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diagnostics for improved TB control. An improved under-
standing of Mycobacterium tuberculosis genetics, physiol-
ogy, and its virulence factors would provide knowledge on 
possible bacterial targets for rationally designed therapeu-
tics and diagnostics.

It is well established that the expression of adherence-
mediating molecules, termed adhesins, is crucial to a path-
ogen’s ability to infect host cells. However, attachment 
to immune cells can trigger phagocytosis, leading to the 
destruction of the pathogen (Kline et al. 2009). Expressing 
adhesins on hydrophobic polymeric structures that extend 
beyond the bacterial surface limit repulsive forces between 
the host and pathogen, thereby enabling their interaction 
from a suitable distance and with less deleterious conse-
quences for the pathogen (Alteri 2005; Kline et al. 2009).

Several saprophytic and pathogenic bacteria express 
their adhesins on polymeric proteinaceous structures 
termed pili. Multiple pilus types have been identified in 
bacteria, each associated with a unique structure and dis-
tinct functions. In Gram-negative bacteria, the produc-
tion of chaperone/usher-assembled, type IV, and curli pili 
are well documented. Gram-positive bacteria have been 
reported to produce type IV and sortase-assembled pili 
(Kline et al. 2010). In general, pili are 1–10 nm wide and 
0.07–3  μm long (Telford et  al. 2006). They have been 
implicated in several bacterial processes, including induc-
tion of signalling events in host cells, host tissue adhesion, 
co-aggregation and biofilm formation, immunomodulation, 
biosensor, motility, DNA uptake, and can act as nanowires 
that transfer electrons from bacterial cells to extracellular 
electron acceptors (Källström et  al. 1998; Telford et  al. 
2006; Lovley 2008).

Mycobacteria were generally regarded as a non-piliated 
genus. However, Alteri (2005) showed, using negative 
staining and transmission electron microscopy (TEM), 
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Introduction

Despite achieving the millennium development goal to 
decrease incidence rates by 2015, tuberculosis (TB), 
responsible for 1.5 million deaths in 2013 (WHO 2014), 
remains a scourge to mankind globally. There is thus 
an urgent need to identify new drugs, vaccines, and 
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that both the fast-growing Mycobacterium smegmatis and 
Mycobacterium fortuitum and the slow-growing M. tuber-
culosis produced pili under standard growth conditions. 
The TB vaccine strain, Mycobacterium bovis BCG, was 
also found to be piliated (Alteri 2005). Subsequently, two 
further studies have confirmed piliation by clinical M. 
tuberculosis isolates, using atomic force microscopy and 
TEM (Velayati et al. 2012; Hosseini et al. 2014).

Using TEM and scanning electron microscopy  (SEM), 
Alteri (2005) identified two distinct pili morphotypes pro-
duced by M. tuberculosis. The expression of these pili types 
was found to be influenced by nutritional conditions and/
or environmental signals. The two pili types of M. tubercu-
losis are type IV pili, which are produced in broth-grown 
cultures (Fig.  1a), and curli pili, which are produced by 
bacilli cultured on solid media (Fig. 1b). In liquid media, 
the attenuated M. tuberculosis strain H37Ra expressed sig-
nificantly less pili compared with virulent strains, alluding 

to the role of pili as a possible virulence factor of M. tuber-
culosis (Alteri 2005). In this mini-review, we summarize 
the current knowledge on the two M. tuberculosis pili types 
and discuss their potential as targets for the development of 
anti-TB strategies.

The curli pili of M. tuberculosis (MTP)

Amyloids are a β-sheet-rich fold that many proteins can 
acquire (Blanco et  al. 2012). The production of amyloids 
by microorganisms is a highly controlled and regulated 
process and confers advantages to these organisms. These 
‘functional amyloids’ play key roles in biofilm forma-
tion in organisms such as Pseudomonas spp. (Dueholm 
et al. 2010), Bacillus subtilis (Romero et al. 2010), Strep-
tococcus mutans (Oli et  al. 2012), and Staphylococcus 
aureus (Schwartz et  al. 2012). They also alter the surface 

