform, and 
degrade in bioremediation and biotransformation techniques 
(Ogilvie and Hirsch 2012).

Over a long period, highly poisonous organic compounds 
such as pesticides, fuels, dyes, polycyclic aromatic hydro-
carbons (PAHs), and polychlorinated biphenyls (PCBs) have 
been produced and left behind in the environment as an indi-
rect or direct use in the last few decades. Metals and radio-
nuclides are some different synthetic chemicals released by 
native vegetation that are highly resistant in comparison to 

Table 3  Bacteria used in plastic degradation

Plastic Bacteria Reference

Polyurethane Corynebacterium sp., Pseudomonas sp., Arthrobacter globiformis, Bacillus 
sp.

Howard et al. (2012)

Low-density polyethylene (LDPE) Rhodococcus ruber C208, Brevibacillus borstelensis 707, Rhodococcus 
ruber C208, Staphylococcus epidermidis, Bacillus cereus C1

Chatterjee et al. (2010)

High-density polyethylene (HDPE) Bacillus sp., Micrococcus sp., Vibrio sp., Arthrobacter sp., Pseudomonas 
sp.

Balasubramanian et al. (2010)

Degradable polyethylene Rhodococcus rhodochrous ATCC 29672
Nocardia steroids GK 911, Bacillus mycoides

Seneviratne et al. (2006)

Polyethylene bags Pseudomonas aeruginosa, Pseudomonas putida, Bacillus subtilis Nwachukwu et al. (2010)
Polyethylene carry bags Serratia marcescens, Bacillus cereus, Pseudomonas aeruginosa, Strepto-

coccus aureus, Micrococcus lylae
Aswale and Ade (2009)

Degradable plastic Pseudomonas sp., Micrococcus luteus, Bacillus subtilis, Streptococcus 
lactis, Proteus vulgaris

Priyanka and Archana (2011)

Polycaprolactone Pseudomonas sp., Rhodococcus sp. Urbanek et al. (2017)
Microplastic Proteobacteria, Bacteroides De Tender et al. (2015)
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organic matter that degrades when introduced into the envi-
ronment (Diez 2010). Microbial fungi can be well defined 
in terms of the organism's alliance consisting of essential 
eukaryotic organisms, which tend to range from unicellular 
yeasts to significant molds of mycelium. Fungi are impor-
tant for microbiota degradation because they break down 
organic matter into dissolved form and aid in the decay of 
carbon in the biosphere. Fungi, as compared to other micro-
organisms, can be observed in all those places with low pH 
and moisture, which can benefit them from decomposing 
organic substances. These are fitted out with complexes of 
multi enzymes, and thus, are more efficient at breaking down 
compounds, specifically polymeric herbals. They have the 
capability to penetrate and colonize easily due to the hyphal 
structures they possess, and therefore, can move and sort out 
supplements within their mycelium (Matavuly and Molito-
ris 2009). On the other hand, mycorrhiza is recognized as 
a beneficial association between a fungus and the roots of 
vascular plants. Mycorrhiza remediation is termed as the use 
of mycorrhiza in bioremediation. Fungi also play a vital role 
in recalcitrant polymers recycling like lignin and reducing 
harmful wastes/pollutants from the environment either by 
application of filamentous or unicellular fungi.

Some biodegradable pollutants

Hydrocarbons

Hydrocarbons are a naturally occurring compound that con-
tains both hydrogen and carbon elements. Aromatic hydro-
carbons, linear hydrocarbon branched hydrocarbons, and 
cyclic hydrocarbons are the three types (Saadoun 2015). 
The simplest aromatic compound is benzene  (C6H6) in its 
structure and aliphatic hydrocarbons are further classified 
into alkanes, alkenes, and alkynes (Das and Chandran 2011). 
PAHs have been identified as a class of dynamic hydropho-
bic contaminants that can be observed in soil sediments and 
air. The primary source of PAH pollution is waste products 
of industry (Adeniji et al. 2019), whereas studies have been 
carried out for more than twenty years, just because of its 
environmental persistency, prevalence, and toxicity (Okere 
and Semple 2012). Absorption of PAHs into soil rich in 
organics, sediments, and accumulation in aquatic beings, 
especially in fish, can also be transferred through the con-
sumption of seafood from one organism to another. PAH 
biodegradation can be counted as significant to the reduction 
of chemical contaminants and cycling carbon (Adeniji et al. 
2019). Bacillus is found as the largest bacteria degrading 
hydrocarbons, where the bacterial strains fit into the Pseu-
domonas genus, and support biodegradation of aromatic 
hydrocarbons obtained from Gram-negative soil. Different 
genera, Aeromonas, Bacillus, Mycobacterium, Rhodococcus 

and Corynebacterium have been reported to have biodegrad-
ing pathways (Chen et al. 2015).

