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richness in bacterial communities in Drass than the Antarc-
tic and Arctic samples.

Keywords Bacterial diversity · Cold desert · 
Pyrosequencing · Drass · Himalayas

Introduction

The Himalayan cold deserts are characterized by a fragile 
ecosystem and a complex climate due to dramatic seasonal 
shifts in physical and biochemical properties. Bordered 
by the Karakoram chain of mountains in the north and 
the Himalayas in the south (Rawat and Adhikari 2005), 
Ladakh represents a high-altitude cold desert. The Kara-
koram range blocks most of the monsoon bearing clouds, 
making the region arid (Namgail 2009). Based on the 
cloning-based cultivation-independent methods (Shivaji 
et al. 2011; Srinivas et al. 2011; Kistler et al. 2013), recent 
studies have reported the bacterial diversity of Himalayan 
regions. Though cloning-based cultivation-independent 
approaches overcome the limitations of cultivation-based 
methods, owing to the methodology-based bias, e.g., PCR 
and sequencing depth (Vaz-Moreira et al. 2011), these tech-
niques are not efficient enough to catalog the rare micro-
bial taxons. High-throughput sequencing of total environ-
mental DNA or marker genes, e.g., 16S rRNA, circumvents 
cloning by taking advantage of a highly efficient in vitro 
DNA amplification method. This approach provides deeper 
insights into the taxonomical and functional dynamics of 
the in situ microbial diversity (Dowd et al. 2008; Rhoads 
et al. 2012; Kaur et al. 2015).

The primary goal of the present study was to explore 
the bacterial community dynamics of cold desert of Drass 
and its further comparison with other cold deserts, e.g., 

Abstract Drass is the coldest inhabited place in India and 
the second coldest, inhabited place in the world, after Sibe-
ria. Using the 16SrDNA amplicon pyrosequencing, bacte-
rial diversity patterns were cataloged across the Drass cold 
desert. In order to identify the ecotype abundance across 
cold desert environment, bacterial diversity patterns of 
Drass were further compared with the bacterial diversity 
of two other cold deserts, i.e., Antarctic and Arctic. Acido-
bacteria, Proteobacteria, Actinobacteria, Bacteroidetes, 
Cyanobacteria and Gemmatimonadetes were among the 
highly abundant taxonomic groups present across all the 
three cold deserts and were designated as the core phyla. 
However, Firmicutes, Nitrospirae, Armatimonadetes (for-
mer candidate division OP10), Planctomycetes, TM7, 
Chloroflexi, Deinococcus-Thermus, Tenericutes and can-
didate phyla WS3 were identified as rare phyla in Drass, 
Antarctic and Arctic samples. Differential abundance pat-
terns were also computed across all the three samples, i.e., 
Acidobacteria (32.1 %) were dominant in Drass and Fir-
micutes (52.9 ± 17.6 %) and Proteobacteria (42 ± 1.3 %) 
were dominant in Antarctic and Arctic reference samples, 
respectively. Alpha diversity values Shannon’s (H) and 
Simpson’s (1-D) diversity indices were highest for Antarc-
tic samples, whereas richness estimators (ACE and Chao1) 
were maximum for Drass soil suggesting greater species 
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Antarctic and Arctic. Comparative analysis has been done 
to identify the differentially abundant bacterial taxa in 
cold desserts with different geographical conditions, i.e., 
ecotypes. Here, we provide a basic framework to analyze 
the bacterial diversity patterns enriched across cold desert 
environment. However, this framework would be benefitted 
via deeply sequenced longitudinal time series datasets.

Materials and methods

Sampling site

Drass is a small town in the Kargil district of Ladakh region 
(J&K, India) at 34.45°N, 75.77°E with an average elevation 
of 3280 meters (10,764 feet). Soil samples (n = 10) were 
collected from different locations in the Drass region. One 
centimeter of the surface soil was removed with a sterile 
spatula before collection of soil samples. Soil was collected 
with sterile spatula and transferred into sterile polythene 
bags. The temperature of the soil ranged from 10 to 15 °C 
at the time of sampling. The soil samples were transported 
to the laboratory under ice and then stored at −20 °C 
(Shivaji et al. 2011).

