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Abstract We explored the molecular diversity of cyto-
chrome P450 genes in the filamentous fungus Aspergillus
oryzae using bioinformatic and experimental approaches.
Based on bioinformatic annotation, we found 155 putative
genes of cytochromes P450 in the whole genome sequence;
however, 13 of 155 appeared to be pseudogenes due to
sequence deletions and/or inframe stop codon(s). There are
87 families of A. oryzae cytochromes P450 (AoCYPs),
indicating considerable phylogenetic diversity. To charac-
terize A. oryzae AoCYPs, we attempted to isolate cDNAs
using RT-PCR and determined their transcriptional capabil-
ities. To date, we have confirmed gene expression of 133
AoCYPs and cloned 121 AoCYPs as full-length cDNAs
encoding a mature open reading frame. Using experimen-
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tally deduced sequences and intron—exon organization, we
analyzed AoCYPs phylogenetically. We also identified
intronic consensus sequences in AoCYPs genes. The exper-
imentally validated exonic and intronic sequences will be a
powerful advantage in identification and characterization of
novel P450s from various ascomycetous fungi.
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Introduction

Cytochromes P450 (P450s) constitute a large superfamily
of heme-containing monooxygenases, which are distributed
in a wide variety of organisms. The large-scale molecular
variations among P450 species imply an evolutional trajec-
tory in which a common ancestor extensively branched into
various organisms (Gotoh 1993; Nelson et al. 1993; Lewis
et al. 1998). The vast majority of P450s are thought to have
specifically emerged and individually diversified during
evolution of each organism. For instance, only CYP5I,
which is involved in the sterol biosynthesis pathway, is
conserved across eukaryotic phyla (Yoshida 1993; Aoyama
et al. 1996). Thus, the molecular and functional diversities
of P450s enable specialization to meet the metabolic
requirements of each organism, especially secondary meta-
bolic pathways such as detoxification of xenobiotics and
synthesis of secondary metabolites (Ortiz-de-Montellano
2005; Demain and Fang 2000). However, the degree of
P450 divergence, such as the numbers of genes and gene
families, differs significantly across biological kingdoms,
phyla, and species. Such divergences presumably reflect an
evolutionary driving force to develop survival strategies
(Nelson 1999). In particular, the scale of divergence of
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P450s within the fungal kingdom is unprecedented (Park
etal. 2008; Deng etal. 2007; Doddapaneni et al. 2005;
Intikhab et al. 2007). In spite of their high sequence diver-
sity, P450s share conserved overall protein architecture and
contain several conserved sequences, such as the FxxGxxx-
CxG signature motif. Such motifs can be used to discover
novel genes from genomic databases. Within the last
few years, the sequence database of P450s has enlarged
exponentially, and continues to increase (http://drnelson.
utmem.edu/CytochromeP450.html;  http://p450.riceblast.
snu.ac.kr/index.php?a=view; Park et al. 2008). A compila-
tion of P450 sequences will increase understanding of
metabolic diversity and evolutionary history of living
organisms. However, there are few detailed studies on
transcriptional profiles and catalytic functions of P450s in
metabolic processes, so their exact roles and functions are
still poorly understood.

A wide variety of filamentous fungi is used to produce
economically valuable consumer items. The filamentous
fungus Aspergillus oryzae is one of the most widely used
microorganisms, and has been used for more than
1,000 years in Japanese fermentation industries to produce
indigenous products such as sake (rice wine), miso (soy-
bean paste), and shoyu (soy sauce). Because of the long his-
tory of use in fermentation and food production, A. oryzae
is listed as “generally recognized as safe” by the food and
drug administration in the United States. Besides fermenta-
tion technologies, many studies on production of recombi-
nant enzymes and primary and secondary metabolites have
focused on A. oryzae (Tailor and Richardson 1979; Abe
et al. 2006). Recently, the whole genomic sequence of A.
oryzae (strain RIB40) was determined and made available
to the public (Machida et al. 2005). A. oryzae has eight
chromosomes with a total genome size of 37.6 Mb, which
is 20-30% larger than the genomes of A. nidulans and A.
fumigatus. In total, there are 12,074 predicted genes in A.
oryzae, compared with 9,396 in A. nidulans and 9,009 in A.
fumigatus (Machida et al. 2005; Galagan et al. 2005; http://
www.bio.nite.go.jp/dogan/Top). The increased gene num-
ber in A. oryzae is mainly due to a gain of extra genes
involved in secondary metabolic pathways, including
P450s, suggesting that A. oryzae has unique metabolic pro-
cesses that are absent in other Aspergillus species. Thus,
genomic data will increase molecular understanding of pre-
viously uncharacterized metabolic processes in A. oryzae.