Polychlorinated biphenyls (PCBs)

Polychlorinated biphenyls (PCBs) as a combination of syn-
thetic organic compounds, because of their chemical bal-
ance, non-combusting, electrical insulating properties and 
raised boiling point, have been used in industrial, mechani-
cal, and commercial applications (Anezaki et al. 2015). They 
can also be used as dyes, plastics, heat transfer equipment, 
and copy paper with no carbon. However, these could be 
toxic as they cause malignant growth and function as dis-
rupters of the endocrine (Nie et al. 2012; Seeger et al. 2010). 
Both aerobic and anaerobic bacteria have the capability of 
PCB transformation. Lower PCBs are oxidized by aerobic 
microbes, while higher PCBs are reductively dehalogenated 
by anaerobic microbes (Seeger et al. 2001). Plant growth 
promoting rhizobacteria (PGPR) are soil borne microbes 
which can be either found in the colonial form in adventi-
tious plants or roots promoting advanced development in 
plants (Saharan and Nehra 2011). Rhizoremediation is the 
process of exposing plants collectively to specific microor-
ganisms while constructing pollutant extraction structures 
(Jing et al. 2007).

Pesticides

Pesticides are known as a combination of various sub-
stances proposed for mitigating, repelling and destroying 
pests. There are two kinds of pesticides, persistent which 
has the capability to resist degradation, and non-persistent 
which can be degraded rapidly (Bolognesi and Merlo 2011). 
The degradation of pesticides results in the discharge of the 
initial compounds from coal oxygen  (CO2) and air  (H2O). 
Through pesticide degradation, microorganisms use energy. 
However, degradation effectiveness relies on different 
parameters such as heat, pH of land, humidity levels, the 
biodegradation of pesticides via microbes has an important 
effect on the health of agrarian crops. In addition, microbes 
also have other important benefits, such as variety, wide dis-
persal, and adjustment of different cellular processes (Cui 
et al. 2012). The degradation of imidacloprid and metribuzin 
is also engaged in the degradation of Burkholderia cepacia 
type CH-9 (Madhuban et al. 2011). Acinetobacter calcoace-
ticus degraded bifenthrin (Tingting et al. 2012), i.e., a syn-
thesized pesticide. The capabilities for cypermethrin (CMP) 
degrading are noted as photosynthetic bacterium (GJ-22) 
(Yin et al. 2012). Another research shows very elevated 
biodegradable permethrin capacities and cypermethrin pes-
ticides in Pseudomonas putida and P. mendocina (Mendoza 
et al. 2011). A bacterial consortium of six bacterial strains, 
namely Stenotrophomonas maltophilia, Proteus vulgaris, 
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Vibrio metschnikovii, Serratia ficaria, Serratia spp., and 
Yersinia enterocolitica has the capacity to degrade tetra-
chlorvinphos (Akbar and Sultan 2016). With the prospec-
tive implementation of the degradation of chlorpyrifos (CP) 
pesticide, various types of Streptomyces were recognized 
(Briceño et al. 2012). As lindane was known to be degraded 
by Fusarium verticilloides and later used the degraded prod-
ucts as a carbon source (Pinto et al. 2012). The biodegra-
dation behavior against aldicarb, atrazine, and alachlor has 
been shown in another unacclimatized blended community 
(Nyakundi et al. 2011) of bacteria and white-red funguses. 
Methomyl and diazinon (pesticides) were degraded by red 
fungi extracted from contaminated plants (Sagar and Singh 
2011). Endosulfan (pesticide) can be removed from environ-
ment by applying strains of microbes (Aspergillus) (Javaid 
et al. 2016). Various fungal strains also possess DDD pesti-
cide degradation ability (Ortega et al. 2011). Odukkathil and 
Vasudevan (2013) stated that degradation of various types of 
pesticides can be achieved by Phanerochaete chrysosporium.

