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Abstract
In addition to rhizobia, other non-symbiotic endophytic bacteria also have been simultaneously isolated from the same root 
nodules. The existence of non-symbiotic endophytic bacteria in leguminous root nodules is a universal phenomenon. The 
vast majority of studies have detected endophytic bacteria in other plant tissues. In contrast, little systemic observation has 
been made on the non-symbiotic endophytic bacteria within leguminous root nodules. The present investigation was carried 
out to isolate plant growth-promoting endophytic non-symbiotic bacteria from indigenous leguminous Sphaerophysa salsula 
and their influence on plant growth. A total of 65 endophytic root nodule-associated bacteria were isolated from indigenous 
legume S. salsula growing in the northwestern arid regions of China. When combining our previous work with the current 
study, sequence analysis of the nifH gene revealed that the strain belonging to non-nodulating Bacillus pumilus Qtx-10 had 
genes similar to those of Rhizobium leguminosarum Qtx-10-1. The results indicated that horizontal gene transfer could have 
occurred between rhizobia and non-symbiotic endophyties. Under pot culture conditions, out of the 20 representative endo-
phytic isolates, 15 with plant growth-promoting traits, such as IAA production, ACC deaminase, phosphate solubilization, 
chitinase, siderophore, and fungal inhibition activity showed plant growth-promoting activity with respect to various plant 
parameters such as chlorophyll content, fresh weight of plant, shoot length, nodule number per plant and average nodule 
weight per plant when co-inoculated with rhizobial bioinoculant Mesorhizobium sp. Zw-19 under N-free culture condi-
tions. Among them, Bacillus pumilus Qtx-10 and Streptomyces bottropensis Gt-10 were excellent plant growth-promoting 
bacteria, which enhanced the seeding fresh weight by 87.5% and the shoot length by 89.4%, respectively. The number of 
nodules grew more than 31.89% under field conditions. Our findings indicate the frequent presence of these non-symbiotic 
endophytic bacteria within root nodules, and that they help to improve nodulation and nitrogen fixation in legume plants 
through synergistic interactions with rhizobia.
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Introduction

Plants of the legume family (Leguminosae or Fabaceae) 
are widespread all over the world. They are able to estab-
lish a nitrogen-fixing symbiosis with nodule-inducing soil 
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bacteria, here collectively called rhizobia. As well as the 
rhizobia, some non-symbiotic bacteria of other genera have 
also been isolated from legume nodules, Rahnella (Aserse 
et al. 2013), Bacillus (Bai et al. 2002, 2003; Deng et al. 2011; 
De Meyer et al. 2015; Saini et al. 2015; Zhao et al. 2018), 
Enterobacter (Benhizia et al. 2004; Ibáñez et al. 2009), 
Agrobacterium (De Lajudie et al. 1999), Pseudomonas (Shi-
raishi et al. 2010; Hoque et al. 2011),Burkholderia (Diouf 
et al. 2007), Herbaspirillum (Weiss et al. 2012), Pantoea 
(Kan et al. 2007), Paenibacillus (Deng et al. 2011; Zakhia 
et al. 2006; Li et al. 2008, 2012), Klebsiella (Ibáñez et al. 
2009), Endobacter (Ramirez-Bahena et al. 2013), Arthro-
bacter, Microbacterium, Curtobacterium (Sturz et al. 1997; 
Palaniappan et al. 2010), Xenophilus, Erwinia, Leclercia 
(Xu et al. 2014), Gluconacetobacter, Variovorax, Micromon-
ospora and Hyphomicrobium (Martínez-Hidalgo and Hirsch 
2017; Xiao et al. 2017; Zhang et al. 2018).

These isolates are not able to infect the plant or induce 
nodules; neither do they fix nitrogen symbiotically and are 
termed non-symbiotic endophytic bacteria. The host plant 
provides endophytes with supply of nutrients and shelter 
from most abiotic stresses. In return, plants may receive 
benefits from microbial associations by the enhancement 
of plant growth or reduction of plant stress, e.g., through 
the ability of bacterial 1-aminocyclopropane-1-carboxyl-
ate (ACC) deaminase to modulate the level of ethylene 
produced by plants under stress (Lodewyckx et al. 2002; 
Hardoim et al. 2008), production of indoleacetic acid (IAA), 
P solubilization, resistance to certain pathogens (Hardoim 
et al. 2002; Peix et al. 2015; Tariq et al. 2014), nitrogen 
fixation (Andrews et al. 2010) and siderophore production 
(Rajendran et al. 2008), Most legumes are good pioneer 
species, adapted to low nutrient soils and/or environments 
with heavy metals (Gonzalez-Andres et al. 2005; Vidal 
et al. 2009; Azcon et al. 2010). In this regard, previously 
mentioned studies have reported that other rhizobia such as 
non-symbiotic bacteria may inhabit legume root nodules and 
have proven benefit to their legume hosts. However, non-
symbiotic bacteria may inhabit legume root nodules and 
visibly harm the host, and their biological role in the plant 
is largely unknown.

As previously found, the nodules have been proposed to 
form an ecological niche for survival of the bacteria (Muresu 
et al. 2008). Assistance in nodulation ability and improved 
nodulation and nitrogen fixation through synergistic inter-
actions of rhizobia with legume plants have been proven by 
some earlier studies (Andrews et al. 2010; Rajendran et al. 
2008). Enterobacter species were once reported to have 
infection ability and nodulation genes. Their mode of entry 
is probably associated with infecting rhizobia (Benhizia 
et al. 2004). Moreover, recent reports suggest increase in 
root wet weight and nodulation when co-inoculated with 
nodule endophytes, compared to inoculation with rhizobia 

alone (Bai et al. 2002, 2003; Sturz et al. 1997; Barret and 
Parker 2006; Annapurna et al. 2013; Masciarelli et al. 2014). 
This is further supported by previous reports showing that 
significant increase in nodule activity and nitrogen content 
in soybean on co-inoculation of Bacillus megaterium LNL6 
along with Bradyrhizobium japonicum MN110 (Subrama-
nian et al. 2015).