In the present study, we explored the molecular diver-
sity of A. oryzae P450s (AoCYPs) using a bioinformatic
annotation and experimental validation. To our knowl-
edge, this is the first comprehensive transcriptional survey
of ascomycetous P450s. The identified and isolated AoC-
YPs have potential benefits to improve bioinformatic
algorithms, expand biochemical knowledge, and advance
biotechnology.
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Materials and methods
Microorganism and culture conditions

Aspergillus oryzae strain RIB40 (NBRC 100959) was cul-
tured on YPD/agar plates (1% yeast-extract, 2% bacto-pep-
tone, 0.04% adenine sulfate, 2% glucose, 1.5% bacto-agar)
at 30°C for 3 days, and then inoculated into synthetic cul-
ture media as described previously (Kirk et al. 1978). The
synthetic media contained 1% glucose, 1.2 mM (nitrogen-
limited conditions) or 12 mM (nitrogen-enriched condi-
tions) ammonium tartrate, 20 mM dimethylsuccinate (pH
4.5), and trace elements (100 mL/L culture). The trace
elements (1 L) contained 20 g KH,PO,, 5.3 g MgSO,7H,0,
1.3 g CaCl,2H,0, 10 or O mg thiamine hydrochloride,
150 mg N(CH,COOH),, 18 mg CoSO,7H,0, 18 mg ZnSO,
7H,0, 1 mg CuSO,5H,0, 1.8 mg AIK(SO,)12H,0, 1 mg
H;BO;, 70 mg MnSO,5H,0, 10 mg FeSO,7H,0, 100 mg
NaCl, and 1 mg Na,MoO,2H,0. Fungal cells were grown
with shaking (130 rpm) at 30°C for 2-21 days under
aerobic conditions.

RNA extraction and first-strand cDNA synthesis

Total RNA was extracted individually from 5-, 10-, 18-,
and 21-day-old mycelia using the acid guanidinium—phe-
nol—chloroform method and further purified using an RNe-
asy Plant Mini Kit (QIAGEN). The concentration of RNA
was calculated from the absorbance at 260 nm. Equal quan-
tities of RNA isolated from mycelia of the four different
ages were then mixed. The RNA cocktail was treated with
DNase I (Takara), and first-strand cDNAs were synthesized
with SUPERSCRIPT III™ reverse transcriptase (Invitro-
gen) in the presence of oligo(dT) primer (5'-TTTT
TTTTTTTTTTTTTTV-3"; V=A, C, or G). The reaction
mixtures (50 pL) contained 5 pg total RNA, 200 units
SUPERSCRIPT™ III reverse transcriptase (Invitrogen), 40
units RNase-Out (Invitrogen), 4 mM DDT, 0.4 mM dNTPs,
and 25 pmol oligo(dT) primer in 1x first strand buffer, and
were incubated at 50°C (60 min) for the extension reaction.
The reaction mixtures were stored at —20°C until PCR
amplifications.

Bioinformatic annotation of P450 from A. oryzae

A possible coding sequence for AoCYPs was used to
search the National Institute of Technology and Evaluation
database based upon sequence similarity to known P450s
(http://www.bio.nite.go.jp/dogan/Top). To evaluate annota-
tion accuracy, we identified the P450 signature sequence
(F-x-x-G-x-x-x-C-x-G) in the heme-binding domain, the E-
x-x-R motif in the K-helix, a conserved Thr in the center of
the I-helix, and the hydrophobic transmembrane domain
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(TMD) at the N-terminal region. TMD sequences were ana-
lyzed by the SOSUI (http://bp.nuap.nagoya-u.ac.jp/sosui/)
and the TMHMM server v.2.0 (http://www.cbs.dtu.dk/
servicessTMHMMY/). If candidates lacked sequences corre-
sponding to these regions, their capability to encode P450
was judged by overall sequence similarity to known P450s.

cDNA amplification by RT-PCR

PCR amplification were carried out using gene-specific
primers designed to anneal to 5'- and 3'-untranslated
regions; basically, to the 2-30 bp upstream or downstream
flanking sequence from the putative start and stop codons
(Supplemental Table). Custom-synthesized oligonucleotide
primers were obtained from SIGMA-ALDRICH. cDNA
was amplified by Phusion DNA polymerase (New England
Biolabs). The reaction mixture (50 pL) contained first-
strand cDNA solution (1 pL), dNTP (200 uM), primers
(2 uM each), DMSO (2%), and Phusion DNA polymerase
(0.02 U/uL) in Phusion HF buffer. The reaction conditions
were programmed as follows: denaturation at 96°C for
3 min; 40 cycles of 96°C for 30 s, 55°C for 20 s, and 72°C
for 60 s; and final extension at 72°C for 2 min. The PCR
products were separated by 1.5% agarose gel electrophore-
sis and visualized on a UV-transilluminator. Target cDNAs
were purified using a QIAquick Gel Extraction Kit
(QIAGEN), phosphorylated with T4 polynucleotide kinase
(TaKaRa), cloned into the pUCI18 Smal site, and trans-
formed into Escherichia coli strain JM109. Positive trans-
formants were selected on LB-agar plates containing
ampicillin (100 mg/L), IPTG (100 mg/L), and X-gal
(100 mg/L). The positive clones were further grown in LB
medium supplemented with ampicillin (100 mg/L). Plas-
mids harboring AoCYP cDNA were extracted using a QIA-
prep Spin Miniprep Kit (QIAGEN) and sequenced with an
automated DNA Sequencer (CEQ 8000; Beckman) using a
DTCS Quick Start Kit (Beckman).