Dyes

Dyes can be widely used in cosmetics, rubber products, 
fabric, drugs, paper, printing, and various other products 
(Venkataraman 2012). The largest and most substantial class 
of manufactured dyes are aromatic compounds (–N=N–) 
known as azo dyes, consumed in manufacturing applica-
tions (Venkataraman 2012). Such dyes are unproductively 
biodegradable due to the structures and wastewater treat-
ment which contain them including physical and chemical 
techniques. For example, oxidation, adsorption, filtration, 
coagulation–flocculation, and electrochemical methods. 
The biological process for dye removal from the effluent 
is partially dependent on the use of fungi and bacteria that 
decolorize synthetic dyes produced by various chemical 
methods (Lade et al. 2015; Placido et al. 2016). Senthil-
kumar et al. (2014) studied Phanerocheate chrysosporium, 
which produces extracellular enzymes such as, lignin per-
oxidase, manganese peroxidase and laccase mediated decol-
orization of various dyes. Singh and Singh (2010) examined 
another fungus named Trichoderma harzianum which has 
been employed for cleaning the effluent from the textile 
industry. A fixed amount of Congo red and Bromophenol 
blue dyes were completely degraded by fungal mycelium 
using a semi-solid PDA medium. This study showed that 
the medium containing Congo red, Direct green, Bromo-
phenol blue, Acid red and Basic blue inhibited the growth of 
Trichoderma harzianum in comparison to the control treat-
ment (growth in the medium without dye). Out of these dyes, 
Bromophenol blue was found to show the maximum growth 
inhibitory effect (43%). For bioremediation, diverse fungal 
cultures were used due to their characteristic features such 
as fast growth, a large amount of biomass and wide hyphal 

spectra which made the fungus more effective as compared 
to bacteria (Anastasi et al. 2013).

The main advantage of working with bacteria is that they 
are easy to culture and can grow more quickly as compared 
to other microbes. The dye degradation ability of bacteria 
can easily be enhanced by molecular genetic manipulation. 
Bacteria can catabolize chlorinated and aromatic hydrocar-
bon based organic pollutants, which can be decomposed 
using them as an energy source (carbon source) (Yang et al. 
2014) and have the ability to oxidize sulfur-based textile 
dyes to sulphuric acid (Nguyen et al. 2016). Many studies 
have shown favorable results in identifying bacteria which 
can degrade different azo-based dyes at a faster rate. Differ-
ent bacterial groups under traditional aerobic, anaerobic and 
under extreme oxygen deficient conditions cause an azo dye 
reduction for decolorization. The chemical reaction during 
the reduction of the azo dyes starts with the breaking of 
azo bonds (─N═N─) under an aerobic environment by the 
azoreductase enzyme which results in a colorless solution 
of aromatic amines (Mendes et al. 2015). Wang et al. (2014) 
reported that metabolites formed as a result of dye reduction 
can further be catabolized either by aerobic or anaerobic 
processes. Several bacteria have been reported to possess 
the ability to degrade azo dyes into colorless amines (Sudha 
et al. 2014). Ali et al. (2011) studied the behavior of aerobic 
bacteria that were able to propagate in the presence of azo 
compounds. The intermediate sulfonated amines formed in 
this process may be aerobically degraded.

Radionuclide

A radionuclide is considered as an atom having an unstable 
nucleus, and with abundant accessible energy in communi-
cation with radiation molecules formed recently, through 
transformation on the inner side or inside the nucleus. The 
formation of alpha and beta particles can result when radio-
active decay passes through a radionuclide and results in 
gamma ray emission (Petrucci et al. 2002). Heavy metal 
bioremediation can be accomplished through biotransfor-
mation, in which, unlike organic pollutants, heavy metals 
can be reduced or gradually transformed into a structure. 
Biosorption (physiochemical sorption of metals to the sur-
face of the cell), intracellular accretion, bioleaching (mobi-
lization of heavy metals through methylation responses or 
organic acid excretion), conversion of enzyme catalysis or 
bio-mineralization etc. are the systems where microorgan-
isms perform action on heavy metals, as shown in Fig. 4 
(Lioyd and Lovley 2001).

