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Introduction

Lactic acid bacteria (LAB) belong to a large category of 
Gram-positive bacteria that can be found in daily environ-
ments as well as in the human gastrointestinal tract (GIT) 
(Gaspar et al. 2013). Besides, some LAB are economic fer-
mentative bacteria with probiotic properties in GIT (Wu 
et al. 2009; Koponen et al. 2012; Zhai et al. 2014).

LAB are usually faced with stable low pH or sudden 
and transient acid stress (Koponen et al. 2012; Wu et al. 
2009; Broadbent et al. 2010). During their growth, cellular 
machinery excretes lactic acid that can be imported back. It 
lowers the cytoplasmic pH, which can inhibit the growth of 
cells and may even lead to death (Koponen et al. 2012; Wu 
et al. 2012a). Several mechanisms are involved in the acid 
resistance regulation of LAB, including central metabolic 
pathways, proton pump, changes of cell membrane com-
position and cell density, DNA and protein damage repair, 
as well as neutralization processes (Cotter and Hill 2003; 
Koponen et al. 2012; Wu et al. 2014; Liu et al. 2015).

This article discusses the mechanisms used by LAB for 
adaptation in low pH environment, and techniques of bio-
technology, which have been utilized to enhance the acid 
resistance of LAB.

Mechanisms of acid resistance

Neutralization processes

Arginine dihydrolase system (ADS)

Microorganisms produce alkaline substances such as urea, 
arginine and ammonia, which neutralize the acids. Urease 
hydrolyzes urea into carbon dioxide and ammonia. Arginine 
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dihydrolase also called arginine deiminase is the part of the 
pathway, named after them as arginine dihydrolase system 
(ADS) which catalyzes the conversion of arginine into orni-
thine, ammonia and carbon dioxide.

Generally, ADS contains three enzymes in LAB, includ-
ing arginine dihydrolase (EC 3.5.3.6), ornithine transcar-
bamylase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.2). 
They are encoded by an operon, arcABC (Maghnouj et al. 
1998; Arena et al. 1999, 2002; Champomier et al. 1999). 
Compared with the wild-type strain Lactobacillus casei 
Zhang, its acid-resistant mutant displayed higher intracel-
lular aspartate and arginine levels in the acidic environment 
(Wu et al. 2013a). During acid stress, aspartate enhances the 
flux of metabolites towards arginine biosynthesis. The acid 
resistance ability of L. casei was enhanced by the addition 
of 50 mM arginine or aspartate (Wu et al. 2012a). It indi-
cated that arginine and aspartate are related to acid resist-
ance regulation of strains (Wu et al. 2012a, 2013a; Zhang 
et al. 2012).

Furthermore, agmatine deiminase system and tyrosine 
catabolic pathway, which are encoded by the same locus in 
the chromosome, are beneficial to acid resistance of Lacto‑
bacillus brevis (Lucas et al. 2007). It was speculated that 
ammonia was formed from agmatine through the agmatine 
deiminase system to neutralize protons in cells to maintain 
intracellular pH homoeostasis in L. brevis, when encoun-
tered with low pH environment (Lucas et al. 2007).

Malolactic fermentation

Another promising acid resistance mechanism is malolactic 
fermentation (Solieri et al. 2010; Broadbent et al. 2010). 
Malolactic fermentation (MLF) carried out by a variety of 
LAB, including Oenococcus oeni, and the members of the 
genera of Lactobacillus, and Leuconostoc etc (Solieri et al. 
2010; Broadbent et al. 2010; Bravo-Ferrada et al. 2013). 
MLF is a decarboxylation of l-malate to yield l-lactic acid. 
Carbon dioxide is liberated in the process which neutralizes 
the protons and decreases their concentration (Sumby et al. 
2014). MLF improved the survival ability of L. casei ATCC 
334 in low pH environment. Reportedly, addition of 30 mM 
malate can enhance the acid resistance of the strain at pH 
2.5 (Broadbent et al. 2010).

Biofilm and cell density

Generally, a group of microorganisms with a protective 
slimy sheath which is made up of DNA, proteins, and 
polysaccharides, constitute biofilm. It is the first barrier 
of the cell and has the ability to withstand environmental 
disruption. Modifying physicochemical properties of bio-
film has proved to be an important survival strategy for 
many microorganisms (Hall-Stoodley and Stoodley 2009). 