The Leguminosae includes over 18,000 known species 
(http://www.Ildis​.org/ Leguminosae/), but so far only a frac-
tion of those have been investigated for nodulation (Sprent 
2001) and even fewer for the occurrence of nodule endo-
phytes. Sphaerophysa salsula is one of the wild herbaceous 
legumes commonly found in the northwestern arid regions of 
China. This deep-rooted legume has potential for vegetation 
of arid regions, but its bacterial partners are so far unknown. 
To obtain information needed to ensure good colonization 
and nitrogen fixation in future application, it was of interest 
to investigate the diversity of non-symbiotic bacteria inhabit-
ing the root nodules of this plant. We recently isolated and 
characterized a number of inhabiting non-symbiotic bacteria 
from Sphaerophysa salsula root nodules (Deng et al. 2011). 
The present study is based on the same sampling sites from 
root nodules of Sphaerophysa salsula; however, it focuses on 
the non-symbiotic bacteria that are capable of atmospheric 
nitrogen fixation and those possessing the nifH gene. The 
aim of this study was to gain insights into their potential 
nitrogen fixation ability and to investigate the possible con-
nections with the ecoregion and their properties in plants 
growing in diverse habitats. Additionally, the results on the 
non-symbiotic bacteria from our previous study (Deng et al. 
2011) were applied and compared with the plant growth-
promoting characteristics found in the present study. Thus, 
we hypothesized that they can enhance host and other plant 
growth.

To verify our speculation, we selected 20 plant growth-
promoting representative bacteria, isolated from root nod-
ules of Sphaerophysa salsula, and tested them for com-
patible co-inoculation with Mesorhizobium sp. Zw-19 to 
improve nodulation and nodule activity under pot culture 
conditions and field experiments, to determine their effect 
as PGPB on the growth of the Sphaerophysa salsula. Thus, 
the outcomes of this study could elucidate the relationship 
between them and improve their potential as a sustainable 
and inexpensive alternative to the use of agrochemicals.

Materials and methods

Isolation and characterization of nodule endophytes

Root nodules were collected and isolated. DNA extraction 
and sequence analysis of 16S rRNA gene were performed 
as previously reported (Deng et al. 2011).

http://www.Ildis.org/
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Amplification and sequencing of the nifH gene

The primers 34F (5′-AAA GG(C/T) GG(A/T) ATC GG(C/T) 
AA(A/G) TCC ACCAC-3′) and 491R (5′-TTG TT(G/C) 
GC(G/C) GC(A/G) TAC AT(G/C) GCC ATC AT-3′), and 
the procedure described by Van Berkum et al. (Van Berkum 
et al. 1996) were used for nifH gene-specific amplification by 
PCR. The bands corresponding to the expected size (460 bp) 
were cut, purified and sequenced. Sequences were assem-
bled and aligned, and a phylogenetic tree was constructed 
as described for the16S rRNA gene analysis.

Plant inoculation studies with endophytes

Sphaerophysa salsula seeds were surface sterilized with 96% 
sulfuric acid for 20 min, then washed ten times with sterile 
water to remove all traces of acid, immersed in 95% ethanol 
for 1 min, followed by 0.1% HgCl2 for 2 min and rinsed 
eight times in sterile distilled water. Surface-sterilized seeds 
were allowed to germinate on moist filter paper kept in ster-
ile Petri dishes containing ten seeds each. Seedlings were 
coated with overnight grown bacterial cultures by incubating 
them in a thick suspension (approximately, 109 cfu mL−1) 
of the bacteria for 8 h at 28 °C. Zw-19 was isolated from 
Sphaerophysa salsula root nodule in this work and 16S 
rRNA sequence confirmed it as Mesorhizobium sp. One 
milliliter of inoculum from the endophytic isolates alone 
and the mixture containing each isolate with Mesorhizobium 
sp. Zw-19 (500 + 500 µL) were inoculated on the surface 
of sterilized Sphaerophysa salsula seeds. Seeding with-
out any inoculation as the negative control (NC) and with 
Mesorhizobium sp. Zw-19 alone as a positive control (PC), 
which received equal volumes of inoculum, was included for 
comparison, respectively. The plants were then transferred to 
glass tubes containing nitrogen-free plant nutrient solution 
(Vincent 1970) sealed with cotton plugs. All nodulation tests 
were performed in triplicate with non-inoculated control 
plants included. Roots were observed for nodule formation 
during 6–8 weeks after inoculation. The surface-sterilized 
roots and stems of seedings inoculated with the endophytic 
bacteria alone were ground to estimate the colony-forming 
units (CFUs) of endophytic bacteria (Saini et al. 2015).

Chlorophyll estimation

The midrib of the leaves was removed and 1 g leaf tissue was 
crushed in 80% acetone; chlorophyll was measured spec-
trophotometrically using the specific absorption coefficients 
for chlorophyll a at 664 nm and chlorophyll b at 647 nm. 
The chlorophyll content was estimated by using the previous 
method (Graan and Ort 1984).

Characterization of the plant growth‑promoting 
properties of endophytic bacteria

IAA production assay

Indoleacetic acid (IAA) production was analyzed according 
to the qualitative method (Glickmann and Dessaux 1995). 
Bacterial culture incubated in King B medium at 28 °C for 
36 h was mixed with the Salkowski reagent (1:1 v/v) and 
incubated in darkness for 30 min. The production of IAA 
was recognized by the presence of red color.