Heavy metal

Heavy or toxic metals such as Cd, As, Hg, Pb, or Se, are 
nonessential elements, whereas Zn, Mo, Cu, Mn, Co, and Ni 
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are essential elements which are essential for plant growth, 
development, and metabolism. Increased concentrations of 
the latter elements up to supra optimal values can lead to 
poisoning (Mohamed et al. 2016a, b; Latif and Mohamed 
2016; Akladious and Mohamed 2017; El-Beltagi et al. 2020; 
Sofy et al. 2020a; Moustafa-Farag et al. 2020). Many micro-
organisms, especially various strains of bacteria, especially 
Bacillus sp., Alcaligenes faecalis, Pseudomonas aeruginosa 
etc., have the ability to remove different kinds of heavy met-
als like Cu, As, Cd and Zn from polluted sites (Ashoka et al. 
2017) (Fig. 5). Rubber is one of the other waste materials 
which can be effectively recycled by sulphur oxidizing and 
reducing bacteria like Thiobacillus ferroxidans and Pyrococ-
cus furiosus, hence considered as an efficient measure to 
manage rubber wasters (Keri et al. 2008). Table 4 illustrates 
that various pollutants can also be bio-transformed using 
beneficial microbes to mitigate the harmful effects of pol-
lutants on the environment.

The application of omics tools 
in bioremediation

Phytoremediation has been one of the cost-effective remedi-
ation techniques in use for years now. The purpose of plants 
to attenuate the xenobiotics makes them a more feasible 
method than physical and chemical processes. The trans-
genic plants result in either degradation of the xenobiotics 
or increased resistance of the plant to the pollutant (Calla-
ghan 2013; Chandran et al. 2020). The industrial effluents 
are estimated to be 5% saline and hypersaline. Microbial 
diversity is less as compared to non-extreme environments. 
Thus, degradation of the pollutant has become a significant 

problem in such regions. The halophilic microorganisms are 
proposed to be a favorable applicant for the remediation of 
hypersaline environments. The genomic sequence analysis 
discloses the genes that might be involved in degradation. 
Further, proteomic analysis of the microbe in the presence 
of different concentrations of hydrocarbons affirms the genes 
involved in the degradation (Wei et al. 2017). Application 
of techniques like RT-qPCR quantifies the expression of 
various hydrocarbon-degrading genes and thus provides an 
insight into the shift in the microbial communities (Yergeau 
et al. 2012).

Microorganisms utilize organic compounds as a sole 
carbon source and to manage their biomass and assemble 
suitable enzymes and cofactors for their oxidation/reduc-
tion. Hence, the organic compounds should be nontoxic or 
less damaging to microbial growth. The microorganisms 
participating in the metabolic degradation of organic com-
pounds are heterotrophic. Molecular methods like cloning, 
fingerprinting, amplified ribosomal intergenic spacer anal-
ysis (ARISA), restriction fragment length polymorphism 
(RFLP) are used to study microbial diversity (Fig. 6). These 
techniques yield information on how environmental factors 
change the microbial community structure. More advanced 
techniques like Illumina and 454 sequencing are also being 
used to study the microbial diversity of polluted areas. Dif-
ferent approaches are used to remediate contaminated soils 
(Yergeau et al. 2014). The present scenario includes the 
implementation of various omics tools (Table 5) to study 
the microbial diversity of the contaminated soil with that 
of uncontaminated soil, thus providing better insight for the 
development of new remediation techniques or improving 
the already existing methods. The uptake of heavy metals 
like mercury can lead to biomagnification. The heavy metals 

Fig. 4  Mechanism for microbial process used in technologies for bioremediation  adapted from Lloyd and Lovley (2001)
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Fig. 5  Microbes interaction with metals and their biochemical process during metal detoxification at the contaminated site (Sharma et al. 2021)

Table 4  Relationship between plant and microbes for tolerance and phytoremediation of heavy metals

