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Abstract

Plant domestication was a pivotal accomplishment in human history, which led to a reduction in genetic diversity of crop spe-
cies; however, there was less research focus on how this reduced genetic diversity of crops in affecting rhizosphere microbial
communities during crop domestication process. Here, we used high-throughput sequencing to explore the different effects
of crops domestication on rhizosphere microbial community structure of rice (Oryza sativa L. and Oryza rufipogon Grift.)
and soybean (Glycine max L. and Glycine soja Sieb. et Zucc.). Results indicated that rhizosphere fungal communities are
more strongly influenced by crop domestication than bacterial communities. There was a stronger relationship for fungi and
bacteria in the cultivated crops than in the wild relatives. Results also showed that the wild varieties had a higher abundance
of beneficial symbionts and a lower abundance of pathogens comparing with the cultivated varieties. There was a similar
tendency for both rice and soybean in rhizosphere microbial communities by comparing wild crops and their cultivated varie-
ties. In conclusion, crop domestication had a stronger effect on the fungal communities than on the bacterial communities
and had improved the microbial relationship in rhizosphere of cultivated crops.

Keywords Cultivated crops - Rhizomicrobiome - Rice (Oryza sativa L. and Oryza rufipogon Griff.) - Soybean (Glycine
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Introduction

When wild plants were domesticated, a substantial altera-
tion in the composition and function of the rhizomicrobiome
may have occurred (Shenton et al. 2016; Leff et al. 2017).
As we know modern cultivars are bred for improved yield
and biomass production and a better quality for food and
fodder when growing under the conditions of relatively high
nutrient availability, protection against pathogens by appli-
cation of pesticides, and optimal moisture by irrigation (Shi
et al. 2018a, b; Tian et al. 2018). However, wild crops grow
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and survive naturally without these optimal growing condi-
tions which have resulted in significant differences in the
structure and functioning of the rhizosphere communities
between modern crops and their wild relatives (Bulgarelli
et al. 2015; Tian et al. 2017). The rhizosphere microbial
community structure was affected by a variety of abiotic
and biotic factors (Barbosa Lima et al. 2015; Rodriguez-
Blanco et al. 2015; Wagner et al. 2016). Thus, it is reason-
able to assume that the rhizomicrobiome of wild crops may
contribute to host plants’ growth and survival under biotic
and abiotic stress conditions more effectively than that of
their cultivated relatives (Philippot et al. 2013; Mendes and
Raaijmakers 2015; Perez-Jaramillo et al. 2016).

At present, many studies reported that the bacterial and
fungal community structure of the plant species rhizomi-
crobiome specific in Arabidopsis (Schlaeppi et al. 2014;
Bulgarelli et al. 2015), maize (Zea mays L.) (Bouffaud
et al. 2014), rice (Oryza sativa) (Edwards et al. 2015), beet
(Beta vulgaris ssp.) (Zachow et al. 2014), and sunflower
(Helianthus annuus) (Leff et al. 2017). However, the driv-
ers of microbial community assemblages in the rhizos-
phere are still rudimentary and the mechanisms associated
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with the effects of crop cultivar on the structure of the
rhizosphere community remain largely unknown (Hart-
mann et al. 2014; Yan et al. 2015). Moreover, whether
the differences that occur in the rhizosphere community
assembly of cultivated versus their wild crops are true for
different crops has not been determined. Therefore, we
utilize different crops like wild versus cultivated rice and
soybean, which are grown in the same experimental condi-
tions to find out whether the rhizosphere microorganisms
developed from wild crops to cultivated crops have the
same trend.

In recent years, the concept of the rhizomicrobiome
has evolved (Mendes et al. 2011) and advances in DNA-
sequencing technology have allowed researchers to inves-
tigate the structure of the rhizomicrobiome in more detail
than before (Hua et al. 2014). Metabarcoding and next-
generation-sequencing have provided the possibilities to
make detailed assessments of differences between the rhi-
zomicrobiome of wild and their cultivated crops. In addition,
high-throughput sequencing is also possible to identify the
predominant microbial groups in the rhizomicrobiome and
their functions that have a positive impact on wild plants’
growth and stress tolerance, which may be no longer pre-
sent or present to a lesser extent in the rhizomicrobiome of
cultivated relatives (Zhang et al. 2017; Mendes et al. 2018).
This knowledge may eventually be useful for the develop-
ment of sustainable crop management strategies that ensures
sufficient crop yields with high quality, at the conditions of
reduced chemical and physical inputs.

