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Abstract A putative multidrug eZux pump, EmrD-3,
belonging to the major facilitator superfamily (MFS) of
transporters and sharing homology with the Bcr/CXA sub-
family, was identiWed in Vibrio cholerae O395. We cloned
the emrD-3 gene and evaluated its role in antimicrobial
eZux in a hypersensitive Escherichia coli strain. The eZux
activity of this membrane protein resulted in lowering the
intracellular concentration of ethidium. The recombinant
plasmid carrying emrD-3 conferred enhanced resistance to
several antimicrobials. Among the antimicrobials tested,
the highest relative increase in minimum inhibitory concen-
tration (MIC) of 102-fold was observed for linezolid
(MIC = 256 �g/ml), followed by an 80.1-fold increase for
tetraphenylphosphonium chloride (TPCL) (156.2 �g/ml),
62.5-fold for rifampin (MIC = 50 �g/ml), >30-fold for
erythromycin (MIC = 50 �g/ml) and minocycline (MIC =
2 �g/ml), 20-fold for trimethoprim (MIC = 0.12 �g/ml),
and 18.7-fold for chloramphenicol (MIC = 18.7 �g/ml).
Among the Xuorescent DNA-binding dyes, the highest rela-
tive increase in MIC of 41.7-fold was observed for ethi-
dium bromide (125 �g/ml) followed by a 17.2-fold increase
for rhodamine 6G (100 �g/ml). Thus, we demonstrate that
EmrD-3 is a multidrug eZux pump of V. cholerae, the
homologues of which are present in several Vibrio spp.,
some members of Enterobacteriaceae family, and Gram-
positive Bacillus spp.
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Introduction

The Gram-negative pathogenic bacterium Vibrio cholerae,
the causative agent of cholera, has been responsible for
eight pandemics and remains a serious public health con-
cern in developing countries (Faruque et al. 1998). As a
clinically relevant pathogen, mechanisms of antimicrobial
resistance in this bacterium are of interest to researchers
and medical professionals alike. Moreover, the current pan-
demic has witnessed the emergence of V. cholerae O1
resistant to antibiotics used in the empiric treatment of
cholera (Dalsgaard et al. 2000; Mwansa et al. 2007).

Several mechanisms of bacterial drug resistance have
been elucidated, including altered drug targets, antibiotic
inactivating enzymes, decreased membrane permeability,
and the active eZux of antimicrobials (Hayes and Wolf
1990; Putman et al. 2000). While altered drug targets and
antibiotic inactivating enzymes may confer high level but
narrow-spectrum drug resistance, eZux systems are capa-
ble of providing resistance to a broad spectrum of antibiot-
ics and antimicrobial compounds (Higgins 2007). The
whole genome sequencing of several V. cholerae strains,
including O395, has facilitated identiWcation of putative
genes responsible for virulence and antimicrobial resis-
tance. The objective of our study is to better understand the
physiology and substrate proWle of multidrug eZux pro-
teins through the characterization of one such membrane
protein, EmrD-3, of the major facilitator superfamily
(MFS). MFS transporters are present in all organisms and
comprise the largest family of transporters yet discovered
(Maiden et al. 1987; Pao et al. 1998). Energy for transport
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is provided by a cation gradient, most commonly, H+ or
Na+ (Law et al. 2008). Transporters in this family generally
have twelve transmembrane helices (Hirai et al. 2003). The
MFS transporter proteins are further classiWed into three
major types based on the mechanism of transport: uniport-
ers, symporters, and antiporters (Pao et al. 1998). Uniport-
ers are capable of transporting only one substrate and
utilize only the energy generated by the concentration gra-
dient of the substrate itself. Symporters transport two diVer-
ent substrates in the same direction (either into or out of the
cell), utilizing the chemical gradient of one of these sub-
strates, usually an ion, for energy. Antiporters transport two
substrates in opposite directions; one substrate may enter
the cell as the other leaves (Law et al. 2008). EmrD-3
shares homology with the Bcr/CXA subfamily, a group of
antiporters shown to confer resistance to chloramphenicol,
Xorfenicol, and bicyclomycin by actively transporting these
compounds out of the cell.

The hypothesis of this study is that EmrD-3 is a multi-
drug eZux pump of the MFS, predicting that EmrD-3 con-
fers reduced antimicrobial susceptibility when introduced
into an antimicrobial hypersensitive strain of Escherichia
coli. The objective of this study is to elucidate the antimi-
crobial eZux potential of EmrD-3 using a functional clon-
ing strategy. The results of this study can also be
extrapolated to other vibrios with homologous transporters.