Validation of alternative splicing events

Total RNA was recovered from fungal cells grown in syn-
thetic medium with or without exogenous thiamine (0 or
1 mg/L). RT-PCR was then carried out using SUPER-
SCRIPT III™ reverse transcriptase and Phusion DNA
polymerase. The cDNA fragment of CYP5076C1 was
amplified by gene specific primers, primer-1 (5'-ATGG
ATATCAAGGAAAAGCCGA-3'), primer-2 (5'CTATA
TAGCACGTTTTTGAAAGTGTA-3"), and primer-3 (5'-A
GGTCGGCAAGCTTGCG-3'). The reaction mixture
(50 pL) contained first-strand cDNA solution (1 L), ANTP
(200 uM), primers (2 M each), DMSO (2%), and Phusion
DNA polymerase (0.02 U/uL) in Phusion HF buffer. The
PCR products were separated by 1.5% agarose gel electro-

phoresis, stained with GelStar® Nucleic Acid Stain

(TaKaRa), and visualized using Molecular Imager FX (Bio-
Rad). cDNA fragments were purified, cloned into the
pUCI18 plasmid, and sequenced.

Sequence alignment and phylogenetic analysis

Multiple alignment of AoCYPs was carried out using the
ClustalW program with a gap penalty of 10, a gap exten-
sion penalty of 0.2, and GONNET as protein matrix series
(Thompson et al. 1994). The phylogenetic tree was con-
structed by the Unweighted Pair Group Method with
Arithmatic Mean (UPGMA) method with the Jones-Taylor-
Thornton matrix using PHYLIP software (Felsenstein
1989), and visualized using the FigTree program.

Results and discussion

Genome-wide survey and molecular identification
of AoCYPs

The filamentous fungus A. oryzae has eight chromosomes
with an entire genome size of 37.6 Mb (Machida et al.
2005). The whole-genome sequence of A. oryzae strain
RIB40 was released recently (http://www.bio.nite.go.jp/
dogan/Top). According to the public database, there are
several candidate genes assigned to P450s. However, some
candidates have low sequence similarity to P450s but sig-
nificantly higher similarity to other proteins, suggesting that
annotational errors may be involved (data not shown). Sev-
eral candidates have unexpected truncations of their N-
and/or C-terminal sequence(s). Therefore, we further
refined gene annotation accuracy based on the following
sequence features: (1) conservation of F-x-x-G-x-x-x-C-x-
G in the heme-binding domain, (2) conservation of E-x-x-R
in the K-helix, (3) A/G-G-x-x-T at the center of the I-helix,
and (4) a hydrophobic transmembrane domain (TMD) at
the N-terminal region. After searching the database, 155
putative genes of P450 were identified from the whole-
genome sequence (Fig. 1). However, sequence deletions
and/or inframe stop codon(s) were found in 13 genes, sug-
gesting that they are possibly pseudogenes that have origi-
nated from gene reorganizations and/or single mutations
during fungal evolution (Fig. S1). Although some pseudo-
gene-like AoCYPs were expressed, sequence deletions and/
or inframe stop codon(s) were also verified from their tran-
scripts by 3’- and 5'-RACE (Forhman 1993) and RT-PCR
analyses (data not shown). Therefore, 142 AoCYPs from
the A. oryzae genome were selected for further investiga-
tion.

According to the P450 nomenclature committee, fami-
lies share greater than 40% identity, and subfamilies share
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Fig. 1 Chromosomal localization of cytochrome P450 in Aspergillus oryzae. PG pseudogene

greater than 55% identity of amino acid sequences. The
numbers following the root symbol CYP indicate the fam-
ily and letters indicate the subfamily (Nelson et al. 1996).
Based on sequence comparisons, 142 AoCYPs were
assigned into 87 families. There were significantly more
A0CYP genes than in other ascomycetous fungi, e.g., 122
in Magnaporthe grisea, 107 in Fusarium graminearum, 41
in Neurospora crassa, and 111 in A. nidulans (Deng et al.
2007; Kelly etal. 2008). A possible explanation for the
marked increase in gene number may be that fungal P450s
continuously diversified after separation of genuses, and
perhaps after speciation as well, indicating that sequences
diversified within a short evolutionary period (Deng et al.
2007). During the evolutionary history of Aspergillus spp.,
A. oryzae would have vigorously expanded its genome size
to gain extra genes by horizontal gene transfer and duplica-
tion. For instance, both gene number and genomic size are
25-30% larger in A. oryzae than in A. nidulans and A.
fumigatus. The extra genes are likely to be involved in sec-
ondary metabolism (Machida et al. 2005). Therefore, the
substantial increase in P450 gene number might indicate
adaptation to the specific metabolic requirements of A. ory-
zae (http://www.aspergillus.org.uk/index.html). In fact,
several AoCYPs were located near genes involved in bio-
synthesis of secondary metabolites, such as polyketide syn-
thase and non-ribosomal peptide synthase. For example,
CYP655B1 and CYP5286A1 are flanked by polyketide