Physiochemical soil analysis

Soil samples were thawed, air-dried and passed through a 
2-mm sieve and pooled as one composite sample and sent 
for analysis to QC research lab IIIM Jammu, India, for 
analysis of pH, water holding capacity and various metal 
ions concentration in the soil. All determinations were con-
ducted using triplicate samples.

Metagenomic DNA extraction and amplification

Manual metagenomic DNA extraction protocols devel-
oped by Zhou et al. 1996; Wechter et al. 2003; Brady 2007; 
Amorim et al. 2008; Pang et al. 2008; Liles et al. 2009; Inceo-
glu et al. 2010 were applied for environmental DNA extrac-
tion. DNA extracted from multiple methods (n = 3) was 
pooled and diluted (1/100 dilutions) with final concentra-
tion of 20 ng/µl and used as template for PCR amplification. 
Small region (V1–V3) of the 16S rRNA gene was amplified 
from the total soil DNA by PCR using universal primers set 
28F and 519 R (Nossa et al. 2010; Fan et al. 2012).

Pyrosequencing

Bacterial tag-encoded FLX amplicon pyrosequenc-
ing (bTEFAP) (Dowd et al. 2008) was performed at the 
Research and Testing Laboratory, Lubbock, TX, USA 
(www.researchandtesting.com).

Quality filtering and phylogenetic analysis

Raw sequence data were processed and analyzed using 
the Quantitative Insights into Microbial Ecology (QIIME 
version 1.5.0) pipeline, with default settings (Caporaso 
et al. 2010). Reads were removed after further analysis if 
at least one of the following criteria was met: (1) the pres-
ence of homopolymers with more than 8 bp and (2) length 
shorter than 200 bp. Quality-filtered reads were denoised 
to remove sequencing errors by flowgram clustering. The 
resulting (trimmed and clean) sequences were then filtered 
of any non-bacterial ribosome sequences set at default 
parameters (Gontcharova et al. 2010). The 454 sequence 
data comprise both identical reads and reads that start at the 
same position in the genome but have different lengths or 
vary slightly due to pyrosequencing errors. These errone-
ous reads can lead to an overestimation of several opera-
tional taxonomic units in a sample. Uchime tool was used 
to remove the chimeric sequences (Edgar et al. 2011). 
Quality trimmed sequences were clustered into operational 
taxonomic units (OTUs) using UClust (Edgar 2010) with 
a cutoff value of 99 % sequence identity. Candidate OTUs 
were assigned to phylogeny using RDP (Cole et al. 2009; 
Krober et al. 2009) scheme set at 80 % confidence value. 
Rarefaction curves were calculated by using RDP pyrose-
quencing pipeline (Cole et al. 2009).

Reference datasets

A total of four reference datasets were obtained from 
NCBI. Two reference datasets were selected randomly 
from the Antarctic study with accession nos. SRX206452 
and SRX206985, and remaining two reference datasets 
were selected randomly from the Arctic study with acces-
sion no SRX017110. The source of Antarctic and Arctic 
samples was from Grove Mountains, East Antarctic and 
Foreland of MidreLoven glacier.

Statistical analysis

For each metagenome, a subset of 1000 candidate OTUs 
were randomly selected to avoid the biases caused by dif-
ferential sampling size (Kirchman et al. 2010). Inter-sample 
alpha diversity comparisons (Kirchman et al. 2010) were 
performed using a Vegan package (Oksanen et al. 2013). 
Sequences were aligned for phylogenetic reconstruction 
using MAFFT algorithm that appeared in the version 1.7.2 
of UGENE as the External Tool. Phylogenetic trees were 
built from the aligned sequence profiles using FASTTREE 
2.1 (Price et al. 2010). Distance matrices were constructed 
from each phylogeny, and pairwise Mantel test (1000 per-
mutations, two tailed: p value) was performed using PAS-
SAGE-2 (Rosenberg and Anderson 2011). To assess the 
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uncertainty in hierarchical cluster analysis over samples, 
bootstrap resampling (10,000 iterations) analysis imple-
mented in Pvclust (Felsenstein 1985) was applied. Pvclust 
provides the bootstrap probability (BP) value from the 
ordinary bootstrap resampling (Felsenstein 1985) and the 
approximately unbiased (AU) probability value from multi-
scale bootstrap resampling (Shimodaira and Hasegawa 
2001; Suzuki and Shimodaira 2006). Cluster dendrogram 
was constructed with AU/BP values (%). A heat map show-
ing the pairwise Pearson coefficient correlations among the 
samples was plotted using heat map function implemented 
in R.