Materials and methods

Cloning of emrD-3

Bacterial strains and plasmids used in this study are listed
in Table 1. The background strain E. coli KAM32 lacks the
eZux pumps AcrAB and YdhE (Otsuka et al. 2005). Unless
noted otherwise, all plasmid containing cells were grown in
Luria–Bertani (LB) broth supplemented with 100 �g/ml
ampicillin.

Genomic DNA was extracted from V. cholerae O395
using the CTAB (cetyl trimethyl ammonium bromide)
method (Ausubel et al. 1995). Primers F3Bam (gcgggatccat
gaagacgaagccttctctctgg) and R3Xh (gcgctcgagttatggtaga
cgggctatgtgac) were designed to contain BamHI and XhoI

restriction sites (underlined) and used to amplify the
1,140 bp emrD-3 gene. The PCR product was puriWed,
restriction digested with BamHI and XhoI and ligated into
similarly digested pSP72 vector (Promega, USA). The liga-
tion mixture was introduced into E. coli KAM32 by elec-
troporation to obtain KAM32/pSP72/emrD-3. The presence
of ligated insert was conWrmed by PCR.

Study of antimicrobial resistance proWle

The minimal inhibitory concentrations (MICs) of various
antimicrobial compounds were determined for KAM32/
pSP72/emrD-3 and control E. coli containing vector alone
using CLSI guidelines (CLSI 2006). Initial screening for
diVerences in resistance was performed using E-test strips
(bioMereieux, Durham, NC, USA) according to the manu-
facturer’s instructions. Final MIC data were determined
using the microbroth dilution technique according to CLSI
guidelines (CLSI 2006). Each microbroth dilution experi-
ment was repeated four times (n = 4). Relative fold
increases were calculated by dividing the mean MIC of
KAM32/pSP72/emrD-3 by the mean MIC of vector-alone
control cells KAM32/pSP72.

Ethidium accumulation assay

The ethidium accumulation assay was performed as previ-
ously described (Minato et al. 2008). To prepare cells for
the ethidium accumulation assay, KAM32 cells harboring
pSP72/emrD-3 or pSP72 alone were grown to mid-expo-
nential phase in LB broth supplemented with 100 �g/ml
ampicillin and 20 mM potassium lactate at 37°C. Cells
were harvested, washed twice with M9 minimal salt solu-
tion (pH 7.1), and resuspended in the same medium supple-
mented with 20 mM potassium lactate to an OD625 of about
0.2. This cell suspension was then preincubated for 5 min at
37°C. The natural Xuorescence of the cells was measured,
and the assay was initiated by the addition of 2.5 �M ethi-
dium bromide. Carbonyl cyanide m-chlorophenylhydraz-
one (CCCP) was then added at 100 �M to collapse the H+

gradient across the membrane and inactivate EmrD-3. Fluo-
rescence was measured using an F-2500 Xuorescence spec-
trophotometer (Hitachi High-Technologies, Tokyo, Japan)
with an excitation wavelength of 500 nm and an emission
wavelength of 580 nm. To test the hypothesis that EmrD-3
is not a Na+ pump, a separate accumulation assay was per-
formed in sodium-free medium with sodium concentrations
ranging from 0 to 154 mM (physiological concentration).

Ethidium eZux assay

The ethidium eZux assay was performed as previously
described with minor modiWcations (Hirata et al. 2004).

Table 1 Bacterial strains and plasmids used in this study

Strain or plasmid Properties Reference

E. coli KAM32 �acrAB, �ydhE, hsd¡ Otsuka et al. (2005)

Vibrio cholerae O395 Classical O1 biotype Rubin et al. (1998)

pSP72 Ampr Krieg and Melton 
(1987)

pSP72/emrD-3 Ampr, contains 
emrD-3

This study
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Cells were grown to an OD625 of approximately 1 in LB
broth supplemented with 20 mM potassium lactate and
100 �g/ml of ampicillin. Subsequently, 2 ml of cells was
harvested by centrifugation for 1 min at 13,000£g and
resuspended in 1 ml M9 minimal salt medium containing
5 �M ethidium bromide and 100 �M CCCP. This cell sus-
pension was incubated for 5 min. to load the cells with ethi-
dium and deplete the membrane potential. After incubation,
the cells were again harvested by centrifugation for 1 min
at 13,000£g and resuspended in M9 minimal medium (pH
7.1) containing 5 �M ethidium bromide. The Xuorescence
of the ethidium-loaded cells was measured; then the proton
motive force was reestablished by the addition of potassium
lactate (20 mM) to energize the cells and initiate the accu-
mulation assay. The proton gradient was then disrupted by
the addition of 100 �M CCCP. Fluorescence was measured
using a FL-2500 Xuorescence spectrophotometer (Hitachi
High-Technologies, Tokyo, Japan) with excitation and
emission wavelengths of 500 and 580 nm, respectively.