@ Springer

synthase (protein ID; BAE56814.1) within 19 kbp distance
on chromosome II, CYP5110A1 and CYP577A1 are
flanked by polyketide synthase (protein ID; BAE58990.1)
within 22 kbp distance on chromosome III, and
CYP5099A1 is flanked by isopenicillin N synthase (protein
ID; BAE56800.1) and non-ribosomal peptide synthase
(protein ID; BAE56801.1) within 19 kbp distance on chro-
mosome II. On the other hand, the genome of A. oryzae is
strikingly similar to that of A. flavus; A. flavus has 12,197
genes in its 36.8 Mb genome (Payne et al. 2006). The pres-
ence of 159-167 A. flavus P450s has also been revealed by
genomic annotation (Park etal. 2008; http://drnelson.
utmem.edu/CytochromeP450.html, http://p450.riceblast.snu.
ac.kr/index.php?a=view). Sequence comparisons indicated
that 138 of the P450s in A. oryzae and A. flavus show
orthologous relationships, sharing amino acid sequence
identities of more than 95%. This raises the question as to
whether the P450s of both species exhibit similar transcrip-
tional and functional profiles. In contrast, 16 species were
found in A. oryzae but not in A. flavus. Some of these 16
AoCYPs were located within 20 kbp distance, suggesting
that a cluster of secondary metabolism genes has developed
specifically in A. oryzae. In fact, CYP5119A1, CYP65AGI,
CYP65AEI, and CYP5098A1 are distributed within an 18-
kbp region on chromosome III, and are flanked by several
metabolic genes such as the non-ribosomal peptide syn-
thase module (Protein ID; BAE60013.1), which is also
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absent from A. flavus. Because CYP5119 is an orphan fam-
ily that is only found in A. oryzae, the related gene cluster
might play important roles in a secondary metabolic pro-
cess that is unique to this fungus.

Insights into conserved sequences of AoCYPs

The protein architecture of P450s is generally well con-
served, even though they show considerable sequence
divergence (Graham and Peterson 1999). Structural conser-
vation is presumably important for fundamental aspects of
P450 activity, such as heme binding, acceptance of elec-
trons, and activation of molecular oxygen. Therefore, the
classical P450s contain conserved sequences that shape the
core structure. The most characteristic P450 consensus
sequence, F-x-x-G-x-x-x-C-x-G, is found in the heme-bind-
ing domain, where the conserved Cys serves as the fifth
axial ligand to the heme. Consequently, we identified 142
AoCYPs-containing proximal Cys residues in the heme-
binding domain. In addition, several possible functions of
conserved amino acid residues have been proposed: (1) the
first amino acid is Phe, whose phenyl group appears to pro-
tect the reactive cysteine ligand, (2) the fourth Gly appears
to initiate the hairpin turn in the loop, and (3) the tenth Gly
is small enough to come in close contact with the heme
(Ortiz-de-Montellano 2005; Koymans et al. 1993). Amino
acid substitutions in the heme-binding domain were identi-
fied from some AoCYPs, such as the first Phe to Trp/Tyr in
11 species and the tenth Gly to Ala in seven species; never-
theless, no significant detrimental effects on catalytic func-
tions might be introduced due to their physicochemical
characteristics similar to those in classical P450s. However,
rare substitutions were found in several AoCYPs, such as
the first Phe to Val (CYP5097A1) or Leu (CYP5116A1),
and the fourth Gly to Ser (CYP660C1 and 660C2) or Trp
(CYP5099A1), suggesting possible involvement of a
unique and novel heme-binding feature in those AoCYPs.
Moreover, a multiple alignment revealed that CYP5102A1
contained a substantially altered signature sequence, L-S-T-
S—I-N-D-C-P-K. Although there is a paucity of literature
on biochemical and functional characterization of fungal
P450s, further research on AoCYPs could clarify the pecu-
liar reaction mechanisms associated with unique sequences.