Nucleotide sequence accession number

The 16S rRNA gene sequences derived from pyrosequenc-
ing of Drass soil have been deposited in the European 
Nucleotide Archive under accession number PRJEB5191.

Results

Soil of Drass cold desert is sandy, slightly alkaline (pH 
7.4), nutrient poor with 0.72 % organic content and 12 ds/m 
electric conductivity (EC). Physicochemical properties of 
composite soil sample from Drass are given in Table 1.

Only three DNA extraction protocols, developed by 
Zhou et al. (1996); Wechter et al. (2003) and Pang et al. 
(2008), worked efficiently on the soil of Drass. DNA 
extracted using these three protocols were pooled and used 
as a template for PCR amplification of V1–V3 region of 
16S rDNA. The amplicons were pyrosequenced, and 3000 
sequence reads were generated. Downstream quality filter-
ing resulted in 2819 high-quality sequences with average 
read length of ≥200 bp. Phylogenetic analysis revealed 
Acidobacteria, Proteobacteria and Actinobacteria as 
highly abundant in the soil of Drass representing 39 % of 
the total bacterial sequences. In addition, Chloroflexi, Bac-
teroidetes, Verrucomicrobia, Planctomycetes, Firmicutes, 

Nitrospira, Armatimonadetes (former candidate division 
(OP10), Gemmatimonadetes and Cyanobacteria were also 
identified at the relatively low abundance (<10 %), along 
with candidate phyla WS3 and TM7 and several unclassi-
fied bacteria (Fig. 1).

Comparative account of bacterial diversity 
across Drass, Antarctic and Arctic soil samples

The 16S rRNA gene sequences from the present study 
(Drass soil) and those retrieved from NCBI (Arctic and 
Antarctic soil) were clustered at 99 % sequence iden-
tity (Egge et al. 2013) (Table 2). A significant proportion 
(2.2, 2.8 and 1.9 %) of the total sequences from Drass 
and Antarctic (ANT1 and ANT2) samples was observed 
as chimeric (Uchime), and samples were filtered before 
clustering. No chimeric sequences were detected in Arc-
tic samples. The rarefaction curves constructed at the 1 % 
genetic distance exhibited a steeper slope for the Drass soil 
than Antarctic and Arctic soil samples, hence demonstrat-
ing a greater genetic richness in the Drass soil (Fig. 2a). 
Drass sample, however, needs extensive sampling to repre-
sent the taxonomic diversity. Furthermore, Shannon’s (H) 
and Simpson’s diversity indices were highest for Antarc-
tic samples, whereas ACE and Chao1 were maximum for 
Drass soil suggesting higher species richness across Drass 
soil sample than the Antarctic and Arctic soil samples 
(Table 3). Beta-diversity and hierarchical clustering analy-
sis revealed that the total bacterial community structure in 
the Drass is more similar to Arctic than Antarctic soil sam-
ples (Fig. 2b–d).

Abundant versus rare OTU analysis

Core/abundant phyla in Drass soil, Antarctic samples 
and Arctic samples

OTUs represented in all the five samples, i.e., Drass (DR), 
Antarctic (ANT1 and ANT2) and Arctic (ARC1 and 

Table 1  Physiochemical 
analysis of soil samples

a Experiments were conducted in triplicates and the data was expressed as mean ± SD

Characteristic Drass (DR)a Antarctic (ANT1 and ANT2) Arctic (ARC1 and ARC2)

Texture Sandy, coarse – –

Color Greyish brown – –

pH 7.4 ± 0.15 6–6.7 6–6.7

Water content (%) 19 ± 0.3 – –

EC (dS/m) 12 ± 0.5 – –

Organic carbon (%) 0.72 ± 0.05 – –

Nitrogen (%) 0.54 ± 0.05

Available K (kg/ha) 72 ± 0.82 – –

Available P (kg/ha) 50 ± 1.1 – –



854 Arch Microbiol (2015) 197:851–860

1 3

ARC2), were collectively termed as core phyla (Serkebaeva 
et al. 2013) affiliated with the Acidobacteria, Proteobac-
teria, Actinobacteria, Verrucomicrobia, Bacteroidetes, 
Cyanobacteria and Gemmatimonadetes (Fig. 3a). The rela-
tive percentage abundance of phyla, class and orders men-
tioned in the below paragraph is given in Table 2.

