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weta gut microbiota is similar to that of cockroaches. These 
data represent the first analysis of the weta microbiota and 
provide initial insights into the potential function of these 
microorganisms.
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Introduction

Insects represent one of the most successful branches of 
eukaryotic life, with an estimated 4–6 million extant species 
(Gaston 1991; Novotny et  al. 2002). Insects have branched 
into a diverse range of niches and environments, occupy-
ing almost every trophic level as herbivores, carnivores, 
and decomposers. In addition to the innate interest in their 
biology, they have proved to be of relevance as a source of 
novel enzymes, capable of performing activities required in 
human industries (Matsui et al. 2009; Oppert et al. 2010; Wil-
lis et  al. 2010). Due to New Zealand’s ancient geographic 
isolation (Neall and Trewick 2008), it has developed native 
fauna that is unlike that of any other country, with approxi-
mately 80 % of native species being endemic (Gibbs 2006). 
Prior to human settlement, there was very little mammalian 
life, which allowed the resident avian and insect populations 
to expand into niches they do not traditionally occupy (Grif-
fin et al. 2011b). Among these are the endemic weta, of the 
insect order Orthoptera. While the behavioural and physi-
ological biology of the weta are well studied (Kelly 2011; 
Sinclair and Wharton 1997; Wehi et al. 2013; Wharton 2011), 
their diet is poorly understood (Cary 1983; Trewick and Mor-
gan-Richards 1995; Wehi and Hicks 2010; Wilson and Jamie-
son 2005), although most species of weta are considered to be 
herbivores and opportunistic omnivores (Griffin et al. 2011a).

Abstract  The endemic New Zealand weta is an enig-
matic insect. Although the insect is well known by its dis-
tinctive name, considerable size, and morphology, many 
basic aspects of weta biology remain unknown. Here, we 
employed cultivation-independent enumeration techniques 
and rRNA gene sequencing to investigate the gut micro-
biota of the Auckland tree weta (Hemideina thoracica). 
Fluorescence in situ hybridisation performed on different 
sections of the gut revealed a bacterial community of fluctu-
ating density, while rRNA gene-targeted amplicon pyrose-
quencing revealed the presence of a microbial community 
containing high bacterial diversity, but an apparent absence 
of archaea. Bacteria were further studied using full-length 
16S rRNA gene sequences, with statistical testing of bacte-
rial community membership against publicly available ter-
mite- and cockroach-derived sequences, revealing that the 
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The role of microbes within their host organisms has 
been studied for a range of insects, including studies on 
orthopteran insects (crickets), the closest relative to weta, 
and dictyopteran insects (cockroaches and termites) (Idowu 
et  al. 2009; Santo Domingo et  al. 1998a, b), which share 
a broadly similar diet to tree weta (Broderick et al. 2004; 
Grünwald et al. 2010; Ohkuma 2003, 2008). Tree weta feed 
primarily on leaf litter, although they have been known to 
feed on seeds, fruit, and even prey on other insects in cap-
tivity (Griffin et  al. 2011a; Trewick and Morgan-Richards 
1995). The anatomy of the weta has been extensively docu-
mented, and the general compartmentalisation of the gut is 
well established; it is typically ‘orthopteran’ with the ali-
mentary canal consisting of a foregut, midgut, and hindgut 
(Fontanetti and Zefa 2000; Maskell 1927) (Fig. 1). By con-
trast, nothing is known about the microbes that potentially 
inhabit the weta gut.

In this study, we sought to identify the microbial com-
munity density and membership within this iconic New 
Zealand insect, as well as compare the weta microbiota to 
that of other commonly studied invertebrates, such as ter-
mites and cockroaches. The data described here are the first 
of their kind for weta and provide a foundation for future 
studies into the activities of the gut microbiota and their 
potential roles in the ecology of the host.

Materials and methods

Sample collection and preparation

Adult Auckland tree weta were collected from a subur-
ban garden in Meadowbank, Auckland, New Zealand, 
preserved in 100  % acetone (for DNA-based analyses). 
Insects were confirmed as Auckland tree weta through 
morphological identification then weighed and dissected 
under sterile conditions at the University of Auckland. For 
those weta individuals that were used for fluorescence in 

situ hybridisation (FISH), the gut was separated into four 
sections: foregut (including the crop and the proventricu-
lus), midgut, and hindgut. Each gut section was weighed 
and then fixed for FISH by incubating in 4 % paraformal-
dehyde for 3 h, followed by washing twice with phosphate-
buffered saline (PBS) and storing in 96 % ethanol/PBS [1:1 
(v/v)] at −20 °C. Fixed samples were filtered onto 0.22-µm 
pore size polycarbonate membrane filters (diameter 25 mm, 
Millipore Ltd) and air-dried.