Heavy metals Plant species Microbes References

Zn Brassica juncea Bacillus mucilaginosus HKK-1 Rathore et al. (2019)
Cu Cajanus cajan Proteus vulgaris KNP3 Rai et al. (2020)
Ni Cicer arietinum Pseudomonas sp. Ahemad (2019)
Ni Ricinus communis Pseudomonas sp. M6 Rai et al. (2020)
Cr Eichhornia crassipes Pycnoclavella. diminuta Rai et al. (2020)
Cu, Cd, Zn Eucalyptus grandis, Ailanthus altissima Glomus mosseae Abbaslou and Bakhtiari (2017)
As Trifolium repens L. Glomus versiforme Wang et al. (2018)
Ni Helianthus annuus Claroideoglomus

claroideum (BEG210)
Ma et al. (2019)

Cu, Pb, Cd, Zn, Ni, Cr Helianthus annuus L. Funneliformis caledonium,
Funneliformis mosseae

Zhan et al. (2018)

Fe, Cu, Cd, Pb, Zn Glomus mosseae Vetiveria zizanioides Kafil et al. (2019)
Pb, Cr, Cd, Ni Glomus aggregatum, Funneliformis mosseae, 

Rhizophagus intraradices, Rhizophagus fascicu-
latus

Zea mays L. Singh et al. (2019)

Cd Funneliformis mosseae Lycopersicon esculentum L. Li et al. (2020)
Cu Rhizophagus irregularis Phragmites australis Wu et al. (2020)
As Aspergillus flavus

MTCC 25041
Oryza sativa Mohd et al. (2017)

Pb, Cu Serendipita indica Ocimum basilicum Sabra et al. (2018)
Cd, Pb Fusarium sp. CBRF44 Brassica napus Shi et al. (2017)
Cd, Pb, Zn Mucor sp. CBRF59, Fusarium sp. CBRF14 Brassica napus Deng et al. (2014)
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interrupt the energy metabolism of the plants. Transcrip-
tomics helps in the early detection at molecular levels. The 
changes in the genes in the presence of a low and high con-
centration of metals can also be studied (Beauvais-Flück 
et al. 2017). The tools of genomics like DGGE (denatur-
ing gradient gel electrophoresis) of 16S rRNA enhance the 
study of several communities of microbes in non-polluted 
and polluted soils and, therefore, help in the isolation of 
heavy metal-resistant bacterial strains (Utturkar et al. 2013).

Molecular approaches like genomics, proteomics, tran-
scriptomics, metabolomics, fluxomics, etc. give more vision 
about the microbial communities inhabiting a particular 
environmental niche (Gupta et al. 2020). These methods 
have accelerated the study of microbial community struc-
ture, which was earlier dependent on culture technologies 
(Gutleben et al. 2018). It possesses the potential to evaluate 
the genetic diversity of environmentally pertinent microor-
ganisms and analyze novel functional genes related to the 
catabolism of pollutants (Meena et al. 2019). Omics tech-
nology is a molecular biological approach that facilitates 

the analysis of biomolecules like DNA, RNA, proteins, and 
metabolites from individual organisms and the whole com-
munity at the same time (Gutierrez et al. 2018). To study 
gene regulation in the anthropogenic environment, mRNA 
expression (transcriptomics), and whole community expres-
sion (metatranscriptomics) can be studied (Roume et al. 
2015).

Genomics and 16S rRNA for bioremediation

The identification of microbial communities using mod-
ern genomic tools has enabled the detection of distinctive 
microorganisms that were not approachable by culture-based 
techniques. Gene amplification (using PCR) and sequencing 
techniques have proven exceptionally useful in evaluating 
the microbial community (Gołebiewski and Tretyn 2020). 
16S rRNA gene sequence analysis can be used for a com-
plete assessment of microbial diversity by selectively ampli-
fying and sequencing the hypervariable regions of the 16S 

Fig. 6  Application of omics tools in soil bioremediation
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rRNA gene. It is a highly efficient and cost-effective technol-
ogy easily accessible by various bioinformatics tools and has 
become a frequently used technique for profiling intricate 
microbial communities (Han et al. 2020). 16S rRNA was 
used to elucidate the composition of microbial communities 

and the multifariousness of the dioxygenase genes in the 
soil of a coal tar mixing plant to study the genetics of PAH 
degradation (Sakshi and Haritash 2020). Kou et al. (2018) 
reported 16S rRNA gene amplicon sequencing to study the 
abundance and diversity of the microbial community in soil 