Phosphate solubilization

An aliquot of 10 mL of fresh bacterial culture was spread 
onto TY medium supplied with 5 g L−1 of Ca3(PO4)2 and 
was incubated at 28 °C for 2–3 days. A clear halo around 
the bacterial colony indicated solubilization of mineral 
phosphate.

Chitinase production

The bacterial suspension was spot inoculated on chitin agar 
plates and the zone of clearance was recorded after incuba-
tion at 28 ± 2 °C for 48–72 h.

Siderophore detection

Bacterial cultures were multiplied in Ashby’s Mannitol 
Broth (AMB) for 48 h and an equal volume of culture super-
natant was added to chrome azurol S (CAS) assay solution 
(Schwyn and Neilands 1987). A color change from blue to 
pink was recorded.

ACC (1‑aminocyclopropane‑1‑carboxylate) deaminase 
production

ACC deaminase enzyme production capability was assessed 
based on the ability to take ACC as a sole nitrogen source 
in a minimal medium (Duan et al. 2009). Cultures were 
spot inoculated on plates containing minimal medium sup-
plemented with 3 mM ACC substrate. Plates containing 
minimal medium without ACC served as negative control, 
and those with(NH4)2SO4 (2.0 g mL−1) as a nitrogen source 
served as positive control. The plates were incubated for 
4 days at 28 ± 2 °C and the growth of the isolates on ACC-
supplemented plates was compared with that of the positive 
and negative control plates.

Fungal inhibition growth assay

Spores of fungal cultures (Fusarium oxysporum, Alternaria 
burnsii and Rhizoctonia solani) were grown on potato 
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dextrose agar (PDA) plates. An agar plug (5 mm diameter) 
taken from an actively growing fungal culture was placed 
on one side of the surface of the PDA plate. Test bacteria 
were streaked perpendicular to the agar plug on the opposite 
side toward the edge of the plates. The plate inoculated with 
fungal agar plugs alone was used as the control. The plates 
were incubated at 28 ± 2 °C until fungal mycelia completely 
covered the agar surface in the control plate, and the zone of 
inhibition was recorded. A test was considered positive when 
bacteria interfered with the normal spread of the fungus and 
presented inhibition zone in three replications.

Root hair deformation assay

Bacterial cultures were grown in 50 ml liquid media incu-
bated at 30 °C on a shaker. After 48 h incubation, 5 ml of 
the culture was transferred to 95 ml fresh liquid medium 
and allowed to grow for another 12 h. The inoculation of 
bacterial culture (0.5 ml) was done by making a suspension 
in N-free Fahraeus medium at a density of approximately 
109 cfu/ml. Sphaerophysa salsula seeds were surface steri-
lized with 96% sulfuric acid for 20 min. Seeds were then 
washed ten times with sterile water to remove all traces of 
acid, immersed in 70% ethanol for 1 min, followed by 0.1% 
HgCl2 for 2 min, and rinsed eight times in sterile distilled 
water. Sterilized seeds were germinated on 0.8% (w/v) agar 
contained in 9 cm Petri dishes for 2 days in the dark at 25 °C. 
Two-day-old seedings were transferred aseptically to steri-
lized glass slides (one per slide) containing nitrogen-free 
Fahraeus medium semi-solidified with 0.8% (w/v) agar. 
Before applying the bacterial cultures, the roots of all the 
plants were examined microscopically and Fahraeus slides 
containing plants with deformed hairs were discarded. After 
1 day, seedings were inoculated with mid log phase cells of 
bacterial cultures. The inoculation of sterilized water and the 
sterilized medium served as control. Seedings were grown 
under day-light fluorescent tubes in a plant growth cham-
ber with a 16 h photoperiod for 10 days at 25 °C (day) and 
22 °C (night). The morphological features of primary root 

infection were examined by bright field microscopy at day 
2 after inoculation.

Field layout

The field experiments were conducted in Yan’an Univer-
sity, Shaanxi, China, and designs were randomized com-
plete blocks under field conditions. The experiment was 
designed as a 3 × 2×2 factorial organized in a randomized 
complete block split plot with three replications, and three 
plant samples comprised one replicate. The main plot units 
consisted of PGPR (plant growth-promoting rhizobacteria) 
strain inoculation (the mixture of endophytic isolates includ-
ing Bacillus pumilus Qtx-10 and Streptomyces bottropensis 
Gt-10 with Mesorhizobium sp. Zw-19 by adding 100 mL 
of bacterial suspension 108 CFU mL−1 per plant (no-PGPR 
inoculation as a control). Each sub-plot was 5 × 2 m and 
consisted of three rows of plants with 40 cm between rows. 
The space between plots was 80 cm with 1 m between rep-
lications. The experiments started in early May and ended 
in mid-July in 2018.

Results

Isolation and characterization of nodule endophytes

Sixty-five endophytic bacteria (Deng et al. 2011) that grew 
on PDA, KingB or NA medium which could not induce 
nodules were isolated from six different samples(Table 1), 
and 20 representative endophytes were selected and tested 
for their ability to nodulate Sphaerophysa salsula and plant 
growth-promoting assays(Table 2). In the nodulation tests 
under aseptic conditions, no nodules were induced by the 
20 representative endophytic bacteria. The amount of CFU, 
from the surface-sterilized roots and stems of the inoculated 
seedings varying from 1.13 × 104 to 6.52 × 105 CFU per gram 
of fresh root and 3.21 × 104 to 8.54 × 105 per gram of fresh 
stem, also fits the range of endophytic bacteria (Table 1).

