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Abstract
Plant domestication was a pivotal accomplishment in human history, which led to a reduction in genetic diversity of crop spe-
cies; however, there was less research focus on how this reduced genetic diversity of crops in affecting rhizosphere microbial 
communities during crop domestication process. Here, we used high-throughput sequencing to explore the different effects 
of crops domestication on rhizosphere microbial community structure of rice (Oryza sativa L. and Oryza rufipogon Griff.) 
and soybean (Glycine max L. and Glycine soja Sieb. et Zucc.). Results indicated that rhizosphere fungal communities are 
more strongly influenced by crop domestication than bacterial communities. There was a stronger relationship for fungi and 
bacteria in the cultivated crops than in the wild relatives. Results also showed that the wild varieties had a higher abundance 
of beneficial symbionts and a lower abundance of pathogens comparing with the cultivated varieties. There was a similar 
tendency for both rice and soybean in rhizosphere microbial communities by comparing wild crops and their cultivated varie-
ties. In conclusion, crop domestication had a stronger effect on the fungal communities than on the bacterial communities 
and had improved the microbial relationship in rhizosphere of cultivated crops.

Keywords Cultivated crops · Rhizomicrobiome · Rice (Oryza sativa L. and Oryza rufipogon Griff.) · Soybean (Glycine 
max L. and Glycine soja Sieb. et Zucc.) · Wild crops

Introduction

When wild plants were domesticated, a substantial altera-
tion in the composition and function of the rhizomicrobiome 
may have occurred (Shenton et al. 2016; Leff et al. 2017). 
As we know modern cultivars are bred for improved yield 
and biomass production and a better quality for food and 
fodder when growing under the conditions of relatively high 
nutrient availability, protection against pathogens by appli-
cation of pesticides, and optimal moisture by irrigation (Shi 
et al. 2018a, b; Tian et al. 2018). However, wild crops grow 

and survive naturally without these optimal growing condi-
tions which have resulted in significant differences in the 
structure and functioning of the rhizosphere communities 
between modern crops and their wild relatives (Bulgarelli 
et al. 2015; Tian et al. 2017). The rhizosphere microbial 
community structure was affected by a variety of abiotic 
and biotic factors (Barbosa Lima et al. 2015; Rodríguez-
Blanco et al. 2015; Wagner et al. 2016). Thus, it is reason-
able to assume that the rhizomicrobiome of wild crops may 
contribute to host plants’ growth and survival under biotic 
and abiotic stress conditions more effectively than that of 
their cultivated relatives (Philippot et al. 2013; Mendes and 
Raaijmakers 2015; Perez-Jaramillo et al. 2016).

At present, many studies reported that the bacterial and 
fungal community structure of the plant species rhizomi-
crobiome specific in Arabidopsis (Schlaeppi et al. 2014; 
Bulgarelli et al. 2015), maize (Zea mays L.) (Bouffaud 
et al. 2014), rice (Oryza sativa) (Edwards et al. 2015), beet 
(Beta vulgaris ssp.) (Zachow et al. 2014), and sunflower 
(Helianthus annuus) (Leff et al. 2017). However, the driv-
ers of microbial community assemblages in the rhizos-
phere are still rudimentary and the mechanisms associated 
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with the effects of crop cultivar on the structure of the 
rhizosphere community remain largely unknown (Hart-
mann et al. 2014; Yan et al. 2015). Moreover, whether 
the differences that occur in the rhizosphere community 
assembly of cultivated versus their wild crops are true for 
different crops has not been determined. Therefore, we 
utilize different crops like wild versus cultivated rice and 
soybean, which are grown in the same experimental condi-
tions to find out whether the rhizosphere microorganisms 
developed from wild crops to cultivated crops have the 
same trend.