Bioinformatic analysis

The emrD-3 gene and associated promoter sequences were
identiWed in the NCBI database by searching for sequences
with homology to known MFS transporters. The deduced
amino acid sequence of EmrD-3 was compared to all other
known proteins in the NCBI database by BLASTP analysis
(Altschul et al. 1997). The two-dimensional structure was
determined by using the TMHMM sever (Transmembrane
helix prediction based on hidden Markov models), the
results of which were analyzed using the TMRpres2d
(Transmembrane Re-presentation in 2-dimensions). Multi-
ple sequence alignments were conducted using the CLUS-
TAL W program (Higgins et al. 1994). The phylogenetic

tree was constructed using twenty-three proteins closely
related to EmrD-3 using the neighbor-joining method in
CLUSTALX2, with 10,000 iterations of bootstrapping, and
with LacY as an out-group (Varela and Wilson 1996). The
tree was then visualized using TreeViewX.

Results

IdentiWcation and analysis of EmrD-3

An 1,140 bp emrD-3 gene was identiWed in the genome of
V. cholerae O395 corresponding to the coordinates 283,612
to 284,751 on the second chromosome (GenBank accession
no. CP001236). The emrD-3 determinant encodes a protein
product of 379 amino acid residues with a calculated
molecular mass of 40.5 kDa and an isoelectric point (pI) of
9.83. Secondary structure analysis revealed 12 transmem-
brane helices supporting our hypothesis that EmrD-3 is an
intrinsic membrane protein (Fig. 1). BLAST and multiple
amino acid sequence alignment analyses revealed that pro-
tein homologues of EmrD-3 are widely distributed among
the Gram-positive and -negative bacteria. EmrD-3 is 80%
similar and 65% identical with a multidrug protein of V.
harveyi, V. alginolyticus, V. parahemolyticus, V. Wscheri,
and V. vulniWcus (Fig. 2). The whole genome sequences of
other Gram-negative bacteria such as Proteus penneri, Aer-
omonas hydrophila, Citrobacter youngae, Serratia protea-
maculans, and Pseudomonas Xuorescens also have protein
sequences bearing 65% similarity and 50% identity with
EmrD-3. Among the Gram-positive bacteria, sequences
homologous to EmrD-3 are found in Bacillus cereus, Lysin-
ibacillus sphaericus, B. anthracis, B. weihenstephanensis,
and B. thuringiensis with 38% similarity and 61% identity.

Fig. 1 Predicted two-dimen-
sional structure of EmrD-3
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A multiple sequence alignment of EmrD-3 with related
membrane proteins from V. harveyi, P. Xuorescens, and B.
cereus shows relatively high N-terminal sequence similar-
ity (Fig. 3).

Ethidium accumulation assay

The ethidium accumulation assay was performed to test the
hypothesis that EmrD-3 is a true eZux pump. Since ethi-
dium Xuoresces when bound to DNA, the accumulation of
ethidium in cells can easily be measured. Fig. 4 shows the
diVerence in ethidium accumulation between E. coli
KAM32/pSP72/emrD-3 and E. coli KAM32/pSP72 alone.

Upon the addition of ethidium at the time point indi-
cated in Fig. 4, compared to control, KAM32/pSP72/
emrD-3 showed less of an increase in Xuorescence as the
EmrD-3 protein actively extrudes ethidium, preventing it
from binding DNA. When a protonophore carbonyl cya-
nide m-chlorophenylhydrazone (CCCP) was added, a dra-
matic increase in the Xuorescence was observed due to the
disruption of the H+ gradient across the membrane result-
ing in the entry of ethidium bromide back into the cell and
binding to the DNA. E. coli KAM32/pSP72 showed a
large increase in intracellular ethidium immediately after
its addition. The accumulation of ethidium is not signiW-
cantly changed by the addition of CCCP, indicating that
negligible H+-dependent eZux of ethidium occurs in
KAM32/pSP72. Similar accumulation activity was
observed for both control and experimental cells in
sodium-free medium. The Xuorescence intensity did not
change in response to increasing sodium concentrations
(Data not shown).