FISH‑based counts of microbial cells

The aforementioned filters were cut into sections (~10 mm 
chord length) with a razor blade and put on a glass slide 
wrapped with Parafilm. Samples were hybridised with the 
Cy3-labelled Bacteria probe mix EUB338 I–III (Amann 
et al. 1990; Daims et al. 1999), and all probes were added 
at a concentration of 3 ng/µl, using a formamide concentra-
tion of 35 %. Hybridisation was performed in an isotoni-
cally equilibrated humidity chamber at 46 °C for 120 min. 
The filter pieces were then incubated for 10 min in a pre-
heated washing buffer for 10 min at 48 °C. After rinsing fil-
ter pieces with distilled water and air-drying, samples were 
counterstained with a DAPI (4′,6-diamidino-2-phenylin-
dole) solution (1  µmol/ml) for 10  min. After rinsing and 
drying, filter sections were mounted in a mixture of Citif-
luor (ProSciTech, Australia) and Vectashield (Vector Labo-
ratories Inc., Canada). Hybridised filter sections were ana-
lysed using a Leica DMR epifluorescence microscope, with 
at least 300–500 cells manually counted for each sample.

DNA extraction and sequencing

Genomic DNA was extracted from whole gut homogenates 
by bead-beating in an ammonium acetate buffer (Taylor 
et al. 2004). In addition, DNA was extracted from the weta 
head using the same method and representative sequences 
of the weta 18S rRNA gene were amplified using the 
primer sets NS1 and EukA (Diez et al. 2001; White et al. 
1990). The resulting amplicons were purified by gel extrac-
tion and sequenced directly. Sequences were identified 
using the NCBI online BLAST tool, classifying against the 
nucleotide collection (nr) database and uploaded to DDBJ/
EMBL/GenBank databases under accession numbers 
KJ755445 and KJ755446.

For overall microbial identification, universal small-sub-
unit rRNA gene amplification was performed using three 
primer pairs to separately target bacteria (27F/1391R), 
archaea (4aF/1391R), and eukaryotes (515F/1209R) 
(Woyke and Smith 2008). Roche 454 pyrosequenc-
ing was performed by the DOE Joint Genome Institute 
(California, USA). In addition, near-full-length bacte-
rial 16S rRNA gene sequences were generated using the 

FG

MG

HG

Fig. 1   Schematic drawing of the gut structure of the weta. Demarca-
tions show dissected components: FG foregut, MG midgut, and HG 
hindgut
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previously described primers 616  V (targeting positions 
8–25 of the Escherichia coli 16S rRNA gene) and 1492R, 
which amplify a ~1500-bp region of the gene (Polz and 
Cavanaugh 1998; Spring et  al. 1998). Cycling conditions 
were as follows: initial denaturing of 94  °C for 5  min, 
then 30 cycles of denaturing at 94  °C for 45  s, annealing 
at 57 °C for 45 s, and elongation at 72 °C for 1.5 min. PCR 
was completed with a final elongation step at 72  °C for 
10 min. PCR products were cloned with the pGEM T-easy 
vector (Promega) and E. coli DH5α chemically competent 
cells (Invitrogen) following the manufacturers’ instructions. 
Inserts were sequenced from both ends by Macrogen Inc. 
(Seoul, South Korea).

Bioinformatic analysis

Following sequencing, clone inserts were assembled by 
aligning both ends of the gene, followed by manual quality 
curation in Geneious, version 7.1 (Kearse et al. 2012). Chi-
meras were removed using mothur, and the remaining 87 
near-full-length 16S rRNA gene sequences were analysed 
using ARB with the SILVA 111 SSU database (Ludwig 
et  al. 2004; Pruesse et  al. 2007). High-quality sequences 
were uploaded to DDBJ/EMBL/GenBank under accession 
numbers KF318219–KF318305. Phylogenetic affiliations 
were analysed by constructing maximum likelihood trees, 
and robustness of branches was assessed by 5000 itera-
tions of maximum parsimony bootstrapping. In order to 
compare the gut microbiota of weta to that of other insects, 
all bacterial sequences in the SILVA 111 SSU database 
that were obtained from cockroach or termite guts were 
exported and manually assigned to a host species based 
on the associated metadata. Sequences whose origin could 
not be assigned to (host) species level were discarded. 
Sequence data were then aligned, and unweighted Uni-
Frac distances were calculated between the communities 
using 1000 iterations of subsampling to 30 sequences per 
sample (the smallest group containing 32 sequences). Prin-
ciple coordinate analysis was performed on the resulting 
distance matrix and plotted in the R software environment 
(Team 2012).