In recent years, the concept of the rhizomicrobiome 
has evolved (Mendes et al. 2011) and advances in DNA-
sequencing technology have allowed researchers to inves-
tigate the structure of the rhizomicrobiome in more detail 
than before (Hua et al. 2014). Metabarcoding and next-
generation-sequencing have provided the possibilities to 
make detailed assessments of differences between the rhi-
zomicrobiome of wild and their cultivated crops. In addition, 
high-throughput sequencing is also possible to identify the 
predominant microbial groups in the rhizomicrobiome and 
their functions that have a positive impact on wild plants’ 
growth and stress tolerance, which may be no longer pre-
sent or present to a lesser extent in the rhizomicrobiome of 
cultivated relatives (Zhang et al. 2017; Mendes et al. 2018). 
This knowledge may eventually be useful for the develop-
ment of sustainable crop management strategies that ensures 
sufficient crop yields with high quality, at the conditions of 
reduced chemical and physical inputs.

Over the past decades, plant breeders have exploited 
genes from wild relatives of modern crop species to improve 
plant growth and health. For instance, wild relatives have 
been used as sources of alleles to improve the ability of 
modern cultivars to withstand biotic and abiotic stresses in 
wheat (Agropyron elongatum) (Placido et al. 2013), barley 
(Hordeum vulgare ssp. spontaneum) (Schmalenbach et al. 
2008), and lettuce (Lactuca sativa L.) (Simko et al. 2013). 
Similarly, entomologists have explored native habitats to 
identify the natural enemies of insect pests. However, in the 
area of crop microbial research, relatively few studies have 
been made to illustrate about biodiversity and functions of 
beneficial microbial community composition present in the 
native habitats of ancestors of modern crop species. Limited 
efforts have been made to study the bacteria of cultivated 
crops and their wild relatives (Shenton et al. 2016; Pérez-
Jaramillo et al. 2017), and the rhizosphere fungal community 
across the degree of domestication of sunflower (Helianthus 
annuus) (Leff et al. 2017). In a previous study, the rhizos-
phere bacterial community structure of domesticated corn 
cultivars and its relative wild corn (Balsas teosinte) were 
compared by using terminal restriction fragment length 
polymorphism analysis of the 16S rRNA gene (Szoboszlay 
et al. 2015). However, no study has evaluated simultaneously 

the bacterial and fungal communities in cultivated crop ver-
sus its wild relatives using high-throughput sequencing.

In this study, we have a hypothesis that the rhizosphere 
bacterial and fungal communities assembly differ in culti-
vated rice and soybean species versus their wild relatives. 
The hypothesis was tested by high-throughput sequencing of 
bacterial 16S rRNA and fungal internal transcribed spacer 
(ITS) regions.

Materials and methods

Soil and plant materials

The soils were collected from the Changchun Agricultural 
Station of the Northeast Institute of Geography and Agroe-
cology, located in Jilin Province, China (43°59′N, 125°23′E). 
The main soil physiochemical characteristics are described 
in Table S1. The soil type is belonging to black soil.

Two different cultivated crops and their wild relatives 
were chosen to assess the microbial community composi-
tion with the rhizosphere of Oryza sativa L. ssp. Japonica 
cv. Dongdao-4 (OsL), Oryza rufipogon Griff. (OrG), Glycine 
max (L.) Merr. cv. Zhonghuang 39 (GmL), and Glycine soja 
Sieb. et Zucc. (GsS). The varieties of cultivated rice and 
soybean species used represented common cultivars grown 
in local regions of China.

The seeds of wild rice were obtained from the Dongxiang 
Natural Conservation Region (28°14′N, 116°30′E, 45.8 m 
a.s.1.) and the seeds of wild soybean were from Northeastern 
China (47°47′N, 126°97′E, 238 m a.s.1.). The morphologi-
cal comparison between cultivated and wild crops is shown 
in Figure S1.

Plant growth and rhizospheric soil collection

Seeds were surface-sterilized with 1% sodium hypochlo-
rite for 8 min and germinated on filter paper wetted. After 
5 days, germinated seeds were transferred to a 10 cm diam-
eter × 10 cm high pots filled with described agricultural soil 
and incubated for 3 weeks in a growth chamber (25 °C, 16 h 
daylight). To synchronize the development of wild and cul-
tivated plants, plants were incubated at 4 °C. Six seedlings 
growing uniformly per plant species were then transplanted 
into 20 cm diameter × 20 cm high plastic pots containing the 
described soil. The plantlets were trimmed to three seedlings 
per pot. The pots were subsequently kept under controlled 
temperature (26 °C/28 °C), photoperiod (16/8 h), and rela-
tive humidity of 70%. Three pots with the same amount of 
soil but without plants were used as control.