Fig. 1   M. tuberculosis pili. a 
TEM micrograph of broth-
grown M. tuberculosis H37Rv 
showing the expression of 
rope-like, laterally aggregated 
type IV pili. b TEM micrograph 
of agar-grown M. tuberculo-
sis clinical isolate CDC1551 
showing the production of 
coiled, aggregated curli pili. c, 
d High-resolution SEM images 
of static-grown M. tuberculo-
sis H37Ra adhering to glass 
coverslips (c) and adhering to 
each other in pellicles (d) using 
pili-like structures. Arrows point 
to pili fibres (Alteri 2005)
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properties of Streptomyces coelicolor (Claessen et al. 2003) 
and Ustilago maydis (Teertstra et  al. 2009), thereby ena-
bling spore and aerial hyphae formation in these microbes. 
Amyloid production is also associated with the virulence 
and toxicity of Klebsiella pneumoniae (Bieler et al. 2005), 
Xanthomonas axonopodis (Oh et  al. 2007), and Listeria 
monocytogenes (Bavdek et al. 2012).

Curli pili are the most well studied and characterized 
bacterial functional amyloid. They are densely tangled and 
coiled masses of cell surface structures, which are produced 
by several Enterobacteriaceae. These non-branching pro-
teins are 4–6 nm wide and possess aggregative properties 
(Epstein and Chapman 2008). They are highly stable struc-
tures that are assembled by nucleation-precipitation path-
ways, involving major and minor curlin subunits (Hammar 
et al. 1996).

Microscopically, M. tuberculosis curli-like pili (MTP) 
appear similar in ultrastructure to the curli of Escherichia 
coli and Salmonella spp. (Olsén et al. 1989; Collinson et al. 
1991). MTP are classified as a curli amyloid due to its 
ability to bind to Congo red and its insolubility in sodium 
dodecyl sulphate (Alteri et al. 2007). However, MTP subu-
nits display no primary sequence homology to curli (Alteri 
et al. 2007) and lack the typical β-sheet secondary structure 
of curlins (Ramsugit et al. 2013).

MTP are 2–3 nm in diameter and comprise subunits that 
are encoded by the Rv3312A (mtp) ORF, as determined 
by mass spectroscopy analysis, Western blotting with anti-
bodies against Rv3312A, and immuno-electron micros-
copy (Alteri et  al. 2007). By Western blotting with anti-
Rv3312A antibodies, M. smegmatis was found to be unable 
to produce the MTP pilin subunit protein, which suggested 

that MTP may be associated with pathogenic mycobacteria 
(Alteri 2005).

The assembly of curli in E. coli occurs via specific bio-
genesis pathways, involving seven curli specific genes (csg) 
that are encoded by the csgDEFG and csgBAC operons 
(Blanco et al. 2012). The major and minor curlin subunits, 
CsgA and CsgB, participate in nucleation and polymeri-
zation functions, whilst CsgC may be involved in subunit 
secretion (Gibson et  al. 2007; Taylor et  al. 2011). Acces-
sory proteins are encoded by the csgDEFG operon (Ham-
mar et al. 1995; Loferer et al. 1997; Chapman et al. 2002; 
Robinson et  al. 2006). The mtp gene is, however, not 
located in an operon or near other pilus-associated genes 
(Fig.  2a). The additional proteins that make up the MTP 
structure, their export and assembly mechanisms, and its 
association with the complex mycobacterial cell wall are 
currently unidentified.

The mtp gene is located between genes involved in inter-
mediary metabolism (Fig.  2a), implying that it may be 
protected from deletion or gene inactivation events (Alteri 
2005). Naidoo et al. (2014) showed by amplicon sequenc-
ing that 98 % of M. tuberculosis clinical isolates (n = 86) 
possessed a conserved mtp gene sequence. Hosseini et  al. 
(2014) further reported a 100  % conservation of the mtp 
(curli) and flp (type IV pili) gene sequences in clinical iso-
lates (n = 36). The mtp gene is present only in M. tubercu-
losis complex strains and not in non-tuberculous mycobac-
teria nor other respiratory pathogens (Naidoo et al. 2014).

Using ELISA and immunofluorescent microscopy, 
Alteri et al. (2007) demonstrated the presence of IgG anti-
bodies against MTP in active TB cases. Thus, MTP are 
produced during human TB infection (Alteri et  al. 2007). 