When faced with low pH environment, there is a rise of 
membrane mobility and ratio of unsaturated fatty acids, 
and their mean chain length indicating that changing fluid-
ity of biofilm, distribution of fatty acids, and integrity of 
cells may be potential methods for LAB to enhance acid 
resistance (Wu et al. 2012b). Studies have shown that ratio 
of cyclopropane fatty acids (CFA) remarkably changed in 
strains under low pH environment, indicating that CFA has 
a potential role in strains to cope with acidic environment 
(Broadbent et al. 2010; Wu et al. 2012b).

On the contrary, cyclopropanation of unsaturated fatty 
acid is found non-essential for acid resistance of Lacto‑
bacillus lactis subsp. cremoris and solely CFA could not 
preserve mobility level of biofilm (To et al. 2011). Hence, 
it is necessary to further investigate the specific protective 
effects of CFA under acid stress.

Biofilm formation is not only affected by changing pH, 
osmotic pressure, carbohydrate concentration in the envi-
ronment, but also regulated by signaling molecules (Cos-
terton et al. 1995). In Lactobacillus bulgaricus, central 
metabolic network genes bring about rerouting of pyruvate 
metabolism to induce modifications of fatty acid compo-
sition, and then influence mobility of biofilm, which will 
help them to overcome various low pH conditions (Fer-
nandez et al. 2008).

Proton pump

F1‑F0‑ATPase

F1-F0-ATPase can hydrolyze or synthesize intracellular ATP 
through F1 protein, and transport proton through  F0 com-
plex. It is a substantial component of acid tolerance, and its 
activity is positively related with the more acid resistance 
in LAB (Kajfasz and Jr 2011). The  F1-F0-ATPases of some 
LAB have been well identified, including Lactococcus lactis, 
Lactobacillus helveticus, Lactobacillus acidophilus, Lacto‑
bacillus rhamnosus, and O. oeni etc (Yokota et al. 1995; 
Yamamoto et al. 1996; Tourdot-Marechal et al. 1999; Kul-
len and Klaenhammer 1999; Koponen et al. 2012). Tran-
scriptional levels of atp which encodes  F1-F0-ATPase in L. 
acidophilus were found high when encountered with low pH 
environment (Kullen and Klaenhammer 1999). Similarly, 
low pH induced the expression of  F1-F0-ATPase genes in 
L. rhamnosus GG (Koponen et al. 2012). The mutations of 
 F1-F0-ATPases lead to lower survival of LAB at low pH 
(Yokota et al. 1995; Yamamoto et al. 1996; Tourdot-Mare-
chal et al. 1999). The acid-resistant derivative strain L. casei 
Lbz-2 displayed greater  H+-ATPase activity than its wild-
type L. casei Zhang (Wu et al. 2012a). At the same time, it 
showed a higher intracellular pH than L. casei Zhang at low 
pH (Wu et al. 2012a).
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Amino acid decarboxylation

Another mechanism associated with proton depletion is the 
amino acid decarboxylation-antiporter reaction (Azcarate-
Peril et al. 2004). It can maintain intracellular pH homoeo-
stasis in a decarboxylation reaction by consuming protons. 
For example, glutamate decarboxylase (GAD) can catalyze 
the conversion of glutamate to γ-aminobutyrate (GABA), 
and results in the raising of the intracellular pH (Feehily and 
Karatzas 2013). The expression of genes encoding GAD in 
L. acidophilus is strongly increased in gastric juice (Wilson 
et al. 2014). Four putative genes involved with decarboxy-
lation reactions from L. acidophilus NCFM were disrupted 
by means of insertional inactivation, including an ornith-
ine decarboxylase, an amino acid permease, a glutamate-
aminobutyrate antiporter, and a transcriptional regulator 
(Azcarate-Peril et al. 2004). All mutants were more sensitive 
to low pH than the parental strain. The results indicated that 
the decarboxylation reaction played an important role in the 
improvement of acid resistance of strains. On the same note 
acid resistance of L. lactis was enhanced by heterologous 
expression of histidine decarboxylation pathway with the aid 
of histidine in acidic environment (Trip et al. 2012).

Protection and repair of cellular macromolecules

Low pH environment brings a selection pressure on LAB 
for survival fitness. As cytoplasmic pH decreases, the mech-
anisms to protect the major biological molecules such as 
DNA and proteins kick in Wu et al. (2012a).

The uvrA gene codes for subunit A of the ultraviolet exci-
nuclease ABC complex, which involves in the nucleotide 
excision repair mechanism. Its transcriptional activity was 
activated by exposure to ultraviolet radiation. The expression 
of uvrA was significantly induced during acid-adaptation 
in L. helveticus (Cappa et al. 2005). Similarly, a moderate 
ultraviolet irradiation improved an acid tolerance in Lac‑
tococcus lactis subsp. lactis (Hartke et al. 1995). One can 
conclude that UvrA and nucleotide excision repair pathways 
have vital functions in the repair process of DNA damage 
caused by acid and are guarantees for the strains to favorably 
adapt to the acidic environment (Hartke et al. 1995; Cappa 
et al. 2005).