Rhizosphere soils were sampled at flowering stages in 60 
and 55 days for rice and soybean, respectively. The rhizo-
sphere soils were sampled removing the whole plant and 
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brushing the soil adhered to the seminal roots. Bulk soil 
samples were taken from control.

DNA extraction for high‑throughput sequencing

Soil DNA was extracted from 0.5 g (wet weight) of each 
sample using Fast DNA™ Spin Kit for Soil (MP Biomedi-
cals, Santa Ana, CA, USA). The amplification of the V3–V4 
hypervariable regions of 16S rRNA was performed using 
the primer set 341 F (5′-CCT ACG GGNGGC WGC AG-3′) 
and 785 R (5′-GAC TAC HVGGG TAT CTA ATC C-3′) (Pérez-
Jaramillo et al. 2017; Thijs et al. 2017). For fungal amplifi-
cation, a fungal primer set ITS3 F (5′-GAT GAA GAA CGY 
AGY RAA -3′) and ITS4 R (5′-TCC TCC GCT TAT TGA TAT 
GC-3′) (Zhou et al. 2017) was used to amplify. PCR was 
carried out using 0.25 uL forward primer, 0.25 µL reverse 
primer, and 1 µL sample DNA template, 12.5 µL 2 × KAPA 
HiFi HotStart Ready Mix, and 11 µL PCR Grade Water. 
Total volume was 25 µL. We used following PCR program 
on a LifePro PCR thermocycler: 94 °C for 3 min, followed 
by 25 cycles of 95 °C for 30 s, 53 °C for 30 s, and 72 °C for 
30 s. The final extension at 72 °C was used for 8 min and the 
reactions were held at 4 °C. As negative control, PCR Grade 
Water was used instead of DNA template. The PCR prod-
ucts were visualized on a 1.2% agarose gel. PCR products 
were purified using QIAquick Gel Extraction Kit (Qiagen, 
USA, code No. 28704), according to the technical specifica-
tion. The DNA was quantified using  Qubit® Fluorometers 
(Thermo Fisher Scientific). Samples were subjected to 250-
bp paired-end sequencing on an Illumina MiSeq instrument 
(San Diego, CA, USA).

16S and ITS sequences’ processing

Raw sequences were merged using FLASH v1.2.11 
(Magoč and Salzberg 2011), and then, the merged 
sequences were filtrated by mothur v1.35.1 (Schloss et al. 
2009) as follows. First, reads containing any sequence that 
the average quality score was less than or equal 20 bp, 
including ambiguous bases and homopolymer, were more 
than 10 bp and then were removed by mothur. Second, 
reads containing any mismatch sequence that was more 
than 4 bp were removed and primer sequences were also 
removed. Third, reads containing any sequence that were 
less than 200 bp and more than 500 bp were discarded. 
Chimeric sequences were removed using USEARCH v7.0 
(Edgar et al. 2011) based on the SILVA database (Pruesse 
et al. 2007) for 16S rRNA and the UNITE database (Kõl-
jalg et al. 2013) for ITS. All of the remaining sequences 
from each sample were then clustered into operational 
taxonomic units (OTUs) by USEARCH v6.0 (Edgar 
2013) based on 97% sequence similarity. OTU taxonomic 
classification was conducted by BLAST searching the 

representative sequences set against the SILVA database 
and the UNITE v6.0 database (Kõljalg et al. 2013) for 
bacterial and fungal sequences, respectively. FunGuild 
v1.1, which is a flat database hosted by GitHub (https ://
githu b.com/UMNFu N/FUNGu ild), was used to assign fun-
gal phylotypes from the rarefied data to one of the three 
trophic modes (pathotroph and symbiotroph) where pos-
sible (Nguyen et al. 2016).

All of the Illumina raw sequence data were deposited 
into the National Center for Biotechnology Information 
Sequence Read Archive (NCBI SRA) database (http://
www.ncbi.nlm.nih.gov/sra) under accession number NO. 
SRP079341.