Interestingly, Acidobacteria dominated the bacterial 
diversity of Drass sample with Gp6, Gp4 and GP7 being 
the abundant classes. Relative abundance patterns of Class 
Gp6 and Gp4 was lower in the Antarctic and Arctic samples 
with GP7 as entirely absent. Proteobacteria were abundant 
across all the three sites; however, they were comparatively 
more predominant in Arctic soil samples than Drass and 
Antarctic samples. Order Rhizobiales, Sphingomonadales, 
Caulobacterales of the Alphaproteobacteria, Burkholderi-
ales of the Betaproteobacteria and Pseudomonadales and 
Xanthomonadales of the Gammaproteobacteria were rep-
resented among all the three sites. Enterobacteriales (Gam-
maproteobacteria) were represented among Antarctic sam-
ples only. Order Myxococcales (Deltaproteobacteria) were 
not represented in Antarctic and Arctic subsamples.

There were no significant differences in the abundance 
of Actinobacteria across Drass, Antarctic and Arctic soil 
samples. Unclassified order Actinomycetales was present 
across all the soil samples. However, order Solirubrobacte-
rales and Acidimicrobiales were observed in Drass only and 
Arctic soil samples. Interestingly, Gaiellales were detected 
in Arctic samples only. At genus level, Aciditerrimonas, 
Conexibacter, Patulibacter, Rubrobacter, Propionibacterium, 
Marmoricola, Nocardioides, Aeromicrobium, Arthrobacter, 
Leifsonia, Amycolatopsis, Corynebacterium and Solirubro-
bacter were uniformly distributed in the Drass soil sample. 
Bacteroidetes were less abundant in Drass than Antarctic and 
Arctic samples. Order Sphingobacteriales was commonly 
represented across Drass, Antarctic and Arctic samples. How-
ever, Cytophagales were detected across Arctic samples only. 

Members of the Verrucomicrobia were more abundant in 
Drass than the Antarctic soil and Arctic soil samples. Order 
Opitutales was present in higher abundance across Drass 
sample, but not detected in the Antarctic and Arctic samples. 
Similarly, Order Verrucomicrobiales not detected in Drass 
was relatively abundant in Antarctic samples and detected 
in Arctic samples. Phylum Cyanobacteria were significantly 
less abundant in Drass than in Antarctic and Arctic samples. 
Class Chloroplast was abundant across Antarctic samples, 
and class Cyanobacteria was abundant across Arctic samples. 
Phylum Gemmatimonadetes represented by single genus, i.e., 
Gemmatimonas, was predominant across Drass sample and 
relatively very less in Antarctic and Arctic samples.

Rare OTUs across Drass, Arctic and Antarctic samples

The OTUs detected in two samples only were referred to 
as rare OTUs (Serkebaeva et al. 2013). Firmicutes, Nitros-
pirae, Armatimonadetes (Former candidate division OP10), 
Planctomycetes, TM7, Chloroflexi, Deinococcus-Thermus, 
Tenericutes and Candidate WS3 were distinguished as rare 
genera (Fig. 3b). Brevibacillus was the most abundant gen-
era of Firmicutes present in Drass sample. Similarly, Leu-
conostoc, Tumebacillus and Staphylococcus were the most 
abundant genera (rare) present across Antarctic samples. 
The overall proportion of phyla Nitrospira, Planctomycetes, 
Chloroflexi and Armatimonadetes was significantly higher 
in Drass than in Antarctic and Arctic samples. Tenericutes 
were detected in Antarctic samples only and Candidate phy-
lum WS3 detected in Drass only in the present study.