Table 1   Physicochemical characteristics of the studied soils

Total nitrogen Kjeldahl method, Soil organic carbon K2Cr2O7 volumetric analysis, Total P acid-soluble-molybdenum antimony colorimetry 
resistance, Potassium extraction-flame photometer method, Soil pH value potentiometry

No. sample Sample location Altitude Latitude and longitude N % C % C/N K % P % pH

Gt Gaotai 1355.84 m 39° 03′ 50″ N, 98° 57′ 27″ E 0.087 1.00 11.5 1.00 0.072 8.54
Gz Guazhoun 1164 m 39° 42′ 36″ N, 98°30′ E 0.028 0.29 10.4 1.23 0.042 8.74
M Minqin 1325.75 m 38° 37′ 12″ N, 103° 48′ E 0.052 0.55 10.6 2.10 0.059 8.11
Q Qingtongxia 1125.5 m 38° 1′ 12″ N, 106° 4′ 12″ E 0.071 0.78 11 2.02 0.064 8.40
Zy Zhangye 1649.74 m 38° 55′ 48″ N, 100° 27′ 36″ E 0.061 0.74 12.1 2.01 0.059 8.16
Zw Zhongwei 1240 m 39° 30′ 36″ N, 105° 10′ 48″ E 0.051 0.59 11.6 2.14 0.064 8.58
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Table 2   Rsults of comparative growth profile of inoculation tests

Zw-19 singly and in combination with endophytic bacterial isolates. Each value in columns represents mean ± S.D. of three replicates per treat-
ment. In the same column, significant differences according to LSD at P = 0.05 levels are indicated by different letters and each set consisted of 
N number of plant. N = 9
NC negative control (without any treatment), PC positive control (treated with only Zw-19), ND not determinate

Strains Seeding fresh 
weight (g/
plant)

Number of 
nodules (per 
plant)

Nodule fresh 
weight (mg/
plant)

Chlorophyll 
content (μM/g leaf 
fresh weight)

Seeding shoot 
length (cm)

Bacterial 
UFC/g (fresh 
root)

Bacterial 
UFC/g (fresh 
stem)

NC 0.07 ± 0.01b 0 0 25.77 ± 3.22d 6.38 ± 1.06f 0 0
PC (Zw-19 alone) 0.08 ± 0.01b 1.57 ± 0.79d 1.63 ± 0.66f 28.20 ± 2.35c 6.87 ± 0.81e ND ND
Mq-10 0.08 ± 0.02b 0 0 28.21 ± 2.50c 8.74 ± 1.91bc 8.62 × 105 7.32 × 105

Mq-10 + Zw-19 0.11 ± 0.01a 1.33 ± 0.58d 2.77 ± 0.32de 33.23 ± 5.04b 10.85 ± 1.26ab ND ND
Gt-1 0.10 ± 0.04a 0 0 31.23 ± 3.30b 9.22 ± 1.40b 4.54 × 104 8.82 × 104

Gt-1 + Zw-19 0.11 ± 0.02a 3.60 ± 2.55b 5.22 ± 3.34ab 32.17 ± 1.27b 10.80 ± 0.48ab ND ND
Gaoshi-1 0.06 ± 0.03b 0 0 27.82 ± 6.69c 8.10 ± 0.53c 6.30 × 104 7.41 × 104

Gaoshi-1 + Zw-19 0.10 ± 0.03a 3.33 ± 1.51b 4.00 ± 2.02c 33.40 ± 6.67b 9.91 ± 0.28b ND ND
Qtx-10 0.11 ± 0.03a 0 0 28.60 ± 1.99c 8.52 ± 0.87c 5.35 × 105 4.11 × 105

Qtx-10 + Zw-19 0.15 ± 0.02a 3.33 ± 1.53b 6.47 ± 2.08a 33.23 ± 5.48b 9.98 ± 0.12b ND ND
Zw-22 0.07 ± 0.01b 0 0 28.06 ± 2.87c 8.12 ± 1.48c 1.15 × 104 3.27 × 104

Zw-22 + Zw-19 0.14 ± 0.04a 3.43 ± 1.62b 6.20 ± 1.75a 38.6 ± 1.78a 11.10 ± 1.27a ND ND
Zw-13-3 0.10 ± 0.04a 0 0 28.65 ± 1.97c 9.64 ± 1.16b 5.40 × 105 7.53 × 105

Zw-13-3 + Zw-19 0.10 ± 0.02a 3.67 ± 2.08b 6.75 ± 1.58a 34.6 ± 4.29b 11.30 ± 0.66a ND ND
Gt-20 0.10 ± 0.01a 0 0 28.60 ± 1.99c 8.52 ± 0.87c 6.36 × 104 5.45 × 104

Gt-20 + Zw-19 0.09 ± 0.02ab 3.40 ± 2.07b 3.72 ± 1.72c 33.75 ± 3.66b 9.83 ± 1.93b ND ND
Zw-22-2 0.08 ± 0.08b 0 0 27.35 ± 2.90c 7.90 ± 0.99d 3.65 × 104 1.05 × 105

Zw-22-2 + Zw-19 0.10 ± 0.03a 3.67 ± 1.63b 2.78 ± 1.52de 29.03 ± 2.66bc 10.42 ± 1.15ab ND ND
Zy-3 0.07 ± 0.01b 0 0 26.67 ± 2.28c 8.41 ± 1.86c 4.53 × 105 5.42 × 105

Zy-3 + Zw-19 0.09 ± 0.02ab 3.67 ± 2.08b 2.82 ± 0.61de 33.57 ± 6.57b 10.08 ± 2.19ab ND ND
Qtx-12 0.07 ± 0.01b 0 0 28.33 ± 4.31c 8.90 ± 0.97bc 5.63 × 104 5.72 × 104