Statistical analyses

The OTU table was rarefied for downstream analysis. To 
determine the overall structural changes in microbial com-
munity composition, a principal coordinate analysis (PCoA) 
was performed based on Bray–Curtis dissimilarities gener-
ated from rarefied OTU, using R package ape version 4.1 
(Jari Oksanen et al. 2018). Bray–Curtis dissimilarities were 
used to perform permutational multivariate analysis of vari-
ance (PERMANOVA) analysis with 9999 random permuta-
tions (P < 0.05) (Schlemper et al. 2018). Differences in mean 
proportion were conducted using the Statistical Analysis of 
Metagenomics Profiles (STAMP) v2.1.3 program (P < 0.05) 
(Parks et al. 2014). Benjamini–Hochberg algorithm was 
applied to control false discovery rates (FDR). Spearman 
correlations were performed based on the Shannon index, 
Simpson index, and Sobs to determine the level of signifi-
cance of differences in diversity as a result of crop cultivar, 
and whether these levels differed for bacteria and fungi. Cor-
relation coefficients were calculated using the corr.test func-
tion in the stats package of R based on Spearman’s test (Hal-
pin et al. 2016). Co-inertia analysis (COIA) was performed 
using the “ade4” package. Monte Carlo test was carried out 
for COIA using 999 random permutations. The statistical 
analyses were performed using SPSS version 20.0.

Results

A total of 249,549 bacterial reads after filtering out of 
300,038 raw reads (ranging from 9028 to 31,654) were 
obtained, resulting in 3233 OTUs. A total of 144,126 
effective fungal reads out of 168,266 raw sequences were 
obtained (ranging from 6398 to 16,973), resulting in 1350 
OTUs. The result indicated that the sequencing coverage was 
sufficient to detect most of the species and the OTU number 
produced by the Illumina sequencing is reasonable (Fig. S2).

https://github.com/UMNFuN/FUNGuild
https://github.com/UMNFuN/FUNGuild
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
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Bacterial community structure of cultivated rice 
and soybean and their wild relatives

PCoA showed that the dissimilarity of rhizosphere bacte-
rial communities (57.29% explained by axis 1) (Fig. 1a) 
was mainly due to plant species, i.e., soybeans versus rice. 
Results showed that the bacterial communities were not sig-
nificantly different in the rhizosphere soils of rice (F = 21.38; 
P = 0.1) (Fig. S3a) and soybean (F = 1.66; P = 0.2) (Fig. 
S3b).

PCoA showed that the rhizosphere bacterial communities 
were dissimilar between the rhizosphere soils and bulk soils 
of rice and soybean (Fig. S4). Results test showed that the 
bacterial communities were significantly different between 
the rhizosphere soils and bulk soils of rice (F = 62.71; 
P = 0.005) (Fig. S4a) and soybean (F = 29.505; P = 0.008) 
(Fig. S4b).

Fungal community structure of cultivated rice 
and soybean and their wild relatives

PCoA showed that the dissimilarity of rhizosphere fungal 
communities (70.98% explained by axis 1) (Fig. 1b) was 
mainly due to plant species, i.e., soybeans versus rice. 
Results showed that the fungal communities were signifi-
cantly different in the rhizosphere soils of rice (F = 15.17; 
P = 0.031) (Fig. S5a) and soybean (F = 27.96; P = 0.027) 
(Fig. S5b).

Between cultivated rice and its wild relative, results 
revealed that these differences were mainly caused by 

unclassified Pleosporales, Nectriaceae, Trichocomaceae, 
Xylariaceae family—incertae sedis, and Pleosporaceae 
with mean proportion significant higher in OsL (cultivated 
rice) (Fig. S5c). For soybean, Welch’s test indicated the 
only family responsible for this dissimilarity was Xylari-
aceae family—incertae sedis with a significant higher 
abundance at GmL rhizosphere soils (Fig. S5d).

PCoA showed that the rhizosphere fungal communities 
were dissimilarity between the rhizosphere soils and bulk 
soils of rice and soybean (Fig. S6). Results test showed 
that the fungal communities were significantly differ-
ent between the rhizosphere soils and bulk soils of rice 
(F = 31.005; P = 0.007) (Fig. S6a) and soybean (F = 67.60; 
P = 0.003) (Fig. S6b).