Discussion

Extreme conditions are the characteristics of cold desert 
alpine soils due to temperature fluctuations, and this holds 

Fig. 1  Pie chart showing phylo-
genetic diversity (phylum level) 
of 16S rRNA gene sequences 
obtained from bTEFAP analysis 
of Drass metagenome
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Table 2  Percentage of core phyla and rare phyla obtained from metagenome of Drass, Antarctic (ANT1 and ANT2), Arctic (ARC1 and ARC2)

Samples DR (%) ANT1 (%) ANT2 (%) ARC1 (%) ARC2 (%)

No. of phyla 14 12 8 13 12

Core phyla

Acidobacteria 32.1 <1 <1 4.3 4.2

Gp4 (class) 8.66 <1 – 1.3 1.87

Gp6 (class) 14.8 – – <1 <1

Gp7 (class) 3.09 – – – –

Proteobacteria 21.4 14.8 31.8 40.7 43.3

Deltaproteobacteria 5 <1 <1 – –

Myxococcales (order) 3.31 – – – –

Betaproteobacteria 4.74 3.26 10.3 3.12 3.3

Burkholderiales (order) 3.08 3.06 7.8 2.5 2.6

Alphaproteobacteria 9.54 3.38 6.7 32 38.1

Rhizobiales (order) 4.11 1.45 2.3 7.5 10.35

Sphingomonadales (order) 1 1 2.3 13.5 12.72

Caulobacterales (order) <1 <1 1.1 2.08 2.2

Gammaproteobacteria 9.43 7.8 14.9 36/1535 27/1226

Pseudomonadales (order) 6.17 <1 <1 1 <1

Enterobacteriales (order) – 4.8 10.5 – –

Xanthomonadales (order) 1.27 2.42 3.6 <1 <1

Actinobacteria 6.6 2 8.5 11.2 12.9

Actinomycetales (order) 2.1 2 8.5 7.4 9.9

Solirubrobacterales (order) 1.1 – – 1.2 1

Acidimicrobiales (order) <1 – – 2.02 13

Gaiellales (order) – – – <1 <1

Verrucomicrobia 1.7 1 1 <1 <1

Spartobacteria (class) <1 – –

Opitutae (class) 1.3 – – – –

Verrucomicrobiae (class) – 1 1 <1 <1

Bacteroidetes 4.8 6 7.3 18.1 15.4

Sphingobacteriales (order) 2.6 3.5 4.1 9.3 8.6

Flavobacteriales (order) <1 2.3 2.8 1 <1

Cytophagales (order) – – – 4.6 3.3

Cyanobacteria <1 3.8 10.7 6.6 5.05

Cyanobacteria (class) – – – 6.6 5.05

Chloroplast (class) <1 3.8 10.7 – –

Gemmatimonadetes 4.1 <1 <1 <1 <1

Gemmatimonas (genus) 4.1 <1 <1 <1 <1

Rare phyla

Firmicutes 2.5 70.5 35.3 – –

Nitrospira 1.3 <1 <1 – –

Armatimonadetes 1.1 – – <1 <1

Planctomycetes <1 – – – –

TM7 <1 – – <1 <1

Deinococcus-Thermus – <1 <1 <1 <1

Chloroflexi 1.5 <1 – – <1

Tenericutes – <1 1.9 – –

Candidate WS3 <1 – – – –
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true for Drass as well. To our knowledge, this is the first 
report on the bacterial diversity (richness and distribution) 
of Drass by high-throughput tag-encoded FLX ampli-
con pyrosequencing and its comparison with the bacterial 
diversity reported from other two cold deserts, Antarctic 
and Arctic based on retrieved sequence sets from the NCBI.

Low organic content in Drass is due to lack of vegeta-
tion, poor microbial activities, coarse sediments and low 
humus content (Kastovska et al. 2005; Rawat and Adhikari 
2005; Sagwal 1997; Charan et al. 2013). Organic carbon 
content, soil texture and salinity have a strong influence 
on the microbial community diversity (Fierer et al. 2003, 
2007). Multiple DNA extraction protocols were employed 
since no single method of metagenomic DNA isolation 
is efficient enough to represent all the bacterial diversity 