Although their precise role in acid adaptation of LAB 
is not fully understood, some general stress proteins were 
detected as more abundant in acid-stressed LAB, such as 
chaperones (DnaK, GrpE, GroEL, and GroES), and small 
heat shock proteins (Hsp1, Hsp3, and Shsp) etc (De Angelis 
and Gobbetti 2004; Fernandez et al. 2008; Lee et al. 2008; 
Wu et al. 2009, 2011, 2012a; Heunis et al. 2014). It is sug-
gested that the molecular chaperones like DnaK can enhance 
biosynthesis of  F1-F0-ATPase, which help the cell to remove 
protons to maintain intracellular pH homoeostasis (Kim and 

Batt 1993; Walker et al. 1999). For example, dnaK from E. 
coli was introduced into L. lactis NZ9000, and it enhanced 
acid resistance of strain in acidic environment (Abdullah 
et al. 2010). Heterogeneous expression of a small heat shock 
protein, Shsp, encoded by shsp from Streptococcus ther‑
mophilus in L. lactis ML23 had resulted in higher survival 
under acid stress (Tian et al. 2012). DNA repair protein 
RecO, encoded by recO in L. casei, once expressed in L. lac‑
tis NZ9000 increased acid resistance of strain under acidic 
conditions (Wu et al. 2012a, 2013b).

Likewise, accumulation of trehalose and glutathione pro-
tects the cellular proteins from acid stress. For example, the 
trehalose accumulation is response to acid stress in Propi‑
onibacterium freudenreichii (Cardoso et al. 2004). In order 
to study the potential effects of trehalose, its de novo bio-
synthetic pathway of P. freudenreichii was introduced into L. 
lactis, as expected, the recombinant strain exhibited higher 
acid resistance than the control strain (Carvalho et al. 2011). 
gshA and gshB are related to glutathione biosynthesis in E. 
coli. Their heterologous expression in L. lactis NZ9000, 
enhanced the acid resistance of the strain indicating the rela-
tionship between glutathione and acid resistance of strains 
(Zhang et al. 2007). Reportedly, addition of 3–6 mM glu-
tathione can protect LAB from low pH (Kim et al. 2012).

Pre‑adaptation and cross‑protection

Pre-adaptation is the process of treating a strain to lethal 
or sub-lethal doses of the stress for a limited time, which 
accentuates the recovery of the strain when exposed to the 
natural stress. The mechanism behind pre-adaptation is not 
well understood. L. casei ATCC 334 was pre-treated for 
20 min at a pH value of 4.5, which enhanced the resist-
ance of the strain for low pH (Broadbent et al. 2010). Cross-
protection works on the principle that interrelated responses 
are generated by different stress conditions. In other words, 
different stimuli like heat, oxygen, cold and low pH may 
generate similar responses. For example, heat pre-treatment 
induced an acid resistance response (ATR) in Lactobacillus 
plantarum which promoted its growth under low pH (De 
Angelis et al. 2004). Wang et al. obtained high acid toler-
ance strains by ultraviolet irradiation and heat pre-treatments 
(Wang et al. 2007). In summary, pre-adaptation and cross-
protection are effective methods to strengthen the resist-
ance of LAB against acidic environments. However, exact 
molecular mechanisms need further research.

Use of protective substances

Addition of protective substances is a comparatively simple 
and direct method to reduce the damage caused by acidic 
environment. Many kinds of protective agents are used to 
resist damage caused by acidic environment in LAB, most of 
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which include amino acids, fatty acids, and sugars. Addition 
of arginine and aspartate can improve acid resistance of L. 
casei Zhang under acidic environment (Zhang et al. 2012; 
Wu et al. 2013a). When Tween-80 was added to the culture 
of L. rhamnosus, the strain showed 1000-fold higher survival 
fitness than control (Corcoran et al. 2007). Addition of glu-
tathione also protected LAB from low pH (Kim et al. 2012).

Use of high‑throughput techniques for acid 
resistance in LAB

In recent years, a lot of genomics studies of LAB are com-
pleted and published. For example, largest and most diverse 
genus, Lactobacillus in LAB, contains about 214 genome 
sequencing projects in public databases (Stefanovic et al. 
2017). The genomic studies of LAB have helped to under-
stand their metabolic processes. The same information has 
been utilized for their application in industry (Zhu et al. 
2009; Stefanovic et al. 2017). The advent of genomics pro-
vides a possibility to modify the strain for purposeful exploi-
tation on the basis of a more knowledge-based approach 
(Stefanovic et al. 2017).