Effect of crops domestication on bacterial 
and fungal community structure

To illuminate the influence of crops cultivar on rhizos-
phere bacterial and fungal community from cultivated 
crop and their wild relative, result indicated that the 
fungal communities were significantly different in rice 
(P = 0.024) (Table S2), whereas the same analysis indi-
cated that the bacterial communities were not significantly 
different (P = 0.114) (Table S2). For soybean, results indi-
cated the fungal communities were significantly different 
(P = 0.041) (Table S3), whereas the same analysis indi-
cated that the bacterial communities were not significantly 
different (P = 0.219) (Table S3).
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Alpha diversity

The alpha diversities of both bacteria and fungi were 
assessed by determining the Shannon index, Simpson index, 
and the number of species (OTUs) for species richness. No 
significant differences in diversity and species richness were 

observed in bacterial communities of cultivated crops versus 
their wild relatives (P > 0.05) (Fig. 2). In contrast, the diver-
sity and species richness of the fungal communities of wild 
versus cultivated plants of both rice and soybean differed 
significantly (Fig. 2). For Shannon index, cultivated rice 
decreased compared to its wild relative (Fig. 2a), whereas 
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cultivated soybean increased compared to its wild relative 
(Fig. 2b). The fungal diversity (Simpson index) of cultivated 
rice increased compared to its wild type (Fig. 2c), while 
the fungal diversity (Simpson index) of cultivated soybean 
decreased compared to its wide type (Fig. 2d). For Sobs, 
cultivated crops (rice and soybean) decreased compared to 
their wild relative (Fig. 2e, f).

Correlation analyses and co‑inertia analyses

To assess the effect of crop cultivar on bacterial and fungal 
diversity indices of cultivated crops and their wild relatives, 
a linear model analysis was conducted. Results indicated that 
the diversity indices of rhizosphere fungal community were 
more significantly influenced by crop cultivar than that of 
the rhizosphere bacterial community of both rice (Fig. 3a) 
and soybean (Fig. 3b).

Co-inertia analysis showed that shorter arrows were in 
cultivated crops (OsL and GmL) than in wild relatives (OrG 
and GsS), indicating stronger relationship between bacterial 
and fungal rhizosphere communities in the cultivated crops’ 
rhizosphere than in the wild relatives. In addition, the pro-
jection of arrows of cultivated crops in the opposite direction 
of wild relatives indicated that cultivated crops had a weak 
similarity on the variation of bacterial–fungal communities 
compared with wild crops (Fig. 4).

Differences in the putative functionality 
between cultivated crops and their wild relatives

To determine the impact of crop cultivar on the puta-
tive functional properties of the fungal communities in 
the rhizosphere of wild and cultivated rice and soybean, 
we assessed the abundance of potential symbiotic and 

pathogenic fungal species. Most notably, the rhizomicro-
biome of wild crops contained significantly higher abun-
dance of putative symbiotic fungi (primarily Glomeromy-
cota) (Fig. 5a, b), while cultivated crops exhibited a higher 
abundance of putative fungal pathogens (Fig. 5c, d), as 
indicated by the relative abundances of OTU’s assigned to 
Alternaria, Acremonium, Periconia, and Thanatephorus.
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Fig. 3  Correlation analyses of the effect of crop cultivar on alpha 
diversity. The analysis was performed using the bacterial and fungal 
Shannon index, Simpson index, and Sobs (OTUs richness) of rice 
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gon Griff.; OsL, Oryza sativa L.; GsS, Glycine soja Sieb. et Zucc.; 
GmL, Glycine max L.
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Discussion

To understand whether crop-associated microbial com-
munity composition has shifted during crop domestica-
tion process and whether potentially beneficial interactions 
between crops and their rhizomicrobiome have been lost. 
Although we are aware of the limitations to any conclusion 
due to the design of this study in which we used one wild 
and one cultivated plant species of both crops, the results 
of this study suggest that, indeed, with the development of 
crop, the rhizosphere communities may have substantial 
alterations in both rice and soybean. The results from a few 
other studies which showed that crop evolution resulted in 

a number of changes in the interactions between plants and 
other organisms (Prasifka et al. 2015; Turcotte et al. 2015; 
Leff et al. 2017). Although crop domestication affecting the 
rhizosphere microbial diversity is often reported, providing 
a general description of the rhizosphere microbiome is dif-
ficult owing to large discrepancies between different studies, 
which might not only be due to biological variability, but 
also to the practical issues related to the actual sampling 
of the rhizosphere (Berg and Smalla 2009). In addition, 
we should also consider that the molecular work and the 
bioinformatics pipelines were highly variable and also may 
strongly affect the outcome of analyses.