(Delmont et al. 2011). Sequence analysis revealed the pre-
dominance of Acidobacteria in Drass soil despite slightly 
alkaline pH although expect to be more in Antarctic and 
Arctic soil with acidic pH (6–6.7) (Li et al. 2003; Kas-
tovska et al. 2005). This could be due to low carbon avail-
ability, soil organic carbon (OC), soil C/N ratio, as the 
abundance of Acidobacteria and the organic carbon con-
tent of the soil have been negatively co-related (Fierer 
et al. 2007; Pointing et al. 2009; Zeglin et al. 2011; Lee 
et al. 2012; Naether et al. 2012; Bottos et al. 2014; Nieder-
berger et al. 2015). In addition, the Class Gp6 and Gp4 of 
Acidobacteria are reported to be present at high pH (Jones 
et al. 2009) and that could be the reason for their abun-
dance in Drass in comparison with the Antarctic and Arctic 
samples.
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Fig. 2  a Rarefaction analysis performed on samples Drass (DR), 
Antarctic 1 (ANT1), Antarctic 1 (ANT2), Arctic 1 (ARC1) and Arc-
tic 2 (ARC2). b Phylogenetic correlation of microbial communities 
of Drass, Antarctic and Arctic. A subset of 1000 randomly selected 
OTUs from each metagenome was used to construct an Euclidean 
distance matrix. Matrices were pairwise compared using Mantel test 
(1000 permutation, 0.05 as standard P value), and Pearson correla-
tion values were calculated. Symbols used: Drass (DR), Antarctic 1 
(ANT1), Antarctic 1 (ANT2), Arctic 1 (ARC1) and Arctic 2 (ARC2). 
c Heat map: Pearson correlation distances, ranging from 0 to 2, were 
normalized to a scale of 0–1, where 1 represents the furthest distance, 

or the least similar samples. Symbols used: Drass (DR), Antarctic 1 
(ANT1), Antarctic 1 (ANT2), Arctic 1 (ARC1) and Arctic 2 (ARC2). 
d To assess the uncertainty in hierarchical cluster analysis over sam-
ples Drass (DR), Antarctic 1 (ANT1), Antarctic 1 (ANT2), Arctic 1 
(ARC1) and Arctic 2 (ARC2). Bootstrap resampling (10,000 itera-
tions) was applied via the R package Pvclust. The uncentered Pearson 
correlation is used as the distance metric with average linkage. The 
numbers above each edge show the probability of nodes below that 
edge occurring as a cluster in resampled trees, via ordinary bootstrap 
resampling (BP, green) or multi-scale bootstrap resampling (AU, red) 
(color figure online)
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Table 3  Diversity indices 
among bacterial communities 
in Drass (DR), Antarctic 1 
(ANT1), Antarctic 1 (ANT2), 
Arctic 1 (ARC1) and Arctic 2 
(ARC2) estimated by vegan tool

