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Abstract As the protein databases continue to expand at
an exponential rate, fed by daily uploads from multiple
large scale genomic and metagenomic projects, the problem
of assigning a function to each new protein has become the
focus of significant research interest in recent times.
Herein, we review the most recent advances in the field of
automated function prediction (AFP). We begin by defining
what is meant by biological “function” and the means of
describing such functions using standardised machine read-
able ontologies. We then focus on the various function-pre-
diction programs available, both sequence and structure
based, and outline their associated strengths and weak-
nesses. Finally, we conclude with a brief overview of the
future challenges and outstanding questions in the field,
which still remain unanswered.
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Introduction

The recent explosion in the number and diversity of novel
proteins identified by genomic and metagenomic sequenc-
ing projects poses a new and important question to the blos-
soming field of systems biology—What do all these
proteins do?

Until recently, in the absence of any experimental evi-
dence, homology-based transfer remained the gold standard
for in silico analysis of protein function. Based on this
approach, if a query protein shares significant sequence
similarity (suggesting a common evolutionary origin) to a
protein of known function, then the function of the latter
may be transferred to the former (referred to as the query
protein). However, as the databases continue to expand at
an exponential rate, the utility of homology-based predic-
tion methods continues to contract, with fewer query pro-
teins registering significant hits to known proteins.

To compensate, several non-homology computational-
based approaches to protein function prediction, based on
sequence, structure, evolution, biochemical and genetic and
genomic knowledge, have begun to immerge (Fig. 1).

Herein, we review the most recent advances in the field
of automated function prediction (AFP) and discuss the
future challenges and outstanding questions, which still
remain unanswered.

What is protein function?

Before commencing any discussion on protein function
prediction, we must first consider what is meant by “func-
tion”. Biological function is highly contextual; different
aspects of the function of a given protein may be viewed as
occurring in different scales of space and time; from the
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Fig. 1 Schematic overview of
in silico-based protein function
prediction methods

In silico based
protein function

prediction

ra

Sequence based

Structure based

approaches approaches
A ) I
I
| T ] | ]
| i " 3D structure
Homology - " Genomic context Full 3D protein .

{ based transfer {Sequence motifs & expression structure motifs
G eg BLAST eg PROSITE based prediction egFATCAT VAST and eg PROCAT |

1 methods ¢ ’

\ L _ FAST

eg Phydbac2 3
e ey

almost instantaneous enzymatic reactions (molecular func-
tion) to the much slower overall biological process (Godzik
etal. 2007). Knowing which functional aspect is being
investigated is thus extremely important and can only prop-
erly be achieved by the establishment of a standardised
machine readable vocabulary.

Fortunately, significant progress has been made in the
computer science arena in developing the theory and appli-
cation of structured machine readable vocabularies, known
as ontologies, which provide a formal explicit specification
of a commonly used abstract model of the world (Losko
and Heumann 2009). Ontologies not only allow formal
definition of concepts, but also enable the creation of soft-
ware tools capable of reasoning about the properties and
relationships of a domain. Formats such as the Resource
Description Framework (RDF) and the Web Ontology Lan-
guage (OWL) have been devised that allow ontological
concepts to be persisted and communicated. RDF, for
example, allows the creation of statements about a particu-
lar domain by the use of triples in the form of subject-pred-
icate-object expressions. The subject and object represents
a concept, whereas the predicate defines the relationship
between them.

Detailed ontologies can be created by composing further
defining concepts and relationships that model the domain
of interest. Ontologies that define different aspects of pro-
teins could be used to annotate biological data with func-
tional facets and provide the basis of a framework for
machine-based reasoning.

The Gene Ontology (GO) (Ashburner and Lewis 2002)
goes some way to achieving this goal of formulizing a defi-
nition of functional context and providing machine-legible
functional annotation. GO has three “ontology trees”
describing three aspects of gene product function: Molecu-
lar function, biological process and cellular location. By
providing a standard vocabulary and defining relationships
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between terms, annotations can be computationally pro-
cessed (Smith etal. 2005), thus providing a standard
approach for programs to output their functional predic-
tions.