Qtx-12 + Zw-19 0.10 ± 0.02a 2.50 ± 0.71c 2.37 ± 0.58e 35.57 ± 2.40ab 9.90 ± 0.80b ND ND
Gzn-9-1 0.08 ± 0.02b 0 0 31.96 ± 4.63b 9.47 ± 1.40b 5.54 × 105 6.43 × 105

Gzn-9-1 + Zw-19 0.12 ± 0.04a 2.50 ± 0.71c 2.93 ± 1.26de 35.97 ± 6.11a 10.95 ± 0.79ab ND ND
Gt-10 0.08 ± 0.03b 0 0 28.86 ± 2.81c 7.88 ± 2.72d 6.52 × 105 3.53 × 105

Gt-10 + Zw-19 0.13 ± 0.03a 4.33 ± 1.75a 4.39 ± 1.34b 37.13 ± 3.8a 13.01 ± 3.47a ND ND
Gt-25 0.08 ± 0.03b 0 0 29.16 ± 3.78bc 8.48 ± 1.61c 9.42 × 104 4.05 × 105

Gt-25 + Zw-19 0.09 ± 0.02ab 2.50 ± 0.71c 1.10 ± 0.04 g 30.23 ± 3.38b 9.90 ± 1.13b ND ND
Qtx-19 0.08 ± 0.01b 0 0 31.32 ± 6.20b 8.48 ± 1.40c 6.61 × 104 5.20 × 104

Qtx-19 + Zw-19 0.11 ± 0.04a 3.33 ± 0.52b 3.16 ± 1.80d 32.07 ± 2.27b 11.24 ± 3.17a ND ND
Zw-11 0.11 ± 0.03a 0 0 26.60 ± 2.97c 8.42 ± 0.79c 6.56 × 104 8.93 × 104

Zw-11 + Zw-19 0.12 ± 0.03a 4.25 ± 1.49a 3.89 ± 1.07c 34.40 ± 0.89b 10.98 ± 0.78ab ND ND
Qtx-11 0.08 ± 0.01b 0 0 26.13 ± 2.27c 8.81 ± 1.45bc 3.55 × 105 8.54 × 105

Qtx-11 + Zw-19 0.10 ± 0.01a 2.00 ± 1.00c 2.38 ± 1.08e 28.20 ± 4.66bc 9.20 ± 0.67b ND ND
Gaoshi-7 0.11 ± 0.03a 0 0 26.05 ± 1.78c 9.82 ± 0.36b 4.61 × 104 6.77 × 104

Gaoshi-7 + Zw-19 0.14 ± 0.04a 3.50 ± 1.31b 6.03 ± 1.92a 38.13 ± 6.99a 11.08 ± 1.34a ND ND
Zy-2-1 0.10 ± 0.03a 0 0 28.87 ± 1.46c 8.90 ± 2.18bc 3.31 × 104 5.45 × 104

Zy-2-1 + Zw-19 0.09 ± 0.01ab 1.83 ± 0.98 cd 1.83 ± 0.98f 32.80 ± 4.92b 8.93 ± 0.82bc ND ND
Mq-17 0.06 ± 0.02bc 0 0 26.52 ± 2.30c 7.36 ± 0.93d 3.41 × 104 4.55 × 104

Mq-17 + Zw-19 0.13 ± 0.03a 3.00 ± 1.93b 4.76 ± 2.54b 32.68 ± 3.10b 11.36 ± 3.18a ND ND
Mq-2-1 0.07 ± 0.03b 0 0 30.26 ± 5.80b 8.61 ± 1.45bc 5.31 × 104 5.60 × 104

Mq-2-1 + Zw-19 0.09 ± 0.01ab 3.00 ± 1.50b 3.33 ± 1.99d 34.10 ± 4.01ab 10.68 ± 0.70ab ND ND
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Sequence analysis of nifH gene

Amplified fragments of nifH corresponding to the expected 
size of 460 bp were produced in PCR from the 19 tested 
rhizobial DNA and from that of one single endophytic 
strain. The phylogenetic analysis of the sequenced frag-
ments (Fig. 1) showed that this nifH sequence was related 
to that of M. amorphae. M. gobiense, M. septentrionale 
and M. albiziae. The nifH sequence amplified from Bacil-
lus pumilus Qtx-10 was 100% similar to that of Rhizobium 
leguminosarum Qtx-10-1 and 96.14% similar to that of M. 
albiziae. Interestingly, on collecting them from the same 
sampling site, we found that Bacillus pumilus Qtx-10 co-
occurred with Rhizobium leguminosarum Qtx-10-1 in the 
same nodule. This close relationship of the same ecological 
niche between them is speculated to cause the co-evolution 
of symbiotic genes. However, lateral gene transfer between 
non-symbiotic and symbiotic bacteria is rare. The positions 
of some isolates in this study showed aberrant features in the 
phylogenetic trees. Gene transfer somehow drives genetic 
diversity and adaptability, and lateral symbiotic gene transfer 
may have significant effects at the species or genus level.

Root hair deformation assay

The root hair deformation assay performed in Sphaerophysa 
salsula revealed the presence of modified root hair structures 
in bacterial treatments. The deformation was induced only in 
a small zone of the root containing root hairs that had almost 

stopped growing. Out of 20 representative endophytic iso-
lates, only treatment with Qtx-10, Gzn-9-1 and Zw-13-3 
inoculation resulted in deformed root hairs with bulging at 
the root tip. Examination of the root segments under bright 
field microscopy showed hemispherical bulbous structures 
and root structures resembling the initial stages of nodule or 
tumor outgrowths that could not be observed in uninoculated 
control seedings (Fig. 2a–d).