Ethidium eZux assay

The ethidium eZux assay provided evidence for the eZux
of ethidium from cells mediated by EmrD-3 (Fig. 5). The
initial Xuorescence values for de-energized cells of
KAM32/pSP72 and KAM32/pSP72/emrD-3 were very
similar. Upon energization by the addition of potassium
lactate, the experimental cells showed nearly a 50% reduc-
tion in Xuorescence whereas control cells showed only
about a 15% reduction. The addition of the uncoupler
CCCP resulted in near total recovery of initial Xuorescence
in both the experimental and control cells (Fig. 5).

EVect of EmrD-3 on antibiotic tolerance

The MICs of 29 antimicrobial compounds were determined
for KAM32/pSP72/emrD-3. Expression of EmrD-3 in E.
coli KAM32 conferred enhanced resistances to fourteen
antimicrobials (Table 2). Among the antimicrobials tested,
the highest relative increase of 102-fold was observed for
linezolid (MIC = 256 �g/ml), followed by an 80.1-fold
increase for tetraphenylphosphonium chloride (TPCL)
(156.2 �g/ml), 62.5-fold for rifampin (MIC = 50 �g/ml),
33.3-fold for minocycline (MIC = 2 �g/ml), 31.3-fold for
erythromycin (MIC = 50 �g/ml), 20-fold for trimethoprim
(MIC = 0.12 �g/ml), and 18.7-fold for chloramphenicol
(MIC = 18.7 �g/ml). A 7.8-fold increase was found for
oxytetracycline (MIC = 6.2 �g/ml) and tetracycline
(MIC = 6.2 �g/ml), and a 5-fold increase for nalidixic acid
(MIC = 2 �g/ml); while a 4.9-fold increase in the MIC was
observed for Xorfenicol (MIC = 4.6 �g/ml), compared to
the control cells. Among the Xuorescent DNA-binding

Fig. 2 Phylogenetic tree show-
ing proteins highly related to 
EmrD-3 (shown highlighted)
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dyes, the highest relative increase in MIC of 41.7-fold was
observed for ethidium bromide (125 �g/ml) followed by
17.2-fold increase for rhodamine 6G (100 �g/ml). EmrD-3
did not confer increased resistance to Wfteen other antimi-

crobials including acriXavine, amikacin, cefotaxime, cipro-
Xoxacin, fosfomycin, gatiXoxacin, gentamicin, imipenem,
levoXoxacin, mercury, norXoxacin, oXoxacin, rose bengal,
thioridazine, and tigecycline.

Fig. 3 Multiple sequence alignment comparing eZux proteins to
EmrD-3 of V. cholerae O395. The putative proteins of Pseudomonas
Xuorescens (YP_261166), Bacillus cereus (YP_002452428), V. vul-
niWcus (NP_762879), V. parahaemolyticus (NP_800526), Proteus

mirabilis (YP_002150331), V. Wscheri (YP_002158462), Shewanella
putrefaciens (YP_001184306), and V. harveyi (ZP_01984725) were
compared to EmrD-3 of V. cholerae O395 (ACP11144)

Fig. 4 Accumulation of ethidium bromide in E. coli cells containing
cloned emrD-3/pSP72 and plasmid vector alone averaged over three
trials. The arrows indicate the points at which 2.5 �M ethidium bro-
mide or 100 �M CCCP was added to the cell suspension. Error bars
indicate one standard deviation from the mean
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Fig. 5 EZux of ethidium from preloaded cells. Percent Xuorescence
was averaged over three separate trials. Arrows indicate the points at
which 20 mM potassium lactate or 100 �M CCCP was added to the
cell suspension preloaded with 5 �M ethidium bromide. Error bars
indicate one standard deviation from the mean
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Discussion