Over the past decades, plant breeders have exploited
genes from wild relatives of modern crop species to improve
plant growth and health. For instance, wild relatives have
been used as sources of alleles to improve the ability of
modern cultivars to withstand biotic and abiotic stresses in
wheat (Agropyron elongatum) (Placido et al. 2013), barley
(Hordeum vulgare ssp. spontaneum) (Schmalenbach et al.
2008), and lettuce (Lactuca sativa L.) (Simko et al. 2013).
Similarly, entomologists have explored native habitats to
identify the natural enemies of insect pests. However, in the
area of crop microbial research, relatively few studies have
been made to illustrate about biodiversity and functions of
beneficial microbial community composition present in the
native habitats of ancestors of modern crop species. Limited
efforts have been made to study the bacteria of cultivated
crops and their wild relatives (Shenton et al. 2016; Pérez-
Jaramillo et al. 2017), and the rhizosphere fungal community
across the degree of domestication of sunflower (Helianthus
annuus) (Leff et al. 2017). In a previous study, the rhizos-
phere bacterial community structure of domesticated corn
cultivars and its relative wild corn (Balsas teosinte) were
compared by using terminal restriction fragment length
polymorphism analysis of the 16S rRNA gene (Szoboszlay
et al. 2015). However, no study has evaluated simultaneously
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the bacterial and fungal communities in cultivated crop ver-
sus its wild relatives using high-throughput sequencing.

In this study, we have a hypothesis that the rhizosphere
bacterial and fungal communities assembly differ in culti-
vated rice and soybean species versus their wild relatives.
The hypothesis was tested by high-throughput sequencing of
bacterial 16S rRNA and fungal internal transcribed spacer
(ITS) regions.

Materials and methods
Soil and plant materials

The soils were collected from the Changchun Agricultural
Station of the Northeast Institute of Geography and Agroe-
cology, located in Jilin Province, China (43°59'N, 125°23'E).
The main soil physiochemical characteristics are described
in Table S1. The soil type is belonging to black soil.

Two different cultivated crops and their wild relatives
were chosen to assess the microbial community composi-
tion with the rhizosphere of Oryza sativa L. ssp. Japonica
cv. Dongdao-4 (OsL), Oryza rufipogon Griff. (OrG), Glycine
max (L.) Merr. cv. Zhonghuang 39 (GmL), and Glycine soja
Sieb. et Zucc. (GsS). The varieties of cultivated rice and
soybean species used represented common cultivars grown
in local regions of China.

The seeds of wild rice were obtained from the Dongxiang
Natural Conservation Region (28°14'N, 116°30'E, 45.8 m
a.s.1.) and the seeds of wild soybean were from Northeastern
China (47°47'N, 126°97'E, 238 m a.s.1.). The morphologi-
cal comparison between cultivated and wild crops is shown
in Figure S1.

Plant growth and rhizospheric soil collection

Seeds were surface-sterilized with 1% sodium hypochlo-
rite for 8 min and germinated on filter paper wetted. After
5 days, germinated seeds were transferred to a 10 cm diam-
eter X 10 cm high pots filled with described agricultural soil
and incubated for 3 weeks in a growth chamber (25 °C, 16 h
daylight). To synchronize the development of wild and cul-
tivated plants, plants were incubated at 4 °C. Six seedlings
growing uniformly per plant species were then transplanted
into 20 cm diameter X 20 cm high plastic pots containing the
described soil. The plantlets were trimmed to three seedlings
per pot. The pots were subsequently kept under controlled
temperature (26 °C/28 °C), photoperiod (16/8 h), and rela-
tive humidity of 70%. Three pots with the same amount of
soil but without plants were used as control.

Rhizosphere soils were sampled at flowering stages in 60
and 55 days for rice and soybean, respectively. The rhizo-
sphere soils were sampled removing the whole plant and
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brushing the soil adhered to the seminal roots. Bulk soil
samples were taken from control.