Plant growth promoting assays

Salkowski reaction of culture supernatants revealed that 
of the strains Qtx-10, Gzn-9-1 and Zw-13-3 were able to 
synthesize IAA from tryptophan. Based on the sequencing 
of the 16S rRNA gene, Qtx-10 was identified as Bacillus 
pumilus, Gzn-9-1 was designated as Bacillus licheniformis 
and Zw-13-3 belonged to Lysinibacillus fusiformis. All the 
isolates were chitinase negative, only Zw-12-2 belonging 
to Bacillus safensis showed phosphate solubilization activ-
ity, having a clear halo around the colony. Out of 20 rep-
resentative endophytic isolates, 11 strains gave a positive 
CAS assay test showing that they produced siderophores, 
belonging to genera Staphylococcus, Lysinibacillus, Bacil-
lus, Paracoccus, Streptomyces, Nocardia, Mycobacterium, 
Paenibacillus and Pseudomonas, respectively. The capabil-
ity to inhibit plant pathogenic fungi was analyzed by using 
Fusarium oxysporum, Alternaria burnsii and Rhizoctonia 
solani as target organisms, and six strains showed antifun-
gal activity. The capability of inhibiting fungal growth was 

Fig. 1   Phylogenetic tree of rep-
resentative strains isolated from 
Sphaerophysa salsula (labeled 
in bold) and reference strains 
generated by the neighbor-
joining method based on 
nearly full length (460 bp) nifH 
sequences. Bootstrap values 
(1000 replicates) are indicated 
as percentages (>70%) above 
the branches. Scale bar indicates 
2% substitution of nucleotide
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widely spread in the different genera belonging to Paracoc-
cus, Paenibacillus, Bacillus pumilus, Inquilinus and Myco-
bacterium, respectively. Antifungal activity of Zy-3, Gt-1, 
Qtx-10, Gzn-9-1, Mq-10 and Mq-2-1 was checked against 
Fusarium oxysporum using potato dextrose agar (PDA) 
medium. The antifungal activity of strains tested varied with 
inhibition zones in diameter from 18.20 to 36.00 mm, strains 
Gt-1 and Qtx-10 induced larger inhibition zones compared 
to the other strains (inhibition zone more than 30.00 mm) 
(Fig. 3), Gt-1, Qtx-10 and Gzn-9-1 could also exhibit broad-
spectrum activities against test fungi. Production of IAA, 
siderophore and antifungal activity was simultaneously 
exhibited by isolates of Qtx-10 and Gzn-9-1.

Under pot culture conditions, 15 out of the 20 strains 
showed plant growth-promoting activity with respect to 
various plant parameters. Among the isolates, all of the 
15 isolates promoted the fresh weight and shoot length of 
Sphaerophysa salsula seedings when inoculated alone and 
showed similar effects on the fresh weight and shoot length 
as the rhizobial bioinoculant strain Zw-19. While Gaoshi-1, 
Zw-22, Zy-3, Qtx-12 and Mq-17 showed decrease in seeding 
fresh weight when inoculated alone, all five isolates pro-
moted plant growth when applied as a mixture with Zw-19 
(Table 2). Qtx-10 inoculation enhanced the seeding fresh 
weight by 87.5%, and the isolate Gt-10 enhanced the shoot 
length by 89.4%. Over the positive control, Gt-25 and Zy-2-1 
when co-inoculated with Zw-19 showed decrease in seed-
ing fresh weight compared to its individual application. The 
chlorophyll content was improved in plants inoculated with 
all of the 20 representative endophytic isolates, over the 
noninoculate control, and their chlorophyll values were also 
improved when co-inoculated with Zw-19. Except Gt-25, 
there was an increase in the average nodule fresh weight per 
plant when those 19 strains were inoculated in combination 
with Zw-19.

The results of field experiments indicated that the inocu-
lum of strain Zw-19 combined with two kinds of bacteria 
(Qtx-10 and Gt-10) has a significant role in growth promot-
ing than the single inoculum Zw-19. Under the conditions 
of field, the growth rate of the plant height of Sphaerophysa 

Fig. 2   Root hair deformation 
bacterial cultures-inoculated 
Sphaerophysa salsula seedings: 
a uninoculated control with nor-
mal root hairs, b microscopic 
view of infected root hairs in 
Bacillus pumilus Qtx-10 inocu-
lated Sphaerophysa salsula 
seedings, c microscopic view of 
infected root hairs in Bacillus 
licheniformis Gzn-9-1 inocu-
lated Sphaerophysa salsula 
seedings, d microscopic view 
of infected root hairs in Bacillus 
safensis Zw-13-3 inoculated 
Sphaerophysa salsula seedings. 
Scale bars = 200 µm in (a); 
300 µm in (b, c); 200 µm in (d)

Fig. 3   Antifungal activity of endophytes test. a Inhibition zones of 
strain Gt-1 against Valsa mali Miyabe et Yamada; b Inhibition zones 
of strain Qtx-10 against Valsa mali Miyabe et Yamada
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salsula was more than 15.99% higher than that of Zw-19. 
Moreover, the number of nodules was 31.89% higher than 
that under field conditions. The growth-promoting effect of 
combined Zw-19 with endophytic bacteria on to S. salsula 
has a significant role in various plant growth promotion 
parameters (Table 3).