One of the main objectives of this study was to clarify 
whether cultivated crops and their wild relatives had differ-
ent rhizosphere bacterial and fungal structure. Our results 
clearly indicate that both the diversity and the structure of 
the fungal rhizosphere community significantly differed 
between cultivated crops and their wild relatives, but not 
the bacterial community. This assumption holds, especially 
for leguminous plants, such as soybean, due to their specific 
relationship with symbiotic bacteria. Based on this assump-
tion, we expected that, if there were differences between 
cultivated species and their wild relatives, these would be 
larger for bacteria than for fungi. The rhizosphere bacterial 
communities of wild barley cultivars have been reported 
to be more diverse than that of their modern counterparts 
(Bulgarelli et al. 2015). Our results, however, indicated that 
the rhizobacterial communities did not significantly differ 
between cultivated crop and their wild relatives for both rice 
and soybean. Marques et al. (2015) also found that plant 
domestication may not lead to alterations in the rhizobac-
terial community. Yet, we found remarkable differences 
between cultivated crops and their wild relatives of fungal 
rhizosphere communities. Furthermore, several reports have 
shown that soil has an important influence in the assem-
bly of rhizosphere microbial community structure (Santos-
González et al. 2011; Bulgarelli et al. 2012; Schreiter et al. 
2014). Our results indicated that microbial community 
showed significant difference between rhizosphere and bulk 
soil of both rice and soybean. Thus, differences between the 
cultivated and their wild relatives may not be due to one 
shifting the soil microbiome. The similarity of actinomycete 
communities in rhizosphere of strawberry plants growing 
in different soils is greater than that in the bulk soil com-
munities, which indicates that plants are the determinants of 
microbial community composition stronger than soil types 
(Costa et al. 2006). Plant species can strongly influence the 
composition and activity of the rhizosphere microbiota, and 
differences in root morphology, as well as in the amount and 
type of rhizo-deposits, between plants contribute greatly to 
this species-specific effect (Bressan et al. 2009; Ladygina 
and Hedlund 2010). Many studies have shown that the plant 
species and the cultivar can affect the composition of the 
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Fig. 5  Percentage of potential fungal symbiotrophs (a, b) and puta-
tive fungal pathogens (c, d) in the rhizosphere communities of wild 
and cultivated crop species. The relative abundance of Glomeromy-
cota as an indication of putative fungal symbionts and the relative 
abundances of Alternaria, Acremonium, Perciconia, and Thanate-
phorus OTU’s as an indication of putative fungal pathogens. The data 
represent the mean ± SD based on three replicates. Statistically sig-
nificant differences at P < 0.05(*); P < 0.01 (**); and P < 0.001(***) 
as determined by the Mann–Whitney U one-tailed test. OrG, Oryza 
rufipogon Griff.; OsL, Oryza sativa L.; GsS, Glycine soja Sieb. et 
Zucc.; GmL, Glycine max L.
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rhizosphere microbiota (İnceoğlu et al. 2012; Bokulich et al. 
2014; Nallanchakravarthula et al. 2014). The differences and 
similarities across studies can perhaps be best understood by 
considering the assembly of the rhizosphere microbiota as 
resulting from a hierarchy of events.

Another objective of this study was to determine whether 
the response of the rhizomicrobiome to crop domestication 
differed among crop species. We used crops, rice and soy-
bean, that have fundamentally different below-ground traits, 
and that may, therefore, show plant-specific differences in 
their respective rhizomicrobiomes when comparing wild and 
cultivated species. Such differences and an understanding of 
the basis of these differences may lead to specific or common 
treatments of different crops in developing sustainable crop 
management systems. Our results demonstrated that rice and 
soybean clearly select distinct rhizosphere bacterial and fun-
gal taxa (Fig. 1), which validates the previous studies. For 
instance, Bulgarelli et al. (2012) and Ofek et al. (2014) also 
reported that different crops harbor distinct rhizobacterial 
communities. Interestingly, the same trend was observed in 
rice and soybean regarding the responses of their bacterial 
and fungal communities to crop cultivar (Fig. 3), although 
the direction of the response was not similar (Figs. 1, 2).