DNA extraction for high-throughput sequencing

Soil DNA was extracted from 0.5 g (wet weight) of each
sample using Fast DNA™ Spin Kit for Soil (MP Biomedi-
cals, Santa Ana, CA, USA). The amplification of the V3-V4
hypervariable regions of /65 rRNA was performed using
the primer set 341 F (5'-CCTACGGGNGGCWGCAG-3")
and 785 R (5'-GACTACHVGGGTATCTAATCC-3") (Pérez-
Jaramillo et al. 2017; Thijs et al. 2017). For fungal amplifi-
cation, a fungal primer set ITS3 F (5'-GATGAAGAACGY
AGYRAA-3') and ITS4 R (5'-TCCTCCGCTTATTGATAT
GC-3') (Zhou et al. 2017) was used to amplify. PCR was
carried out using 0.25 uL forward primer, 0.25 puL reverse
primer, and 1 pL sample DNA template, 12.5 uL 2 x KAPA
HiFi HotStart Ready Mix, and 11 pL. PCR Grade Water.
Total volume was 25 uL.. We used following PCR program
on a LifePro PCR thermocycler: 94 °C for 3 min, followed
by 25 cycles of 95 °C for 30 s, 53 °C for 30 s, and 72 °C for
30 s. The final extension at 72 °C was used for 8 min and the
reactions were held at 4 °C. As negative control, PCR Grade
Water was used instead of DNA template. The PCR prod-
ucts were visualized on a 1.2% agarose gel. PCR products
were purified using QIAquick Gel Extraction Kit (Qiagen,
USA, code No. 28704), according to the technical specifica-
tion. The DNA was quantified using Qubit® Fluorometers
(Thermo Fisher Scientific). Samples were subjected to 250-
bp paired-end sequencing on an Illumina MiSeq instrument
(San Diego, CA, USA).

16S and ITS sequences’ processing

Raw sequences were merged using FLASH v1.2.11
(Mago¢ and Salzberg 2011), and then, the merged
sequences were filtrated by mothur v1.35.1 (Schloss et al.
2009) as follows. First, reads containing any sequence that
the average quality score was less than or equal 20 bp,
including ambiguous bases and homopolymer, were more
than 10 bp and then were removed by mothur. Second,
reads containing any mismatch sequence that was more
than 4 bp were removed and primer sequences were also
removed. Third, reads containing any sequence that were
less than 200 bp and more than 500 bp were discarded.
Chimeric sequences were removed using USEARCH v7.0
(Edgar et al. 2011) based on the SILVA database (Pruesse
et al. 2007) for 16S rRNA and the UNITE database (Kol-
jalg et al. 2013) for ITS. All of the remaining sequences
from each sample were then clustered into operational
taxonomic units (OTUs) by USEARCH v6.0 (Edgar
2013) based on 97% sequence similarity. OTU taxonomic
classification was conducted by BLAST searching the

representative sequences set against the SILVA database
and the UNITE v6.0 database (K®&ljalg et al. 2013) for
bacterial and fungal sequences, respectively. FunGuild
v1.1, which is a flat database hosted by GitHub (https://
github.com/UMNFuN/FUNGuild), was used to assign fun-
gal phylotypes from the rarefied data to one of the three
trophic modes (pathotroph and symbiotroph) where pos-
sible (Nguyen et al. 2016).

All of the [llumina raw sequence data were deposited
into the National Center for Biotechnology Information
Sequence Read Archive (NCBI SRA) database (http://
www.ncbi.nlm.nih.gov/sra) under accession number NO.
SRP079341.