Discussion

Nodules can be colonized internally by several bacterial 
genera unrelated to rhizobial symbiotic nitrogen fixation. 
Benhizia et al. (Benhizia et al. 2004) reported Pseudomonas 
strains to be associated with legume nodules. Actinobacteria 
such as streptomyces lydicus have been reported to colo-
nize pea nodules (Tokala et al. 2002), and Bacillus thur-
ingiensis can naturally coinhabit soybean nodules along 
with Bradyrhizobium japonicum. Bacillus cepacia was also 
recorded as a plant endophyte (Balandreau et al. 2001) and 
as a nodule occupant (Vandamme et al. 2002), and some 
other species in the genera Bacillus have been found in nod-
ules (Bai et al. 2002; Barret and Parker 2006). Our finding 
(Deng et al. 2011) is consistent with previous studies show-
ing Bacillus t be enriched in the nodules (Zakhia et al. 2006), 
and Bacillus and Pseudomonas were mainly endophytic bac-
teria in the nodules (Kan et al. 2007). As De Meyer et al. 
(2015) mentioned, the majority of the investigated nodules 
contained Bacillus (17.9%), Paenibacillus (12.5%) and 
Pseudomonas (15.9%) found in legume root nodules from 
native legume species in Flanders (De Meyer et al. 2015), 
which indicates that certain legume species prefer certain 
non-symbiotic endophytic bacteria in their root nodules. The 
implications of the discovery would be significant, espe-
cially if it is confirmed that the association between legume 
nodules and Gram-positive bacteria is common in nature and 
that this interaction is beneficial for plant growth.

In this study, an evidence of the high similarity (99%) 
sequences homologous to the nifH gene of Mesorhizobium 
was detected within strain Qtx-10 belonging to the genera 
Bacillus, and it offered strong evidence to suggest that 
lateral gene transfer of nifH might have happened between 
the symbiotic and endophytic bacteria. The frequent lateral 

gene transfer might help S. salsula to attract the most 
adapted bacteria, subsequently, and improve the diversity 
of bacteria within the root nodule of S. salsula. This result 
is similar to the previously reported sequences of nifH 
amplified from Bacillus spp. CCBAU15524 (EF471734) 
and CCBAU15518 (EF471735) were 99% similar to that 
of B. japonicum (AJ563961) (Li et al. 2008). Sequence 
analysis of the nifH gene revealed that the strains belong-
ing to Xenophilus, Acinetobacter, Phyllobacterium, and 
Rhizobium had genes similar to those of Mesorhizobium 
and Sinorhizobium (Xu et al. 2014). Seven endophytic 
non-rhizobial bacteria, which belong to Enterobacter cloa-
cae, Chryseobacterium indologenes, Klebsiella pneumo-
niae, Pseudomonas aeruginosa, Enterobacter ludwigii and 
Klebsiella variicola were isolated possessing the nifH gene 
(Dhole et al. 2016). Zhao et al. (2011) demonstrated that 
the nifH gene was amplified from representative strains 
Bacillus cereus and Bacillus amyloliquefaciens which 
were isolated from the root nodules of soybean (Glycine 
max L.) and had nitrogen fixation activity (Zhao et al. 
2011). In the present study, nifH genes of strain Qtx-10 
and other rhizobia were more close than between the 16S 
rRNA genes of Bacillus and rhizobia, which was consist-
ent with the results of Zhao et al. (2011). This suggests 
that the presence of nifH gene in both Bacillus and rhizo-
bia probably occurred through horizontal gene transfer. 
All previous studies and our study demonstrated that hori-
zontal gene transfer could have occurred between rhizobia 
and non-rhizobial endophytes. They may have co-evolved. 
Therefore, the non-symbiotic endophytic bacteria in nod-
ules may serve potential receptors of symbiotic genes and 
may be resources of novel symbiotic bacteria. Although 
rhizobia have been studied for more than 120 years, sym-
bionts of less than 10% of the 750 legume genera have 
been fully characterized. Our work suggests that charac-
terization of the symbionts of the yet unexplored legumes 
may reveal the rhizobial nature of additional members of 
possibly other taxonomic classes. Such a study may con-
tribute significantly to the understanding of the origin and 
the evolution of the legume–rhizobia symbioses, show-
ing that the ability to establish a symbiosis with legumes 
is more widespread in bacteria than anticipated to date. 

Table 3   Rsults of comparative growth under field conditions

Each value in columns represents mean ± S.D. of three replicates per treatment, and three plant samples were consisted in one replicate. In the 
same column, significant differences according to LSD at P = 0.05 levels are indicated by different letters

Strains Plant height (cm) Fresh weight (g) Dry weight (g) Root length (cm) Number of nod-
ules (per plant)

SPAD

PC(Zw-19 alone) 59.48 ± 2.91b 16.08 ± 0.12b 9.81 ± 0.02b 31.00 ± 0.69b 5.21 ± 1.02b 50.56 ± 0.22c
Qtx-10 + GT-10 62.50 ± 2.24b 16.40 ± 0.19b 9.84 ± 0.03b 31.70 ± 2.24b 2.21 ± 2.01c 51.65 ± 0.45b
Qtx-10 + GT-10 + Zw-19 70.80 ± 1.47a 17.48 ± 0.08a 11.01 ± 0.02a 34.82 ± 1.03a 7.66 ± 1.67a 52.97 ± 0.62a
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Based on its importance, both the horizontal transfer and 
the function of nifH in nodule endophytic Bacillus need 
to be studied further.