Diversity indices DR ANT1 ANT2 ARC1 ARC2

OTU 1818 8276 1893 1536 1227

Shannon–Wiener index (H) nats 3.181599 3.247597 3.250028 3.110686 3.138125

Simpson (1-D) 0.8951769 0.9228484 0 0.93353020 0.8932482 0.8990074

S.chao1 194.000000 115.230769 71.666667 160.57143 116.375000

se.chao1 20.247440 12.961481 2.501562 28.17833 13.741182

S.ACE 193.949540 117.424538 72.533352 165.95257 117.889902

se.ACE 7.411584 5.482515 4.106573 7.25455 5.261013

Fig. 3  a Relative abundance 
of OTUs (core OTUs) in Drass 
(DR), Antarctic 1 (ANT1), 
Antarctic 1 (ANT2), Arctic 1 
(ARC1) and Arctic 2 (ARC2). 
b Relative abundance of OTUs 
(unique OTUs and rare OTUs) 
in Drass (DR), Antarctic 1 
(Ant1), Antarctic 1 (Ant2), Arc-
tic 1 (Arc1) and Arctic 2 (Arc2)
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Actinobacteria form the core phyla in cold deserts under 
investigation, and being mycelia formers, they are adapted 
to oligotrophic environments where the hyphae allow the 
bacteria to retrieve water and nutrients via pores in soil 
(Keki et al. 2013). Lesser representation of Bacteroidetes 
and Cyanobacteria in the soil of Drass supports the fact 
that Drass soil is relatively more oligotropic than the Ant-
arctic and Arctic soils. Bacteroidetes are positively cor-
related with the organic carbon content of the soil (Fierer 
et al. 2007). These are typically decomposers and com-
monly associated with substrates rich in organic carbon 
contributing to the turnover of polymeric carbon (Fazi et al. 
2005; Aislabie et al. 2009; Zakhia et al. 2008) in the soil. 
Cyanobacteria are the predominant biota in cold polar 
environments and play an important role in the carbon and 
nitrogen economy of tundra and polar desert soils (Bonilla 
et al. 2005; Adams et al. 2006; Vincent 2007; Varin et al. 
2012). This photosynthetic phylum is either reported to 
be present in low frequency or absent in the Himalayan 
regions (Pradhan et al. 2010; Shivaji et al. 2011; Stres et al. 
2014). Gemmatimonadetes and Verrucomicrobia found in 
the present study were reported from other cold habitats, 
though at a low frequency (Steven et al. 2007; Wagner 
et al. 2009; Pradhan et al. 2010; Wu et al. 2012). The core 
phyla obtained in the present study have also been reported 
from other cold habitats. Acidobacteria have been reported 
from the Tibetan plateau glacier, China, Mount Everest, 
Nepal, John Evans glacier, Canada Bench Glacier, Alaska, 
Schirmacher Oasis soil and Antarctic Siberian tundra 
soil samples (Zhou et al. 1997, Shivaji et al. 2004; Skid-
more et al.2005; Cheng and Foght 2007; Liu et al. 2009; 
Campbell et al. 2010; Wu et al. 2012; Kim et al. 2014). 
Proteobacteria have been reported to be the dominant in 
the cold soils of the Himalayan mountains (Pradhan et al. 
2010; Shivaji et al. 2011, Srinivas et al. 2011); Malan ice 
core drilled from the Tibetan Plateau (Xiang et al. 2004); 
surface sediment from the Arctic Ocean (Xuezheng et al. 
2014); High-Arctic snow over sea ice (Moller et al. 2013) 
and Antarctic samples (Tytgat et al. 2014). The dominant 
Order Myxococcales of Deltaproteobacteria detected in 
Drass have been reported in Siberia, Arctic. Bacteroidetes 
has been reported as one of the abundant phyla from cold 
habitats (Wu et al. 2012; Moller et al. 2013). Actinobacte-
ria reported to be the abundant phyla in cold habitats (Wu 
et al. 2012; Tytgat et al. 2014) and predominant phyla in 
Roopkund glacier, Himalayas (Pradhan et al. 2010).

The presence of Firmicutes in other cold habitats (Liu 
et al. 2009; Wagner et al. 2009) is well documented in the 
literature. Earlier studies on Himalayas (Pradhan et al. 
2010; Shivaji et al. 2011) reported Firmicutes as the abun-
dant phylum contrary to the present study. Negligible reads 
detected in Arctic subsamples is in accordance with Chu 
et al. (2010) who classified Firmicutes as the rarer phyla 

in Arctic soil. Armatimonadetes, Chloroflexi, Nitrospirae, 
candidate phylum TM7 and Planctomycetes are present 
in Drass soil at a low frequency as in other cold habitats 
(Shivaji et al. 2004; Cheng and Foght 2007; Wu et al. 2007; 
Li et al. 2008; Liu et al. 2009; Wagner et al. 2009; Prad-
han et al. 2010; Shivaji et al. 2011; Stres et al. 2014). WS3 
was detected in Drass soil only and completely absent in 
Antarctic and Arctic samples although few reports that jus-
tify the presence of Phylum WS3 in Antarctic and Arctic 
(Schutte et al. 2010; Tytgat et al. 2014) also. Tenericutes 
detected in Antarctic samples only in the present study have 
also been reported from few proglacial soils within the 
Himalayan regions (Srinivas et al. 2011; Stres et al. 2014).

Conclusion

On analyzing, and comparing the bacterial diversity of soil 
metagenome of Drass with Antarctic and Arctic metagen-
ome, it was found that though most of the bacterial phyla 
present was common, but only the pattern of their domi-
nance differed. Phylum Acidobacteria were dominant in 
the Drass soil, phylum Firmicutes were dominant in the 
Antarctic (not detected in Arctic soil), and Proteobacteria 
were dominant in the Arctic soil. Comparative sequence 
analysis also suggests that Drass soil is more arid than the 
Arctic and Antarctic soils and further resembles more to the 
Arctic than Antarctic soil or other Himalayan regions. Pre-
sent study compliments the scientific reports that suggest 
that the bacterial community of any niche is specific, quali-
tatively and quantitatively designed by the combination of 
factors such as temperature, pH, salinity, water content, 
nutrients and carbon content.
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