Statistical analyses

The OTU table was rarefied for downstream analysis. To
determine the overall structural changes in microbial com-
munity composition, a principal coordinate analysis (PCoA)
was performed based on Bray—Curtis dissimilarities gener-
ated from rarefied OTU, using R package ape version 4.1
(Jari Oksanen et al. 2018). Bray—Curtis dissimilarities were
used to perform permutational multivariate analysis of vari-
ance (PERMANOVA) analysis with 9999 random permuta-
tions (P <0.05) (Schlemper et al. 2018). Differences in mean
proportion were conducted using the Statistical Analysis of
Metagenomics Profiles (STAMP) v2.1.3 program (P < 0.05)
(Parks et al. 2014). Benjamini—Hochberg algorithm was
applied to control false discovery rates (FDR). Spearman
correlations were performed based on the Shannon index,
Simpson index, and Sobs to determine the level of signifi-
cance of differences in diversity as a result of crop cultivar,
and whether these levels differed for bacteria and fungi. Cor-
relation coefficients were calculated using the corr.test func-
tion in the stats package of R based on Spearman’s test (Hal-
pin et al. 2016). Co-inertia analysis (COIA) was performed
using the “ade4” package. Monte Carlo test was carried out
for COIA using 999 random permutations. The statistical
analyses were performed using SPSS version 20.0.

Results

A total of 249,549 bacterial reads after filtering out of
300,038 raw reads (ranging from 9028 to 31,654) were
obtained, resulting in 3233 OTUs. A total of 144,126
effective fungal reads out of 168,266 raw sequences were
obtained (ranging from 6398 to 16,973), resulting in 1350
OTUs. The result indicated that the sequencing coverage was
sufficient to detect most of the species and the OTU number
produced by the [llumina sequencing is reasonable (Fig. S2).
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Bacterial community structure of cultivated rice
and soybean and their wild relatives

PCoA showed that the dissimilarity of rhizosphere bacte-
rial communities (57.29% explained by axis 1) (Fig. 1a)
was mainly due to plant species, i.e., soybeans versus rice.
Results showed that the bacterial communities were not sig-
nificantly different in the rhizosphere soils of rice (F=21.38;
P=0.1) (Fig. S3a) and soybean (F=1.66; P=0.2) (Fig.
S3b).

PCoA showed that the rhizosphere bacterial communities
were dissimilar between the rhizosphere soils and bulk soils
of rice and soybean (Fig. S4). Results test showed that the
bacterial communities were significantly different between
the rhizosphere soils and bulk soils of rice (F=62.71;
P=0.005) (Fig. S4a) and soybean (F'=29.505; P=0.008)
(Fig. S4b).

Fungal community structure of cultivated rice
and soybean and their wild relatives

PCoA showed that the dissimilarity of rhizosphere fungal
communities (70.98% explained by axis 1) (Fig. 1b) was
mainly due to plant species, i.e., soybeans versus rice.
Results showed that the fungal communities were signifi-
cantly different in the rhizosphere soils of rice (F=15.17,;
P=0.031) (Fig. S5a) and soybean (F=27.96; P=0.027)
(Fig. S5b).

Between cultivated rice and its wild relative, results
revealed that these differences were mainly caused by

unclassified Pleosporales, Nectriaceae, Trichocomaceae,
Xylariaceae family—incertae sedis, and Pleosporaceae
with mean proportion significant higher in OsL (cultivated
rice) (Fig. S5c¢). For soybean, Welch’s test indicated the
only family responsible for this dissimilarity was Xylari-
aceae family—incertae sedis with a significant higher
abundance at GmL rhizosphere soils (Fig. S5d).

PCoA showed that the rhizosphere fungal communities
were dissimilarity between the rhizosphere soils and bulk
soils of rice and soybean (Fig. S6). Results test showed
that the fungal communities were significantly differ-
ent between the rhizosphere soils and bulk soils of rice
(F=31.005; P=0.007) (Fig. S6a) and soybean (F=67.60;
P =0.003) (Fig. S6b).

Effect of crops domestication on bacterial
and fungal community structure

To illuminate the influence of crops cultivar on rhizos-
phere bacterial and fungal community from cultivated
crop and their wild relative, result indicated that the
fungal communities were significantly different in rice
(P=0.024) (Table S2), whereas the same analysis indi-
cated that the bacterial communities were not significantly
different (P=0.114) (Table S2). For soybean, results indi-
cated the fungal communities were significantly different
(P=0.041) (Table S3), whereas the same analysis indi-
cated that the bacterial communities were not significantly
different (P=0.219) (Table S3).
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blue squares are soybean species. OrG, Oryza rufipogon Griff.; OsL,
Oryza sativa L.; GsS, Glycine soja Sieb. et Zucc.; GmL, Glycine max
L. (Color figure online)
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Alpha diversity