Fig. 2   Organization of the 
M. tuberculosis pili-encoding 
genetic loci. a The curli pili-
encoding gene, mtp (Rv3312A), 
is located between genes 
involved in intermediary 
metabolism and respiration and 
conserved hypotheticals and 
is not arranged in an operon 
with other pili-associated 
genes. b The type IV pili (flp) 
gene cluster consists of the 
Rv3654c-Rv3660c ORF’s. The 
chromosomal coordinates are 
indicated below each illustration 
(modified from: http://genolist.
pasteur.fr/TubercuList)

http://genolist.pasteur.fr/TubercuList
http://genolist.pasteur.fr/TubercuList
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TB infection leads to inflammation, tissue damage, and 
exposure of the extracellular matrix (ECM). M. tuberculo-
sis binds to these areas of tissue damage (Middleton et al. 
2002). Using ELISA, MTP were reported to bind to the 
ECM protein, laminin, in vitro (Alteri et  al. 2007). These 
researchers also showed, using immunofluorescent micros-
copy, that MTP are produced during the pathogen’s adhe-
sion to A549 epithelial cells. These findings indirectly 
implicated MTP in functioning as an adherence factor, 
which may be crucial in mediating a close interaction and 
colonization of host cells (Alteri et al. 2007).

To assess the function of MTP, a MTP-deficient Δmtp 
mutant strain and a MTP-overexpressing complemented 
strain were constructed (Ramsugit et  al. 2013). Biofilm 
formation assays and crystal violet staining identified the 
role of MTP in in vitro biofilm formation, as the MTP-
deficient strain displayed a 68 % reduction in biofilm mass 
compared with the parental strain (Ramsugit et  al. 2013). 
Pili-like structures were previously observed to medi-
ate the pathogen’s attachment to surfaces (Fig. 1c) and to 
encase the TB bacilli in pellicle biofilms (Fig. 1d). Based 
on microscopic observations, their role in in vitro biofilm 
formation is by mediating cell-to-cell contact (Alteri 2005; 
Velayati et  al. 2012; Ramsugit et  al. 2013). Alteri et  al. 
(2007) demonstrated that MTP are expressed during human 
infection; therefore, formation of M. tuberculosis biofilms 
in vivo may be possible, although this has yet to be conclu-
sively shown.

MTP also play a fundamental role in the infection of 
host cells. Adherence and invasion assays revealed that the 
MTP-deficient mutant displayed a 42 and 69  % decrease 
in the adhesion to and invasion of THP-1 macrophages, 
respectively, compared with the parental strain (Ramsugit 
and Pillay 2014). Adhesion to and invasion of A549 pulmo-
nary epithelial cells by the mutant were also significantly 
reduced by 69 and 56 %, respectively (Ramsugit S, Pillay 
B, and Pillay M; submitted). There were no significant dif-
ferences between cytokine and chemokine levels produced 
by A549 epithelial cells infected with the wild-type and 
MTP-deficient strains (Ramsugit S, Pillay B, and Pillay M; 
submitted). MTP-mediated entry into epithelial cells may 
therefore be advantageous to the pathogen by suppressing 
inflammatory responses to invasion into these host cells 
and possibly innate immune responses.

The type IV pili of M. tuberculosis

Type IV pili are flexible surface-exposed filaments, which 
tend to form bundles (Berry and Pelicic 2015). They have 
been well studied and characterized in Gram-negative 
bacteria. In these organisms, they function in adhesion to 
host cells, motility (gliding and twitching), microcolony 

formation, competence, protein secretion, and serve as 
nanowires that carry electric current (Aas et al. 2002; Mat-
tick 2002; Kirn et al. 2003; Burrows 2005; Reguera et al. 
2005; Han et al. 2007; Burrows 2012).

Type IV pili were subsequently found to be produced by 
several Gram-positive bacteria, including Clostridia (Varga 
et al. 2006), Streptococcus sanguinis (Xu et al. 2007), and 
Bacillus spp. (Imam et  al. 2011). Using the PilFind algo-
rithm, Imam et al. (2011) showed that Gram-positive bac-
teria contained a highly diverse set of type IV pili. Type 
IV pili have been linked to gliding motility of Clostridia 
(Varga et  al. 2006), adherence to the host by organisms 
such as Clostridium perfringens (Rodgers et al. 2011) and 
Ruminococcus albus (Rakotoarivonina et  al. 2002), and 
biofilm formation by C. perfringens (Varga et al. 2008).

Since M. tuberculosis is regarded as a non-motile organ-
ism, it is tempting to speculate that the M. tuberculosis type 
IV pili function as an adhesin, which mediates adhesion to 
host cells and/or biofilm formation. Alteri (2005) provided 
initial information on the type IV pili of M. tuberculosis 
and preliminary evidence supporting their possible adhesin 
function. However, since their discovery, studies on the 
type IV pili of M. tuberculosis are notably absent in litera-
ture and their significance in M. tuberculosis pathogenesis 
requires further investigation.