For amplicon pyrosequencing, all bioinformatic analysis 
was performed using mothur, following the standard oper-
ating procedure (Schloss et al. 2011), with the exception of 
taxonomic classification. Flowgrams were denoised, and 
sequences were classified against the SILVA SSU database 
(version 119) using the inbuilt naïve Bayesian approach 
(Wang et  al. 2007). Data were split according to domain-
level match (prokaryote or eukaryote), and each group 
was analysed according to the mothur standard operat-
ing procedure using the appropriate alignment databases. 
Taxonomic classification of bacterial sequences was per-
formed by augmenting the SILVA SSU database (version 

119) with the sequences obtained in our clone libraries, and 
then trimming the taxonomic database to the gene region 
sequenced in our pyrosequencing data (Werner et al. 2012). 
Classification was then performed in QIIME using the 
default classification approach. Bacterial data were clus-
tered into operational taxonomic units (OTUs) of 97  % 
sequence similarity for calculating diversity estimators. 
Eukaryotic sequences were clustered by taxonomic classifi-
cation. Following the removal of Metazoa and Viridiplantae 
sequences, which were assumed to be host and food con-
taminants, samples were subsampled to the lowest cover-
age depth and the Shannon diversity estimator and even-
ness index were calculated. Raw flowgrams were uploaded 
to the NCBI Sequence Read Archive under accession num-
bers SAMN02382012–SAMN02382014.

Table 1   Summary of weta gut weight (wet w/w)

Findings are reported both as the absolute gut weight (mg) and as a 
proportion (%) of the total insect weight (brackets). Slight discrepan-
cies between the proportion of the whole gut and the summed total of 
the gut sections of Weta #1 occur due to rounding errors

Sample Weta #1 Weta #2 Weta #3

Whole insect 910 1437 828

Whole gut 228 (25.1) 436 (30.3) 283 (34.2)

Foregut 23 (2.5) 104 (7.2) 32 (3.9)

Midgut 85 (9.3) 121 (8.4) 92 (11.1)

Hindgut 120 (13.2) 211 (14.7) 159 (19.2)
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Fig. 2   Mean bacterial cell density along the length of the weta gas-
trointestinal tract. Samples reported based on FISH probing using 
the EUB338 mix, which targets essentially all known bacterial phyla. 
Cell counts are expressed per gram of gut (wet weight). Error bars 
represent 1 standard deviation
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Results and discussion

Many aspects of weta biology are well studied, but until 
now, their microbiology has not been explored. Here, 
we investigated the gut microbiota of the Auckland tree 
weta using a variety of gene sequencing and microscopy-
based approaches. BLAST analysis of the weta 18S 
rRNA genes identified the insect as being closely related 
to other sequences from the genus Hemideina, with 
high-confidence matches to previously published weta 
sequences obtained from H. crassidens and H. maori 
(100 and 98 % identity, respectively) (Pratt et al. 2008). 
The gut comprised approximately 30  % of the weta’s 
body weight, with the majority of gut mass accounted for 
by the midgut and hindgut (Table 1). Bacterial cell den-
sity was highest in the hindgut, with the lowest bacterial 
densities in the foregut (Fig. 2). As bacterial morphology, 
as visualised by FISH, reveals little regarding the micro-
bial diversity of a community, rRNA gene sequencing 
was utilised to more rigorously interrogate the microbial 
diversity of the weta gut.

Pyrosequencing of rRNA genes yielded a total of 
102,591 reads, identified as 61,998 bacterial and 40,593 
eukaryotic, with a median sequence length of 172 bp. Phy-
lum-level taxonomic identification is reported in Table  2, 
and more detailed taxonomic classifications are provided in 
Table S1. The community of microorganisms present was 
consistent with those of most gut environments, with Firmi-
cutes (59.7 % of all bacterial sequences) and Bacteroidetes 
(26.5  %) dominating among the bacteria. Members of the 
Proteobacteria were also prevalent (6.5 %), with a number 
of less abundant phyla including Elusimicrobia (originally 
described in termites, and often found in insect guts), Ver-
rucomicrobia, and Actinobacteria. Figure  3 displays the 
phylum-level classification of bacteria within the weta gut, 
relative to the microbiota of cockroach and termite guts. A 
small proportion of sequences could not be classified at phy-
lum level (0.7 %), although this number increased at finer 
taxonomic resolution with 4.7 % of sequences unable to be 
classified at the family level and 24.4 % at the genus level, 
using the classification method reported in methods (Table 
S2). Alternate classification approaches were employed, 