The alpha diversities of both bacteria and fungi were
assessed by determining the Shannon index, Simpson index,
and the number of species (OTUs) for species richness. No
significant differences in diversity and species richness were

observed in bacterial communities of cultivated crops versus
their wild relatives (P> 0.05) (Fig. 2). In contrast, the diver-
sity and species richness of the fungal communities of wild
versus cultivated plants of both rice and soybean differed
significantly (Fig. 2). For Shannon index, cultivated rice
decreased compared to its wild relative (Fig. 2a), whereas
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ences at P<0.05 were determined using the Mann—Whitney U two-
tailed test (*P <0.05; **P<0.01; ***P<0.001). OrG, Oryza rufipo-
gon Grift.; OsL, Oryza sativa L.; GsS, Glycine soja Sieb. et Zucc.;
GmL, Glycine max L.
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cultivated soybean increased compared to its wild relative
(Fig. 2b). The fungal diversity (Simpson index) of cultivated
rice increased compared to its wild type (Fig. 2c), while
the fungal diversity (Simpson index) of cultivated soybean
decreased compared to its wide type (Fig. 2d). For Sobs,
cultivated crops (rice and soybean) decreased compared to
their wild relative (Fig. 2e, f).

Correlation analyses and co-inertia analyses

To assess the effect of crop cultivar on bacterial and fungal
diversity indices of cultivated crops and their wild relatives,
a linear model analysis was conducted. Results indicated that
the diversity indices of rhizosphere fungal community were
more significantly influenced by crop cultivar than that of
the rhizosphere bacterial community of both rice (Fig. 3a)
and soybean (Fig. 3b).

Co-inertia analysis showed that shorter arrows were in
cultivated crops (OsL and GmL) than in wild relatives (OrG
and GsS), indicating stronger relationship between bacterial
and fungal rhizosphere communities in the cultivated crops’
rhizosphere than in the wild relatives. In addition, the pro-
jection of arrows of cultivated crops in the opposite direction
of wild relatives indicated that cultivated crops had a weak
similarity on the variation of bacterial-fungal communities
compared with wild crops (Fig. 4).

Differences in the putative functionality
between cultivated crops and their wild relatives

To determine the impact of crop cultivar on the puta-
tive functional properties of the fungal communities in
the rhizosphere of wild and cultivated rice and soybean,
we assessed the abundance of potential symbiotic and

Bacterial Cultivar
simpson ultiva

(rice)

Fig.3 Correlation analyses of the effect of crop cultivar on alpha
diversity. The analysis was performed using the bacterial and fungal
Shannon index, Simpson index, and Sobs (OTUs richness) of rice
(a) and soybean (b). Spearman correlations were performed based
on the Shannon index, Simpson index, and Sobs. Correlation coeffi-
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Fig.4 Co-inertia analysis (COIA) of bacterial and fungal communi-
ties of rice and soybean. The back of the arrow represents the location
of bacterial community and the tip of arrow represents the location
of fungal community. The strength of the relationship between both
communities is inversely related to the length of the arrow. Arrows
represent the co-variation of both communities: OrG, Oryza rufipo-
gon Grift.; OsL, Oryza sativa L.; GsS, Glycine soja Sieb. et Zucc.;
GmL, Glycine max L.

Obs:0.69; P = 0.011

pathogenic fungal species. Most notably, the rhizomicro-
biome of wild crops contained significantly higher abun-
dance of putative symbiotic fungi (primarily Glomeromy-
cota) (Fig. 5a, b), while cultivated crops exhibited a higher
abundance of putative fungal pathogens (Fig. 5c, d), as
indicated by the relative abundances of OTU’s assigned to
Alternaria, Acremonium, Periconia, and Thanatephorus.