M. tuberculosis expresses type IV pili that appear as 
rope-like bundles, which are encoded by a 5-kb genomic 
island containing seven genes, including the flp prepi-
lin (Rv3656c) and putative biogenesis genes (Fig.  2b). 
Rv3654c and Rv3655c encode secreted proteins; Rv3656c 
codes for a transmembrane protein; and the products of 
Rv3657c-Rv3660c resemble pili assembly proteins, type 
II/IV secretion system proteins, and tight adherence (tad) 
genes (Danelishvili et  al. 2010). In addition, M. tubercu-
losis H37Rv contains two fimbrial low-molecular-weight 
protein (Flp) pre-pilin peptidases, encoded by Rv0990c and 
Rv2551c, located away from the flp gene cluster, not shown 
on the gene map in Fig. 2b.

Flp proteins are small type IV pilins. Their encoding 
genes are found within the tad loci, together with conserved 
type IV pili biosynthetic genes and other tad-specific genes 
(Imam et al. 2011). The M. tuberculosis flp genes are simi-
lar to the flp-tad locus of Aggregatibacter actinomycetem-
comitans. The M. tuberculosis type IVb pili gene cluster 
is characterized by a conserved glycine residue, which is 
located before a signal peptide region, and a conserved 
glutamate residue, which is five positions from the con-
served glycine. These pili belong to the Flp sub-family of 
type IVb pili, as identified by the presence of a tyrosine 
residue paired with the conserved glutamate residue (Alteri 
2005). The Flp/Tad pili are important virulence factors and 
mediators of biofilm formation in several pathogenic and 
environmental bacteria (Tomich et  al. 2007) and function 
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in host colonization by Bifidobacterium breve (O’Connell 
Motherway et al. 2011).

Alteri (2005) showed by gene expression analysis 
and immunofluorescent microscopy that M. tuberculosis 
expresses and secretes the Flp protein, thereby confirming 
that the flp genes are functional. The Flp peptide is capa-
ble of self-assembling into polymeric structures at a pH of 
4.5–7.4, as evidenced by negative staining and TEM and 
immuno-electron microscopy. This finding supports the 
role of the M. tuberculosis Flp homolog as a type IV pilin 
and may indicate that acidic pH, such as that which is pre-
sent in the phagosomal vacuole, may trigger type IV pili 
assembly (Alteri 2005).

Using immunofluorescence microscopy, it was found 
that Flp pili may have an adhesin function, as evidenced 
by its expression during the organism’s interaction with 
U937 human macrophages and A549 epithelial cells (Alteri 
2005). Flp pili (or flp genes) are known to function in the 
adherence to surfaces and the host in pathogens such as 
A. actinomycetemcomitans (Kachlany et  al. 2000, 2001) 
and Haemophilus ducreyi (Nika et al. 2002; Spinola et al. 
2003). M. tuberculosis Flp pili could thus function simi-
larly, although this has yet to be experimentally confirmed.

Alteri (2005) suggested that the M. tuberculosis type 
IVb pili genes were acquired by horizontal gene transfer. 
The flp locus has a higher G + C content (70 %) than the 
M. tuberculosis chromosome (65  %), and Z’ component 
analysis showed that the increase in G +  C content cor-
responds to the boundary of the type IVb pili genes. This 
locus is flanked by multiple direct repeats, providing fur-
ther evidence for the insertion of foreign DNA, as well 
as confirming that the type IV pili genes are located on a 
genomic island (Alteri 2005).

Danelishvili et  al. (2010) identified that the expression 
of the flp gene cluster is up-regulated within macrophages, 
as compared to when the pathogen is extracellularly 
located. The proteins encoded by Rv3654c and Rv3655c 
suppress macrophage apoptosis by blocking the extrinsic 
pathway (Danelishvili et al. 2010). The protein encoded by 
Rv3660c was also found to be a septum site determining 
protein which, when overexpressed, induces filamentation 
and an alternative metabolism in M. tuberculosis (England 
et al. 2011).

M. tuberculosis pili as potential therapeutic 
and diagnostic targets

Due to their key functions in microbial pathogenesis, pili 
(and other adhesins) represent important therapeutic and 
diagnostic targets (Govender et  al. 2014). Although it is 
unclear whether M. tuberculosis forms biofilms in vivo, 
several lines of evidence suggest that it could (Ha et  al. 