In the present work, we describe here non-symbiotic bac-
teria that are closely associated with nodules of S. salsula 
and their interaction with S. salsula nodulating rhizobial 
strain Zw-19 in planta. Our results parallel other studies, 
showing that the legume root nodules are known to accom-
modate several eubacterial genera apart from rhizobia, and 
their population densities are reported to be in the range of 
104 viable bacteria per gram of fresh nodule tissue (Sturz 
et al. 1997). Although the role of such bacteria is not clear, it 
has been hypothesized that IAA of bacterial origin from the 
nodules is transported to other plant parts (Basu and Ghosh 
1998) and use IAA as a part of their colonization strategy, 
involving phyto-stimulation and circumvention of plant 
defense mechanisms. Moreover, IAA might act as a signal 
molecule in bacteria–bacteria communication (Spaepen 
et al. 2007). The cooperative interactions between rhizobia 
and other plant root-colonizing bacteria are of relevance in 
the improvement of nodulation and N2 fixation in legume 
plants (Barea et al. 2005). Besides cellulase, protease pro-
duced by many Bacillus and Paenibacillus strains was pro-
posed to degrade fungal cell walls, thereby inhibiting plant 
pathogens (Lodewyckx et al. 2002). Bacteria that produce 
siderophores can inhibit plant pathogens by competing with 
them for iron in the rhizosphere. Some plants can also bind, 
transport and exploit bacterial iron–siderophore complexes 
(Lodewyckx et al. 2002). Perhaps, some of these functions 
explain why the production of siderophores was common 
among our non-symbiotic strains. Furthermore, the re-iso-
lation of these bacteria from stem, roots and nodules of the 
inoculated host plants of Sphaerophysa salsula evidenced 
their endophytic properties according to the definition of 
endophytic bacteria (Hallmann et al. 1997).

Other previous studies reported that plant growth pro-
motion when rhizobia are co-inoculated with Bacillus spp. 
include studies on Rhizobium leguminosarum bv trifolii with 
either B. insolitus or B. brevis (Sturz et al. 1997) and with 
Bacillus spp. and the soybean endosymbiont, Bradyrhizo-
bium japonicum (Bai et al. 2003; Liu and Sinclare 1993). 
Our results are in agreement with the above reports. To the 
best of our knowledge, this study is the first report to show 
that the effects of a Streptomyces bottropensis endophyte 
with Mesorhizobium spp. on Sphaerophysa salsula growth. 
Our results revealed that the association between legume 
nodules and endophytic bacteria is common in nature and 
that this interaction is beneficial for plant growth.

Many different mechanisms have been proposed as the basis 
of nodulation enhancement by epiphytic or endophytic root-
associated bacteria (Barea et al. 2005). Using cell-free super-
natants of bacterial cultures, it has been demonstrated that 
plant growth-regulating substances produced by rhizobacteria 

affected nodulation and nitrogen fixation, (Hardoim et al. 
2002; Peix et al. 2015; Tariq et al. 2014; Andrews et al. 2010; 
Rajendran et al. 2008; Gonzalez-Andres et al. 2005; Vidal 
et al. 2009; Azcon et al. 2010; Muresu et al. 2008; Barret and 
Parker 2006; Annapurna et al. 2013; Masciarelli et al. 2014; 
Subramanian et al. 2015; Sprent 2001; Van Berkum et al. 
1996; Vincent 1970; Graan and Ort 1984; Glickmann and 
Dessaux 1995; Schwyn and Neilands 1987; Duan et al. 2009; 
Tokala et al. 2002; Balandreau et al. 2001; Vandamme et al. 
2002; Dhole et al. 2016; Zhao et al. 2011; Basu and Ghosh 
1998; Spaepen et al. 2007; Barea et al. 2005; Hallmann et al. 
1997; Liu and Sinclare 1993; AzcÓn-Aguilar and Barea 1978; 
Manero et al. 2003). Further work is needed in this regard.

In previous studies, endophytic bacteria contribute to 
plant growth, ecological performance or reduction of plant 
stress (Lodewyckx et al. 2002). Our work revealed that a 
wide variety of rhizobial and non-symbiotic endophytic bac-
teria can colonize S. salsula nodules; moreover, they can 
assist the symbiotic interaction between rhizobia and the 
host plant.

The previous report (Bai et al. 2003) showed that Bacillus 
subtilis and Bacillus thuringiensis can naturally coinhabit 
soybean nodules along with Bradyrhizobium japonicum, and 
that these Gram-positive bacteria can enhance plant produc-
tivity in co-inoculation experiments. A more recent report 
(Zakhia et al. 2006) described the association of 14 bacterial 
genera with wild legume nodules in Tunisia. In the present 
study, most of the root nodules of S. salsula harbor prevail-
ingly rhizobia. Meantime, these nodules are also colonized 
internally by nonrhizobial endophytes. We plan to examine 
if undomesticated legumes differ from those cultivated in 
agriculture in their production of metabolites. Investigating 
these aspects will provide a better insight into the microbial 
interactions occurring in native and introduced wild legume 
plants and will lead to a better understanding of their nitro-
gen-fixing symbioses in further studies.

In sum, nodulation mainly occurred at the junction of 
the primary and secondary roots. The Qtx-10, Gzn-9-1 and 
Zw-13-3 inoculation resulted in root hair deformation in 
Sphaerophysa salsula. Furthermore, more lateral root for-
mation can provide more potential rhizobial invasion sites, 
and thus enhance nodulation. But the tip bulging and defor-
mation were not prominent and also uniformly distributed 
throughout the emerging root hairs, implying that the root 
infection process is a random event (Ibáñez et al. 2009; Rolfe 
et al. 1997).

Conclusions

Conclusively, the representative nodule endophytes 
improved nodulation and nodule activity in Sphaerophysa 
salsula on co-inoculation with Mesorhizobium sp. Zw-19. 
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These results demonstrated the diverse non-symbiotic bacte-
ria associated with this plant grown promotion in northwest-
ern China and the universal existence in its nodules. These 
results provide valuable information about the interactions 
among the symbiotic bacteria, non-symbiotic bacteria and 
their habitats.
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