Cultivar
( soybean

cients were calculated using the corr.test function in the stats package
of R based on Spearman’s test. *Statistically significant differences at
P <0.05 were determined using Spearman correlations. Values repre-
sent the correlation coefficient
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Fig.5 Percentage of potential fungal symbiotrophs (a, b) and puta-
tive fungal pathogens (c, d) in the rhizosphere communities of wild
and cultivated crop species. The relative abundance of Glomeromy-
cota as an indication of putative fungal symbionts and the relative
abundances of Alternaria, Acremonium, Perciconia, and Thanate-
phorus OTU’s as an indication of putative fungal pathogens. The data
represent the mean+SD based on three replicates. Statistically sig-
nificant differences at P <0.05(*); P<0.01 (**); and P <0.001(**%*)
as determined by the Mann—Whitney U one-tailed test. OrG, Oryza
rufipogon Griff.; OsL, Oryza sativa L.; GsS, Glycine soja Sieb. et
Zucc.; GmL, Glycine max L.

Discussion

To understand whether crop-associated microbial com-
munity composition has shifted during crop domestica-
tion process and whether potentially beneficial interactions
between crops and their rhizomicrobiome have been lost.
Although we are aware of the limitations to any conclusion
due to the design of this study in which we used one wild
and one cultivated plant species of both crops, the results
of this study suggest that, indeed, with the development of
crop, the rhizosphere communities may have substantial
alterations in both rice and soybean. The results from a few
other studies which showed that crop evolution resulted in

a number of changes in the interactions between plants and
other organisms (Prasifka et al. 2015; Turcotte et al. 2015;
Leff et al. 2017). Although crop domestication affecting the
rhizosphere microbial diversity is often reported, providing
a general description of the rhizosphere microbiome is dif-
ficult owing to large discrepancies between different studies,
which might not only be due to biological variability, but
also to the practical issues related to the actual sampling
of the rhizosphere (Berg and Smalla 2009). In addition,
we should also consider that the molecular work and the
bioinformatics pipelines were highly variable and also may
strongly affect the outcome of analyses.

One of the main objectives of this study was to clarify
whether cultivated crops and their wild relatives had differ-
ent rhizosphere bacterial and fungal structure. Our results
clearly indicate that both the diversity and the structure of
the fungal rhizosphere community significantly differed
between cultivated crops and their wild relatives, but not
the bacterial community. This assumption holds, especially
for leguminous plants, such as soybean, due to their specific
relationship with symbiotic bacteria. Based on this assump-
tion, we expected that, if there were differences between
cultivated species and their wild relatives, these would be
larger for bacteria than for fungi. The rhizosphere bacterial
communities of wild barley cultivars have been reported
to be more diverse than that of their modern counterparts
(Bulgarelli et al. 2015). Our results, however, indicated that
the rhizobacterial communities did not significantly differ
between cultivated crop and their wild relatives for both rice
and soybean. Marques et al. (2015) also found that plant
domestication may not lead to alterations in the rhizobac-
terial community. Yet, we found remarkable differences
between cultivated crops and their wild relatives of fungal
rhizosphere communities. Furthermore, several reports have
shown that soil has an important influence in the assem-
bly of rhizosphere microbial community structure (Santos-
Gonzélez et al. 2011; Bulgarelli et al. 2012; Schreiter et al.
2014). Our results indicated that microbial community
showed significant difference between rhizosphere and bulk
soil of both rice and soybean. Thus, differences between the
cultivated and their wild relatives may not be due to one
shifting the soil microbiome. The similarity of actinomycete
communities in rhizosphere of strawberry plants growing
in different soils is greater than that in the bulk soil com-
munities, which indicates that plants are the determinants of
microbial community composition stronger than soil types
(Costa et al. 2006). Plant species can strongly influence the
composition and activity of the rhizosphere microbiota, and
differences in root morphology, as well as in the amount and
type of rhizo-deposits, between plants contribute greatly to
this species-specific effect (Bressan et al. 2009; Ladygina
and Hedlund 2010). Many studies have shown that the plant
species and the cultivar can affect the composition of the
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rhizosphere microbiota (Inceoglu et al. 2012; Bokulich et al.
2014; Nallanchakravarthula et al. 2014). The differences and
similarities across studies can perhaps be best understood by
considering the assembly of the rhizosphere microbiota as
resulting from a hierarchy of events.