Table 5  Application of advanced omic approaches in soil bioremediation

Contaminants Omic tools Applications References

Biotransformation Mercury Transcriptomics Analyzing metabolic pathway 
and tolerance response

Beauvais-Flück et al. (2017)

Uranium, nickel, cobalt, 
cadmium

Genomics To determine the genomic 
sequence of Caulobacter sp. 
strain OR37

Utturkar et al. (2013)

Cadmium and zinc NSG Pyrosequencing revealed 
the interaction between 
Arabidopsis halleri and the 
microbial community

Muehe et al. (2015)

Cadmium Proteomics, transcriptomics Study the response of the 
plant to cadmium, viz., high 
through put techniques

Villiers et al. (2012)

Biodegradation Hydrocarbon, pesticides, 
herbicides

Metagenomics Degradation of herbicides and 
pesticides by identifying a 
novel gene

Jayaraman et al. (2019)

Fertilizers Metagenomics Analysis of organically 
fertilized zoo soil using 
metagenomics

Meneghine et al. (2017)

Hydrocarbons Proteomics Assessment of microbial 
function and diversity in 
petroleum-associated envi-
ronments

Pal et al. (2019)

Biodegradation and structural 
analysis of aniline degrading 
bacteria

Hou et al. (2018)

Genomics Subtraction of cDNA revealed 
presence of zinc finger motifs 
in the high accumulators of 
organic pollutants

Inui et al. (2015)

Genomic analysis and enrich-
ment of root endophytic bac-
teria from Populus deltoides

Utturkar et al. (2016)

Analysis of pyrene degradation 
by bacterial consortia

Wanapaisan et al. (2018)

Functional Metaproteome Analysis of microbial com-
munity structure using 
rhizoremediation

Kotoky et al. (2018)

Next-generation sequencing Microbial distribution analysis 
in PAH-contaminated landfill 
soil

Koshlaf et al. (2019)

Bacterial diversity analysis in 
heavy oil well reservoir

Krolicka et al. (2017)

Transcriptomics Analysis of alkane degradation 
by Pseudomonas extremaus-
tralis

Tribelli et al. (2018)

Analysis of drainage effect on 
paddy soil microbiome

Abdallah et al. (2019)

Herbicide Metabolomics Study of alachlor biodegrada-
tion by Paecilomyces

Szewczyk et al. (2015)



5876 Archives of Microbiology (2021) 203:5859–5885

1 3

polluted with heavy metals like lead, zinc, and copper in 
Shanghai. 16S rRNA gene sequencing along with membrane 
fatty acid profile was used to identify soil bacterium Pseu-
domonas species capable of degrading polyurethane from a 
site containing an abundance of fragile plastic waste (Cárde-
nas Espinosa et al. 2020).

Metagenomics

A major share of the microorganisms in the environment 
is non-culturable under laboratory conditions (Rashid and 
Stingl 2015). Metagenomics can be used to explore such 
non-culturable microbes thriving in different environments 
(Bilal et al. 2018). Metagenomic sequences reveal DNA 
sequences of uncultured microbes thriving in the environ-
ment which can be used for new biotechnology applications. 
The metagenomic information will enable researchers to 
integrate pure culture studies with genomics (Hodkinson and 
Grice 2015). It uses the pool of environmental genomes of 
microorganisms which increases the probability of discover-
ing unique genes and diverse pathways with new enzymes 
containing highly specific catalytic properties (Awasthi et al. 
2020).

The metagenomic approach was used to characterize 
genes and metabolic pathways associated with the degrada-
tion of phenol and other aromatic compounds in sludge from 
a petroleum refinery wastewater treatment system (Silva 
et al. 2013). Gaytán et al. (2020) combined physical and 
chemical analysis with metagenomics to explicate probable 
metabolic pathways associated with polyurethane degrading 
to alleviate plastics and xenobiotics pollution. The persistent 
impact of petroleum pollutants on the taxonomic and meta-
bolic structure of microbial mats was studied using metage-
nome and enriched mRNA metatranscriptome sequencing 
(Aubé et al. 2020).