Synthetic biology is an interdisciplinary science, which 
combines many disciplines like genetic engineering, systems 
biology, biophysics, computer engineering and evolution-
ary biology (Zhu et al. 2012). Synthetic biology is widely 
applied in medical and food industries by means of building 
artificial biological systems. Concurrently, it accelerates our 
understanding of mechanisms of biology. It offers a new 
approach for improvement of the acid tolerance of LAB. 
For example, Bacillus coagulans SIM-7 DSM 14043 is a 
novel lactic acid producing strain with high acid tolerance 
(Michelson et al. 2006). Acid-resistant components of B. 
coagulans SIM-7 DSM 14043 can be sythesized through 
synthetic biology and transformed into other LAB. Synthetic 
biology has a great potential to enhance the acid resistance 
in LAB.

Genome shuffling is an efficient method for the rapid 
improvement of important microbial phenotypes. It con-
sists of four steps, which are (i) construction of a mutant 
library by classical strain-improvement methods, (ii) screen-
ing of number of positive mutants, (iii) undertaking multi-
ple rounds of protoplast fusion to generate many random 
mutants and (iv) screening of strains for the expected phe-
notypes (Stephanopoulos 2002). Obtaining multitrait pheno-
types by means of traditional methods is difficult but genome 
shuffling can engineer such strains in less time (Stephano-
poulos 2002). This approach has been used to improve acid 
tolerance in LAB (Patnaik et al. 2002; Wang et al. 2007; 
Triratna et al. 2011). New shuffled LAB can grow at substan-
tially lower pH than does the wild-type strain (Patnaik et al. 
2002; Wang et al. 2007; Triratna et al. 2011).

In food industry, some non-thermal pasteurization pro-
cesses have been utilized. These methods like pulsed electric 
field (PEF) and high pressure homogenization (HPH) do not 
use heat; therefore, sensorial and nutritional properties of 
food products are not affected. Amazingly, these processes 
can improve functional properties of strains (Cueva 2009; 
Muramalla and Aryana 2011; Tabanelli et al. 2013).

PEF involves the application of pulses of high voltage 
(20–80 kV/cm) to fluid placed between two electrodes for 
less than one second (Cueva 2009). The effect of PEF treat-
ment on acid tolerance of L. acidophilus LA-K was evalu-
ated and the results indicated that specific PEF conditions 
can improve the acid tolerance of the strain (Cueva 2009). In 
HPH process, the samples in a liquid are homogenized in a 
range of different pressures. Generally, it is considered that 
HPH has a close relationship with improvement of senso-
rial or functional properties of fermented milks and cheeses 
(Patrignani et al. 2009). In recent years, HPH is used in 
modification of the functional properties of LAB like acid 
tolerance and bile tolerance (Muramalla and Aryana 2011). 
Acid tolerance of L. acidophilus LA-K had been enhanced 
using HPH at 13.8 MPa (Muramalla and Aryana 2011). The 
same effects were observed for L. delbrueckii ssp. bulgaricus 
LB-12 and S. salivarius ssp. thermophilus ST-M5 (Mura-
malla and Aryana 2011). Similarly, sub-lethal HPH-treated 
L. paracasei A13 exhibited higher acid resistance compared 
with controls (Tabanelli et al. 2013). These results indicate 
that PEF and HPH can be recommended for increasing pro-
biotic characteristics of LAB, including acid tolerance.

Adaptive laboratory evolution (ALE) is a method that 
explores the natural adaptation of microorganisms over 
time to the artificial selection pressures given in the labora-
tory. The different techniques employed in ALE are DNA 
sequencing, high-throughput screening and gene manipula-
tion (Portnoy et al. 2011). This approach is used in improve-
ment of the acid tolerance of L. casei Zhang (Zhang et al. 
2012). The evolved mutant lb-2 was obtained in 70 days with 
serially exposing exponentially growing strains to low pH 
conditions. The strain showed a 318-fold higher survival rate 
than the parental strain at pH 3.3 for 3 h (Zhang et al. 2012).

Conclusion

Lactic acid bacteria are always encountered with acidic 
environment and they have developed various mechanisms 
to improve their acid resistance (Fig. 1). Emergence of 
high-throughput techniques brings the improvement in acid 
resistance of LAB. LAB with high acid resistance had been 
generated by these approaches. It is important to fully under-
stand the mechanisms of acid resistance in LAB as it will 
accentuate the benefits of probiotics for humankind.
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