Having defined biological “function” and the means of
describing such functions, we can now turn our attention to
the various function-prediction programs, and their associ-
ated strengths and weaknesses.

Protein function-prediction methods

Protein function-prediction methods can be loosely divided
into sequence- and structure-based approaches. Herein, we
outline the current state of the art for sequence- and struc-
ture-based protein function prediction.

Sequence-based approaches
Homology-based transfer

Homology-based transfer, using programs such as BLAST
(Altschul et al. 1997), is perhaps the most widely used form
of computational function-prediction method; assigning un-
annotated proteins with the function of their annotated
homologues. The rationale for this approach is based on the
assumption that two sequences with a high degree of simi-
larity most likely evolved from a common ancestor and
thus must have similar functions.

While sequence similarity is undoubtedly correlated to
functional similarity, exceptions have been observed on
both ends of the similarity scale. Rost (2002), for example,
showed that even at high sequence similarity rates, enzy-
matic function may not necessarily be conserved, while
Galperin et al. (1998) observed that certain enzymes with
high levels of functional homology may be classed as
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analogous on the basis of sequence dissimilarity. While
such errors are the exception rather than the rule, they may
set the seed for further annotation errors; as more sequences
enter the databases, more are annotated by homology-based
transfer, thus helping to propagate and amplify the original
single erroneous annotation (Bork 2000; Gilks et al. 2005).

Furthermore, as the databases continue to expand the
utility of the homology-based transfer approach begins to
breakdown. The recent explosion of large scale metage-
nomic sequencing projects (Sleator et al. 2008) has resulted
in an unprecedented amount of novel sequence data being
deposited in the databases. As a direct consequence of this
sequence expansion, the number of clustered similar pro-
teins for which no single annotated reference sequence
exists is expanding rapidly, eroding the foundations of the
homology-based transfer approach. Indeed, it has been esti-
mated that <35% of all proteins could be annotated auto-
matically when accepting errors of <5%, while even
allowing for error rates of >40%, there is no annotation
for >30% of all proteins (Rost et al. 2003).

Sequence motifs

Typically of the 100-300 amino acids in a functional pro-
tein domain <10% constitute the protein’s active sites
(Friedberg 2006). Therefore, homology-based transfer from
a complete protein is often not necessary to predict a pro-
tein’s function. All that is required is a sequence (or struc-
ture)-based signature, which is associated with a particular
function. Such signatures may occur at a single position on
the sequence or as a “fingerprint” composed of several such
patters. A few databases are dedicated to motif searching;
PROSITE (Hulo et al. 2008) for example is composed of
manually selected biologically important motifs and has
three types of signatures: patterns, rules and profiles. Each
signature represents a different automated method for
searching motifs; while patterns and rules typically span
only a few residues (e.g., A typical entry in PROSITE
would be [ST]-x(2)-[DE]. i.e. a serine or threonine, fol-
lowed by any two residues, followed by Aspartate or Gluta-
mate—the consensus sequence of a Casein kinase II
phosphorylation site) profiles extend the similarity to the
level of entire domains. Other well-known motif databases
include BLOCKS (Henikoff et al. 2000) and PRINTS (Att-
wood et al. 2003).

Genomic context and expression-based prediction methods

Genomic context-based prediction, also referred to as phy-
logenomic profiling, is a method for predicting protein
function based on the observation that proteins with similar
pedigrees (inter-genomic profiles) are believed to have
evolved in tandem and as such are likely to share a common

function (Eisenberg et al. 2000). Furthermore, in prokary-
ote genomes the loci of functionally related proteins tend to
be co-located on the chromosome. Combining co-evolution
and co-location (chromosomal proximity) has given rise to
a new generation of function-prediction algorithms such as
Phydbac2 (Enault et al. 2005).