Wild plant species support certain beneficial microbes to 
larger extent than their cultivated relatives. This finding is 
in agreement with results from the other studies, suggesting 
that domestication of plant species may have affected the 
ability of modern crop cultivars to establish the beneficial 
associations with rhizosphere microbiomes (Perez-Jaramillo 
et al. 2016). Likewise, our results also validate the previous 
work, indicating that crop domestication may have stimu-
lated the prevalence of pathogens (Keesing et al. 2010). In 
contrast, however, Leff et al. (2017) demonstrated that the 
domestication of sunflowers increased the prevalence of 
symbionts associated with cultivated plants and decreased 
the prevalence of pathogens. Our results should be inter-
preted with great care, and should be considered as a pre-
liminary indication, since it is rather speculative to deduce 
functionality from taxonomic data, except perhaps in the 
case of the symbiotic Glomeromycota.

Cultivated crops are phenotypically different compared 
to their ancestral relatives (Fig. S1). It is highly un-certain, 
however, if these phenotypic differences had any effect on 
the rhizosphere microbial community structure of wild ver-
sus cultivated relatives. Leff et al. (2017) did not detect any 
relationship between the structure of the microbial commu-
nity in the rhizosphere and phenotypic traits such as height, 
number of nodes, number of branches, most recent fully 
expanded leaf length, most recent fully expanded leaf width, 
and stem diameter. Thus, we hypothesize that the patterns 
in rhizosphere community structure and diversity observed 
in the present study were probably driven by other, below-
ground plant traits, such as root exudate production and root 

physiology. Cultivated crops have been mainly selected for 
faster growth and higher yield, which could have resulted 
in the exudation of different quantities and types of organic 
compounds from their roots, and, thus, in different below-
ground microbial community structure (Perez-Jaramillo 
et al. 2016). Differences in organic compound production 
by domestication processes may be the result of trade-offs 
between growth rates and defence against biotic and abi-
otic stressors (Mayrose et al. 2011). Some of these interac-
tions are mediated by key secondary metabolites or defence 
compounds, such as sesquiterpene lactones (Prasifka et al. 
2015), which could stimulate or hinder the growth of differ-
ent fungal taxa.

Overall, our study indicated that wild crops harbor dif-
ferent rhizomicrobiomes in comparison with their cultivated 
relatives. Although large differences in the structure of the 
rhizosphere communities of rice and soybean were detected, 
there was clear evidence that fungal communities were much 
more affected by crop domestication than bacterial com-
munities. In this study, we also speculated on the functional 
consequences of these community changes. Once more, we 
realize that conclusions on the impact of crop domestication 
on the rhizomicrobiome based on the results of this study 
must be drawn with great caution due to the limited number 
of each crop species used, carrying out in very small pots 
and the focus on taxonomic rather than on functional analy-
ses. Future studies, therefore, including a diverse panel of 
varieties are crucial to analyse the effect of domestication 
on rhizospheric microbiomes. In addition, we will focus on 
elucidating the basic processes that result in the differences 
in the rhizomicrobiome between a variety of presently used 
crops and their wild relatives. The functional consequences 
of these differences will also be explored, with a particu-
lar emphasis on the resistance of cultivated crops and their 
ancestral progenitors to biotic (such as pathogens) and abi-
otic stresses (such as fungicide). Furthermore, in addition to 
descriptive analyses of the rhizospheric microbiome, there 
is a strong need to elucidate the mechanisms underlying the 
selection of specific populations of microorganisms among 
the soil-borne communities. We consider the learning from 
nature as “going back to the roots” of non-cultivated plant 
species, for which rhizosphere processes and microbial inter-
actions might be more evolved than for most agricultural 
crops, which are under strong anthropogenic control.
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