The core structure of the proximal side of P450s is addi-
tionally stabilized by a consensus sequence of ExxR in the
K-helix and a coil known as the “meander” located between
the K-helix and the heme-binding domain (Hasemann et al.
1995; Chen and Zhou 1992). The characteristic ExxR
sequence is always conserved, and a possible “meander”
sequence, normally PER, was found in each of the AoC-
YPs. In addition to the proximal side, many P450s have a
conserved Thr residue in the distal I-helix that shapes the
oxygen binding pocket, stabilizes the iron-oxo intermedi-

ate, and facilitates heterolytic cleavage of the O—-O bond
(Poulos etal. 1987; Koymans etal. 1993). A multiple
alignment analysis revealed that 107 AoCYPs contain the
Thr residue in the I-helix and nine AoCYPs substituted Thr
to Ser at the appropriate position. It is possible that both
OH-containing Thr and Ser exhibit the same function with
regard to oxygen activation. However, neither Thr nor Ser
was identified in the I-helix in 38 AoCYPs, suggesting pos-
sible involvements of unique reaction mechanisms. It has
been known that some P450s such as plant allene oxide
synthase (CYP74 family) and human prostaglandin I, syn-
thase (CYP8 family), which lack conserved Thr, catalyze
isomerization reactions of hydroperoxide compounds
(Howe etal. 2000; Ullrich 2003). Thus, abnormal
sequences in AoCYPs would be an attractive target to bet-
ter understand the unique structural and mechanistic char-
acteristics of P450s.

Membrane topology of AoCYPs

Most eukaryotic P450s are likely to have an N-terminal
TMD sequence, which is responsible for subcellular locali-
zation to the endoplasmic reticulum (Nelson and Strobel
1988). A typical TMD contains 20-30 hydrophobic amino
acid residues that shape a helical structure as a membrane
anchor. The TMD-associated subcellular localization to
membranes should also be important for protein—protein
interactions with the membrane-anchored cytochrome P450
oxidoreductase (CPR), which is the common redox partner
of eukaryotic P450s. A possible TMD was distinguished
from 133 AoCYPs using SOSUI and TMHMM servers
(Hirokawa et al. 1998; http://bp.nuap.nagoya-u.ac.jp/sosui/;
http://www.cbs.dtu.dk/servicessy TMHMMY/), suggesting that
most AoCYPs localize to the endoplasmic reticulum. A
well-known soluble nitric oxide reductase (P450nor,
CYP55A5) lacks the N-terminal TMD sequence (Nakahara
etal. 1993). On the other hand, a distinctive N-terminal
TMD was not found in several AoCYPs assigned to the
P450 family CYP505 (CYP505A3, 505C3, and 505A14),
CYP540 (CYP540A3, 540B9, and 540B10), CYP541
(CYP541B3), and CYP5053 (CYP5053C1). The CYP505
family contains self-sufficient P450s fused with a reductase
domain, such as P450foxy, which lacks a distinctive TMD
but is capable of loosely binding to the membrane (Kitaz-
ume et al. 2000; Nakayama et al. 1996). This suggests that
AoCYPs assigned to the CYP505 family might also be
expressed in membrane fractions. The CYP541 and
CYP540 families are phylogenetically close to the CYP505
family even though they lack the reductase domain. These
families probably emerged via disconnection of an ances-
tral fusion P450. If they are not membrane-bound proteins,
the membrane-anchored CPR should still weakly transfer
electrons CYP540 and CYP541 families. In A. oryzae, we
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Fig. 2 Transcriptomic survey of AoCYPs encoded on chromosome
V1. a Effects of culture conditions on gene expression of AoCYPs. RT-
PCR was carried out using total RNA extracted from A. oryzae grown
for 5 days in YPD liquid culture medium (Lanes 1-10) or 10 days in a
nitrogen-limited synthetic liquid culture medium (Lanes 11-20).
cDNA fragments of CYP51F4 (Lanes 1 and 11), CYP58F1 (Lanes 2
and /2), CYP58G1 Lane (Lanes 3 and 13), CYP505C3 (Lanes 4 and
14), CYPS31El (Lanes 5 and 15), CYP5080E1 (Lanes 6 and 16),
CYP5087B1 (Lanes 7 and 17), CYP5106A1 (Lanes 8 and 18),
CYP5107A1 (Lanes 9 and 19), and CYP5114A1 (Lanes 10 and 20)

also annotated TMD-containing and TMD-lacking CPRs
and evaluated their gene expression (Figs. S2, S3). The
possession of both TMD-containing and TMD-lacking
CPR would be advantageous to interact with various AoC-
YPs as a redox partner (Lah et al. 2008).

Transcriptomic survey of cytochromes P450 from A. oryzae

The current sequence database of P450s exponentially
enlarged as a result of several genome projects (http://
drnelson.utmem.edu/CytochromeP450.html;  http://p450.
riceblast.snu.ac.kr/index.php?a=view; Park et al. 2008). In
addition to bioinformatic studies, experimental approaches
are also necessary to evaluate practical applications in a
post-genomic era. In this study, our principal aim was to
isolate and characterize full-length cDNAs to clarify tran-
scriptional capabilities of AoCYPs. Expression profiles of
genes involved in secondary metabolic systems of A. ory-
zae are very likely to be affected by cultivation conditions

@ Springer
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were separated by 1.5% agarose gel electrophoresis, stained with Gel-
Star® Nucleic Acid Stain (TaKaRa), and visualized using Molecular
Imager FX (BioRad). Lane M was loaded with a DNA marker. Arrows
indicate amplified cDNA of AoCYPs. Primer sequences are listed in
Supplemental Table. b Time course of gene expression in a nitrogen-
limited synthetic liquid culture medium. RT-PCR was performed with
total RNA individually extracted from A. oryzae grown for 5, 10, 18,
or 21 days in a nitrogen-limited synthetic liquid culture medium. Ana-
lytical procedures were same as that for Fig. 2a