Table 2   Relative abundance of the most abundant bacterial taxa in the 16S rRNA gene pyrosequencing data

Values represent the average relative abundance (%) between weta individuals
a  Lineages observed in the clone library data. Detailed description of inter-individual variation and complete phylotype listing is provided in 
Table S1

Phylum Class Order Family Genus Abundance (%)

Actinobacteria Coriobacteria Coriobacteriales Coriobacteriaceae Unclassified 1.8

Bacteroidetesa Bacteroidiaa Bacteroidalesa Bacteroidaceaea Bacteroidesa 11.8

Porphyromonadaceae Dysgonomonas 3.2

Tannerella 1.1

Rikenellaceaea Alistipesa 6.8

3M1PL1-52 termite group Unclassified 0.8

Deferribacteresa Deferribacteresa Deferribacteralesa Deferribacteraceaea Mucispirilluma 0.8

Firmicutesa Bacillia Lactobacillalesa Lactobacillaceae Lactobacillus 2.8

Leuconostocaceaea Weissellaa 15.4

Clostridiaa Clostridialesa Christensenellaceaea Unclassified 1.8

Clostridiaceaea Clostridiuma 8.0

Defluviitaleaceae Incertae Sedis 0.9

Lachnospiraceaea Blautia 0.8

Incertae Sedis 4.4

Unclassified 4.3

Ruminococcaceaea Anaerofiluma 4.5

Anaerotruncus 0.8

Intestinimonasa 2.0

Incertae Sedis 1.2

Unclassified 7.6

Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Incertae Sedis 1.1

Proteobacteriaa Deltaproteobacteriaa Desulfovibrionalesa Desulfovibrionaceaea Desulfovibrioa 3.4

Rs-K70 termite group Unclassified Unclassified 0.9

Verrucomicrobiaa Verrucomicrobiaea Verrucomicrobialesa Verrucomicrobiaceaea Akkermansiaa 1.0
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performing naive Bayesian classification against the base 
SILVA SSU 119 database and the weta-augmented version 
of SILVA SSU 119, but these yielded a high proportion of 
unclassified sequences at phylum level (10.4 and 5.6  %, 
respectively). Those 16S rRNA sequences which could 
not be assigned to phylum level using the QIIME method 
were extracted from the main data set and analysed using 
the NCBI online BLAST tool, comparing these sequences 
to the nucleotide collection (nr/nt) database. All sequences 
were matched to bacterial clone sequences, primarily of Fir-
micutes and Bacteroidetes origins, although a low sequence 
similarity was observed between these matches and the ref-
erence database (~90 % sequence identity, data not shown).

The weta gut community contained a large proportion 
of 16S rRNA gene sequences belonging to the Rumino-
coccaceae (16.7 %) and Lachnospiraceae (10.4 %), bacte-
rial families which are commonly associated with the guts 
of animals such as ruminants, cockroaches, and termites 
(Dietrich et al. 2014; Gosables et al. 2011; Kittelmann et al. 
2013; Meehan and Beiko 2014; Sabree and Moran 2014; 
Thompson et al. 2012). Approximately half of the sequences 

associated with each of these families could not be clas-
sified to genus level using our approach (Table S1). These 
sequences were represented by 663 unique sequences, which 
were extracted from the data set and compared directly to the 
clone library data. The sequences generally exhibited high 
identity to the clone data in the 155 Lachnospiraceae (min-
imum 82.4 %, median 96.2 %, and maximum 100 %) and 
508 Ruminococcaceae (minimum 80.5  %, median 94.0  %, 
and maximum 100  %) sequences were analysed. While it 
is likely that some of these low-identity sequences reflect 
sequencing error, we concluded that the majority of these 
sequence clusters were comprised of high-quality sequences 
that reflect the genuine weta microbiota. The bacterial diver-
sity was consistent among individuals, with Shannon diver-
sity indices approximately equal (WT#1 = 4.5, WT#2 = 4.0, 
WT#3  =  4.0), but representative of an uneven commu-
nity profile in all individuals (Shannon evenness index 
WT#1 = 0.47, WT#2 = 0.41, WT#3 = 0.41).