Transcriptomics

The subdivision of genes transcribed in an organism is 
known as transcriptome. It is a potent network amid the pro-
teome, genome, and cellular phenotype. It is also called gene 
expression profiling because it provides an understanding of 
the up or down-regulation of genes under various environ-
ments in microbial communities. Comparative transcriptom-
ics revealed highly upregulated degradation pathways and 
putative transporters for phenol to improve phenol tolerance 
and utilization by lipid accumulating Rhodococcus opacus 
PD630 (Yoneda et al. 2016). Transcriptome analysis of acti-
vated sludge microbiomes decoded the role of the nitrify-
ing organisms in heavy oil degradation (Sato et al. 2019). 
Transcriptome analyses of crude oil degrading Pseudomonas 

aeruginosa strains revealed the significance of differentially 
expressed genes implicated in crude oil degradation (Das 
et al. 2020).

Proteomics

A proteome is the set of proteins formed inside a cell, tissue, 
organ, or organism. The branch of science that explores and 
study of proteomes is called proteomics. Proteomic analysis 
helps in decoding molecular mechanisms, metabolic path-
ways, post-translational modifications, etc. inside the cell. 
It has enabled the tracking and analysis of universal expres-
sion of proteins in microorganisms residing in contaminated 
areas due to human-induced activities (Kim et al. 2004). 
Meta-proteomics or community proteomics is the analysis 
of complete protein profiles from microbial communities 
inhabiting a specific environment (Hart et al. 2018). It is also 
defined as a functional genomics approach because it helps 
in exploring the protein expression pattern of one organ-
ism and helps in generating a protein map of all expressed 
proteins by one organism thriving in a selected environment 
(Meena et al. 2019).

The metabolism of an organism is dependent on environ-
mental factors. Changing external stimuli triggers changes in 
protein expression and assessing such changes can be effec-
tive in bioremediation approaches (Mattarozzi et al. 2017). 
Several studies report the characterization and quantification 
of proteins expressed by microorganisms present in diverse 
ecosystems like soil, marine, and freshwater environments, 
sediment, soil, activated sludge, acid mine drainage biofilms, 
human or animal microbiome and plant associated microor-
ganisms (Wang et al. 2016).

Metaproteomics has also been reportedly used to dis-
tinguish metabolic activities of microbes important for the 
bioremediation of contaminated environments. The expres-
sion of catabolic enzymes, such as catechol 2,3-dioxyge-
nases, 1,2-cis-dihydrodiol dehydrogenase, and 2-hydroxy-
muconic semialdehyde was reported in Sphingomonadales 
and uncultured bacteria assisting in the bioremediation of 
compost (Bastida et al. 2016). A culture-dependent commu-
nity proteomic study reported that the soil microbial com-
munity becomes convoluted in hydrocarbon-contaminated 
soil compared to untreated soil (Bastida et al. 2014).

Metabolomics

A metabolome is the total metabolites in an organism and 
the study of the metabolite profile of a cell within a given 
condition is called metabolomics (Beale et al. 2017). A cell 
produces a range of primary and secondary metabolites 
when subjected to external stress which has enabled us to 
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understand and analyze the effect of environmental condi-
tions on the metabolome of organisms (Malla et al. 2018). 
Metabolome-based approaches have facilitated to establish 
models that can predict microbial activities under bioreme-
diation strategies.

Metabolomics analyzes the metabolites produced by the 
cell in response to changing environmental conditions which 
in turn provides information about the regulatory events in 
a cell (Krumsiek et al. 2015). These metabolites can be 
used as bioindicators to screen the biological effects of con-
taminated waste for a better perception of the environment. 
Proteogenomic and metabolomic approaches were used to 
identify the pathways and enzymes used by marine bacteria 
Mycobacterium sp. DBP42 and Halomonas sp. ATBC28 
to degrade plasticizers like dibutyl phthalate (DBP), bis 
(2-ethyl hexyl) phthalate (DEHP), and acetyl tributyl citrate 
(ATBC) (Wright et al. 2020).

Fluxomics

Fluxomics is a quantitative approach that studies the rates 
of metabolic reactions, changes in metabolic rates inside a 
biological individual. Fluxome is the complete set of meta-
bolic fluxes in a cell which provides information about sev-
eral cellular processes, thus it is a distinctive phenotypic 
characteristic of cells. Flux analysis offers vital information 
about the phenotype since it assesses the metabolome in its 
functional communications with the genome and environ-
ment (Dettmer et al. 2007).