(Tamano et al. 2008; Machida et al. 2005). Therefore, we
used YPD and synthetic liquid culture media for fungal
growth (detailed in materials and methods). Figure 2 shows
expression profiles of AoCYPs encoded on chromosome
VI. When fungi were grown in YPD liquid culture medium,
many genes were not amplified by RT-PCR, whereas some
genes such as CYP51 and CYP58 families were confirmed
to be expressed (Fig. 2a). No significant gene expression
was also observed in a synthetic liquid culture medium
under nitrogen-rich conditions (data not shown). P450s
classified in CYP51 family are highly conserved across
diverse organisms, and play important roles in steroid
metabolism. Although CYP58 family in Fusarium spp. has
been shown to be involved in biosynthesis of secondary
metabolites, metabolic pathways associated with CYP58
family might also be important for fungal cells because a
wide variety of fungal species possess homologous genes
(Hohn et al. 1995; http://drnelson.utmem.edu/CytochromeP
450.html;  http://p450.riceblast.snu.ac.kr/index.php?a=view).
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Table 1 continued

Transcript

NA (bp) AA

Accession Contig Location

Transcript Chromosome Name
number

NA (bp) AA

Accession Contig Location

number

Chromosome Name

(residue)

(residue)

FL
FL
FL

445
546
552
573

CYP5102A1 ABS514789 SC103 1128173-1129610 1,338

FL
FL
FL
FL
FL

509
510
498
500
534

AB514720 SC020 1735772-1734027 1,530

CYP531EL

CYP5101A1 ABS514788 SC103 1243582-1241748 1,641

1,533
1,497

CYP5087B1 AB514779 SC038 241250-239612

CYP58G1

CYP5075A1 ABS514774 SC103 1244215-1245996 1,659

AB514694 SC038 500696-498976

AB514693 SC038
CYP5106A1 AB514790 SCI138 137250-139040

CYP5100A1 ABS514787 SC103 1252988-1254893 1,722

1,503
1,605

531961-530249

CYP58F1

The name of CYP was assigned by P450 nomenclature committee. AoCYPs isolated as full-length cDNA were listed with accession number. Non-expressed and frame-shifted AoCYPs were listed with
protein ID assigned for predicted sequence (http://www.bio.nite.go.jp/dogan/Top). Contigs are listed at DOGAN (http://www .bio.nite.go.jp/dogan/Top). NA and AA indicate length of nucleic acid of cDNA

and deduced amino acid, respectively. The type of transcript was indicated as FL for full-length cDNA, FS for frame-shifted cDNA, and NE for not-expressed gene

Thus, we expected that AoCYPs involved in housekeeping
pathways would be expressed in YPD and nitrogen-rich
synthetic culture media. In contrast, a series of AoCYP
genes were strongly expressed when A. oryzae was grown
in a synthetic liquid culture medium under nitrogen-limited
conditions (Fig. 2a), suggesting that transcriptional regula-
tion of AoCYP responds to nitrogen limitation or starva-
tion. Previously, P450-dependent metabolic pathways in
white-rot basidiomycetes such as Phanerochaete chrysos-
porium and Coriolus versicolor have been shown to be acti-
vated under nitrogen-limited conditions (Ichinose et al.
1999; Matsuzaki and Wariishi 2004). Thus, there may be a
unique mechanism that activates the fungal secondary met-
abolic system during nitrogen limitations. Although AoC-
YPs encoded on chromosome VI showed different time
course of gene expression, a significant expression level of
AoCYPs appeared after 5 days incubation and continued
until 21 days incubation (Fig. 2b). Therefore, amplification
and isolation of cDNAs by RT-PCR were carried out using
a RNA cocktail which was prepared by mixing total RNA
obtained from 5-, 10-, 18-, and 21-day-old mycelia grown
in a synthetic liquid culture medium under nitrogen-limited
conditions.

Using an RT-PCR technique, we determined transcrip-
tional capabilities of 133 AoCYPs experimentally
(Table 1). To our knowledge, this is the first report of
experimental validation of AoCYPs expression, and our
results provide evidence that a series of P450s can be
expressed in ascomycetous fungi. So far, we isolated 121
full-length cDNAs encoding a mature open reading frame.
Identification of these clones will be an advantage for gen-
erating recombinant systems, which can contribute to char-
acterization and practical applications of AoCYPs. In
addition, the experimentally deduced sequences will
improve bioinformatic algorithms; in fact, we identified
several mature AoCYPs with novel intron/exon boundaries,
which were unexpected and miss-annotated in the database
(http://www .bio.nite.go.jp/dogan/Top). The isolated and
predicted cDNA sequences of 142 AoCYPs are listed in
Figures S2 and S3. Interestingly, our results showed that
several AoCYPs were alternatively spliced in response to
different culture conditions. For example, CYP5076C1 was
spliced to produce frame-shifted variants when A. oryzae
was grown with exogenously added thiamine, while it was
differently spliced to produce a mature variant when grown
without thiamine (Fig. 3). Although further investigations
are required to confirm whether exogenous thiamine
directly affects splicing events, our results strongly suggest
that unique splicing mechanisms, such as riboswitching,
might be involved. In our experimental conditions, we iso-
lated 12 immature AoCYPs whose open reading frames
were shifted by illegal splicing events. Their functional
expression might also be regulated by sophisticated maturation