As an extension of co-location, genes involved in similar
cellular functions also tend to be co-transcribed. Following
this logic unknown genes co-expressed with known genes
may be functionally annotated by virtue of association.
This “guilt by association” approach has given rise to an
algorithm of the same name, developed by Walker et al.
(1999), for the analysis of gene expression arrays. Unlike
the sequence motif-based approach, which focuses on
molecular function annotation; expression microarray-
based predictions are useful for annotation of the cellular
aspect of protein function. Furthermore, given that most
cellular processes are carried out by groups of physically
interacting proteins, it is fair to assume that such interacting
proteins have similar overall cellular functions. Thus, pro-
tein—protein interaction (PPI) data may also facilitate pro-
tein function annotation, and several PPI databases are now
available, including STRING (Zhao etal. 2008), DIP
(Lehne and Schlitt 2009) and GRID (Breitkreutz et al.
2003). The availability of protein interaction networks for
model species has facilitated the development of effective
computational approaches to interpret the data and rapidly
elucidate protein function as outlined by Sharan etal.
(2007).

Structure-based approaches

Given that protein structure is far more conserved than
sequence, many proteins that exhibit little or no sequence
similarities, due to evolutionary constraints still retain sig-
nificant structure similarity (Watson et al. 2005). In this
respect, structure is a useful indicator of function; indeed
most known protein folds are associated with a particular
function or functional milieu (Todd et al. 2001). Programs
that scan the Protein Data Bank (PDB) for structural simi-
larity given a query sequence include, amongst others,
FATCAT (Ye and Godzik 2004), PAST (Taubig et al.
2006) and VAST (Gibrat et al. 1996). However, knowledge
of 3D protein structure alone is not always sufficient to
accurately infer function. Indeed, it is estimated that func-
tional hypotheses can be made from 3D structures for only
~20-50% of hypothetical proteins (Goldsmith-Fischman
and Honig 2003; Laskowski et al. 2003).

Rather than focusing on the protein as a whole, it is pos-
sible, and in some instances more desirable, to target 3D
motifs associated with specific functions (e.g. binding sites
or active sites). The rational for analysing structure motifs
(or patterns) is analogous to that of sequence patterns—to
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identify unique signatures indicative of a particular func-
tion. Libraries of 3D motifs with known function have
begun to evolve (Jones and Thornton 2004), one example
of which is PROCAT (Wallace et al. 1996), a database of
3D enzyme active sites that can be queried for specific
functional signatures. In addition, hybrid motifs incorporat-
ing information from sequence and structure, as well as
from the literature, have also been used to predict protein
function (Di Gennaro et al. 2001).

Conclusion

In contrast to sequence and structure information in which
the data are either known (as is the case for amino acid
sequence) or easily predicted (e.g. loops in structure predic-
tion) the multifaceted and ambiguous nature of biological
function makes its elucidation a far more complex endeav-
our. The complexity of the problem is perhaps best illus-
trated by Jeffery (2003) so-called “moonlighting proteins”,
which perform several contextually different functions,
ranging from the molecular to the cellular level. Thus,
given the aggregate nature of protein function prediction,
perhaps the best outcome will be achieved by adopting a
multifaceted approach. For example, while biochemical
function prediction is likely best served by focusing on
sequence motifs, resolution of physiological function is bet-
ter addressed at the genomic level, based for example on
microarray expression data. Therefore, composite methods,
employing a diversity of features to assess different func-
tional aspects, are most likely to succeed. Examples of such
aggregate functional-prediction programs include InterPro
(which classifies sequences at superfamily, family and sub-
family levels, predicting the occurrence of functional
domains, repeats and important sites), ProFunc (which
identifies the likely biochemical function of a protein from
its three-dimensional structure; using fold matching, resi-
due conservation, surface cleft analysis and functional 3D
templates, to identify both the protein’s likely active site
and possible homologues in the PDB) and ProKnow (which
annotates proteins with Gene Ontology functional terms;
extracting features from the protein such as 3D fold,
sequence, motif and functional linkages) .

However, despite the emergence of ever more sophisti-
cated and versatile function-prediction algorithms; the
proper assessment of such programs still remains a signifi-
cant limitation to the development of the field. Unlike
assessment of protein structure, function-prediction meth-
ods still lack a viable blind benchmark for which to assess
program efficacy. This obstacle may eventually be over-
come by emulating successful collaborative efforts of com-
putational and experimental structural biologists in the
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form of CASP (Critical Assessment of Structure Predic-
tion) for the benchmarking of protein structure.
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