Another objective of this study was to determine whether
the response of the rhizomicrobiome to crop domestication
differed among crop species. We used crops, rice and soy-
bean, that have fundamentally different below-ground traits,
and that may, therefore, show plant-specific differences in
their respective rhizomicrobiomes when comparing wild and
cultivated species. Such differences and an understanding of
the basis of these differences may lead to specific or common
treatments of different crops in developing sustainable crop
management systems. Our results demonstrated that rice and
soybean clearly select distinct rhizosphere bacterial and fun-
gal taxa (Fig. 1), which validates the previous studies. For
instance, Bulgarelli et al. (2012) and Ofek et al. (2014) also
reported that different crops harbor distinct rhizobacterial
communities. Interestingly, the same trend was observed in
rice and soybean regarding the responses of their bacterial
and fungal communities to crop cultivar (Fig. 3), although
the direction of the response was not similar (Figs. 1, 2).

Wild plant species support certain beneficial microbes to
larger extent than their cultivated relatives. This finding is
in agreement with results from the other studies, suggesting
that domestication of plant species may have affected the
ability of modern crop cultivars to establish the beneficial
associations with rhizosphere microbiomes (Perez-Jaramillo
et al. 2016). Likewise, our results also validate the previous
work, indicating that crop domestication may have stimu-
lated the prevalence of pathogens (Keesing et al. 2010). In
contrast, however, Leff et al. (2017) demonstrated that the
domestication of sunflowers increased the prevalence of
symbionts associated with cultivated plants and decreased
the prevalence of pathogens. Our results should be inter-
preted with great care, and should be considered as a pre-
liminary indication, since it is rather speculative to deduce
functionality from taxonomic data, except perhaps in the
case of the symbiotic Glomeromycota.

Cultivated crops are phenotypically different compared
to their ancestral relatives (Fig. S1). It is highly un-certain,
however, if these phenotypic differences had any effect on
the rhizosphere microbial community structure of wild ver-
sus cultivated relatives. Leff et al. (2017) did not detect any
relationship between the structure of the microbial commu-
nity in the rhizosphere and phenotypic traits such as height,
number of nodes, number of branches, most recent fully
expanded leaf length, most recent fully expanded leaf width,
and stem diameter. Thus, we hypothesize that the patterns
in rhizosphere community structure and diversity observed
in the present study were probably driven by other, below-
ground plant traits, such as root exudate production and root
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physiology. Cultivated crops have been mainly selected for
faster growth and higher yield, which could have resulted
in the exudation of different quantities and types of organic
compounds from their roots, and, thus, in different below-
ground microbial community structure (Perez-Jaramillo
et al. 2016). Differences in organic compound production
by domestication processes may be the result of trade-offs
between growth rates and defence against biotic and abi-
otic stressors (Mayrose et al. 2011). Some of these interac-
tions are mediated by key secondary metabolites or defence
compounds, such as sesquiterpene lactones (Prasifka et al.
2015), which could stimulate or hinder the growth of differ-
ent fungal taxa.

Overall, our study indicated that wild crops harbor dif-
ferent rhizomicrobiomes in comparison with their cultivated
relatives. Although large differences in the structure of the
rhizosphere communities of rice and soybean were detected,
there was clear evidence that fungal communities were much
more affected by crop domestication than bacterial com-
munities. In this study, we also speculated on the functional
consequences of these community changes. Once more, we
realize that conclusions on the impact of crop domestication
on the rhizomicrobiome based on the results of this study
must be drawn with great caution due to the limited number
of each crop species used, carrying out in very small pots
and the focus on taxonomic rather than on functional analy-
ses. Future studies, therefore, including a diverse panel of
varieties are crucial to analyse the effect of domestication
on rhizospheric microbiomes. In addition, we will focus on
elucidating the basic processes that result in the differences
in the rhizomicrobiome between a variety of presently used
crops and their wild relatives. The functional consequences
of these differences will also be explored, with a particu-
lar emphasis on the resistance of cultivated crops and their
ancestral progenitors to biotic (such as pathogens) and abi-
otic stresses (such as fungicide). Furthermore, in addition to
descriptive analyses of the rhizospheric microbiome, there
is a strong need to elucidate the mechanisms underlying the
selection of specific populations of microorganisms among
the soil-borne communities. We consider the learning from
nature as “going back to the roots” of non-cultivated plant
species, for which rhizosphere processes and microbial inter-
actions might be more evolved than for most agricultural
crops, which are under strong anthropogenic control.
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