Several multidrug eZux pumps belonging to the RND
(resistance-nodulation-cell division) and the MATE (multi-
drug and toxic compound extrusion) families of membrane
proteins have been described in V. cholerae O1 and non-O1
(Begum et al. 2005; Woolley et al. 2005; Rahman et al.
2007; Bina et al. 2008). Here, we identiWed and character-
ized the multidrug eZux protein EmrD-3 of the MFS from
the V. cholerae O395 whole genome sequence using a
functional cloning strategy. BLAST analysis revealed that
proteins similar to EmrD-3 are widely present in the whole
genomes of all Vibrio species, some members of the Enter-
obacteriaceae and Bacillus spp. Fig. 2 shows the compari-
son of EmrD-3 with 23 other closely related putative
membrane proteins encoded in the whole genome
sequences of other Gram-negative bacteria, the majority of
which are of marine origin. SigniWcantly, EmrD-3 homo-
logues are not found in E. coli, Salmonella, Campylobacter,
Mycobacterium, and Staphylococcus aureus. Comparison
of EmrD-3 with sequence homologues from V. Wscheri, P.
Xuorescens, and B. cereus shows sequence conservations
across these diverse species (Fig. 3). The 40.5 kDa EmrD-3
with 12 transmembrane domains bears homology with the
Bcr/CXA subfamily of membrane proteins (Figs. 1 and 2).
Members of this family with known activity include Bcr
(bicyclomycin resistance protein) in E. coli, Flor (chloram-
phenicol and Xorfenicol resistance) in Salmonella typhimu-
rium DT104 and CmlA (chloramphenicol resistance) in

Pseudomonas. A highly conserved amino acid sequence
motif G-[RKPATY]-L-[GAS]-[DN]-[RK]-[FY]-G-R-[RK]-
[RKP]-[LIVGST]-[LIM] is present between TMS-2 and
TMS-3 in all 17 families of the MFS proteins (GriYth et al.
1992; Pao et al. 1998). In EmrD-3, this conserved motif
GVLADKWGRRPTM corresponds well with the motif
except for W at position 7 otherwise represented by F/Y.
EmrD-3 harbors elements of the antiporter motif (motif C),
G(X6)G(X3)GP(X2)GP(X2)G, shown to be important for
drug/H+ antiport activities (Ginn et al. 2000; Jin et al. 2002;
Pasrija et al. 2007; Varela et al. 1995). Consistent with the
predicted topology, EmrD-3 actively extrudes DNA-bind-
ing Xuorescent compounds such as ethidium bromide and
TPCL. Addition of ethidium bromide resulted in high accu-
mulation of this dye in control cells compared to KAM32/
pSP72/emrD-3 demonstrating eZux activity of EmrD-3
(Fig. 4). Further, the addition of a membrane de-energizer
CCCP at the time point indicated in Fig. 4 resulted in dis-
ruption of ethidium bromide eZux suggesting that EmrD-
3-mediated eZux is potentiated by a proton gradient across
the membrane, characteristic of proton-dependent bacterial
transporters (Padan and Schuldiner 1994; Putman et al.
2000).

Though structurally diverse molecules are substrates for
MFS multidrug eZux pumps, substrate proWle elucidation
helps in transporter classiWcation (Lewis 1994; Grkovic
et al. 2002; Van Veen and Konings 1998). We tested a
broad range of antimicrobial compounds to determine
whether reduced susceptibilities were conferred by EmrD-3
as would be evidenced by increased MICs of those com-
pounds. Though the antibiotics used here do not represent
all of the antibiotics or their classes, we used many antibiot-
ics relevant in cholera treatment, such as ciproXoxacin,
erythromycin, tetracycline, and trimethoprim. Our results
suggest that EmrD-3 actively extrudes diverse antimicrobi-
als from E. coli KAM32 (Table 2). Among the DNA-bind-
ing Xuorescent dyes tested, the MIC of KAM32/pSP72/
emrD-3 to ethidium bromide was 41.7-fold higher than the
control strain KAM32/pSP72 containing cloning vector
alone, suggesting that EmrD-3 pumps ethidium bromide
eYciently. The ethidium accumulation assay further dem-
onstrated that the accumulation of this dye in control cells
took place much more rapidly than in cells expressing
EmrD-3 (Fig. 4). The similar Xuorescence values observed
during a sodium-free accumulation assay suggest that
EmrD-3 is not a sodium-dependent eZux pump (Data not
shown). The hypothesis that EmrD-3 is an eZux pump is
further supported by our observation that ethidium eZux in
cells harboring EmrD-3 occurs much more eVectively than
in control cells (Fig. 5). Though we tested a limited number
of antibiotics as substrates for EmrD-3, extrusion of these
agents was evident from increased MICs of cells containing
EmrD-3. Of these antibiotics tested, linezolid was implicated

Table 2 MICs of various antimicrobial compounds to E. coli KAM32
harboring cloned emrD-3 and the vector-alone control E. coli KAM32
determined by the microbroth dilution technique