Although methanogenic archaea perform well-described 
roles in the termite (Ohkuma 2003; Tokura et al. 2000) and 
cockroach hindguts (Gijzen and Barughare 1992; Gijzen 
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Fig. 3   Comparison of weta gut microbiota to that of cockroaches and 
termites. Phylum-level abundances of the dominant bacterial phyla in 
the microbial communities of weta, cockroach, and termite gut sam-
ples. Superscript notation identifies original data from published stud-

ies by Boucias et  al. (2013) (B), Sabree and Moran (2014) (S), Liu 
et  al. (2013) (L) and Zhang et  al. (2014) (Z). Unmarked cockroach 
and termites samples were obtained from Dietrich et al. (2014)
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et al. 1991), we did not observe the presence of methano-
genic lineages, or indeed any archaea, in the weta. Archaeal 
16S rRNA sequences were apparently absent from the 
pyrosequencing data set, and exhaustive efforts to amplify 
full-length archaeal 16S rRNA gene sequences from the gut 
homogenate using a previously reported method were also 
unsuccessful (Webster et al. 2004).

Fig. 4   16S rRNA-based phylogeny of Firmicutes sequences obtained 
from weta gut. Branch lengths were generated using maximum like-
lihood calculations on sequences with length >1200 bp (solid lines) 
using a 50  % conservation filter. Shorter reads were subsequently 
added using the Parsimony Interactive tool in ARB (dashed lines). 
Sequences from this study appear in bold type with the prefix ‘ATW’. 
Bootstrap values were calculated using maximum parsimony with 
5000 samplings. Solid junctions represent a branch with >90 % sup-
port, and hollow junctions >75 %. Scale bar 10 % divergence
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Classification of eukaryotic gene fragments revealed that 
most of the 18S rRNA gene sequences were affiliated with 
the Orthoptera (Table S2). Classifications of representative 
sequences from this group were identified as belonging to 
the genus Hemideina (99 % identity to H. crassidens and 
H. maori) through use of the NCBI online BLAST tool. 
These likely belong to the host itself and therefore were 
not useful in identifying the eukaryotic microbiota of the 
weta gut. In addition, approximately 2.6  % of eukaryotic 
sequence reads from weta were classified as plant mate-
rial (Table S3), which was presumed to be food. Follow-
ing the removal of these 18S rRNA gene sequences, the 
eukaryotic community was of low diversity (mean Shannon 
index  =  0.49), but this may be the result of a large pro-
portion of recovered 18S rRNA gene sequences belonging 
to the host insect, thus drastically lowering the sampling 
depth for the remaining eukaryotic microbes.

The phylogenetic relationship of nearly full-length 16S 
rRNA gene sequences is reported in Figs. 4 and 5, display-
ing members of the Firmicutes and the remainder of the 
bacterial microbiota, respectively. The sequences retrieved 
from the clone library were broadly congruent with those 
obtained by pyrosequencing, though the relative propor-
tions of the various bacterial phyla did differ somewhat. Of 
the 87 long 16S rRNA gene sequences, 62 were affiliated 
with the Firmicutes (71.2 %), with Bacteroidetes compris-
ing 6.9 %, Verrucomicrobia 10.3 %, and Deltaproteobac-
teria 6.9 %. Sequences belonging to the latter were related 

to the genus Desulfovibrio, members of which are capable 
of sulphate reduction. In the absence of measurements of 
sulphur concentrations and/or sulphate reduction rates, one 
can merely speculate as to a potential involvement of these 
bacteria in sulphur cycling within the weta, as has been 
implicated in the guts of other insects (Dröge et al. 2005; 
Sato et al. 2009). Weta-derived sequences appeared to clus-
ter with clone sequences previously obtained from interna-
tionally collected cockroach and termite gut samples (order 
Blattodea), of which some species share a broadly similar 
diet to that of the tree weta. In order to test this relation-
ship, unweighted UniFrac distances were calculated to test 
the phylogenetic membership of the bacterial community 
found in weta, termites, and cockroaches. Weta samples 
appeared to cluster with those from the cockroach Shel-
fordella lateralis and the soil- and fungus-feeding termites 
(Fig. 6). The single exception to this observation was that 
of the bacterial community associated with the drywood 
termite Coptotermes formosanus, although it is noted that 
this termite builds nests in the soil, which may influence 
the gut microbiota (Cabrera et al. 2005). When considering 
the distant phylogenetic relationship and broad geographic 
distribution of the insects sampled, we speculate that this 
clustering could reflect the influence of diet on the gut 
microbiota of these insects. Samples obtained from wood-
feeding termites form clusters separate from samples of 
insects with different diet.

In summary, we have performed the first analysis of 
the gut microbiota of tree weta. We have shown that the 
gut of the Auckland tree weta harbours a diverse bacterial 
community of varying density along the gastrointestinal 
tract. In addition, we have shown that the weta gut micro-
biota is broadly similar to that of the cockroach and some 
termites, potentially suggesting a convergence of the gut 
microbiota.
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