2005; Lenaerts et al. 2007; Wang et al. 2013). If M. tuber-
culosis exists as biofilms in vivo, then drugs (curlicides) 
that target and block MTP formation could represent a use-
ful anti-biofilming agent to reduce TB persistence, given 
their essentiality for in vitro biofilm formation (Ramsugit 
et al. 2013). The cell surface localization and structural role 
in biofilm formation (including their involvement in the 
early developmental stages) imply that pili are useful drug 
targets to prevent biofilm formation or to disrupt existing 
biofilms (Hett and Hung 2009).

Due to their role in host colonization, M. tuberculo-
sis pili are potential targets for the design of therapeutics 
to attenuate host infection. Blocking M. tuberculosis entry 
into host cells may expose the organism for killing by the 
host immunity and/or drugs. This could involve the use of 
competitive inhibitors, such as those resembling the host 
cell receptors or the use of pili analogues, to prevent the 
initial host–pathogen interaction, thereby limiting dis-
ease progression (Ofek et al. 2003; Salminen et al. 2007). 
Alternatively, the design of peptidomimetic compounds 
that mimic pili subunit proteins may inhibit pili formation 
(Evans and Chapman 2014).

Anti-adhesion approaches to prevent infection could be 
promising to control the spread of M. tuberculosis strains, 
irrespective of their drug susceptibility or resistance profile 
(Hansen et al. 1997). In addition, such agents are less likely 
to lead to the emergence of drug-resistant M. tuberculosis 
strains, in comparison with antibiotics, which are bacte-
ricidal or limit the organism’s growth (Ofek et  al. 2003). 
Carbohydrate analogues of receptors are generally not toxic 
and immunogenic (Sharon 2006). However, this strategy to 
TB therapy is disadvantaged by the presence of multiple M. 
tuberculosis adhesins (Govender et  al. 2014). In addition, 
adhesion to host cells can occur by mechanisms other than 
adhesin–receptor interactions, such as by hydrophobic and 
other non-specific interactions (Ofek et al. 2003). Targeting 
multiple adhesion mechanisms or adhesins may therefore 
be required to completely disrupt the infection process.

M. tuberculosis pili may be a potential vaccine candidate 
or used in TB immunotherapy strategies, where anti-pili 
antibodies may hinder infection by interacting with these 
extracellular structures. Pili (and other adhesins) are well 
documented to be excellent immunogens and are therefore 
prime targets for vaccine development (Klemm and Schem-
bri 2000). However, the diversity of M. tuberculosis adhes-
ins could pose a challenge to their use as vaccine candi-
dates since the influence of other adhesins may still enable 
infection (Govender et al. 2014). Therefore, complete suc-
cess would require the targeting of a combination of major 
adhesins. The mtp gene is highly conserved and unique 
to the M. tuberculosis complex strains, suggesting that its 
encoded product, MTP, may be a putative biomarker for 
a TB diagnostic test (Naidoo et  al. 2014). The conserved 



742	 Arch Microbiol (2015) 197:737–744

1 3

nature of the M. tuberculosis curlin and type IV pilin genes 
(Hosseini et al. 2014; Naidoo et al. 2014) implies that anti-
genic variation may not be a limitation for a pilus-based 
vaccine.

Concluding remarks and future work

A decade on since the discovery of M. tuberculosis pili, 
significant insight has been gained on the structure and 
function of MTP. However, their role during in vivo infec-
tion has yet to be determined. The identification of type IV 
pili in M. tuberculosis was the first reports of a classical 
virulence factor for the pathogen (Kachlany et  al. 2001; 
Alteri 2005). However, since the pioneering work by Alteri 
and colleagues, no further studies have explored their role 
in M. tuberculosis pathogenesis. Gene knockout of the flp 
gene and in vitro and in vivo assays will clarify the role of 
this pilus type.

A comparison of what is currently known about the curli 
and type IV pili of M. tuberculosis to those of other bacteria 
(Table  1) suggests that significant further characterization 
of M. tuberculosis pili is needed. A key research area that 
needs to be explored is the identification of the assembly 
mechanisms of both pilus types and the host receptors with 
which they interact. The eventual aim will be to translate 
this knowledge into useful therapeutics and diagnostics, 
which can lead to improved TB control and prevention.
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