Substrate MIC values (�g/ml) Relative 
increase

KAM32/
pSP72

KAM32/
pSP72/emrD-3

Linezolid 2.5 256 102.4

TPCL 2.0 156.2 80.1

Rifampin 0.8 50 62.5

Ethidium bromide 3.0 125 41.7

Minocycline 0.06 2.0 33.3

Erythromycin 1.6 50 31.3

Trimethoprim 0.006 0.12 20.0

Chloramphenicol 1.0 18.7 18.7

Rhodamine 6G 5.8 100 17.2

Oxytetracycline 0.8 6.2 7.8

Tetracycline 0.8 6.2 7.8

Nalidixic acid 0.4 2.0 5.0

Florfenicol 0.93 4.6 4.9

SDS 7.3 19.5 1.9
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to be pumped very eYciently from the cells as suggested by
a sharp increase in the MIC to 256 �g/ml. This corre-
sponded to a 102-fold increase in the MIC compared to E.
coli KAM32 with vector alone. Other antibiotics actively
extruded, as implicated by signiWcant increases in MICs,
were rifampin, erythromycin, and chloramphenicol. EZux-
mediated resistance to chloramphenicol was described in E.
coli (McMurry et al. 1994; Edgar and Bibi 1997; Mine
et al. 1998; Moreira et al. 2004). The multidrug eZux pump
AcrAB confers chloramphenicol resistance in E. coli and
Enterobacter cloacae (Okuso et al. 1996; Moreira et al.
2004). Active eZux is an important mechanism of macro-
lide resistance (Zhong and Shortridge 2000). At least 14
such genes of the MFS family or ATP transporters have
macrolide, lincosamides, streptogramins, ketolides, and
oxazolidinones eZux activities in various Gram-positive
and -negative bacteria (Roberts 2008). In Pseudomonas,
MexXY confers elevated resistance to erythromycin, Xuo-
roquinolones, tetracycline, chloramphenicol, and kanamy-
cin (Mine et al. 1999). However, comparison of the amino
acid sequence of EmrD-3 with previously reported chlor-
amphenicol, erythromycin, and rifampin eZux proteins did
not show any similarity. Thus, EmrD-3 identiWed here is
distinct from known proteins responsible for eZux of
erythromycin, chloramphenicol, and rifampin.

Though several antibiotics are eZux substrates for
EmrD-3, the antibiotic linezolid is very eVectively pumped
by EmrD-3. Linezolid belongs to the oxazolidinone class of
drugs used to treat Gram-positive bacterial infections by
Streptococcus spp., vancomycin-resistant Enterococcus
faecium, and methicillin-resistant Staphylococcus aureus
(MRSA) (Zurenko et al. 1996). The antibacterial action of
linezolid is due its interaction with the 50S ribosomal sub-
unit resulting in the inhibition of protein synthesis by pre-
venting the formation of the initiation complex (Swaney
et al. 1998). Resistance to linezolid was Wrst reported in
Enterococcus followed by MRSA, E. coli, and many other
bacteria (Gonzales et al. 2001; Tsiodras et al. 2001; Mut-
nick et al. 2003). However, the resistance mechanism is via
modiWcation of the target site which involves a G to A sub-
stitution at position 2,032 in the peptidyl transferase center
of 23S rRNA and resulting in reduced aYnity of linezolid
to the 50S subunit (Xiong et al. 2000). This and other sites
of mutations (e.g. T2500A in S. aureus), conWrm the mech-
anism of action of oxazolidinones (Meka et al. 2004). In
addition, one report described a non-ribosomal mechanism
of resistance in Mycobacterium smegmatis (Sander et al.
2002). Ribosomes isolated from these strains behaved
essentially like wild-type ribosomes in the presence of
drug. It is speculated that the resistance may arise from
decreased uptake or increased eZux of the drug (Slatter
et al. 2001). The genome of a linezolid-resistant Strepto-
coccus strain sequenced recently revealed novel eZux

mechanisms responsible for the resistance phenotype (Feng
et al. 2009). Inactivation of AcrAB, an RND-type eZux
pump, has been shown to make it more susceptible to lin-
ezolid, suggesting the role of eZux pumps in linezolid
resistance of Gram-negative bacteria (Buysse et al. 1996;
Bohnert and Kern 2005). The study of emrD-3 expression
in clinical isolates of multidrug resistant V. cholerae could
provide clues to the ecological distribution of this determi-
nant as well as to its role in antimicrobial resistance or
virulence. Furthermore, our results strongly suggest that
EmrD-3-mediated eZux has physiological relevance, and
our work will help to identify and characterize homologous
eZux proteins in other Gram-negative and -positive
bacteria.
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