Metabolic flux analysis was used to investigate the con-
stitutive metabolic network for the co-utilization of sugar 
and aromatic carbons in Pseudomonas putida (Kukurugya 
et al. 2019). Flux distributions using 13C-MFA (Metabolic 
flux analysis) was used to identify the effect of phenol on the 
carbon metabolism in wild-type Escherichia coli cultured 
under varying phenol concentrations (Kitamura et al. 2019).

Challenges and future perspectives 
of phytoremediation in environmental 
waste management

Phytoremediation is an efficient green technology and a 
demanding field of study has gained wide recognition dur-
ing the past few decades. Plants treated with heavy metals 
were grown using hydroponic techniques under laboratory 
conditions in many experiments, but researchers admitted 
that solution culture is very different from soil even though 
promising results were obtained under in vitro conditions. 
The biggest problem with soil conditions is the binding of 
metal particles with soil in insoluble form, reducing their 
availability. There are several limitations to large-scale 

field application of organic pollutants, even though they 
are successfully used in many demonstration projects. To 
overcome such issues, genetically modified plants specifi-
cally produced for the phytoremediation process are used 
nowadays. Besides, research in the field of phytoremedia-
tion is naturally interdisciplinary, which really requires 
complete basic knowledge of ecology, soil chemistry, micro-
biology and plant biology, and environmental engineering 
as well. More studies need to be conducted to understand 
the interactions among principal factors in the rhizosphere, 
including plant roots, soil microbes, and metals. Advance-
ment in technology of chromatographic and spectroscopic 
techniques needs to be enhanced to understand the future of 
plant tissues containing metal ions, where the plant tolerance 
and hyper-accumulation involved can also be improved in 
return. Due to low solubility, metal absorption by roots is 
restricted, which needs advanced environmentally friendly 
and cost-effective research on chemicals carrying chelating 
properties which will also improve metal bioavailability. For 
such purposes, some plant species could also be identified 
which have the capability of rotation for maintaining effec-
tive extraction rates.

Conclusion

Research scientists have focused on environmental sus-
tainability which can be considered as a highlighted issue 
these days. Plants use different approaches to decontami-
nate wastewater, sludge, soils and sediments, which can be 
broadly termed as phytoremediation. Pesticides, fungicides, 
and heavy metal-based chemical fertilizers are some of the 
agrochemicals which are nowadays used in agriculture 
systems around the world and are considered as one of the 
major contenders for causing pollution of the world’s surface 
water. Microbial activities involve environmental restoration 
and carbon cycling on a global scale via biodegradation. 
Microbial probiotics have the potential to enhance plant 
growth and promote biocontrol. Azospirillum consumes 
nitrogenous complexes and converts atmospheric nitrogen 
to ammonium in aerobic conditions at low nitrogen levels. 
Microbes solubilizing phosphorous make the insoluble P 
form into an available form which improves the quality, 
yield, and growth of crops. The increase in P bioavailability 
in soil is caused by the most proficient P solubilizers, Pseu-
domonas, Bacillus, Aspergillus, Rhizobium, and Penicillium. 
The usage of beneficial microorganisms is an effective way 
to be introduced to biodegradation of environmental con-
taminants, waste management, and sustainable ecology. 
Fungi are important for microbiota degradation because they 
break down organic matter into dissolved form and aid in 
the decay of carbon in the biosphere. Therefore, ecological 
biotechnology favors solving and tackling all these issues 
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using beneficial microbes or technological bioremediation. 
To carry out and maintain these activities, it is important 
to promote the application of natively available beneficial 
microbes and work towards the improvement of their bio-
degradation capabilities for the sake of a sustainable future 
and the environment. Modern omics approaches like genom-
ics, proteomics, transcriptomics, metabolomics, and fluxom-
ics have eliminated the boundaries to study the mechanisms 
involved in various bioremediation pathways. It has enabled 
the incorporation of new strategies for efficient bioreme-
diation processes. Omics approaches have the potency to 
anticipate microbial metabolism in polluted environments.
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