@ Springer
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A B Alternative exon 1 Intron 1 Intron 3
Intron 2 Intron 4
Genome — N NIRRT
—_ «— -
Primer-1 Primer-3 Primer-2
— ‘ Alternative splicing

1550 b Fragment-3
1400 bg e e (3.8.‘.‘. !’.’.)2 ..... Stop codon

Variant-1 T T ——— poly(A)
1000 bp e 7 »TAG

RF
750 bp — °
Fragment:3 Fragment-2
500 bp — Fragment-2 v o ( .3.1.8..1).‘.).)...; Stop codon poly(A)
- iant- I T —
400 bp Fragment-1.. L arian o o
300 bp — ORF
200 bp — Fragment-1
4(269bp)» Stop codon
Variant-3 I —y——poly(n)

Fig. 3 Thiamine-dependent alternative splicing of AoCYP. a Alterna-
tive splicing of CYP5076C1 analyzed by RT-PCR. RT-PCR was car-
ried out using total RNA extracted from A. oryzae grown for 18 days
in a thiamin-containing synthetic liquid culture medium (Lanes I and
3) or thiamin-free synthetic liquid culture medium (Lanes 2 and 4).
Lanes 1 and 2 were loaded with PCR products amplified by primer-1

mechanisms at a post-transcriptional stage (Winkler et al.
2002; Cheah et al. 2002; Kubodera et al. 2003; Thore et al.
2006). Thus, a combination of quantitative and qualitative
transcriptional profiling of AoCYPs is very important to
understand physiological impacts on fungal metabolic
activities.

Several Aspergillus spp. are known to produce poly-
ketide derivatives, i.e., aflatoxins, which have serious
toxic, mutagenic, and carcinogenic activities. However,
the non-aflatoxigenic status of A. oryzae has been firmly
established, because the aflatoxin biosynthesis pathway
is inactivated. CYP64Al, a gene homolog involved in
the aflatoxin biosynthesis pathway in A. flavus (Prieto
and Woloshuk 1997), was transcriptionally silent in the
synthetic culture medium in which a number of AoCYPs
were expressed. This result is consistent with the inabil-
ity of the fungus to produce aflatoxin. However, A. ory-
zae expressed seven AoCYPs assigned to the CYP620
family, which is phylogenetically close to the CYP64
family, suggesting a possible involvement of another
polyketide biosynthesis pathway. In terms of human
health and economically important products, polyke-
tides have both positive (e.g., antibiotics and cancer
therapeutic drug) and negative (e.g. mycotoxin) effects.
Therefore, further investigations on their catalytic func-
tions would be of great interest to better understand the
safety and capabilities of this fungus (Barbesgaard et al.
1992; Machida et al. 2008).

@ Springer

and primer-2. Lanes 3 and 4 were loaded with PCR products amplified
by primer-1 and primer-3. Fragments 1, 2, and 3 are illustrated in
Fig. 3b. b Variant-1 was obtained from thiamin-free media. Variant-2
and variant-3 were obtained from thiamin-containing media. Columns
indicate exons and introns. Lines indicate untranslated region. ORF
indicates open reading frame

Phylogeny and gene structure of cytochromes
P450 in A. oryzae

Evolutionary histories of eukaryotic genes involve various
trajectories such as gains and losses of introns. Although
mechanisms and contributions of intron gain/loss events
remain elusive, fossil aspects of introns can be helpful to
unravel the dynamics of gene evolution. Figure 4 shows the
phylogenetic tree and intron—exon organization of AoCYPs
accurately constructed with experimentally deduced
sequences. Multiple alignments of the deduced sequences
and intron—exon structures revealed phylogenetic diversity
of AoCYPs. Intron—-exon organizations of P450 genes are
generally conserved in plants, animals, and basidiomyce-
tous fungi (Doddapaneni et al. 2005; Paquette et al. 2000;
Tijet et al. 2001). The extremely diverse gene structure of
AoCYPs might indicate that AoCYPs have emerged from a
number of parent genes in the fungal ancestor (Deng et al.

Fig. 4 Phylogenetic tree and gene structures of AoCYPs. Phyloge-
netic tree was constructed by UPGMA methods using experimentally
deduced sequences of isolated AoCYPs and bioinformatically pre-
dicted sequences for non-isolated cDNAs. Gene structures of AoCYPs
were illustrated by solid line for full-length gene, dashed line for
frame-shifted gene, and dotted line indicates non-expressed gene.
Green circle, blue diamond, and red square indicate phase-0 intron,
phase-1 intron, and phase-2 intron, respectively. Self-sufficient
CYP505A3, 505A14, and 505C3 show catalytic P450 domain but not
reductase domain
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Fig. 5 Sequence conservation and molecular aspects of AoCYP in-
trons. a Consensus sequences around 5'- and 3'-ends of intron. A, G,
T, and C indicate adenosine, guanosine, thymidine, and cytidine,
respectively. R and Y indicate purine nucleosides (A or G) or pyrimi-

2007). The phylogenetic analysis also suggested an evolu-
tionary trajectory in which gene duplication events were
restricted in A. oryzae. This suggests that molecular mecha-
nisms such as repeat-induced point mutations (RIP) may be
involved (Galagan et al. 2003; Ikeda et al. 2002; Montiel
et al. 2006). However, it appeared that several CYP fami-
lies were generated or enlarged by evolutionary duplica-
tion, and some AoCYPs in such families were not
expressed. Although RIP-like phenomena in A. oryzae are
poorly understood, we can suggest a hypothetical scenario
in which some AoCYPs are transcriptionally silenced by
RIP-like mechanisms. For instance, the considerable simi-
larities of sequences and gene structures between CYP64
and CYP620 families indicate evolutionary duplication
events; however, CYP64A1 was not expressed under our
experimental conditions, whereas CYP620 was abundantly
expressed (Fig.4). Recently, clan-level classification has
been proposed for a higher order grouping of P450 fami-
lies. The main concept of this analysis is that genes within a
clan share a common ancestor gene and catalytic functions
(Nelson 1998, 1999). Although common parameters for
clan membership have not been clearly defined, CYP64 and
CYP620 families would be classified into the same clan
because these families were branched on a neighbor-joining
tree with bootstrap values >70% (Deng et al. 2007). Since
the isolated cDNAs of AoCYPs would be a powerful

@ Springer

dine nucleosides (G or T), respectively. D indicates A, G, or T. Asterisk
indicates conserved T in lariat sequence. Undiscriminated nucleotides
for lariat sequences are listed as ND. b Distribution of introns length.
¢ Distribution of distance for conserved T in lariat sequence

advantage to facilitate downstream applications such as
functional characterization using recombinant enzymes,
further research on AoCYPs should aim to clarify the rela-
tionships between phylogeny and functions.

To better understand the molecular aspects of AoCYPs,
we analyzed 371 intronic sequences in 121 experimentally
validated AoCYPs. The average number of introns was 3.3
in each AoCYP gene, which is higher than the overall aver-
age 1.9 among all A. oryzae genes (Wang et al. 2008). The
average intron length was 63 bp, twofold shorter than the
overall average length among all A. oryzae genes (Wang
et al. 2008). These data suggest that AoCYPs genes were
organized more vigorously than other genes in A. oryzae.
The vast majority of introns conserved the dinucleotide GT
at their 5'-end and AG at their 3'-end (Fig. 5a). In addition,
the penultimate position from the 3’-end of introns was a
pyrimidine nucleotide, and there was significant nucleotide
consensus at the 5'-end. Furthermore, 365 introns encoded
a characteristic lariat sequence in which the conserved T
was usually located at the 18 position. Although the con-
sensus sequences of introns are important for RNA matura-
tion, some peculiar introns such as TA-CC and TG-CC in
CYP540B10 and GC-AG in CYP620H9 were identified by
comparing sequences of isolated cDNAs with those in
genomic database. To the best of our knowledge, this is the
first report describing TA-CC and TG-CC in introns from
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any organisms, whereas GC-AG introns are rarely found in
several other organisms (Rep etal. 2006). As shown in
Fig. 5b and c, intron length and lengths of lariat sequences
showed clear distributions. This characteristic is potentially
useful for identification of novel P450s in ascomycetous
fungi. Besides intronic sequences, microexons consisting of
6 or 10 nucleotides were found in CYP5111Al,
CYP682B2, and CYP5101A1. The lengths of introns flank-
ing microexons (52-75) were close to average size, sug-
gesting that these unique gene structures were probably
generated by stepwise insertion of two introns.

In conclusion, this study describes the molecular
diversity of AoCYPs, investigated using experimental and
bioinformatic approaches. The experimentally validated
sequences and gene structures will enable molecular locali-
zation and characterization of novel P450s from ascomyce-
tous fungi. Although further investigations are required to
better understand transcriptional and post-transcriptional
regulation of AoCYPs, it is clear that sophisticated molecu-
lar mechanisms enable superior metabolic performance of
A. oryzae. To date, only a few fungal P450s have been
functionally characterized. The isolated cDNAs will be use-
ful in advanced studies on functional surveys of AoCYPs
using recombinant systems. Potential practical applications
of AoCYP will be explored in the near future.
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